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This book is dedicated to those who tirelessly contribute to advanc-
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Preface
Over the years, I shared countless educational nuggets about ma-
chine learning and deep learning with hundreds of thousands
of people. The positive feedback has been overwhelming, and I
continue to receive requests for more. So, in this book, I want to
indulge both your desire to learn and my passion for writing about
machine learning¹.

¹I will use machine learning as an umbrella term for machine learning, deep learning, and
artificial intelligence.
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Who Is This Book For?

This book is for people with a beginner or intermediate background
in machine learning who want to learn something new. This book
will expose you to new concepts and ideas if you are already
familiar with machine learning. However, it is not a math or coding
book. You won’t need to solve any proofs or run any code while
reading. In other words, this book is a perfect travel companion or
something you can read on your favorite reading chair with your
morning coffee.
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What Will You Get Out of This Book?

Machine learning and AI are moving at a rapid pace. Researchers
and practitioners are constantly struggling to keep up with the
breadth of concepts and techniques. This book provides bite-sized
nuggets for your journey from machine learning beginner to ex-
pert, covering topics from various machine learning areas. Even
experienced machine learning researchers and practitioners will
encounter something new that they can add to their arsenal of
techniques.
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How To Read This Book

The questions in this book are mainly independent, and you can
read them in any desired order. You can also skip individual
questions for the most part. However, I organized the questions to
bring more structure to the book.

For instance, the first question deals with embeddings, which we
refer to in later questions on self-supervised learning and few-
shot learning. Therefore, I recommend reading the questions in
sequence.

The book is structured into five main chapters to provide additional
structure. However, many questions could appear in different
chapters without affecting the flow.

Chapter 1, Deep Learning and Neural Networks covers questions
about deep neural networks and deep learning that are not specific
to a particular subdomain. For example, we discuss alternatives to
supervised learning and techniques for reducing overfitting.

Chapter 2, Computer Vision focuses on topics mainly related to
deep learning but are specific to computer vision, many of which
cover convolutional neural networks and vision transformers.

Chapter 3, Natural Language Processing covers topics around
working with text, many of which are related to transformer
architectures and self-attention.

Chapter 4, Production, Real-World, And Deployment Scenarios con-
tains questions pertaining to practical scenarios, such as increasing
inference speeds and various types of distribution shifts.

Chapter 5, Predictive Performance and Model Evaluation dives a
bit deeper into various aspects of squeezing out predictive perfor-
mance, for example, changing the loss function, setting up k-fold
cross-validation, and dealing with limited labeled data.

If you are not reading this book for entertainment but for machine
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learning interview preparation, you may prefer a spoiler-free look
at the questions to quiz yourself before reading the answers. In this
case, you can find a list of all questions, without answers, in the
appendix.
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Discussion Forum

The best way to ask questions about the book is the discussion
forum at https://community.leanpub.com/c/machine-learning-q-a².
Please feel free to ask anything about the book, share your thoughts,
or just introduce yourself!

²https://community.leanpub.com/c/machine-learning-q-a

https://community.leanpub.com/c/machine-learning-q-a
https://community.leanpub.com/c/machine-learning-q-a
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Sharing Feedback and Supporting
This Book

I enjoy writing, and it is my pleasure to share this knowledge with
you.

If you obtained a free copy and like this book, you can
support me by buying a digital copy on Leanpub at
https://leanpub.com/machine-learning-q-and-ai/³.

For an author, there is nothing more valuable than your honest
feedback. I would really appreciate hearing from you and appreci-
ate any reviews! And, of course, I would be more than happy if you
recommend this book to your friends and colleagues or share some
nice words on your social channels.

³https://leanpub.com/machine-learning-q-and-ai/

https://leanpub.com/machine-learning-q-and-ai/
https://leanpub.com/machine-learning-q-and-ai/
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Copyright and Disclaimer

Machine Learning Q and AI by Sebastian Raschka
Copyright © 2023 Sebastian Raschka. All rights reserved.

No part of this book may be reproduced or transmitted in any form
or by anymeans, electronic or mechanical, including photocopying,
recording or by any information storage and retrieval system,
without written permission from the author.

The information contained within this book is strictly for educa-
tional purposes. If you wish to apply ideas contained in this book,
you are taking full responsibility for your actions. The author has
made every effort to ensure the accuracy of the information within
this book was correct at time of publication. The author does not
assume and hereby disclaims any liability to any party for any loss,
damage, or disruption caused by errors or omissions, whether such
errors or omissions result from accident, negligence, or any other
cause.
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Introduction
Thanks to rapid advancements in deep learning, we have seen a
significant expansion of machine learning and AI in recent years.

On the one hand, this rapid progress is exciting if we expect these
advancements to create new industries, transform existing ones,
and improve the quality of life for people around the world.

On the other hand, the rapid emergence of new techniques can
make it challenging to keep up, and keeping up can be a very time-
consuming process. Nonetheless, staying current with the latest
developments in AI and deep learning is essential for professionals
and organizations that use these technologies.

With this in mind, I began writing this book in the summer of 2022
as a resource for readers and machine learning practitioners who
want to advance their understanding and learn about useful tech-
niques that I consider significant and relevant but often overlooked
in traditional and introductory textbooks and classes.

I hope readers will find this book a valuable resource for obtaining
new insights and discovering new techniques they can implement
in their work.

Happy learning,
Sebastian
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Q1. Embeddings, Representations,
and Latent Space

> Q:

In deep learning, we often use the terms embedding vectors, rep-
resentations, and latent space. What do these concepts have in
common, and how do they differ?

> A:

While all three concepts, embedding vectors, vectors in latent space,
and representations, are often used synonymously, we can make
slight distinctions:

• representations are encoded versions of the original input;
• latent vectors are intermediate representations;
• embedding vectors are representations where similar items
are close to each other.

Embeddings

Embedding vectors, or embeddings for short, encode relatively
high-dimensional data into relatively low-dimensional vectors.

We can apply embedding methods to create a continuous dense
(non-sparse) vector from a one-hot encoding. However, we can
also use embedding methods for dense data such as images. For
example, the last layers of a convolutional neural network may
yield embedding vectors, as illustrated in the figure below⁷.

⁷Technically, all intermediate layer outputs of a neural network could yield embedding
vectors. Depending on the training objective, the output layer may also produce useful embed-
ding vectors. For simplicity, the convolutional neural network figure above only associates the
second-last layer with embeddings.
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Figure 1.1. An input embedding (left) and an embedding from a neural network
(right).

Taking it to the extreme, embedding methods can be used to encode
data into two-dimensional dense and continuous representations
for visualization purposes and clustering analysis, as illustrated in
the figure below.

Figure 1.2. Mapping words (left) and images (right) to a two-dimensional
feature space.

A fundamental property of embeddings is that they encode distance
or similarity. This means that embeddings capture the semantics of
the data such that similar inputs are close in the embeddings space.

Latent space
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Latent space is typically used synonymously with embedding space
– the space into which embedding vectors are mapped.

Similar items can appear close in the latent space; however, this
is not a strict requirement. More loosely, we can think of the
latent space as any feature space that contains the features, often
a compressed version of the original input features. These latent
space features can be learned by a neural network, for example, an
autoencoder that reconstructs input images, as shown in the figure
below.

Figure 1.3. An autoencoder that reconstructs the input image after passing
through a bottleneck layer.

The bottleneck in the figure above represents a small, intermediate
neural network layer that encodes or maps the input image into a
lower-dimensional representation. We can think of this mapping
as a latent space. The training objective of the autoencoder is
to reconstruct the input image, that is, minimizing the distance
between the input and output images. In order to optimize the
training objective, the autoencoder may learn to place the encoded
features of similar inputs (for example, cats) close to each other
in the latent space, thus creating useful embedding vectors where
similar inputs are close in the embedding (latent) space.

Representation

We used the term representation above. A representation is an
encoded, typically intermediate form of an input. For instance, an
embedding vector or vector in the latent space is a representation
of the input. However, representations can also be produced by
simpler procedures. For example, one-hot encoded vectors are
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considered representations of an input.

> Reader quiz:⁸

1-A

Suppose you are training a convolutional network with five convo-
lutional layers followed by three fully connected (FC) layers similar
to AlexNet⁹ as illustrated in the figure below. You can think of these
fully connected layers as two hidden layers and an output layer in
a multilayer perceptron.

Figure 1.4. An illustration of AlexNet.

Which of the neural network layers can be utilized to produce
useful embeddings?

1-B

Name at least one type of input representation that is not an
embedding.

⁸Solutions to the reader quizzes are located in the appendix at the end of this book.
⁹Wikipedia summary: https://en.wikipedia.org/wiki/AlexNet. Original publication:

Krizhevsky, Sutskever, Hinton (2012). ImageNet Classification with Deep Convolutional Neural
Networks, http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.

https://en.wikipedia.org/wiki/AlexNet
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
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Q2. Self-Supervised Learning

> Q:

What is self-supervised learning, when is it useful, and what are
the main categories of approaches?

> A:

Self-supervised learning is a pretraining procedure that lets neural
networks leverage large unlabeled datasets in a supervised fashion.

Self-supervised is related to transfer learning. Suppose we are
interested in training an image classifier to classify bird species.
In transfer learning we would pretrain a convolutional neural
network on ImageNet¹⁰. After pretraining on the general ImageNet
dataset, we would take the pretrained model¹¹ and train it on the
smaller, more specific target dataset that contains the bird species
of interest.

¹⁰ImageNet is a large, labeled image dataset with many different categories,
including various objects and animals. You can find more information at
https://en.wikipedia.org/wiki/ImageNet.

¹¹Often, we just have to change the class-specific output layer but can otherwise adopt the
pretrained network as is.
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Figure 2.1. An illustration of conventional transfer learning.

Self-supervised learning is an alternative approach to transfer learn-
ing where we don’t pretrain the model on labeled but unlabeled
data. We consider an unlabeled dataset for which we do not have
label information. We then find a way to obtain labels from the
dataset’s structure to formulate a prediction task for the neural
network. These self-supervised training tasks are also called pretext
tasks.
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Figure 2.2. Overview of the self-supervised learning pipeline for predictive
modeling. The only difference compared to the previous figure is how we
obtain the labels during step 1.

Such a self-supervised learning task could be a “missing-word”
prediction in a natural language processing context. For example,
given the sentence “It is beautiful and sunny outside,” we can mask
out the word “sunny,” feed the network the input It is beautiful
and [MASK] outside,” and have the network predict the missing
word in the “[MASK]” location. Similarly, we could remove image
patches in a computer vision context and have the neural network
fill in the blanks. Note that these are just two examples of self-
supervised learning tasks. Many more methods and paradigms for
self-supervised learning exist.

In sum, we can think of self-supervised learning on the pretext task
as representation learning. We can then take the pretrained model
to finetune it on the target task (also known as the downstream
task).

When is self-supervised learning useful?

Large neural network architectures require large amounts of la-
beled data to perform and generalize well. However, for many
problem areas, we do not have access to large labeled datasets.With
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self-supervised learning, we can leverage unlabeled data. Hence,
self-supervised learning is likely useful if weworkwith large neural
networks and we only have a limited amount of labeled training
data.

Transformer-based architectures that form the basis of large lan-
guage models and vision transformers are known to require self-
supervised learning for pretraining to perform well.

For small neural network models, for example, multilayer percep-
trons with two or three layers, self-supervised learning is typically
considered neither useful nor necessary. However, examples of self-
supervised learning for multilayer perceptrons and tabular datasets
do exist¹²¹³.

Other contexts where self-supervised learning is not useful are
traditional machine learning with nonparametric models such as
tree-based random forests or gradient boosting. Conventional tree-
based methods do not have a fixed parameter structure (in contrast
to the weight matrices, for example). Thus, conventional tree-based
methods are not capable of transfer learning and incompatible with
self-supervised learning.

What are the main categories of self-supervised learning?

There are two main categories of self-supervised learning: (1) self-
prediction and (2) contrastive self-supervised learning.

In self-prediction, we typically change or hide parts of the input
and train the model to reconstruct the original inputs.

¹²Bahri, Jiang, Tay, and Metzler (2021). SCARF: Self-Supervised Contrastive Learning Using
Random Feature Corruption, https://arxiv.org/abs/2106.15147.

¹³Levin, Cherepanova, Schwarzschild, Bansal, Bruss, Goldstein, Wilson, and Goldblum
(2022). Transfer Learning with Deep Tabular Models, https://arxiv.org/abs/2206.15306.

https://arxiv.org/abs/2106.15147
https://arxiv.org/abs/2206.15306
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Figure 2.3. A self-prediction task predicting the original training example after
applying a perturbation mask.

A classic example is a denoising autoencoder that learns to remove
noise from an input image. Or, consider a masked autoencoder that
reconstructs the missing parts of an image.

Figure 2.4. A masked autoencoder that learns to reconstruct the original image
from a masked image.

Missing (masked) input self-prediction are also commonly used
in natural language processing contexts as well. Many generative
large language models, such as GPT are trained on a next-word
prediction pretext task. Here, we feed the network’s text fragments
where it has to predict the next word in the sequence. (This is
covered in more detail in Q18.)

In contrastive self-supervised learning, we train the neural network
to learn an embedding space where similar inputs are close to each
other, and dissimilar inputs are far apart. In other words, we train
the network to produce embeddings such that the distance between
two similar training inputs is minimized. And at the same time, the
distance between two different training examples is maximized.
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Let’s discuss contrastive learning with concrete example inputs.
Suppose we have a dataset consisting of random animal images.
First, we draw a random image of a cat (the network does not know
the label because we assume that the dataset is unlabeled). Then, we
augment, corrupt, or perturb this cat image, for example, by adding
a random noise layer and cropping it differently, as shown in the
figure below.

Figure 2.5. Image pairs encountered in contrastive learning.

The perturbed cat image still shows the same cat, so we want to
network to produce a similar embedding vector. Then, we also
consider a random image drawn from the training set (for example,
an elephant, but again, the network doesn’t know the label). For
the cat-elephant pair, we want the network to produce dissimilar
embeddings¹⁴. This way, we implicitly force the network to capture
the image’s core content while being somewhat agnostic to small
differences and noise.

The following figure summarizes the central concept behind con-
trastive learning for the perturbed image scenario. Note that the
model is shown twice – this is referred to as a siamese network
setup. Essentially, the same model is utilized in two instances: first,
to generate the embedding for the original training example, and

¹⁴The simplest form of a contrastive loss is the L2-norm (Euclidean distance) between the
embeddings produced by model M(·). For instance, we update the model weights to decrease
the distance ||M(cat)−M(cat′)||2 and increase the distance ||M(cat)−M(elephant)||2.
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second, to produce the embedding for the perturbed version of the
sample.

Figure 2.6. Contrastive learning overview.

The paragraphs above outlined the main idea behind contrastive
learning, but many different subvariants exist. Broadly, we can
categorize these into sample contrastive and dimension contrastive
methods. Above, we described sample contrastive methods¹⁵,
where we focus on learning embeddings to minimize/maximize
distances between training pairs. In dimension-contrastive
approaches¹⁶, which focus on making only certain variables in the
embedding representations of similar training pairs similar while
maximizing the distance of others.

> Reader quiz:

2-A

How could we apply self-supervised learning to video data?

2-B

Can self-supervised learning be used for tabular data represented
as rows and columns? If so, how can we approach this?

¹⁵A popular sample constrastive method is, A Simple Framework for Contrastive Learning
of Visual Representations, https://arxiv.org/abs/2002.05709 by Chen, Kornblith, Norouzi, and
Hinton (2020).

¹⁶Barlow Twins: Self-Supervised Learning via Redundancy Reduction,
https://arxiv.org/abs/2103.03230, by Zbontar, Jing, Misra, LeCun, and Deny (2021).
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Q3. Few-Shot Learning

> Q:

What is few-shot learning? And how does it differ from the con-
ventional training procedure for supervised learning?

> A:

Few-shot learning is a flavor of supervised learning for small
training sets with a very small example-to-class ratio. In regular
supervised learning, we train models by iterating over a training
set where the model always sees a fixed set of classes. In few-shot
learning, we are working on a support set from which we create
multiple training tasks to assemble training episodes where each
training task consists of different classes.

In supervised learning, we fit a model on a training dataset and
evaluate it on a test dataset. Typically, the training set contains
a relatively large number of examples per class. For example, in
supervised learning context, a tiny dataset is the the Iris dataset
with 50 examples per class. For deep learning model, even a dataset
like MNIST with 5k training examples per class is considered as
very small.

In few-shot learning, the number of examples per class is much
smaller. We typically use the term N -way K-shot where N stands
for the number of classes, and K stands for the number of examples
per class. The most common values are K=1 or K=5. For instance,
in a 5-way 1-shot problem, we have 5 classes with only 1 example
each. The figure below depicts a 3-way 1-shot setting for illustration
purposes.
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Figure 3.1. Illustration of training tasks in few-shot learning.

Rather than fitting the model to the training dataset, we can think
of few-shot learning as “learning to learn.” In contrast to supervised
learning, we don’t have a training dataset but a so-called support
set. From the support set, we sample training tasks that mimic the
use-case scenario during prediction. For example, for 3-way 1-shot
learning, a training task consists of 3 classes with 1 example each.
With each training task comes a query image that is to be classified.
The model is trained on several training tasks from the support set;
this is called an episode.

Then, during testing, the model receives a new task with classes
that are different from those seen during training¹⁷. Again, the task
is to classify the query images. Test tasks are similar to training
tasks, except that none of the classes during testing overlap with
those encountered during training.

¹⁷The classes encountered during training are also called base classes, and the support set
during training is also often called base set.
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Figure 3.2. Illustration of the classes encountered during training and those
encountered during testing.

There are many different types and categories of few-shot learning.
In the most common one, meta-learning, the training is essentially
about updating the model parameters such that it can adapt well
to a new task. On a high level, one few-shot learning strategy is
to learn a model that produces embeddings where we can find the
target class via a nearest-neighbor search among the images in the
support set.
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Figure 3.3. Illustration of a few-shot learning approach where the model learns
how to produce good embeddings from the support set to classify the query
image based on finding the most similar embedding vector.

> Reader quiz:

3-A

How could we partition the MNIST dataset, consisting of 50,000
handwritten digits from 10 classes (0-9), for a one-shot classification
context?

3-B

Can you think of some real-world applications or use cases for few-
shot learning?
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Q4. The Lottery Ticket Hypothesis

> Q:

What is the lottery ticket hypothesis, and if it holds true, how can
it be useful in practice?

> A:

According to the lottery ticket hypothesis¹⁸, a randomly initialized
neural network can contain a subnetwork that, when trained on its
own, can achieve the same accuracy on a test set as the original
network after being trained for the same number of steps.

The figure below illustrates the training procedure for the lottery
ticket hypothesis in a more visual way.Wewill go through the steps
one by one to help clarify the concept.

Figure 4.1. Outline of the lottery hypothesis training procedure.

We start with a large neural network (1) that we train until
convergence (2), which means that we put in our best efforts to
make it perform as best as possible on a target dataset – for example,
minimizing training loss and maximizing classification accuracy.
This large neural network is initialized as usual using small random
weights.

Next, we prune the neural network’s weight parameters (3), remov-
ing them from the network. We can do this by setting the weights

¹⁸Original reference: Frankle and Carbin (2018). The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks. https://arxiv.org/abs/1803.03635.

https://arxiv.org/abs/1803.03635
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to zero to create sparse weight matrices¹⁹²⁰. Which weights do we
prune? The original lottery hypothesis approach follows a concept
known as iterative magnitude pruning, where the weights with the
lowest magnitudes are removed in an iterative fashion.

After the pruning step, we reset the weights to the original small
random values used in step 1. It’s worth emphasizing that we do not
reinitialize the pruned network with any small random weights (as
it is typical for iterative magnitude pruning) but reuse the weights
from step 1.

The pruning steps 2-4 are then repeated until the desired network
size is reached. For example, in the original lottery ticket hypothesis
paper, the authors successfully reduced the network to 10% of its
original size without sacrificing classification accuracy. As a nice
bonus, the pruned (sparse) network, referred to as the winning
ticket, even demonstrated improved generalization performance
compared to the original (large and dense) network.

Practical implications and limitations

Suppose it is possible to identify smaller subnetworks that have the
same predictive performance as their up to 10x larger counterparts.
In that case, this can have significant implications for both neural
training and inference. Given the ever-growing size of modern
neural network architectures, this can help with cutting training
costs and the infrastructure required for training. Additionally,
smaller networks are more cost-effective and have lower latency
when used for inference, making them a valuable option for many
applications.

Sounds too good to be true? Maybe. If the winning tickets can
be identified efficiently, this would be very useful in practice.
However, as of this writing, there is no way to find the winning

¹⁹We can either prune individual weights, which is known as unstructured pruning.
However, we can also prune larger “chunks” from the network, for example, entire convolutional
filter channels. This is known as structured pruning.

²⁰Li, Kadav, Durdanovic, Samet, and Graf (2016). Pruning Filters For Efficient ConvNets.
https://arxiv.org/abs/1608.08710.

https://arxiv.org/abs/1608.08710
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tickets without training the original network. If we include the
pruning steps, this is even more expensive than a regular training
procedure. Moreover, it was later found that the original weight
initialization may not work for finding winning tickets for larger-
scale networks, and additional experimentation with the initial
weights of the pruned networks is required²¹.

However, the good news is that winning tickets do exist, and even
if it’s currently not possible to identify these without training their
larger neural network counterparts, they can be used for more
efficient inference after training.

> Reader quiz:

4-A

Suppose you are trying out the lottery ticket hypothesis approach
and find that the performance of the subnetworks is not very good
(compared to the original network). What are some next steps to
try?

4-B

How is the lottery ticket hypothesis related to training a neural net-
work with ReLU activation functions (a ReLU activation function
is defined as max(0, x)?

²¹Frankle, Dziugaite, Roy, and Carbin (2019). Linear Mode Connectivity And The Lottery
Ticket Hypothesis, https://arxiv.org/abs/1912.05671.

https://arxiv.org/abs/1912.05671
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Q5. Reducing Overfitting with Data

> Q:

Suppose we train a neural network classifier in a supervised fashion
and notice that it suffers from overfitting. What are some of the
common ways to reduce²² overfitting in neural networks through
the use of altered or additional data?²³

> A:

In short, the most successful techniques for reducing overfitting
revolve around collecting more high-quality labeled data. However,
if collecting more labeled data is not feasible, we can augment the
existing data or leverage unlabeled data for pretraining.

Summarized below are the most prominent examples of dataset-
related techniques that more or less stood the test of time. We can
group these techniques into multiple categories discussed below.

Collecting more data

One of the best ways to reduce overfitting is to collect more (good-
quality) data. How do we know that more data is beneficial for
minimizing overfitting? We can plot learning curves to find out. To
construct a learning curve, we train the model to different sizes of
the training set (10%, 20%, etc.) and evaluate the trained model on
the same fixed-size validation or test set.

As shown in the figure below, we may observe that the validation
accuracy increases with the increasing training set sizes. This indi-
cates that we can improve the model’s performance by collecting
more data.

²²While it is ideal to prevent overfitting, it is often not possible to completely eliminate it.
Instead, we aim to reduce or minimize overfitting as much as possible.

²³Suppose we are not changing the supervised learning procedure. Q30 lists other alternative
training techniques for dealing with limited labeled data such as active learning and few-shot
learning.
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Figure 5.1. Learning curve plot of a model fit to different sizes of the training
set.

The gap between training and validation performance indicates the
degree of overfitting – the more extensive the gap, the more over-
fitting occurs. Conversely, the slope indicating an improvement in
the validation performance suggests the model is underfitting and
can benefit from more data.
Typically, additional data can decrease both underfitting and over-
fitting.

Data augmentation

Data augmentation refers to generating new data records or fea-
tures based on existing data. It allows for the expansion of a dataset
without additional data collection.

Data augmentation allows us to create different versions of the
original input data, which can improve the model’s generalization
performance. Why? Augmented data can help the model to general-
ize better since it makes it harder to memorize spurious information
via training examples or features (or exact pixel values for specific
pixel locations in the case of image data).

Data augmentation is usually standard for image data (see figure
below) and text data (see Q16), but data augmentation methods for
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tabular data exist, too²⁴.

Figure 5.2. Illustration of early stopping.

Another option is to generate new, synthetic data. This falls in-
between generating more data and data augmentation. While more
common for image data and text, generating synthetic data is also
possible for tabular datasets²⁵²⁶.

Pretraining

As discussed in the self-supervised section earlier in Q2, self-
supervised learning lets us leverage large, unlabeled datasets to
pretrain neural networks. This can help reduce overfitting on the
smaller target datasets.

As an alternative to self-supervised learning, traditional transfer
learning on large labeled datasets are also an option. Transfer

²⁴Snow (2020). DeltaPy: A Framework for Tabular Data Augmentation in Python,
https://github.com/firmai/deltapy.

²⁵The GReaT method generates synthetic tabular data using an auto-regressive generative
large language model. Reference: Borisov, Seßler, Leemann, Pawelczyk, and Kasneci (2022).
Language Models Are Realistic Tabular Data Generators, https://arxiv.org/abs/2210.06280.

²⁶TabDDPM is a method for generating synthetic tabular data using a diffusion model.
Kotelnikov, Baranchuk, Rubachev, and Babenko (2022). TabDDPM: Modelling Tabular Data with
Diffusion Models, https://arxiv.org/abs/2209.15421.

https://github.com/firmai/deltapy
https://arxiv.org/abs/2210.06280
https://arxiv.org/abs/2209.15421
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learning is most effective if the labeled dataset is closely related
to the target domain. For instance, if we train a model to classify
bird species, we can pretrain a network on a large, general animal
classification dataset. However, if such a large animal classification
dataset is unavailable, we can also pretrain the model on the
relatively broad ImageNet dataset.

The dataset may be extremely small and unsuitable for supervised
learning, for example, if there are only a handful of labeled exam-
ples per class. If our classifier needs to operate in a context where
the collection of additional labeled data is not feasible, we may also
consider few-shot learning.

Other methods

The list above covers the main approaches of using and modifying
the dataset to reduce overfitting. However, the list above is not
meant to be exhaustive. Other common techniques include

• feature engineering and normalization;
• the inclusion of adversarial examples and label or feature
noise;

• label smoothing;
• smaller batch sizes;
• data augmentation techniques such as Mix-Up, Cut-Out, and
Cut-Mix.

Q6 below covers additional techniques to reduce overfitting from
a model perspective and concludes with a discussion of which
regularization techniques we should consider in practice.

> Reader quiz:

5-A

Suppose we train an XGBoost model to classify images based on
manually extracted features we obtained from our collaborators.
The dataset of labeled training examples is relatively small, but
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fortunately, your collaborators also have a labeled training set from
an older project on a related domain.
We are considering implementing a transfer learning approach to
train the XGBoost model. Is this a feasible option, and if yes, how
could we do it? (Assume we are only allowed to use XGBoost, no
other classification algorithm or model.)

5-B

Suppose we are working on an image classification problem (for
this example, considerMNIST-based handwritten digit recognition)
and added a decent amount of data augmentation to reduce overfit-
ting in an image classification context. Unfortunately, we observe
that the classification accuracy became much worse than before.
What are some potential reasons?
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Q6. Reducing Overfitting with Model
Modifications

> Q:

Suppose we train a neural network classifier in a supervised fash-
ion and we already employ various dataset-related techniques to
mitigate overfitting²⁷. How can we change the model or make
modifications to the training loop to further reduce the effect of
overfitting?

> A:

The most successful approaches against overfitting include regular-
ization techniques such as dropout and weight decay. As a rule of
thumb, models with a larger number of parameters require more
training data to generalize well. Hence, decreasing the model size
and capacity can sometimes also help reduce overfitting. Lastly,
building model ensembles are among the most effective ways to
combat overfitting, but it comes with increased computational
expenses.

The various model- and training-related techniques to reduce over-
fitting can be grouped into three broad categories: adding regular-
ization, choosing smaller models, and building ensemble models.
The following paragraphs outline the key ideas and techniques
from each category.

Regularization

We can interpret regularization as a penalty against complexity.
Classic regularization techniques for neural networks include L2

regularization and the related weight decaymethod.We implement
L2 regularization by adding a penalty term to the loss function that
is minimized during training. This added term represents the size

²⁷Q5 discusses various dataset-related techniques to reduce overfitting.
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of the weights, for instance, the squared sum of the weights. The
formula below shows an L2 regularized loss:

RegularizedLoss = Loss + λ
n

∑
j w

2
j ,

where λ is a hyperparameter that controls the regularization
strength.

During backpropagation, the optimizer minimizes the modified
loss, now including the additional penalty term, which leads to
smaller model weights and can improve generalization to unseen
data.

Weight decay is similar to L2 regularization, but it is applied to the
optimizer directly rather than modifying the loss function. Since
weight decay has the same effect as L2 regularization, the two
methods are often used synonymously, but there can be subtle
depending on the implementation details and optimizer²⁸.

Dropout and early stopping. Note that many other techniques
have regularizing effects. For brevity, we keep this list focused
on the most widely used methods, including dropout and early
stopping.

Dropout reduces overfitting by randomly setting some of the activa-
tions of the hidden units to zero during training. Consequently, the
neural network cannot rely on particular neurons to be activated
and learns to use a larger number of neurons and learn multiple
independent representations of the same data, which helps to
reduce overfitting.

In early stopping, we monitor the model’s performance on a vali-
dation set during training. And we stop the training process when
the performance on the validation set begins to decline.

²⁸The subtle difference between L2 regularization and weight decay is explained in
Three Mechanisms of Weight Decay Regularization by Zhang, Wang, Xu, and Grosse (2018),
https://arxiv.org/abs/1810.12281.

https://arxiv.org/abs/1810.12281
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Figure 6.1. A selection of different image data augmentation techniques.

Smaller models

Classic bias-variance theory suggests that reducing model size can
reduce overfitting²⁹. The intuition behind it is that, as a general rule
of thumb, the smaller the smaller the number of model parameters,
the smaller its capacity to memorize or overfit to noise in the data.

Pruning. Besides reducing the number of layers and shrinking the
layers’ widths as a hyperparameter tuning procedure, one approach
to obtaining smaller models is iterative pruning. In iterative prun-
ing, we train a large model to achieve the good performance on
the original dataset. Then, we iteratively remove parameters of the
model, retraining it on the dataset such that it maintains the same
predictive performance as the original model. Iterative pruning is
used in the lottery ticket hypothesis discussed in [#q4.

Knowledge distillation. Another common approach to obtaining
smaller models is knowledge distillation. The general idea behind
knowledge distillation is that we transfer knowledge from a large,
more complex model (called teacher) to a smaller model (called

²⁹Hastie, Tibshirani, Friedman (2009). The Elements of Statistical Learning. Chapter 2.9,
Model Selection and Bias-Variance Tradeoff.
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student). Ideally, the student achieves the same predictive accuracy
as the teacher while being more efficient due to the smaller size.
And, as a nice side-effect, the smaller student may overfit less than
the larger teacher model.

The original knowledge distillation process is summarized in the
figure below. Here, the teacher is first trained in a regular super-
vised fashion to classify the examples in the dataset well using a
conventional cross entropy loss between the predicted scores and
ground truth class labels.

Figure 6.2. Outline of the original knowledge distillation process.

While the smaller student network is trained on the same dataset,
the training objective is to minimize both (a) the cross entropy
between the outputs and the class labels and (b) the difference be-
tween its outputs and the teacher outputs (measured using Kullback
Leibler divergence). Byminimizing the Kullback Leibler divergence,
the difference between the teacher and student score distributions,
the student learns to mimic the teacher while being smaller and
more efficient. As mentioned above, an additional benefit is that
the smaller student models often generalize better than the larger
teacher models.

Caveats with smaller models
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The original research results indicate that pruning³⁰ and knowledge
distillation³¹ can improve the generalization performance, presum-
ably due to smaller model sizes.

However, counterintuitively, recent research studying phenomena
like double decent³² and grokking³³ also showed that larger, over-
parameterized models have improved generalization performance
if they are trained beyond the point of overfitting.

How can we reconcile the observation that pruned models can
exhibit better generalization performance with contradictory obser-
vations from studies of double-decent and grokking? Researchers
recently showed that the improved training process partly explains
the reduction of overfitting due to pruning³⁴. Pruning involvesmore
extended training periods and a replay of learning rate schedules
that may be partly responsible for the improved generalization
performance.

Pruning and knowledge distillation remain excellent ways to im-
prove the computational efficiency of a model. However, while
pruning and knowledge distillation can also enhance a model’s
generalization performance, these techniques are not primary or
effective ways of reducing overfitting.

Ensemble methods

Ensemble methods combine predictions from multiple models to

³⁰Frankle and Carbin (2018). The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks, https://arxiv.org/abs/1803.03635.

³¹Hinton, Vinyals, and Dean (2015). Distilling the Knowledge in a Neural Network,
https://arxiv.org/abs/1503.02531.

³²Double descent refers to the phenomenon where models with either a small or
an extremely large number of parameters have good generalization performance, while
models with a number of parameters equal to the number of training data points have
poor generalization performance. For more additional explanations and references, see
https://en.wikipedia.org/wiki/Double_descent.

³³Grokking reveals that as the size of a dataset decreases, the need for optimization increases,
and generalization performance can improve well past the point of overfitting. Power, Burda,
Edwards, Babuschkin, and Misra (2022). Grokking: Generalization Beyond Overfitting on Small
Algorithmic Datasets. https://arxiv.org/abs/2201.02177.

³⁴Jin, Carbin, Roy, Frankle, andDziugaite (2022). Pruning’s Effect on Generalization Through
the Lens of Training and Regularization. https://arxiv.org/abs/2210.13738.

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1503.02531
https://en.wikipedia.org/wiki/Double_descent
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2210.13738
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improve the overall prediction performance. However, the down-
side of using multiple models is an increased computational cost.

We can think of ensemblemethods as asking a committee of experts:
members in a committee often have different backgrounds and
experiences. While they tend to agree on basic decisions, they can
overrule bad decisions by majority rule. This doesn’t mean that the
majority of experts is always right, but there is a good chance that
the majority of the committee is more often right, on average, than
every single member.

Ensemblemethods aremore prevalent in classical machine learning
than deep learning because it is more computationally expensive to
employ multiple models than relying on a single one. Or in other
words, deep neural networks require significant computational
resources, making them less suitable for ensemble methods. (It’s
worth noting that while we previously discussed Dropout as a
regularization technique, it can also be considered an ensemble
method that approximates a weighted geometric mean of multiple
networks³⁵.)

Popular examples of ensemble methods are random forests and
gradient boosting. However, using majority voting or stacking, for
example, we can combine any group of models: an ensemble may
consist of a support vector machine, a multilayer perceptron, and a
nearest neighbor classifier.

A popular technique that is often used in industry is to build models
from k-fold cross-validation. K-fold cross-validation is a model
evaluation technique where we train and evaluate a model on k
training folds. We then compute the average performance metric
across all k iterations to estimate the overall performance measure
of the model. After evaluation, we can train the model on the entire
training dataset, or the individual models can be combined as an

³⁵Baldi and Sadowski (2013). Understanding Dropout.
Advances In Neural Information Processing Systems,
https://proceedings.neurips.cc/paper/2013/hash/71f6278d140af599e06ad9bf1ba03cb0-
Abstract.html

https://proceedings.neurips.cc/paper/2013/hash/71f6278d140af599e06ad9bf1ba03cb0-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/71f6278d140af599e06ad9bf1ba03cb0-Abstract.html
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ensemble, as shown in the figure below.

Figure 6.3. Illustration of k-fold cross-validation for creating model ensembles.

Other methods

The non-exhaustive list above includes the most prominent exam-
ples of techniques to reduce overfitting. Additional techniques that
can reduce overfitting are skip-connections (for example, found
in residual networks), look-ahead optimizers, stochastic weight
averaging, multitask learning, and snapshot ensembles.

Techniques that aim to reduce overfitting from a data perspective
are discussed in Q5.

Choosing regularization techniques

Improving data quality is an essential first step in reducing overfit-
ting. However, for recent deep neural networks with large numbers
of parameters, more than improving data quality is required to
achieve an acceptable level of overfitting. Therefore, data aug-
mentation and pretraining, along with established techniques such
as dropout and weight decay, remain crucial methods to reduce
overfitting.

In practice, we need to employ more than one technique to reduce
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overfitting. Instead, we can and should combine the abovemen-
tioned techniques for an additive effect. To achieve the best results,
selecting these techniques should be treated as a hyperparameter
optimization problem³⁶.

> Reader quiz:

6-A

Suppose we are using early-stopping as a mechanism to reduce
overfitting. In particular, we are using amodern variant that creates
checkpoints of the best model (for instance, the model with highest
validation accuracy) during training so that we can load it after the
training has completed – this is a mechanism that can be enabled
in most modern deep learning frameworks.

Now, a colleague recommends tuning the number of training
epochs instead.What are some of the advantages and disadvantages
of each approach?

6-B

Ensemble models have been established as a reliable and successful
method for decreasing overfitting and enhancing the reliability
of predictive modeling efforts. However, there is always a trade-
off. What are some of the drawbacks associated with ensemble
techniques?

³⁶In the paper Well-tuned Simple Nets Excel on Tabular Datasets,
https://arxiv.org/abs/2106.11189), researchers showed that regularization cocktails need
to be tuned on a per-dataset basis.

https://arxiv.org/abs/2106.11189
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Q7. Multi-GPU Training Paradigms

> Q:

What are the different multi-GPU training paradigms, and what
are their respective advantages and disadvantages?

> A:

The multi-GPU training paradigms can be categorized into two
groups: (1) dividing data for parallel processing with multiple GPUs
and (2) dividing themodel amongmultiple GPUs to handlememory
constraints when the model size surpasses that of a single GPU.

Data parallelism falls into the first category, model parallelism and
tensor parallelism fall into the second category, and techniques like
pipeline parallelism borrow ideas from both categories. In addition,
current software implementations such as DeepSpeed³⁷, Colossal
AI³⁸, and others blend multiple approaches into a hybrid technique.

Model parallelism

Model parallelism (also referred to as inter op parallelism) is
perhaps the most intuitive form of parallelization across devices.
For example, suppose you have a simple neural network that only
consists of 2 layers: a hidden layer and an output layer. Here, we
keep one layer on one GPU and the other layer on another GPU. Of
course, this can scale to an arbitrary number of layers and GPUs.

This is a good strategy for dealingwith limited GPUmemorywhere
the complete network does not fit into one GPU. However, there are
more efficient ways of using multiple GPUs because of the chain-
like structure (layer 1 on GPU 1 → layer 2 on GPU 2 → …).

Amajor disadvantage of model parallelism is that the GPUs have to
wait for each other – they cannot efficiently work parallel as they
depend on each other’s outputs.

³⁷https://github.com/microsoft/DeepSpeed
³⁸https://github.com/hpcaitech/ColossalAI

https://github.com/microsoft/DeepSpeed
https://github.com/hpcaitech/ColossalAI
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Data parallelism

Data parallelism has been the default mode for multi-GPU train-
ing for several years. Here, we divide a minibatch into smaller
microbatches. Then, each GPU processes a microbatch separately
to compute the loss and loss gradients for the model weights. After
the individual devices process the microbatches, the gradients are
combined to compute the weight update for the next round.

An advantage of data parallelism over model parallelism is that the
GPUs can run in parallel – each GPU processes a portion of the
training minibatch, a microbatch. However, a caveat is that each
GPU requires a full copy of the model. This is obviously not feasible
if we have large models that don’t fit into the GPU’s VRAM.

Tensor parallelism

Tensor parallelism (also referred to as intra op parallelism) is a more
efficient form of model parallelism (inter op parallelism). Here,
the weight and activation matrices are spread across the devices
instead of distributing whole layers across devices. Specifically,
the individual matrices are split, so we split an individual matrix
multiplication across GPUs.

Figure 7.1. Comparison of model parallelism (left), data parallelism (center),
and tensor parallelism (right). In model parallelism, we put different layers
onto different GPUs to work around GPU memory limitations. In data par-
allelism, we split batch across GPUs to train copies of the model in parallel,
averaging gradients for theweight update afterwards. In tensor parallelism,we
split matrices (inputs and weights) across different GPU for parallel processing
when models are too large to fit into GPU memory.
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There are several ways we can implement tensor parallelism. For
example, using basic principles of linear algebra, we can split a
matrix multiplication across two GPUs in a row- or column-wise
fashion, as illustrated in the figure below. (Note that this concept
can be extended to an arbitrary number of GPUs.)

Figure 7.2. Illustration how we can distribute matrix multiplication across
different devices. For simplicity, the figure depicts two GPUs, but the concepts
extends to an arbitrary number of devices.

An advantage of tensor parallelism is that we can work around
memory limitations similar to model parallelism. And at the same
time, we can also execute operations in parallel, similar to data
parallelism.

A small weakness of tensor parallelism is that it can result in high
communication overhead between the multiple GPUs across which
the matrices are split or sharded. For instance, tensor parallelism
requires frequent synchronization of the model parameters across
the devices, which can slow down the overall training process.

Pipeline parallelism
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Pipeline parallelism can be seen as a form of model parallelism
that tries to minimize the sequential-computation bottleneck. In
that sense, we can think of pipeline parallelism as a form of model
parallelism that enhances the parallelism between the individual
layers sitting on different devices. However, note that it also
borrows ideas from data parallelism, such as splitting minibatches
further into microbatches.

How does it work? During the forward pass, the activations are
passed similar to model parallelism, however, the twist is that
the gradients of the input tensor are passed backwards to prevent
the devices from being idle. In a sense, pipeline parallelism is a
sophisticated hybrid between data and model parallelism, which is
described inmore detail in the GPipe paper³⁹ or DeepSpeed pipeline
parallelism tutorial⁴⁰.

Figure 7.3. A conceptual illustration of pipeline parallelism, which aims to
reduce the idle time of GPUs compared to regular model parallelism.

A disadvantage of pipeline parallelism is that it may require sig-
nificant effort to design and implement the pipeline stages and
associated communication patterns. Additionally, the performance
gains from pipeline parallelism may not be as substantial as those
from other parallelization techniques, such as pure data parallelism,
especially for small models or in cases where the communication

³⁹Huang, Cheng, Bapna, Firat, Chen, Chen, Lee, Ngiam, Le, Wu, and Chen
(2018). GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism,
https://arxiv.org/abs/1811.06965.

⁴⁰Pipeline Parallelism: https://www.deepspeed.ai/tutorials/pipeline/

https://arxiv.org/abs/1811.06965
https://www.deepspeed.ai/tutorials/pipeline/
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overhead is high.

Pipeline parallelism is definitely an improvement over model paral-
lelism, even though it is not perfect, and there will be idle bubbles.
However, for modern architectures that are too large to fit into
GPU memory, it is nowadays more common to use a blend of data
parallelism and tensor parallelism (as opposed tomodel parallelism)
techniques.

Sequence parallelism

Sequence parallelism is a new concept developed for transformer
models⁴¹. One shortcoming of transformers is that the self-
attention mechanism (the original scaled-dot product attention)
scales quadratically with the input sequence length. There are,
of course, more efficient alternatives to the original attention
mechanism that scales linearly⁴²⁴³; however, they are less popular,
and most people prefer the original scaled-dot product attention
mechanism.

Sequence parallelism splits the input sequence into smaller chunks
that can be distributed across GPUs to work around memory
limitations as illustrated in the figure below.

⁴¹Li, Xue, Baranwal, Li, and You (2021). Sequence Parallelism: Long Sequence Training from
[a] System[s] Perspective, https://arxiv.org/abs/2105.13120.

⁴²Tay, Dehghani, Bahri, and Metzler (2020). Efficient Transformers: A Survey,
https://arxiv.org/abs/2009.06732.

⁴³Zhuang, Liu, Pan, He, Weng, and Shen (2023). A Survey on Efficient Training of Trans-
formers, https://arxiv.org/abs/2302.01107.

https://arxiv.org/abs/2105.13120
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2302.01107
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Figure 7.4. A conceptual illustration of sequence parallelism, which aims to
reduce computation memory constraints of self-attention mechanisms.

Sequence parallelism is less well-studied than other parallelization
techniques. However, conceptually, it would have similar advan-
tages and disadvantages as tensor parallelism. It enables us to train
larger models when memory is a constraint due to the sequence
length; however, it also introduces additional communication over-
heads. On the other hand, it also shares shortcoming of data
parallelism where we have to duplicate the model and make sure it
fits into the device memory.

Another disadvantage of sequence parallelism (depending on the
implementation) for multi-GPU training of transformers is that
breaking up the input sequence into smaller subsequences can
decrease the model’s accuracy – mainly when the model is applied
to longer sequences.

Which techniques should we use in practice?

Practical recommendations depend on the context. If we train small
models that fit onto a single GPU, then data parallelism strategies
may be the most efficient. Performance gains from pipeline paral-
lelism may not be as significant as those from other parallelization
techniques such as data parallelism, especially for small models or
in cases where the communication overhead is high.

If models are too large to fit into the memory of a single GPU, we
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need to explore model or tensor parallelism. Tensor parallelism is
naturally more efficient since the GPUs can work in parallel – there
is no sequential dependency as in model parallelism.

Modern multi-GPU strategies typically combine data parallelism
and tensor parallelism (popular examples include DeepSpeed stages
2 and 3⁴⁴).

> Reader quiz:

7-A

Suppose we are implementing our own version of tensor paral-
lelism, which works great when we train our model with an SGD
(standard stochastic gradient descent) optimizer.
However, when we try the Adam⁴⁵ optimizer, we encounter an out-
of-memory device. What could be a potential problem explaining
this issue?

7-B

Suppose we don’t have access to a GPU and are considering using
data parallelism on the CPU. Is this a good idea?

⁴⁴https://www.deepspeed.ai/tutorials/zero/
⁴⁵Kingma and Ba (2014). Adam: A Method for Stochastic Optimization,

https://arxiv.org/abs/1412.6980.

https://www.deepspeed.ai/tutorials/zero/
https://arxiv.org/abs/1412.6980


Q8. The Keys to Success of Transformers 52

Q8. The Keys to Success of
Transformers

> Q:

What are the main factors that have contributed to the success of
transformers?

> A:

In recent years, transformers have emerged as the most successful
neural network architecture, particularly for various natural lan-
guage processing tasks. In fact, transformers are now on the cusp
of becoming state-of-the-art for computer vision tasks as well.
The success of transformers can be attributed to several key factors,
including their attention mechanisms, ability to be parallelized
easily, unsupervised pretraining, and high parameter counts.

Attention mechanism

At the core, the mechanism underlying transformers is the self-
attention mechanism introduced with the original transformer
architecture in 2017⁴⁶. Although originally, attention mechanisms
were developed in the context of image recognition⁴⁷ before they
were adopted to aid the translation of long sentences in recur-
rent neural networks, attention mechanisms are the fundamental
mechanism of transformers. (The attention mechanisms found in
recurrent neural networks and transformers are compared in more
detail in Q17.)

What makes attention mechanisms so unique and useful? Suppose
we are using an encoder network that is a fixed-length representa-
tion of the input sequence or image – this can be a fully connected,
convolutional, or attention-based encoder.

⁴⁶Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin (2017). Atten-
tion Is All You Need, https://arxiv.org/abs/1706.03762.

⁴⁷Larochelle and Hinton (2010). Learning to Combine Foveal Glimpses With A Third-Order
Boltzmann Machine, https://dl.acm.org/doi/10.5555/2997189.2997328.

https://arxiv.org/abs/1706.03762
https://dl.acm.org/doi/10.5555/2997189.2997328
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In a transformer, the encoder uses self-attention mechanisms to
compute the importance of each input token relative to other tokens
in the sequence, allowing the model to focus on relevant parts of
the input sequence. Conceptually, attention mechanisms allow the
transformers to attend to different parts of a sequence or image. On
the surface, this sounds very similar to a fully connected layer (or
special cases of convolutional layers⁴⁸) where each input element is
connected via a weight with each other input element in the next
layer.

In attention mechanisms, the computation of the attention weights
involves comparing each input element to the other. The attention
weights obtained by this approach are dynamic and input depen-
dent. In contrast, the weights of a convolutional or fully connected
layer are fixed after training.

Figure 8.1. Illustration of the conceptual difference between model weights in
fully connected layers and attention scores.

Attention mechanisms allow a neural network to selectively weigh
the importance of different input features, allowing the model to
focus on the most relevant parts of the input for a given task.

Pretraining via self-supervised learning
⁴⁸Q12 discusses contexts where fully connected and convolutional layers are equivalent.
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Pretraining transformers via self-supervised learning on large, un-
labeled datasets is another key factor in the success of transformers.

During pretraining, the transformer model is trained to predict
missing words in a sentence or the next sentence in a document,
for example. By learning to predict these missing words or the next
sentence, the model is forced to learn general representations of
language that can be finetuned for a wide range of downstream
tasks.

However, while unsupervised pretraining has been highly effective
for natural language processing tasks, its effectiveness for computer
vision tasks is still an active area of research. (Please refer to Q2 for
a more detailed discussion of self-supervised learning.)

Large numbers of parameters

One noteworthy characteristic of transformers is their large model
sizes. For example, the popular 2020 GPT-3 model consists of 175
billion trainable parameters, and other transformers, such as Switch
Transformers have trillions of parameters⁴⁹.

The scale and number of trainable parameters of transformers are
essential factors in their modeling performance, particularly for
large-scale natural language processing tasks. For instance, linear
scaling laws⁵⁰ describe that the training loss improves proportion-
ally to the model size – a two-times size increase in model size can
half the training loss, which then translates to a better modeling
performance on the downstream target task.

However, it is essential to scale the model size and the number of
training tokens equally. This means the number of training tokens
should be doubled for every doubling of model size⁵¹. However,

⁴⁹Fedus, Zoph, and Shazeer (2021). Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity, https://arxiv.org/abs/2101.03961.

⁵⁰Kaplan, McCandlish, Henighan, Brown, Chess, Child, Gray, Radford, Wu, and Amodei
(2020), Scaling Laws for Neural Language Models, https://arxiv.org/abs/2001.08361.

⁵¹Hoffmann et al. (2022). Training Compute-Optimal Large Language Models,
https://arxiv.org/abs/2203.15556.

https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2203.15556
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since labeled data is limited, utilizing large amounts of data during
unsupervised pretraining is vital.

To summarize, large model sizes and large datasets are critical
factors in transformers’ success. Additionally, using self-supervised
learning, the ability to pretrain transformers is closely tied to using
large model sizes and large datasets. This combination has been
critical in enabling the success of transformers in a wide range of
natural language processing tasks.

Easy parallelization

As mentioned above, transformers require large amounts of pa-
rameters and data to achieve their breakthrough modeling perfor-
mances. However, training such large models on large datasets
requires vast computational resources, and it’s key that the com-
putations can be parallelized to utilize these resources. Fortunately,
transformers are easy to parallelize.

Transformers are easy to parallelize because they take a fixed-
length sequence of word or image tokens as input. For instance, the
self-attention mechanism used in most transformer architectures
involves computing the weighted sum between each input element
to each other input element. Furthermore, these pair-wise token
comparisons can be computed independently, making the self-
attention mechanism relatively easy to parallelize across different
GPU cores.
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Figure 8.2. A simplified self-attention mechanism without weight parameters.

In addition, the individual weight matrices used in the self-
attention mechanism[^q8-attention weights] (not shown) can be
distributed across different machines for distributed and parallel
computing.

[^q8-attention weights]: If you are interest in learning more about
the weights used in self-attention and cross-attention mechanism, I
recommend checking out my blog post Understanding and Coding
the Self-Attention Mechanism of Large Language Models From
Scratch at https://sebastianraschka.com/blog/2023/self-attention-
from-scratch.html⁵².

Reader quiz:

8-A

Above, we discussed that self-attention is easily parallelizable. And
yet, transformers are considered computationally expensive due to
self-attention. How can we explain this contradiction?

8-B

Since self-attention scores represent importance weights for the
various input elements, can we consider self-attention a form of
feature selection?

⁵²https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
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Q9. Generative AI Models

> Q:

What are the popular categories of deep generative models in deep
learning (also called generative AI ), and what are their respective
downsides?

> A:

There are many different types of deep generative models that have
been applied to generating different types of media: images, videos,
text, and audio. Going beyond these types of media, models can
also be repurposed to generate domain-specific data, for example,
organic molecules and protein structures. But first, we have to
define the term generative modeling. Then we can go over each
type of generative model and discuss its strenghts and weaknesses.

Generative versus discriminative modeling

In traditional machine learning, there are two primary approaches
to modeling the relationship between input data (x) and output
labels (y): generativemodels and discriminativemodels. Generative
models aim to capture the underlying probability distribution of
the input data p(x) or the joint distribution p(x, y) between inputs
and labels. In contrast, discriminative models focus on modeling
the conditional distribution p(y | x) of the labels given the inputs.

A classic example that highlights the differences between these
approaches is the comparison of the naive Bayes classifier, a gener-
ative model, and the logistic regression classifier, a discriminative
model. Both classifiers estimate the class label probabilities p(y | x)
and can be used for classification tasks.

Logistic regression is considered a discriminative model because
it directly models the conditional probability distribution p(y |
x) of the class labels given the input features, without making
assumptions about the underlying joint distribution of inputs and
labels.
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Naive Bayes, on the other hand, is considered a generative model
because it models the joint probability distribution p(x, y) of the
input features x and the output labels y. By learning the joint
distribution, a generative model like naive Bayes captures the
underlying data generation process, which enables it to generate
new samples from the distribution if needed.

Nowadays, when we speak of deep generative models or sometimes
also deep generative AI, we often losen this definition to include
all types of models capable of producing realistic-looking data
(typically, text, images, videos, and sound). The remainder of this
section will briefly discuss the different types of deep generative
models used to generate such data.

Energy-based Models

EBMs are a class of generativemodels that learn an energy function,
which assigns a scalar value (energy) to each data point. Lower
energy values correspond to more likely data points. The model is
trained to minimize the energy of real data points while increasing
the energy of generated data points. Examples of EBMs include
Deep Boltzmann Machines⁵³.

Somewhat similar naive Bayes and logistic regression, Deep Boltz-
mann Machines (DBMs) and Multilayer Perceptrons (MLPs) can
be considered as generative and discriminative counterparts, with
DBMs beingmore focused on capturing the data generation process
and MLPs being more focused on modeling the decision boundary
between classes or mapping inputs to outputs.

A Deep Boltzmann Machine consists of multiple layers of hidden
nodes (as shown in the figure below). But besides using a different
learning algorithm (contrastive divergence instead of backpropaga-
tion), DBMs also differ from MLPs in that they consist of binary
nodes (neurons) instead of continuous ones.

⁵³Salakhutdinov and Hinton (2009). Deep Boltzmann Machines,
https://proceedings.mlr.press/v5/salakhutdinov09a.html.

https://proceedings.mlr.press/v5/salakhutdinov09a.html
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Figure 9.1. A 4-layer Deep Boltzmann Machine with 3 stacks of hidden nodes.

Suppose we are interested in generating images. A DBM can learn
the joint probability distribution over the pixel values in a simple
image dataset like MNIST. To generate new images, the DBM then
samples from this distribution by performing a process called Gibbs
sampling. Here, the visible layer of the DBM represents the input
image. To generate a new image, start by initializing the visible
layer with random values, or alternatively, use an existing image
as a seed. Then, after completing several Gibbs sampling iterations,
the final state of the visible layer represents the generated image.

Deep Boltzmann machines are among the oldest deep generative
models and are mentioned for historical reasons, but they are not
very popular for generating data nowadays. The disadvantages of
DBMs are that they are expensive and more complicated to train as
well as the lower expressivity compared to other models described
below, which generally results in lower-quality generated samples.

Variational Autoencoders

Variational Autoencoders (VAE)⁵⁴ are built upon the principles of
variational inference and autoencoder architectures. Variational
inference is a method for approximating complex probability dis-
tributions by optimizing a simpler, tractable distribution to be
as close as possible to the true distribution. Autoencoders are

⁵⁴Kingma and Welling (2013). Auto-Encoding Variational Bayes,
https://arxiv.org/abs/1312.6114.

https://arxiv.org/abs/1312.6114
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unsupervised neural networks that learn to compress input data
into a low-dimensional representation (encoding) and subsequently
reconstruct the original data from the compressed representation
(decoding) by minimizing the reconstruction error.

The VAE model consists of two main submodules, as summarized
in the figure below: an encoder network and a decoder network.
The encoder network takes, for example, an input image and maps
it to a latent space by learning a probability distribution over
the latent variables. This distribution is typically modeled as a
Gaussian with parameters (mean and variance) that are functions
of the input image. The decoder network then takes a sample from
the learned latent distribution and reconstructs the input image
from this sample. The goal of the VAE is to learn a compact and
expressive latent representation that captures the essential structure
of the input data while being able to generate new images by
sampling from the latent space⁵⁵.

Figure 9.2. Illustration of the encoder and decoder submodules of an autoen-
coder where x’ represents the reconstructed input x. In a standard variational
autoencoder, the latent vector is sampled from a distribution that approximates
a standard Gaussian distribution.

Training a VAE involves optimizing the model’s parameters to
minimize a loss function composed of two terms: a reconstruction
loss and a Kullback Leibler (KL)-divergence regularization term.
The reconstruction loss ensures that the decoded samples closely
resemble the input images, while the KL-divergence term acts as
a surrogate loss that encourages the learned latent distribution
to be close to a predefined prior distribution (usually a standard
Gaussian).

⁵⁵See Q1 for more details on latent representations.
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To generate new images, we then sample points from the la-
tent space’s prior (standard Gaussian) distribution and pass them
through the decoder network, which generates new, diverse images
that look similar to the training data.

Disadvantages of VAE are the complicated loss function consisting
to separate terms and the often low expressiveness, which can result
in blurrier images compared to other models such as generative
adversarial networks described below.

Generative Adversarial Networks

While both Generative Adversarial Networks (GANs)⁵⁶ and VAEs
are latent variable models that generate data by sampling from a
learned latent space, their architectures and learning mechanisms
are fundamentally different.

GANs consist of two neural networks, a generator, and a discrim-
inator, that are trained simultaneously in an adversarial manner.
The generator takes a random noise vector from the latent space
as input and generates a synthetic data sample (for example, an
image)⁵⁷. The discriminator’s task is to distinguish between real
samples from the training data and fake samples generated by the
generator, as illustrated in the figure below.

⁵⁶Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio (2014).
Generative Adversarial Networks, https://arxiv.org/abs/1406.2661.

⁵⁷The generator in a GAN somewhat resembles the decoder of a VAE in terms of its
functionality. During inference, both GAN generators and VAE decoders take random noise
vectors sampled from a known distribution (for example, a standard Gaussian) and transform
them it into synthetic data samples, such as an images.

https://arxiv.org/abs/1406.2661
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Figure 9.3. The components of a GAN model, where the discriminator predicts
whether its inputs are real or generated by the generator.

The generator aims to produce samples that are indistinguishable
from real data, while the discriminator aims to accurately identify
whether a sample is real or generated. This adversarial process
leads to a generator capable of producing high-quality and diverse
samples.

However, one of the main disadvantages of GANs is their unstable
training due to the adversarial nature of the loss function and
learning process. Balancing the learning rates of the generator and
discriminator can be difficult, and it can often result in oscillations,
mode collapse, or non-convergence. The second main disadvantage
of GANs is the low diversity of its generated outputs, often due to
mode collapse. Here, the generator is able to fool the discriminator
successfully with a small set of samples., which are only represen-
tative of a small subset of the original training data.

Flow-based models

The core concept of flow-based models, also known as normaliz-
ing flows, is inspired by longstanding methods in statistics. The
primary goal is to transform a simple probability distribution (like
a Gaussian) into a more complex one using invertible transforma-
tions.

Although the concept of normalizing flows has been a part of the
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statistics field for a long time, the implementation of early flow-
based deep learning models, particularly for image generation, is a
relatively recent development. One of the pioneering models in this
area was the NICE⁵⁸ approach, which emerged in 2014.
Related to VAEs and the generator in GANs, the idea behind NICE
is to generate complex data (like images) from simple random
noise. However, how it generates the data from the random noise
fundamentally differs from VAEs and GANs.

NICE begins with a simple probability distribution, often some-
thing straightforward like a normal distribution. You can think
of this as a kind of “random noise” — data with no particular
shape or structure. NICE then applies a series of transformations to
this simple distribution. Each transformation is designed to make
the data look more like the final target (for instance, the distribu-
tion of real-world images). These transformations are “invertible,”
meaning we can always reverse them back to the original simple
distribution. After several successive transformations, the simple
distribution has been morphed into a complex distribution that
closely matches the distribution of the target data (like images). We
can now generate new data that looks like the target data by picking
random points from this complex distribution.

The concept of a flow-based model is illustrated in the figure below.
At first glance, the illustration is very similar to the VAE illustration
above. However, while VAEs use a neural network encoder, such
as a convolutional neural network, the flow-based model uses
simpler decoupling layers, such as simple linear transformations.
Also, while the decoder in a VAE is independent of the encoder, in
the flow-based model, the data-transforming functions are mathe-
matically inverted to obtain the outputs.

⁵⁸Dinh, Krueger, and Bengio (2014). NICE: Non-linear Independent Components Estimation,
https://arxiv.org/abs/1410.8516.

https://arxiv.org/abs/1410.8516
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Figure 9.4. Illustration of a flow-based model mapping the complext input
distribution to a simpler distribution and back.

Unlike VAEs and GANs, flow-based models provide exact likeli-
hoods, which gives us insights into howwell the generated samples
fit the training data distribution. This can be useful in anomaly
detection or density estimation, for example. However, the quality
of flow-based models for generating image data is usually lower
than GANs.
Also, flow-based models often require more memory and computa-
tional resources than GANs or VAEs due to their need for storing
and computing inverses of transformations.

Autoregressive models

Autoregressive models are based on predicting the next value based
on the current (and past) values. A popular example includes large
language models for text generation, like ChatGPT, which are
covered in Q18.

Similar to generating one word at a time, in the context of image
generation, autoregressive models like PixelCNN⁵⁹ try to predict
one pixel at a time, given the pixels it has seen so far. The order in
which pixels are predicted can be from top-left to bottom-right, in
a raster scan order, or any other defined order.

Suppose we have an image of size H × W (where H is the height
and W is the width), ignoring the color channel for simplicity.
This image consists of N pixels, i = 1, ..., N . Now, the probability
of observing a particular image in the dataset is P (Image) =

P (i1, i2, ..., iN ). And based on the concepts of statistics, we can

⁵⁹van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, and Kavukcuoglu (2016). Condi-
tional Image Generation with PixelCNN Decoders, https://arxiv.org/abs/1606.05328.

https://arxiv.org/abs/1606.05328
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decompose this joint probability into conditional probabilities:

P (Image) = P (i1, i2, ..., iN ) = P (i1) · P (i2|i1) ·
P (i3|i1, i2) . . . P (iN |i1toiN−1).

Here, P (i1) is the probability of the first pixel, P(i_2|i_1) is the
probability of the second pixel given the first pixel, P (i3|i1, i2) is
the probability of the third pixel given the first and second pixels,
and so on.

So, In the context of image generation, an autoregressive model
essentially tries to predict one pixel at a time, given the pixels it has
seen so far, as illustrated in the figure below.

Figure 9.5. Illustration of autoregressive pixel generation, where pixels i1...i53
represent the context, and pixel i54 is the next pixel to be generated.

The advantage of autoregressive models is that the next-pixel (or
word) prediction is relatively straightforward and interpretable. In
addition, autoregressive models can compute the likelihood of data
exactly, similar to flow-based models, which can be useful for tasks
like anomaly detection. Furthermore, autoregressive models are
easier to train than GANs as they don’t suffer from issues like mode
collapse and other training instabilities.

The problem with autoregressive models is that they can be slow at
generating new samples. This is because they have to generate data
one step at a time (for example, pixel-by-pixel for images), which
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can be computationally expensive. Then, autoregressive models
can also struggle to capture long-range dependencies because each
output is only conditioned on previously generated outputs.

So, regarding overall image quality, autoregressive models are
usually worse than GANs, which are harder to train but better than
the faster flow-based models.

Diffusion models

As discussed in the previous section, flow-based models transform
a simple distribution (like a standard normal distribution) into a
complex one (the target distribution) by applying a sequence of
invertible and differentiable transformations (flows).

Similar to flow-based models, diffusion models also apply a series
of transformations. However, the underlying concept is fundamen-
tally different. Diffusion models transform the input data distribu-
tion into a simple noise distribution over a series of steps using
stochastic differential equations.

The diffusion processes, is a stochastic process where noise is pro-
gressively added to the data until it resembles a simpler distribution
like Gaussian noise. Then, to generate new samples, the process is
reversed, starting from noise and progressively removing it.
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Figure 9.6. Illustration of a diffusion process adding and removing Gaussian
noise from an input image x. During inference, the reverse diffusion process is
used to generate a new image x starting with the noise tensor zn sampled from
a Gaussian distribution$

While both diffusion models and flow-based models are generative
models aiming to learn complex data distributions, they approach
the problem from different angles: flow-based models use deter-
ministic invertible transformations, while diffusion models use the
above-mentioned stochastic diffusion process.

Recent projects, such as Stable Diffusion⁶⁰ in 2022, established new
state-of-the-art performance in in generating high-quality images
with realistic details and textures. Moreover, diffusion models are
easier to train than GANs. But their downside is that they are
slower to sample from, since they require running a series of steps
in sequential steps similar to flow-based models and autoregressive
models.

Consistency Model

Consistency models train a neural network to map a noisy image
to a clean one. The network is trained on a dataset of pairs of noisy
and clean images. The network learns to identify the patterns in the
clean images that are modified by the noise. Once the network is

⁶⁰Stable Diffusion (https://github.com/CompVis/stable-diffusion) is an implementation of
the paper High-Resolution Image Synthesis with Latent Diffusion Models (2021) by Rombach,
Blattmann, Lorenz, Esser, and Ommer.

https://github.com/CompVis/stable-diffusion
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trained, it can be used to generate reconstructed images from noisy
images in one step.

The consistency model training employs an ordinary differential
equation (ODE) trajectory, a path that a noisy image follows as
it is gradually denoised. The ODE trajectory is defined by a set
of differential equations that describe how the noise in the image
changes over time, illustrated in the figure below.

Figure 9.7. Illustration of consistency models that learn to map any point form
a probability flow ODE, which smoothly converts data to noise, to the input.

As of this writing, consistency models are the most recent type
of generative AI model. Based on the original paper proposing
this method⁶¹, consistency models rival diffusion models in terms
of image quality. Moreover, consistency models are faster than
diffusion models because they do not require an iterative process
to generate images but generate images in a single step.

However, while consistency models allow for faster inference, they
are still expensive to train because they require a large dataset of
pairs of noisy and clean images.

Conclusion

Deep Boltzmannmachines are interesting from a historical perspec-
tive. Flow-based and autoregressive models are nice for estimating
exact likelihoods. However, other models are usually the first
choice when it comes to generating high-quality images.

Particularly VAEs and GANs were battling each other hard when

⁶¹Song, Dhariwal, Chen, and Sutskever (2023). Consistency Models,
https://arxiv.org/abs/2303.01469.

https://arxiv.org/abs/2303.01469
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generating high-fidelity images over the years. However, in 2022,
diffusion models have begun taking over image generation almost
entirely. Consistency models are a promising alternative to diffu-
sion models, but it will remain to be seen whether they become
more widely adopted to generate state-of-the-art results.

‘However, the trade-off here is that sampling from diffusion models
is generally slower. This is because it involves a sequence of noise-
removal steps that must be run in order, similar to autoregressive
models. This can make them less practical for some applications
requiring fast sampling.

> Reader quiz:

9-A

How would you evaluate the quality of the images generated by an
generative AI model?

9-B

Given the description of consistency models above, howwould you
use them to generate new images?
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Q10. Sources of Randomness

> Q:

What are the common sources of randomness when training deep
neural networks that can cause non-reproducible behavior during
training and inference?

> A:

When training or using machine learning models such as deep neu-
ral networks, several sources of randomness can lead to different
results every timewe train or run these models, even thoughwe use
the same overall settings. Some of these effects are accidental, and
some of these are intended. The following sections will categorize
and discuss these various sources of randomness⁶².

Model weight initilization

All common deep neural network frameworks, including Tensor-
Flow and PyTorch, randomly initialize the weights and bias units
at each layer by default. This means that the final model will be
different every time we start the training.

In practice, it is thus recommended to run the training (if the com-
putational resources permit) at least a handful of times: Sometimes,
unlucky initial weights can cause the model not to converge or
converge to a local minimum corresponding to poorer predictive
accuracy.

⁶²Hands-on examples for most of these categories are provided in the supplementary
material available at https://github.com/rasbt/MachineLearning-QandAI-book.

https://github.com/rasbt/MachineLearning-QandAI-book
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Figure 10.1. Different starting weights can lead to different final weights after
the training converges.

However, it is possible to turn the random weight initialization
into a deterministic random initialization by seeding the random
generator. For example, if we seed the random generator with a
seed such as 123, the weights will still be initialized with small
random values. Still, the neural network will be initialized with the
same small random weights whenever someone tries to reproduce
the results.

Dataset sampling and shuffling

When we train and evaluate machine learning models, we usually
start by dividing a dataset into a training and a test set. This requires
random sampling since we have to decide which examples we put
into a training set and which examples we put into a test set.

Furthermore, we may use model evaluation techniques such as
k-fold cross-validation or holdout validation, which means that
we split the training set into a training, a validation, and a test
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dataset⁶³, which are also sampling procedures that are influenced
by randomness.
However, it is possible to turn the random weight initialization
into a deterministic random initialization by seeding the random
generator. For example, if we seed the random generator with a
seed such as 123, the weights will still be initialized with small
random values. Still, the neural network will be initialized with the
same small random weights whenever someone tries to reproduce
the results.

Unless we use a fixed random seed, we get a different model each
time we partition the dataset or tune or evaluate the model using
k-fold cross-validation since the training partitions will differ.

Nondeterministic algorithms

Wemay include random components and algorithms depending on
the architecture and hyperparameter choices. A popular example
is dropout⁶⁴. Dropout works by randomly setting a fraction of a
layer’s units to zero during training, which helps the model learn
more robust and generalized representations. This “dropping out”
is typically applied at each training iteration with a probability p,
a hyperparameter that controls the fraction of units dropped out.
Typical values for p are in the range of 0.2 to 0.8.

If we are interested in reproducible training runs, we need to seed
the random generator before training with dropout (analogous to
seeding the random generator before dropout). During inference,
we need to disable dropout to guarantee deterministic results – each
deep learning framework has a specific setting for that.

⁶³Interested readers can learn more about different data sampling and model evaluation
techniques in Raschka (2018), Model Evaluation, Model Selection, and Algorithm Selection in
Machine Learning, https://arxiv.org/abs/1811.12808.

⁶⁴Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014).
Dropout: A Simple Way to Prevent Neural Networks from Overfitting,
https://jmlr.org/papers/v15/srivastava14a.html.

https://arxiv.org/abs/1811.12808
https://jmlr.org/papers/v15/srivastava14a.html
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Figure 10.2. Dropout randomly drops a subset of the hidden layer nodes in each
forward pass during training

Different runtime algorithms

The most intuitive or simple implementation of an algorithm or
method is not always the one that we use in practice. For example,
when training deep neural networks, we often use efficient alter-
natives and approximations to gain speed and resource advantages
during training and inference.

A popular example is the convolution operation used in convolu-
tional neural networks. There are several ways we can implement
the convolution operation:

1. The classic direct convolution: The common implementation
of discrete convolution via an elementwise product between
the input and the window, followed by summing the result to
get a single number.⁶⁵

2. FFT-based convolution: Uses Fast Fourier Transform (FFT) to
convert the convolution into an element-wise multiplication
in the frequency domain.⁶⁶

3. Winograd-based convolution: An efficient algorithm for
small filter sizes, like 3x3, that reduces the number of

⁶⁵See Q12 for a discussion of the convolution operation.
⁶⁶Chi, Jiang, and Mu (2020). Fast Fourier Convolution,

https://dl.acm.org/doi/abs/10.5555/3495724.3496100.

https://dl.acm.org/doi/abs/10.5555/3495724.3496100
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multiplications required for the convolution.⁶⁷

These algorithms have different trade-offs in terms of memory
usage, computational complexity, and speed.

When running deep neural networks on GPUs, by default, li-
braries such as cuDNN (CUDA Deep Neural Network library),
which are used in PyTorch and TensorFlow, can choose different
algorithms for performing convolution operations⁶⁸. While these
approximations yield similar results, subtle numerical differences
can accumulate during training and cause the training to converge
to slightly different local minima.

Hardware and drivers

Training deep neural networks on different hardware can also
result in different results due to small numeric differences even
though the same algorithms are used, and the same operations
are executed. These differences may sometimes be due to different
numeric precision for floating point operations. However, small
numeric differences may arise due to hardware and software
optimization, even at the same precision. For instance, different
hardware platformsmay have specialized optimizations or libraries
that can slightly alter the behavior of deep learning algorithms.

“Across different architectures, no cuDNN routines
guarantee bit-wise reproducibility. For example, there
is no guarantee of bit-wise reproducibility when
comparing the same routine run on NVIDIA Volta™
and NVIDIA Turing™, NVIDIA Turing, and NVIDIA
Ampere architecture.”⁶⁹

⁶⁷Alam, Anderson, Barabasz, and Gregg (2023). Winograd Convolution for Deep Neural
Networks: Efficient Point Selection, https://arxiv.org/abs/2201.10369.

⁶⁸Deterministic algorithm choice has to be explicitly enabled. In PyTorch, for ex-
ample, this can be done by setting torch.use_deterministic_algorithms(True); see
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html for details.

⁶⁹https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#reproducibility

https://arxiv.org/abs/2201.10369
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#reproducibility
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Randomness and Generative AI

Besides the various sources of randomness mentioned above, cer-
tain models can also exhibit random behavior during inference that
we can describe as randomness by design. For instance, generative
image and languagemodels[q9-q10] may create different results for
identical prompts to create a diverse sample of results. For image
models, this is often so that users can select the most accurate and
aesthetically pleasing image. For language models, this is often to
vary the responses, for example, in chat agents, to avoid repetition.

The intended randomness in generative image models during infer-
ence is often due to sampling different noise values at each step of
the reverse process – in diffusion models, a noise schedule defines
the noise variance added at each step of the diffusion process.

Autoregressive large language models like GPT⁷⁰ tend to create
different outputs for the same input prompt. The ChatGPT UI even
has a “Regenerate response” button for that. The ability to generate
different results is due to the sampling strategies these models
employ. Techniques such as top-k sampling, nucleus sampling, or
temperature scaling influence themodel’s output by controlling the
degree of randomness. This is a feature, not a bug, since it allows
for diverse responses and prevents themodel from producing overly
deterministic or repetitive outputs.

Top-k sampling works by sampling tokens from the top k most
probable candidates at each step of the next-word generation
process. For instance, given an input prompt, the language model
produces a probability distribution over the entire vocabulary (the
candidate words) for the next token. Each token in the vocabulary
is assigned a probability based on the model’s understanding of
the context. The selected top-k tokens are then renormalized so
that the probabilities sum to 1. Finally, a token is sampled from
the renormalized top-k probability distribution, and it is appended
to the input prompt. This process is repeated for the desired length

⁷⁰Autoregressive large language models are discussed in more detail in Q18.
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of the generated text or until a stop condition is met

Figure 10.3. Illustration of the top-k sampling process used in generative large
language models

Nucleus sampling (also known as top-p sampling) is related to top-
k sampling, which also aims to balance diversity and coherence in
the output. Nucleus and top-k sampling mainly differ in selecting
the candidate tokens for sampling at each step of the generation
process. Top-k sampling selects the kmost probable tokens from the
probability distribution produced by the language model, regard-
less of their probabilities. The value of k remains fixed throughout
the generation process.
Nucleus sampling, on the other hand, selects tokens based on a
probability threshold p. Then, it accumulates the most probable
tokens in descending order until their cumulative probability meets
or exceeds the threshold p. In contrast to top-k sampling, the size
of the candidate set (nucleus) can vary at each step.
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Figure 10.4. Illustration of the nucleus process used in generative large lan-
guage models

Temperature scaling is a technique used to control the sharpness
of the distribution by modifying the logits (values returned by the
output layer) based on a temperature parameter (T). A higher tem-
perature (T > 1) flattens the distribution, making the model more
likely to explore diverse tokens. In comparison, a lower temperature
(0 < T < 1) sharpens the distribution, focusing the model on the most
probable tokens. Temperature scaling can be combined with top-
k or nucleus sampling to balance diversity and coherence in text
generation. For instance, we often first apply temperature scaling
to adjust the sharpness of the probability distribution based on our
desired level of exploration and then use top-k or nucleus sampling
to limit the sampling space to the most probable tokens.

> Reader quiz:

10-A

Suppose we trained a neural network with top-k or nucleus sam-
pling where k and p are hyperparameter choices. Can we make the
model behave deterministically during inference without changing
the code?

10-B
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Can you think of scenarios where deterministic dropout behavior
during inference is desired?



Chapter 2. Computer
Vision
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Q11. Calculating the Number of
Parameters

> Q:

How do we compute the number of parameters in a convolutional
neural network? Suppose we are working with a convolutional
network with 2 convolutional layers with kernel size 5. The first
convolutional layer has 3 input channels and 5 output channels. The
second convolutional layer has 5 input and 12 output channels. The
stride of these convolutional layers is 1.
Furthermore, the network has 2 pooling layers with kernel size 3
and stride 2. Lastly, the network has 2 fully connected hidden layers
with 192 and 128 hidden units each, where the output layer is a
classification layer for 10 classes. The architecture of this network
is illustrated in the figure below. What is the number of trainable
parameters in this convolutional network?

Figure 11.1. Illustration of a convolutional neural network with two convolu-
tional and two fully connected layers.

> A:

We can approach this problem from left to right, computing the
number of parameters for each layer and then summing up these
counts to obtain the total number of parameters. Each layer’s
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number of trainable parameters consists of weights and bias units.

In a convolutional layer, the number of weights depends on the
kernel’s width and height and the number of input and output
channels. The number of bias units depends on the number of
output channels only. To illustrate the computation step-by-step,
suppose we have a kernel width and height of 5, 1 input channel,
and 1 output channel, as illustrated in the figure below. In this case,
we have 26 parameters since we have 5 × 5 = 25 weights via the
kernel plus the bias unit. The computation to compute an output
value or pixel z is z = b +

∑
j wjxj , where xj represents an input

pixel, wj represents a weight parameter of the kernel, and b is the
bias unit.

Figure 11.2. A convolutional layer with only one input and one output channel.
The parameter count is 25.

Now, suppose we have 3 input channels as illustrated in the figure
below. In that case, we compute the output value by performing
the above-mentioned operation,

∑
j wjxj for each input channel

and then add the bias unit. For 3 input channels, this would involve
three different kernels with three sets of weights: z =

∑
j w

(1)
j xj +∑

j w
(2)
j xj +

∑
j w

(3)
j xj + b. Since we have 3 sets of weights

(w(1), w(2), and w(3) for j = [1, . . . , 25]) we have 3 × 25 + 1 = 76

parameters in this convolutional layer.
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Figure 11.3. A convolutional layer with only three input and one output
channel. The parameter count is 76.

We use one kernel for each output channel, where each kernel is
unique to a given output channel. So, if we extend the number
of output channels from 1 to 5 as shown in the figure below, we
extend the number of parameters by a factor of 5. In other words, if
the kernel for one output channel had 76 parameters, the 5 kernels
required for the 5 output channels would have 5 × 76 = 380

parameters.

Figure 11.4. A convolutional layer with three input and five output channels.
The parameter count is 76.

Now, returning to the neural network architecture illustrated at the
beginning of this section, we compute the number of parameters in
the convolutional layers as follows. For example, the first convolu-
tional layer has 3 input channels, 5 output channels, and a kernel
size of 5. Thus, its number of parameters is 5×(5×5 ×3)+5 = 380.

The second convolutional layer, with 5 input channels, 12 output
channels, and a kernel size of 3, has 12 × (3 × 3 × 5) + 12 = 552

parameters. Since the pooling layers do not have any trainable
parameters, we can count 380 + 552 = 932 for the convolutional
part of this architecture. Next, let’s move on to the fully connected
layers.

Counting the number of parameters in a fully connected layer is
relatively straightforward. A fully connected node connects each
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input node to each output node, so the number of weights is the
number of inputs times the number of outputs plus the bias units
added to the output. For example, if we have a fully connected layer
with 5 inputs and 3 outputs as shown in the figure below, we thus
have 5 × 3 = 15 weights and 3 bias units, that is, 18 parameters in
total.

Figure 11.5. A fully connected layer with five inputs and three outputs. The
parameter count is 18.

Returning once more to the neural network architecture illustrated
at the beginning of this chapter, we can now calculate the param-
eters in the fully connected layers as follows: 192 × 128 + 128 =

24, 704 in the first fully connected layer and 128× 10 + 10 = 1, 290

in the second fully connected layer, the output layer. Hence, we
have 24, 704 + 1, 290 = 25, 994 in the fully connected part of this
network.

Now, adding the 932 parameters from the convolutional layers
and the 25,994 parameters from the fully connected layers, we can
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conclude that this network’s total number of parameters is 26,926⁷¹.

Why do we care about the number of parameters after all? First, the
number of parameters lets us estimate a model’s complexity. As a
rule of thumb, the more parameters we have, the more training data
is recommended to train the model well.

Moreover, the number of parameters lets us estimate the size of the
neural network, which helps estimate whether it can fit into GPU
memory⁷².

> Reader quiz:

11-A

Suppose we want to optimize the neural network using plain
stochastic gradient descent (SGD) or an Adam optimizer. What are
the respective numbers of parameters that need to be stored for
SGD and Adam?

11-B

Suppose we are adding three batch normalization (BatchNorm)
layers: one after the first convolutional layer, one after the second
convolutional layer, and another one after the first fully connected
layer – we typically do not want to add BatchNorm layers to
the output layer. How many additional parameters do these three
BatchNorm layers add to the model?

⁷¹As a bonus, interested readers can find PyTorch code in the supplementary
materials of this book to compute the number of parameters programmatically:
https://github.com/rasbt/MachineLearning-QandAI-book.

⁷²The memory requirement during training often exceeds the model size due to the
additional memory required for carrying out matrix multiplications and storing gradients.
However, the model size can give us a rough ballpark estimate of whether training the model
on a given hardware setup is feasible.

https://github.com/rasbt/MachineLearning-QandAI-book
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Q12. The Equivalence of Fully
Connected and Convolutional Layers

> Q:

Under which circumstances are fully connected and convolutional
layers equivalent?

> A:

There are exactly two scenarios: (1) the size of the convolutional
filter is equal to the size of the receptive field, and (2) the size of
the convolutional filter is one. To illustrate these two scenarios,
consider a fully connected layer with two input and four output
units, as shown in the following figure.

Figure 12.1. A fully connected layers with four inputs and two outputs.

The fully connected layer in the figure above consists of eight
weights and two bias units. The first output node can be computed
via the following dot product: w1,1 × x1 + w1,2 × x2 + w1,3 × x3 +

w1,4×x4+b1.Analagously, we can compute the second output unit
via w2,1 × x1 + w2,2 × x2 + w2,3 × x3 + w2,4 × x4 + b2.

Scenario 1: The kernel size is equal to the input size



Q12. The Equivalence of Fully Connected and Convolutional
Layers 86

Let us start with the first scenario: the size of the convolutional filter
is equal to the size of the receptive field. Recall from Q11 how we
compute a number of parameters in a convolutional kernel with one
input channel and multiple output channels. We have a kernel size
of 2×2, one input channel, and two output channels. The input size
is also 2\times 2,$ a reshaped version of the four inputs depicted
in the previous figure.

Figure 12.2. A convolutional layer with a 2times2 kernel that equals the input
size and two output channels.

If the convolutional kernel dimensions equal the input size, as
depicted in the figure above, there is no sliding-windowmechanism
in the convolutional layer. For the first output channel, we have the
set of weights

W1 =

[
w1,1 w1,2

w1,3 w1,4

]
.

And for the second output channel, we have the set of weights

W2 =

[
w2,1 w2,2

w2,3 w2,4

]
If the inputs are organized as

x =

[
x1 x2

x3 x4

]
,

we calculate the first output channel as o1 =
∑

i(W1 ∗ x)i + b1,
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where the comvolutional operator ∗ is equal to an element-wise
multiplication. In other words, we have an element-wise multipli-
cation between two matrices, W1 and x, and then compute the
output as the sum over these elements. Note that this equals the
dot product in the fully connected layer. And lastly, we add the
bias unit. The computation for the second output channel works
analogously: o2 =

∑
i(W2 ∗ x)i + b2. ⁷³

Scenario 2: The kernel has size one

The second scenario assumes that we reshape the input into an
input “image” with 1 × 1 dimensions where the number of “color
channels” equals the number of input features as depicted in the
figure below.

Figure 12.3. A convolutional layer with a 1times1 kernel with four input and
two output channels.

Each kernel consists of a stack of weights equal to the number of
input channels. For instance, for the first output layer, the weights
are W1 = [w

(1)
1 w

(2)
1 w

(3)
1 w

(4)
1 ], and the weights for the second

channel areW2 = [w
(1)
2 w

(2)
2 w

(3)
2 w

(4)
2 ].

To get a better visual for this computation, it can be useful to check

⁷³As a bonus, interested readers can find PyTorch code in the supplementarymaterials of this
book to show this equivalence programmatically: https://github.com/rasbt/MachineLearning-
QandAI-book.

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/rasbt/MachineLearning-QandAI-book
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out Q11⁷⁴.

How is this useful?

The fact that fully connected layers can be implemented as equiva-
lent convolutional layers does not have immediate performance or
other advantages. Still, it aids in understanding the mechanics of
these layers. However, there may be special cases where hardware
is better optimized for carrying out one operation over the other.
Furthermore, if one so desires, it lets us implement convolutional
neural networks without any use of fully connected layers.

Reader quiz:

12-1

How would increasing the stride affect the equivalence discussed
above?

12-2

Does padding affect the equivalence between fully connected layers
and convolutional layers?

⁷⁴As a bonus, interested readers can find PyTorch code in the supplementarymaterials of this
book to show this equivalence programmatically: https://github.com/rasbt/MachineLearning-
QandAI-book.

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/rasbt/MachineLearning-QandAI-book
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Q13. Large Training Sets for Vision
Transformers

> Q:

Why do vision transformers (ViTs) generally require larger training
sets than convolutional neural networks (CNNs)?

> A:

Each machine learning algorithm and model encodes a particular
set of assumptions or prior knowledge in its design. These assump-
tions are also commonly referred to as inductive biases. Some induc-
tive biases are workarounds to make algorithms computationally
more feasible, others are based on domain knowledge, and some
are both.

CNNs have more inductive biases that are hard-coded as part of
the algorithmic design, so they generally require less training data
than ViTs. In a sense, ViTs are given more degrees of freedom and
can or must learn certain inductive biases from the data (assuming
that these biases are conducive to optimizing the training objective).
But everything that needs to be learned requires more training
examples.

Inductive biases

To better understand the inductive biases in CNNs, let us list the
main ones below.

1. Local connectivity. In CNNs, each unit in a hidden layer is
connected to only a subset of neurons in the previous layer.
We can justify this restriction by assuming that neighboring
pixels are more relevant to each other than pixels that are
farther apart. Intuitively, we can think of this assumption in
the context of recognizing edges or contours in an image.

2. Weight sharing. Via the convolutional layers, we use the
same small set of weights (the kernels or filters) throughout
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the whole image. This reflects the assumption that the same
filters are useful for detecting the same patterns in different
parts of the image.

3. Hierarchical processing. CNNs consist of multiple convo-
lutional to extract features from the input image. As the
network progresses from the input to the output layers, low-
level features are successively combined to form increasingly
complex features, ultimately leading to the recognition of
more complex objects and shapes. Furthermore, the convo-
lutional filters in these layers learn to detect specific patterns
and features at different levels of abstraction.

4. Spatial invariance. This refers to the property that the output
of a model remains consistent even if the input signal is
shifted to a different location within the spatial domain.
This characteristic arises from the combination of local con-
nectivity, weight sharing, and the hierarchical architecture
mentioned earlier.

The combination of local connectivity, weight sharing, and hier-
chical processing in a CNN leads to spatial invariance, allowing
the model to recognize the same pattern or feature regardless of
its location in the input image. Let us illustrate this further via
translation invariance, which is a special case of spatial invariance
where we are only focusing on shifting an object – we do not rotate
it.

Translation invariance

Translation invariance is a specific case of spatial invariance where
the output remains the same after a shift or translation of the
input signal in the spatial domain. Now, convolutional layers and
networks are not truly translation invariant but achieve a certain
level of translation equivariance.

What is the difference between translation invariance and equiv-
ariance? Translation invariance means that the output does not
change with an input shift, while translation equivariance implies
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that the output shifts with the input in a corresponding manner. In
other words, if we shift the input object to the right, the results will
be correspondingly shifted to the right, as illustrated in the figure
below.

Figure 13.1. An illustration of equivariance demonstrated by depicting how an
image transforms under various translations of the relevant object.

As mentioned earlier, CNNs achieve translation equivariance
through a combination of their local connectivity, weight sharing,
and hierarchical processing properties. The figure below depicts
a convolutional operation to illustrate the local connectivity and
weight-sharing priors.
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Figure 13.2. Illustration of translation equivariancewhere a convolutional filter
captures the input signal (the two dark blocks) irrespective of where it is
located in the input.

For comparison, a fully connected network such as a multilayer per-
ceptron lacks this spatial invariance or equivariance. To illustrate
this point, let us picture a multilayer perceptron with one hidden
layer. Each pixel in the input image is connected with each value in
the resulting output. If we shift the input by one or more pixels, a
different set of weights will be activated, as illustrated in the figure
below.
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Figure 13.3. Fully connected layers have a unique weight for each input
position, and specific weights will not be activated in the same way if the input
location changes.

Like fully connected networks, the ViT architecture (and trans-
former architecture in general) lacks the inductive bias for spatial
invariance or equivariance⁷⁵. For instance, the model produces
different outputs if we place the same object in two different
spatial locations within an image. This is not ideal, as the semantic
meaning of an object remains the same based on its location.
Consequently, it must learn these invariances directly from the
data. To facilitate the learning of useful patterns present in CNNs,
pretraining over a larger dataset is required.

ViTs can still outperform CNNs

Now, the hard-coded assumptions via the inductive biases listed
above reduce the number of parameters in CNNs substantially

⁷⁵One workaround for adding translation invariance in ViTs is via relative positional
embeddings that consider the relative distance between two tokens in the input sequence as
proposed in Self-Attention with Relative Position Representations (2018) by Shaw, Uszkoreit,
and Vaswani, https://arxiv.org/abs/1803.02155.

https://arxiv.org/abs/1803.02155
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compared to fully connected layers⁷⁶. Vice versa, ViTs tend to have
larger numbers of parameters than CNNs, which require more
training data.

ViTs may underperform compared to popular CNN architectures
without extensive pretraining, but they can perform very well with
a sufficiently large pretraining dataset. In contrast to language
transformers, where unsupervised pretraining (i.e., self-supervised
learning⁷⁷) is a preferred choice, vision transformers are often
pretrained using large labeled datasets such as ImageNet, which
provides millions of labeled images for training, and regular super-
vised learning.

An example is the comparison made in the original ViT paper⁷⁸
between ResNet, a convolutional network, and the original ViT ar-
chitecture for various dataset sizes used in pretraining. The research
revealed that the ViT architecture outperformed the convolutional
network only after pretraining on at least 100 million images.

Do ViTs learn differently?

Note that ViTs are not free from any inductive biases. For example,
vision transformers “patchify” the input image to process each
input patch individually. Here, each patch can attend to all other
patches so the model learns relationships between far-apart patches
in the input image.

⁷⁶(Q11) explains how to calculate the number of parameters in fully connected and
convolutional layers.

⁷⁷See Q2 for details about self-supervised learning.
⁷⁸Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer,

Heigold, Gelly, Uszkoreit, and Houlsby (2020) An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale, https://arxiv.org/abs/2010.11929.

https://arxiv.org/abs/2010.11929
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Figure 13.4. An illustration of how a vision transformer operates on image
patches.

The patchify inductive bias is important because it allows ViTs
to scale to larger image sizes without increasing the number of
parameters in the model, which can be computationally expensive.
By processing smaller patches individually, ViTs can efficiently cap-
ture spatial relationships between image regions while benefiting
from the global context captured by the self-attention mechanism.

And this raises another question: how and what do ViTs learn from
the training data? ViTs learn more uniform feature representations
across all layers, with self-attention mechanisms enabling early
aggregation of global information. In addition, the residual con-
nections in ViTs strongly propagate features from lower to higher
layers, in contrast to the more hierarchical structure of CNNs⁷⁹.

ViTs tend to focus more on global than local relationships because
the self-attention mechanism in ViTs allows the model to consider
long-range dependencies between different parts of the input image.
Consequently, the self-attention layers in ViTs are often considered
low-pass filters that focus more on shapes and curvature.

In contrast, the convolutional layers in CNNs are often considered
high-pass filters that focus more on texture. But we should note
that convolutional layers can act as both high-pass and low-pass
filters, depending on the learned filters at each layer. High-pass

⁷⁹Raghu, Unterthiner, Kornblith, Zhang, Dosovitskiy (2021). Do Vision Transformers See
Like Convolutional Neural Networks?, https://arxiv.org/abs/2108.08810.

https://arxiv.org/abs/2108.08810
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filters detect an image’s edges, fine details, and texture, while low-
pass filters capture more global, smooth features and shapes. CNNs
achieve this by applying convolutional kernels of varying sizes and
learning different filters at each layer.

ViTs or CNNs?

ViTs have recently begun outperforming CNNs if enough data
is available for pretraining. However, this doesn’t make CNNs
obsolete, as methods such as EfficientNetV2 are less memory- and
data-hungry.

Moreover, recent ViT architectures don’t solely rely on large
datasets, parameter numbers, and self-attention. Instead, they
have taken inspiration from CNNs and added soft convolutional
inductive biases⁸⁰ or even complete convolutional layers⁸¹ to get
the best of both worlds.

In conclusion, vision transformer architectures without convolu-
tional layers generally have fewer spatial and locality inductive
biases than convolutional neural networks. Consequently, vision
transformers need to learn data-related concepts such as local
relationships among pixels. Thus, vision transformers require more
training data to achieve good predictive performance and produce
acceptable visual representations in generative modeling contexts.

> Reader quiz:

13-A

Consider the patchification of the input images illustrated in the
figure above. The size of the resulting patches controls a computa-
tional and predictive performance tradeoff. The optimal patch size
depends on the specific application and desired trade-off between
computational cost and model performance. Do smaller patches
typically result in higher or lower computational costs?

⁸⁰d’Ascoli, Touvron, Leavitt, Morcos, Biroli, Sagun (2021). ConViT: Improving Vision Trans-
formers with Soft Convolutional Inductive Biases, https://arxiv.org/abs/2103.10697.

⁸¹Wu, Xiao, Codella, Liu, Dai, Yuan, Zhang (2021), CvT: Introducing Convolutions to Vision
Transformers, https://arxiv.org/abs/2103.15808.

https://arxiv.org/abs/2103.10697
https://arxiv.org/abs/2103.15808
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13-B

Following up on the question above, do smaller patches typically
lead to a higher or lower prediction accuracy?



Chapter 3. Natural
Language Processing
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Q15. The Distributional Hypothesis

> Q:

What is the distributional hypothesis in NLP? Where is it used, and
how far does it hold true?

> A:

The distributional hypothesis is a linguistic theory suggesting that
words occurring in the same contexts tend to have similar mean-
ings⁸². To put it succinctly, the more similar the meanings of two
words are, the more often they appear in similar contexts.

Figure 15.1. According to the distributional hypothesis, words that occur in
similar contexts have a more similar meaning. So, for example, the words
Cats and Dogs often occur in similar contexts and are more related (both are
mammals and pets) than a cat and a sandwich.

Looking at large datasets, this may hold more or less, but it is easy
to construct individual counter-examples. An intuitive counter-
example is the phenomenon of polysemy, which is when aword has
multiple meanings that are related but not identical. For example,
let’s consider the word bank. It can refer to a financial institution,
the “rising ground bordering a river,” the “steep incline of a hill,” or
a “protective cushioning rim”⁸³. However, these different meanings
have different distributional properties and may not always occur
in similar contexts.

Nonetheless, the distributional hypothesis is quite useful. Word
embeddings⁸⁴ such as Word2vec⁸⁵, and many large language trans-

⁸²Original source: Distributional Structure (1954) by Harris,
https://doi.org/10.1080/00437956.1954.11659520.

⁸³See https://www.merriam-webster.com/dictionary/bank.
⁸⁴See Q1 for a more in-depth discussion of embeddings.
⁸⁵Mikolov, Chen, Corrado, Dean (2013). Efficient Estimation of Word Representations in

Vector Space, https://arxiv.org/abs/1301.3781.

https://doi.org/10.1080/00437956.1954.11659520
https://www.merriam-webster.com/dictionary/bank
https://arxiv.org/abs/1301.3781
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former models rely on this idea (for example, the masked language
model in BERT⁸⁶ and the next-word pretraining task used in GPT⁸⁷).

The Word2vec approach uses a simple, two-layer neural network
to encode words into embedding vectors such that the embedding
vectors of similar words are close (semantically and syntactically).
There are two ways to train aWord2vec model: the continuous bag-
of-words (CBOW) and the skip-gram approach.

Using the CBOW approach, Word2vec learns to predict the current
words by using the surrounding context words. In the skip-gram
model and vice versa, the Word2vec model predicts the context
words from a selected word. In the continuous bag-of-words ar-
chitecture, the Word2vec model predicts a masked word from the
window of surrounding context words. While skip-gram is more
effective for infrequent words, CBOW is usually faster to train.

After training, the word embeddings are placed within the vector
space so that words with common contexts in the corpus, meaning
words with semantic and syntactic similarities, are positioned close
to each other. Conversely, dissimilar words are located further apart
in the embedding space.

⁸⁶Devlin, Chang, Lee, Toutanova (2018). BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding, https://arxiv.org/abs/1810.04805.

⁸⁷Radford, Narasimhan (2018). Improving Language Understanding by Generative
Pre-Training, https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-
Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035.

https://arxiv.org/abs/1810.04805
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
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Figure 15.2. Illustration of Word2vec embeddings in a two-dimensional vector
space.

BERT uses a masked language modeling approach that involves
masking (hiding) some of the words in a sentence, and its task
is to predict these masked words based on the other words in
the sequence. This approach is a form of self-supervised learning
used to pretrain large language models⁸⁸. The pretrained model
produces embeddings where similar words (or tokens) are close in
the embedding space⁸⁹.

Regarding the masked language modeling task, BERT pretraining
is conceptually similar to Word2vec’s CBOW approach. However,
CBOW is a simpler model that does not consider the order of words
in a sentence – CBOW only considers the distributional patterns of
words in a larger corpus.

Being a decoder instead of an encoder model, GPT takes a slightly
different approach than BERT and learns to predict the following
words in a sequence based on previous words. Where BERT is
a bidirectional language model that considers the whole input
sequence, GPT only strictly parses previous sequence elements.
(This is why BERT is usually better suited for classification tasks,
whereas GPT is more suited for text generation tasks.)
Similar to BERT, GPT produces high-quality contextualized word

⁸⁸See Q2 for more information about self-supervised learning.
⁸⁹Liu, Gardner, Belinkov, Peters, Smith (2019). Linguistic Knowledge and Transferability of

Contextual Representations, https://arxiv.org/abs/1903.08855.

https://arxiv.org/abs/1903.08855
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embeddings that capture semantic similarity⁹⁰.

Figure 15.3. BERT’s masked language modeling approach and GPT’s next-word
prediction for pretraining.

To summarize, while there are counter-examples where the distri-
butional hypothesis does not hold, it is a very useful concept that
forms the cornerstone of modern language transformer models.

> Reader quiz:

15-A

Consider the case of homophones – words that sound the same but
have different meanings. For example, the words there and their
sound the same but have different meanings. Are homophones
another example of when the distributional hypothesis does not
hold?

15-B
⁹⁰Petroni, Rocktaeschel, Lewis, Bakhtin, Wu, Miller, Riedel (2019). Language Models as

Knowledge Bases?, https://arxiv.org/abs/1909.01066.

https://arxiv.org/abs/1909.01066
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Can you think of other domains where a concept similar to the
distributional hypothesis applies?
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Q16. Data Augmentation for Text

> Q:

What are common data augmentation techniques for text data?

> A:

Data augmentation is useful for artificially increasing the dataset
size to improve model performance, for instance, by reducing the
degree of overfitting, as discussed in Q5. Data augmentation is very
common when developing computer vision models such as convo-
lutional neural networks and vision transformers, where we use
standard techniques such as rotation, scaling, flipping, cropping,
and altering the brightness or contrast of an image.

Similarly, there exist several techniques for augmenting text data.
The most common ones include synonym replacement, word dele-
tion, word position swapping, sentence shuffling, noise injection,
back translation, and text generated by large language models
(LLMs). We will cover these different techniques in the sections
below⁹¹.

Synonym replacement

In synonym replacement, we randomly choose words in a sentence
– often nouns, verbs, adjectives, and adverbs – and replace them
via synonyms, as shown in the example below:

• Original sentence: “The cat quickly jumped over the lazy dog.”
• Augmented sentence: “The cat rapidly jumped over the idle
dog.”

This can help the model to learn that different words can have
similar meanings and thus improve its ability to understand and

⁹¹Optional code examples are provided in the supplementary material at
https://github.com/rasbt/MachineLearning-QandAI-book.

https://github.com/rasbt/MachineLearning-QandAI-book
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generate text. However, using this technique carefully is essential,
as not all synonyms are interchangeable in all contexts.

In practice, synonym replacement is often done by using a the-
saurus such as WordNet⁹².

Word deletion

Word deletion randomly removes certain words from the original
text to create new variants while still trying to maintain the overall
meaning of the sentence, as shown in the example below:

• Original sentence: “The cat quickly jumped over the lazy dog.”
• Augmented sentence: “The cat quickly jumped over the lazy
dog.” (removed “quickly”)

However, caution should be taken not to remove critical words
that may significantly alter a sentence’s meaning. For example, the
following word deletion would be suboptimal:

• Original sentence: “The cat quickly jumped over the lazy dog.”
• Augmented sentence: “The quickly jumped over the lazy dog.”
(removed “cat”)

Also, the deletion rate should be carefully chosen to ensure the text
still makes sense after words have been removed.

Word position swapping

Word position swapping, also known as word shuffling or permu-
tation, is another method of text data augmentation where the
positions ofwords in a sentence are swapped or rearranged to create
new versions of the sentence.

Let’s use the previous sentence, “The cat quickly jumped over the
lazy dog,” as an example again. By swapping the positions of some
words, we might get the following:

⁹²Miller 1995, WordNet: A Lexical Database For English,
https://dl.acm.org/doi/10.1145/219717.219748.

https://dl.acm.org/doi/10.1145/219717.219748
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• Original sentence: “The cat quickly jumped over the lazy dog.”
• Augmented sentence: “Quickly the cat jumped the over lazy
dog.”

While these sentences may sound grammatically incorrect or
strange in English, they can still provide valuable training
information for data augmentation. This is because the model can
still recognize the important words and their associations with
each other.

However, this method has its limitations. For example, shuffling
words too much or in certain ways can drastically change the
meaning of a sentence or make it completely nonsensical.

Sentence shuffling

Sentence shuffling is a data augmentation technique where entire
sentences within a paragraph or a document are rearranged to
create new versions of the input text. This technique is particularly
useful in tasks that deal with document-level analysis or paragraph-
level understanding, such as document classification, topic model-
ing, or text summarization.

In contrast to the abovementioned techniques, such as word posi-
tion swapping, word deletion, and synonym replacement, sentence
shuffling maintains the internal structure of individual sentences.
Still, it changes their order within the broader context.

In contrast, the word-based methods above, like word position
swapping, can make sentences grammatically incorrect or change
their meaning entirely if not applied carefully, as word choice
or order is often critical to the meaning of sentences in many
languages.

Sentence shuffling is useful when the order of sentences is not
crucial to the overall meaning of the text. Still, it may not work
well if the sentences are logically or chronologically connected. For
example, consider the following paragraph:
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• “I went to the supermarket.”
• “Then, I bought ingredients to make pizza.”
• “Afterwards, I made some delicious pizza.”

When reshuffling it as follows, it disrupts the logical and temporal
progression of the narrative:

• “Afterwards, I made some delicious pizza.”
• “Then, I bought ingredients to make pizza.”
• “I went to the supermarket.”

Noise injection

Noise injection is an umbrella term that includes other techniques
above to create variation in the text, such as synonym, replacement,
word shuffling, word deletion, and sentence shuffling. However,
it may also be used to refer to character-level techniques such as
inserting random letters, characters, or typos. Examples of these
techniques are shown below:

• Random character insertion: “The cat qzuickly jumped over
the lazy dog.” (Inserted a “z” in the word “quickly”.)

• Random character deletion: “The cat quickl jumped over the
lazy dog.” (Deleted “y” from the word “quickly”.)

• Typo introduction: “The cat qickuly jumped over the lazy
dog.” (Introduced a typo in “quickly”, changing it to “qick-
uly”.)

These modifications are beneficial for tasks that involve spell-
checking and text correction. But it can also help make the model
more robust to imperfect inputs.

Back translation

Back translation is one of the most widely used techniques to create
variation in texts. Here, the sentence is first translated from the
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original language into one or more different languages and then
back into the original language. Translating back and forth often
results in sentences semantically similar to the original sentence but
introduces slight variations in structure, vocabulary, or grammar.
This generates additional, diverse examples for training without
altering the overall meaning.

Let’s take the familiar sentence “The cat quickly jumped over the
lazy dog” and look at an example of back translation using German
as our intermediary language:

• First, we translate the sentence into German. We might get:
“Die Katze sprang schnell über den faulen Hund.”

• Then, we translate this German sentence back into English.
We could get: “The cat jumped quickly over the lazy dog.”

Please note that the degree of change in the sentence through back
translation depends on the languages used and the specifics of the
machine translationmodel. In this case, the sentence remained very
similar. Still, in other cases or with other languages, you might see
more significant changes in wording or sentence structure while
still maintaining the same overall meaning.

Also note that this method requires access to reliable machine
translation models or services, and care must be taken to ensure
that the back-translated sentences retain the essential meaning of
the original sentences.

Synthetic data

Synthetic data generation is an umbrella term that includes the
abovementioned techniques, such as back translation, synonym
replacement, word deletion, word position swapping, sentence
shuffling, noise injection, and so forth. All these methods generate
new data by making small changes to existing data, maintaining
the overall meaning while creating something new.
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Modern techniques to generate synthetic data now also include
using LLMs, for example, GPT-4. We can use these models to either
generate new data from scratch by using “complete the sentence” or
“generate example sentences” prompts, among others. Or, we could
use it as an alternative to back translation, prompting it to rewrite
a sentence, as shown in the figure below.

Figure 16.1. Using ChatGPT to rewrite sentences.

When to use data augmentation?

The data augmentation techniques discussed above, like synonym
replacement, word deletion, and word position swapping, are com-
monly used in tasks such as text classification, sentiment analysis,
and other NLP tasks where the amount of available labeled data
might be limited.

However, when it comes to pretraining large language models
(LLMs), they are usually trained on such a vast and diverse dataset
that these augmentation techniques might not be used as exten-
sively as in other, more specific NLP tasks. This is because LLMs
aim to capture the statistical properties of the language, and the
vast amount of data they are trained on often provides a sufficient
variety of contexts and expressions.

However, in the finetuning stages of LLMs, where a pretrained
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model is adapted to a specific task with a smaller, task-specific
dataset, data augmentation techniques might become more rele-
vant again, mainly if the task-specific labeled dataset size is limited.

> Reader quiz:

16-A

Could the use of text data augmentation help with privacy con-
cerns?

16-B

What are some instances where data augmentation may not be
beneficial for a specific task?
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Q17. “Self”-Attention

> Q:

The scaled-dot product attention mechanism proposed by the orig-
inal transformer architecture in the influential Attention Is All You
Need⁹³ paper is often referred to as self-attention. Why is it called
“self”-attention, and how is it different from regular attention?

> A:

It’s called self-attention because it’s an attention mechanism for
all the elements of the same set. In contrast, the original attention
developed for recurrent neural networks (RNNs) is applied between
two different sequences, the encoder and the decoder embeddings.

Attention in RNNs

It may be easiest to summarize the difference between regular at-
tention and self-attention with an illustration. The following figure
depicts the attention mechanism that was originally proposed for
RNNs to deal with long sequences⁹⁴.

⁹³Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin (2017). Atten-
tion Is All You Need, https://arxiv.org/abs/1706.03762

⁹⁴Bahdanau, Cho, and Bengio (2014). Neural Machine Translation by Jointly Learning to
Align and Translate, https://arxiv.org/abs/1409.0473.

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1409.0473
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Figure 17.1. Illustration of the attention mechanism, which was originally
proposed for RNNs. The values alpha2,T to alpha2,T represent the attention
weights for the second sequence element and each other element in the
sequence from 1 to T.

As shown in the figure above, the original attention mechanism
developed for RNNs involves two RNNs. The RNN at the bottom,
computing the attention weights, represents the encoder part. The
RNN at the top, producing the output sequence, is a decoder.

The takeaway is that the original attention mechanism developed
for RNNs is applied between two different sequences, the encoder
and the decoder embeddings. Note that for each generated output
sequence element, the decoder RNN at the top is based on a hidden
state plus a context vector generated by the encoder. This context
vector involves all elements of the input sequence. This context
vector is a weighted sum of all input elements where the attention
scores (α′s) represent the weighting coefficients. This allows the
decoder to access all input sequence elements (the context) at each
step. And the key idea is that the attention weights (and context)
may differ and change dynamically at each step.

What motivates this complicated setup? The reason behind this
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encoder-decoder design is that we cannot translate sentences word
by word. This would result in grammatically incorrect outputs, as
illustrated by the RNN architecture A in the figure below.

Figure 17.2. Illustration of two different sequence-to-sequence RNN designs for
sentence translation. Subfigure A represents a regular sequence-to-sequence
RNN that may be used to translate a sentence from German to English word by
word. Subfigure B depicts an encoder-decoder RNN that first reads the whole
sentence before translating it.

The RNN architecture setup depicted in subfigure A is more suited
for time series tasks where we want to make one prediction at a
time, for example, predicting a given stock price day by day. For
tasks like language translation, we typically opt for an encoder-
decoder RNN as depicted in subfigure B above. Here, the RNN
encodes the input sentence, stores it in an intermediate hidden
representation, and then generates the output sentence. However,
this creates a bottleneck where the RNN has to memorize the whole
input sentence via a single hidden state, which does not work very
well for longer sequences.

The bottleneck depicted in subfigure B above prompted the at-
tention mechanism’s original design, allowing the decoder part
to access all elements in the input sentence at each time step.
And the attention scores give different weights to the different
input elements depending on the current word that the decoder
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generates. For example, when generating the word “help” in the
output sequence, the word “helfen” in the German input sentence
may get a large attention weight as it’s highly relevant in this
context.

Self-attention

Approximately three years after the attention-for-RNNmechanism,
which we discussed above, researchers asked whether the RNN
backbone is even needed. This led to the design of the original
transformer architecture and self-attention mechanism⁹⁵.

In self-attention, the attention mechanism is applied between all
elements in the same sequence (as opposed to involving two
sequences). This is depicted in the simplified attention mechanism
in the figure below. Similar to the attention mechanism for RNNs,
the context vector is an attention-weighted sum over the input
sequence elements.

Figure 17.3. A simple self-attention mechanism without weight matrices.

While the figure above depicts a simple attention mechanism with-
out weight matrices, the self-attention mechanism used in trans-

⁹⁵Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (2017). Attention
Is All You Need, https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762
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formers typically involves multiple weight matrices to compute the
attention weights. Furthermore, cross-attention is a flavor of self-
attention that can be applied to different sequence elements⁹⁶.

> Reader quiz:

17-A

Considering that self-attention compares each sequence element
with itself, what is the time and memory complexity of self-
attention?

17-B

We discussed self-attention in the context of natural language
processing. Could this mechanism be useful for computer vision
applications as well?

⁹⁶If you are in learning more about the parameterized self-attention and cross-
attention mechanism, I recommed checking out my blog post Understanding and
Coding the Self-Attention Mechanism of Large Language Models From Scratch at
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html.

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
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Q18. Encoder- And Decoder-Style
Transformers

> Q:

What are the differences between encoder- and decoder-based
language transformers?

> A:

Fundamentally, both encoder- and decoder-style architectures use
the same self-attention layers to encode word tokens. However, the
main difference is that encoders are designed to learn embeddings
that can be used for various predictive modeling tasks such as
classification. In contrast, decoders are designed to e new texts, for
example, answering user queries.

The Original Transformer

The original transformer architecture⁹⁷, which was developed for
English-to-French and English-to-German language translation,
utilized both an encoder and a decoder, as illustrated in the figure
below.

⁹⁷Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin (2017). Atten-
tion Is All You Need, https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762
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Figure 18.1. Illustration of the original transformer architecture.

In the figure above, the input text (that is, the sentences of the
text that is to be translated) is first tokenized into individual word
tokens, which are then encoded via an embedding layer⁹⁸ before
it enters the decoder part. Then, after adding a positional encoding
vector to each embedded word, the embeddings go through a multi-
head self-attention layer. Themulti-head attention layer is followed
by an “Add & normalize” step, which performs a layer normaliza-
tion and adds the original embeddings via a skip connection (also
known as a residual or shortcut connection). Finally, after entering
a “fully connected layer,” which is a small multilayer perceptron

⁹⁸See Q1 for more details about embeddings.
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consisting of two fully connected layers with a nonlinear activation
function in between, the outputs are again added and normalized
before they are passed to a multi-head self-attention layer of the
decoder part.

The decoder part in the figure above has a similar overall structure
as the encoder part. The key difference is that the inputs and outputs
are different. The encoder receives the input text that is to be
translated, and the decoder generates the translated text.

Encoders

The encoder part in the original transformer, illustrated in the
preceding figure, is responsible for understanding and extracting
the relevant information from the input text. It then outputs a con-
tinuous representation (embedding) of the input text that is passed
to the decoder. Finally, the decoder generates the translated text
(target language) based on the continuous representation received
from the encoder.

Over the years, various encoder-only architectures have been
developed based on the encoder module of the original transformer
model outlined above. Notable examples include BERT⁹⁹ and
RoBERTa¹⁰⁰.

BERT (Bidirectional Encoder Representations from Transformers)
is an encoder-only architecture based on the Transformer’s encoder
module. The BERT model is pretrained on a large text corpus using
masked language modeling (illustrated in the figure below) and
next-sentence prediction tasks.

⁹⁹BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
(2018). Devlin, Chang, Lee, and Toutanova, https://arxiv.org/abs/1810.04805.

¹⁰⁰RoBERTa: A Robustly Optimized BERT Pretraining Approach (2018). Liu, Ott, Goyal, Du,
Joshi, Chen, Levy, Lewis, Zettlemoyer, and Stoyanov https://arxiv.org/abs/1907.11692.

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
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Figure 18.2. Illustration of the masked languagemodeling pretraining objective
used in BERT-style transformers.

The main idea behind masked language modeling is to mask (or
replace) random word tokens in the input sequence and then train
the model to predict the original masked tokens based on the
surrounding context.

Next to the masked language modeling pretraining task illustrated
in the figure above, the next-sentence prediction task asks the
model to predict whether the original document’s sentence order
of two randomly shuffled sentences is correct. For example, two
sentences, in random order, are separated by the [SEP] token:

• [CLS] Toast is a simple yet delicious food [SEP] It’s often
served with butter, jam, or honey.

• [CLS] It’s often served with butter, jam, or honey. [SEP] Toast
is a simple yet delicious food.

The [CLS] token is a placeholder token for the model, prompting
the model to return a True or False label indicating whether the
sentences are in the correct order or not.
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The masked language and next-sentence pretraining objective¹⁰¹
allow BERT to learn rich contextual representations of the input
texts, which can then be finetuned for various downstream tasks
like sentiment analysis, question-answering, and named entity
recognition.

RoBERTa (Robustly optimized BERT approach) is an optimized
version of BERT. It maintains the same overall architecture as BERT
but employs several training and optimization improvements, such
as larger batch sizes, more training data, and eliminating the
next-sentence prediction task. These changes resulted in RoBERTa
achieving better performance on various natural language under-
standing tasks than BERT.

Decoders

Coming back to the original transformer architecture outlined at
the beginning of this section, the multi-head self-attention mech-
anism in the decoder is similar to the one in the encoder, but it
is masked to prevent the model from attending to future positions,
ensuring that the predictions for position i can depend only on the
known outputs at positions less than i. As illustrated in the figure
below, the decoder generates the output word by word.

¹⁰¹It shall be noted that this pretraining is a form of self-supervised learning (see Q2 for more
details).
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Figure 18.3. Illustration of the next-sentence prediction task used in the original
transformer.

This masking (shown explicitly in the figure above, although it
happens internally in the decoder’s multi-head self-attention mech-
anism) is essential to maintain the autoregressive property of the
transformer model during training and inference. The autoregres-
sive property ensures that the model generates output tokens one
at a time and uses previously generated tokens as context for
generating the next word token.

Over the years, researchers have built upon the original encoder-
decoder transformer architecture and developed several decoder-
only models that have proven to be highly effective in various
natural language processing tasks. Themost notablemodels include
the GPT family.

The GPT (Generative Pre-trained Transformer) series are decoder-
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only models pretrained on large-scale unsupervised text data and
finetuned for specific tasks such as text classification, sentiment
analysis, question-answering, and summarization. The GPT mod-
els, including GPT-2, GPT-3¹⁰², and the more recent GPT-4, have
shown remarkable performance in various benchmarks and are
currently the most popular architecture for natural language pro-
cessing.

One of the most notable aspects of GPT models is their emergent
properties. Emergent properties refer to the abilities and skills
that a model develops due to its next-word prediction pretraining.
Even though these models were only taught to predict the next
word, the pretrained models are capable of text summarization,
translation, summarization, question answering, classification, and
more. Furthermore, these models can perform new tasks without
updating the model parameters via in-context learning, which is
discussed in more detail in Q19.

Encoder-Decoder Hybrids

Next to the traditional encoder and decoder architectures, there
have been advancements in the development of new encoder-
decoder models that leverage the strengths of both components.
These models often incorporate novel techniques, pre-training ob-
jectives, or architectural modifications to enhance their perfor-
mance in various natural language processing tasks. Some notable
examples of these new encoder-decoder models include BART¹⁰³
and T5¹⁰⁴.

Encoder-decoder models are typically used for natural language
processing tasks that involve understanding input sequences and

¹⁰²Brown et al. (2020). Language Models are Few-Shot Learners,
https://arxiv.org/abs/2005.14165

¹⁰³Lewis, Liu, Goyal, Ghazvininejad, Mohamed, Levy, Stoyanov, and Zettlemoyer (2018).
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Trans-
lation, and Comprehension, https://arxiv.org/abs/1910.13461.

¹⁰⁴Raffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li, and Liu (2019).
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer,
https://arxiv.org/abs/1910.10683.

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.10683
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generating output sequences, often with different lengths and struc-
tures. They are particularly good at tasks where there is a complex
mapping between the input and output sequences and where it is
crucial to capture the relationships between the elements in both
sequences. Some common use cases for encoder-decoder models
include text translation and summarization.

Terminology and Jargon

All of these methods, encoder-only, decoder-only, and encoder-
decoder models, are sequence-to-sequence models (often abbrevi-
ated as seq2seq). Note that while we refer to BERT-style methods
as encoder-only, the description encoder-only may be misleading
since these methods also decode the embeddings into output tokens
or text during pretraining.

In other words, both encoder-only and decoder-only architectures
are “decoding.” However, the encoder-only architectures, in con-
trast to decoder-only and encoder-decoder architectures, are not
decoding in an autoregressive fashion. Autoregressive decoding
refers to generating output sequences one token at a time, condition-
ing each token on the previously generated tokens. Encoder-only
models do not generate coherent output sequences in this manner.
Instead, they focus on understanding the input text and producing
task-specific outputs, such as labels or token predictions.

Conclusion

In brief, encoder-style models are popular for learning embeddings
used in classification tasks, encoder-decoder-style models are used
in generative tasks where the output heavily relies on the input
(for example, translation and summarization), and decoder-only
models are used for other types of generative tasks including
Q&A. Since the first transformer architecture emerged, hundreds
of encoder-only, decoder-only, and encoder-decoder hybrids have
been developed, as summarized in the figure below.
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Figure 18.4. An overview of some of the most popular large language trans-
formers organized by architecture type and developers.

While encoder-only models gradually lost in popularity, decoder-
only models like GPT exploded in popularity thanks to break-
through in text generation via GPT-3, ChatGPT, and GPT-4. How-
ever, encoder-only models are still very useful for training predic-
tive models based on text embeddings versus generating texts.
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> Reader quiz:

18-A

As discussed earlier, BERT-style encoder models are pretrained
using masked language modeling and next-sentence prediction
pretraining objectives. How could we adopt such a pretrained
model for a classification task, for example, predicting whether a
text has a positive or negative sentiment?

18-B

Can we finetune or a decoder-only model like GPT for classifica-
tion?
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Q19. Using and Finetuning
Pretrained Transformers

> Q:

What are the different ways we can use and finetune pretrained
large language models (LLMs)?

> A:

Firstly, most pretrained LLMs or language transformers can be
utilized without the need for further finetuning. For instance, we
can employ a feature-based method to train a new downstream
model (for example, a linear classifier) using embeddings generated
by a pretrained transformer.
Secondly, we can showcase examples of a new task within the input
itself, which means we can directly exhibit the expected outcomes
without requiring any updates or learning from the model.
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Figure 19.1. An illustration of prompting, which doesn’t require model tuning.
Here, we provide examples of the target task via the input.

Thirdly, it’s possible to finetune all or just a small number of
parameters to achieve the desired outcomes. The following sections
will outline these different types of approaches.

The Three Conventional Methods

Let us start with the conventional methods for utilizing pretrained
transformers: training another model on feature embeddings, fine-
tuning output layers, and finetuning all layers. We will be dis-
cussing these in the context of classification.

In the feature-based approach, we load the pretrained model and
keep it “frozen” – this means we do not update any parameters
of the pretrained model. Instead, we treat the model as a feature
extractor that we apply to our new dataset. Then, we train a
downstream model on these embeddings. This downstream model
can be anymodel we like (random forests, XGBoost, etc.), but linear
classifiers typically perform best. This is likely because pretrained
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transformers like BERT and GPT already extract high-quality,
informative features from the input data. These feature embeddings
often capture complex relationships and patterns, making it easy
for a linear classifier to effectively separate the data into different
classes. Furthermore, linear classifiers, such as logistic regression
or support vector machines, tend to have strong regularization
properties. These regularization properties help prevent overfitting
when working with high-dimensional feature spaces generated by
pretrained transformers. This feature-based approach is the most
efficient method since it doesn’t require updating the transformer
model at all. Furthermore, the embeddings can be pre-computed for
a given training dataset (since they don’t change) when training a
classifier for multiple training epochs.

When we talk about finetuning pretrained LLMs, the conventional
methods include updating only the output layers (we will refer to
this method as finetuning I) and updating all layers (finetuning II).

Figure 19.2. An illustration of the general finetuning worfklow of large lan-
guage models.

Finetuning I is related to the feature-based approach above but adds
one or more output layers to the LLM itself. The backbone of the
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LLM remains frozen, and we only update the model parameters
in these new layers. We don’t need to backpropagate through the
whole network, so this approach is relatively efficient regarding
throughput and memory requirements.

In finetuning II, we load the model and add one or more output
layers, similar to finetuning I. But instead of only backpropagating
through the last layers, we update all layers via backpropagation,
making this the most expensive approach. However, while this
method is computationally more expensive than the feature-based
approach and finetuning I, it typically leads to better modeling or
predictive performance. This is especially true for more specialized
domain-specific datasets. The following figure below summarizes
the three approaches described above.

Figure 19.3. The three conventional approaches for utilizing pretrained LLMs.

In-Context Learning, Indexing, and Prompt Tuning

LLMs like GPT-2 and GPT-3¹⁰⁵ popularized the concept of in-
context learning, often called zero or few-shot learning in this

¹⁰⁵Language Models are Unsupervised Multitask Learners (2018),
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-
Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe. and Language Models are
Few-Shot Learners (2020), https://arxiv.org/abs/2005.14165.

https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://arxiv.org/abs/2005.14165
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context. However, the in-context learning-based definition of few-
shot learning differs from the conventional approach to few-shot
learning¹⁰⁶.

The idea behind in-context learning is to provide context or exam-
ples of the task within the input or prompt, allowing the model to
infer the desired behavior and generate appropriate responses. This
approach takes advantage of the model’s ability to learn from vast
amounts of data during pretraining, which includes diverse tasks
and contexts.

For example, suppose we want to use in-context learning for few-
shot German-English translation using a large-scale pretrained
language model like GPT-3. To do so, we provide a few examples
of German-English translations to help the model understand the
desired task, as shown below:

1 Translate the following German sentences into English:

2

3 Example 1:

4 German: "Ich liebe Pfannkuchen."

5 English: "I love pancakes."

6

7 Example 2:

8 German: "Das Wetter ist heute schoen."

9 English: "The weather is nice today."

10

11 Translate this sentence:

12 German: "Wo ist die naechste Bushaltestelle?"

Generally, in-context learning does not perform as well as finetun-
ing for certain tasks or specific datasets. This is because in-context
learning relies on the pretrained model’s ability to generalize from
its training data without further adapting its parameters for the
particular task at hand.

¹⁰⁶See Q3 for more details about few-shot learning.
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However, it’s worth noting that in-context learning has its advan-
tages. It can be particularly useful when labeled data for finetuning
is limited or unavailable. It also enables rapid experimentation with
different tasks without finetuning the model parameters in cases
where we don’t have direct access to the model or only interact
with the model through a UI or API (for example, ChatGPT).

Related to in-context learning is the concept of “hard” prompt
tuning. Where the previously described finetuning methods update
the model parameters to perform better at a task at hand, hard
prompt tuning aims to optimize the prompt itself to achieve better
performance. Prompt tuning does not modify themodel parameters
but may involve using a smaller labeled dataset to identify the best
prompt formulation for the specific task. For example, to improve
the prompts for the German-English translation task above, wemay
try the following three prompting variations:

1 1) "Translate the German sentence '{german_sentence}' int\

2 o English: {english_translation}"

3

4 2) "German: '{german_sentence}' | English: {english_trans\

5 lation}"

6

7 3) "From German to English: '{german_sentence}' -> {engli\

8 sh_translation}"

Prompt tuning is a resource-efficient alternative to parameter fine-
tuning. However, the performance of prompt tuning is usually not
as good as full model finetuning, as it does not update the model’s
parameters for a specific task, potentially limiting its ability to
adapt to task-specific nuances. Furthermore, prompt tuning can still
be labor intensive since it requires either human involvement com-
paring the quality of the different prompts¹⁰⁷ – this is often known

¹⁰⁷The recent Auto Prompt Engineer method by Zhou et al. (2022) proposes to use another
LLM for automatic prompt generation and evaluation: Large LanguageModels Are Human-Level
Prompt Engineers, https://arxiv.org/abs/2211.01910.

https://arxiv.org/abs/2211.01910
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as hard prompting since the input tokens are not differentiable. In
contrast, soft prompting strategies such as prefix tuning optimize
embedded versions of the prompts, which we will discuss in the
next section on parameter-efficient finetuning.

Yet another way to leverage a purely in-context learning-based
approach is indexing¹⁰⁸. In the context of LLMs, we can think
of indexing as a workaround based on in-context learning that
allows us to turn LLMs into information retrieval systems to
extract information from external resources and websites. Here, an
indexing module parses a document or website into smaller chunks,
embedded into vectors that can be stored in a vector database. Then,
when a user submits a query, the indexing module computes the
vector similarity between the embedded query and each vector
stored in the database. Finally, the indexing module retrieves the
top k most similar embeddings to synthesize the response.

Figure 19.4. LLM-indexing to retrieve information from external documents.

Parameter-Efficient Finetuning

In recent years, many methods have been developed to adapt
pretrained transformers more efficiently for new target tasks. These
methods are commonly referred to as parameter-efficient finetun-

¹⁰⁸https://github.com/jerryjliu/llama_index

https://github.com/jerryjliu/llama_index
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ing (PEFT), with the currently most popular methods¹⁰⁹ summa-
rized in the figure below.

Figure 19.5. The main categories of parameter-efficient finetuning techniques
with the most popular examples.

The prompt tuning approach mentioned in the previous section (In-
Context Learning and Prompt Tuning) is often also referred to as
“hard” prompt tuning to distinguish it from other “soft” prompting
methods¹¹⁰. As described earlier, we modify the discrete input
tokens in hard prompt tuning. In soft prompt tuning, we utilize
trainable parameter tensors instead.

The main idea behind soft prompt tuning is to prepend a trainable
parameter tensor (the “soft prompt”) to the embedded query tokens.
The prepended tensor is then tuned to improve the modeling
performance on a target dataset using gradient descent. In pseudo-
code, soft prompt tuning can be described as follows,

¹⁰⁹Interested readers can find a survey of more than 40 research papers covering various
PEFT methods in Lialin, Deshpande, and Rumshisky (2023), Scaling Down to Scale Up: A Guide
to Parameter-Efficient Fine-Tuning, https://arxiv.org/abs/2303.15647.

¹¹⁰One of the first instances of soft prompting is described in Lester, Al-Rfou,
and Constant (2021), The Power of Scale for Parameter-Efficient Prompt Tuning,
https://arxiv.org/abs/2104.08691.

https://arxiv.org/abs/2303.15647
https://arxiv.org/abs/2104.08691
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1 x = EmbeddingLayer(input_ids)

2 x = concatenate([soft_prompt_tensor, x],

3 dim=seq_len)

4 output = model(x)

where the soft_prompt_tensor has the same feature dimension as
the embedded inputs produced by the embedding layer.

Prefix tuning¹¹¹ is a popular prompt tuning method related to the
soft prompt tuning approachmentioned above. Themain difference
between soft prompt tuning and prefix tuning is that in prefix
tuning, we prepend trainable tensors (soft prompts) to each trans-
former block instead of only the embedded inputs, as illustrated in
the next figure and pseudocode below:

1 def transformer_block_with_prefix(x):

2 soft_prompt = FullyConnectedLayers(

3 soft_prompt) # Prefix

4 x = concatenate([soft_prompt, x], # Prefix

5 dim=seq_len) # Prefix

6 residual = x

7 x = SelfAttention(x)

8 x = LayerNorm(x + residual)

9 residual = x

10 x = FullyConnectedLayers(x)

11 x = LayerNorm(x + residual)

12 return x

The advantage of prefix tuning is that it can stabilize the training.

¹¹¹Li and Liang (2021). Prefix-Tuning: Optimizing Continuous Prompts for Generation,
https://arxiv.org/abs/2101.00190.

https://arxiv.org/abs/2101.00190
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Figure 19.6. Outline of prefix tuning.

Both soft prompt tuning and prefix tuning are considered
parameter-efficient since they only require training the prepended
parameter tensors, not the LLM parameters themselves.

Adapter methods are related to prefix tuning in that they add
additional parameters to the transformer layers. In the original
adapter method¹¹², additional fully connected layers were added
after the multihead self-attention and existing fully connected
layers in each transformer block, as illustrated in the figure below.
Only the new adapter layers are updated when training the LLM
using the adapter method, while the remaining transformer layers
remain frozen. Since the adapter layers are usually small – the first
fully connected layer in an adapter block projects its input into a
low-dimensional representation and the second layer projects it
back into the original input dimension – the adapter method is
usually considered parameter-efficient.

¹¹²Houlsby, Giurgiu, Jastrzebski, Morrone, Laroussilhe, Gesmundo, Attariyan, and Gelly
(2019). Parameter-Efficient Transfer Learning for NLP, https://arxiv.org/abs/1902.00751.

https://arxiv.org/abs/1902.00751
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Figure 19.7. A comparison between a regular transformer block (left) and a
transformer block with adapter layers.

In pseudo-code, the adapter method can be written as follows:

1 def transformer_block_with_adapter(x):

2 residual = x

3 x = SelfAttention(x)

4 x = FullyConnectedLayers(x) # adapter

5 x = LayerNorm(x + residual)

6 residual = x

7 x = FullyConnectedLayers(x)

8 x = FullyConnectedLayers(x) # adapter

9 x = LayerNorm(x + residual)

10 return x

Low-rank adaptation (LoRA)¹¹³ is another popular PEFT method
worth considering. Low-rank adaptation refers to reparameterizing
pretrained LLM weights using low-rank transformations.

Low-rank transformation is a technique to approximate a high-
dimensional matrix or dataset using a lower-dimensional represen-
tation. The lower-dimensional representation (or low-rank approx-
imation) is achieved by finding a combination of fewer dimensions

¹¹³Hu, Shen, Wallis, Allen-Zhu, Li, Wang, Wang, and Chen (2021). LoRA: Low-Rank Adapta-
tion of Large Language Models, https://arxiv.org/abs/2106.09685.

https://arxiv.org/abs/2106.09685
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that can effectively capture most of the information in the original
data¹¹⁴.

For example, suppose ∆W represents the parameter update for
a weight matrix of the LLM with dimension RA×B .. We can
decompose the weight update matrix into two smaller matrices:
∆W = WAWB , where W_A \in \mathbb{R}^{A \times h} $ and
WA ∈ Rh×B . Here, we keep the original weight frozen and only
train the newmatricesWA andWB .How is this parameter efficient
if we introduce newweight matrices? The newmatrices can be very
small. For example, suppose A = 25 and B = 50, then the size of
∆W is 25× 50 = 6, 250. If h = 5, then WA has 125 parameters, and
WB has 250 parameters, and the two matrices combined only have
125 + 250 = 375 parameters in total.

After learning the weight update matrix, we can then write the
matrix multiplication of a fully connected layer as follows, using
pseudo-code:

1 def lora_forward_matmul(x):

2 h = x . W # regular matrix multiplication

3 h += x . (W_A . W_B) * scalar

4 return h

In the pseudo-code above, scalar is a scaling factor that adjusts the
magnitude of the combined result (original model output plus low-
rank adaptation). This balances the pretrained model’s knowledge
and the new task-specific adaptation.

According to the LoRA paper, the modeling performance of models
using LoRA performs slightly better than models using Adapters
across several task-specific benchmarks. Often, LoRA performs
even better than models finetuned using the Finetuning II method
described at the beginning of Q19.

¹¹⁴Popular low-rank transformation techniques include principal component analysis (PCA)
and singular vector decomposition (SVD).
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Reinforcement Learning with Human Feedback

The previous section focused on making finetuning more efficient.
Switching gears, how canwe improve the modeling performance of
LLMs via finetuning? The conventional way to adapt or finetune an
LLM for a new target domain or task is using a supervised approach
with labeled target data. For instance, using the finetuning II
approach discussed earlier allows us to adapt a pretrained LLM and
finetune it on a target task, for example, sentiment classification,
using a dataset that contains texts with sentiment labels such as
“positive,” “neutral,” and “negative.”

An alternative approach to supervised finetuning is an approach
referred to as reinforcement learning with human feedback (RLHF).
For example, ChatGPT and its predecessor InstructGPT¹¹⁵ are two
popular examples of pretrained LLMs (GPT-3) finetuned using
RLHF.

In RLHF, a pretrained model is finetuned using a combination of
supervised learning and reinforcement learning – the approachwas
popularized by the original ChatGPT model, which was in turn
based on InstructGPT¹¹⁶. Human feedback is collected by having
humans rank or rate different model outputs, providing a reward
signal. The collected reward labels can then be used to train a
reward model that is then used to guide the LLMs adaptation to
human preferences. The reward model is learned via supervised
learning (typically using a pretrained LLM as base model). Next,
the reward model is then used to update the pretrained LLM that is
to be adapted to human preferences – the training uses a flavor
of reinforcement learning called proximal policy optimization¹¹⁷.
Why use a reward model instead of training the pretained model
on the human feedback directly? That’s because involving humans

¹¹⁵Ouyang and colleagues (2022). Training Language Models To Follow Instructions With
Human Feedback, https://arxiv.org/abs/2203.02155.

¹¹⁶Ouyang et al. (2022). Training language models to follow instructions with human
feedback, https://arxiv.org/abs/2203.02155

¹¹⁷Schulman, Wolski, Dhariwal, Radford, and Klimov (2017) Proximal Policy Optimization
Algorithms, https://arxiv.org/abs/1707.06347.

https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1707.06347
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in the learning process would create a bottleneck since we cannot
obtain feedback in real-time.

Figure 19.8. The reinforcement learningwith human feedback (RLHF) process
based on InstructGPT

Conclusion

While finetuning all layers of a pretrained LLM remains the gold
standard for adaption to new target tasks, several efficient alterna-
tives exist for leveraging pretrained transformers. For instance, we
can effectively apply LLMs to new tasks while minimizing com-
putational costs and resources by utilizing feature-based methods,
in-context learning, or parameter-efficient finetuning techniques.

The three conventional methods – feature-based approach, finetun-
ing I, and finetuning II – provide different computational efficiency
and performance trade-offs. Parameter-efficient finetuning meth-
ods like soft prompt tuning, prefix tuning, and adapter methods
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further optimize the adaptation process, reducing the number of
parameters that need to be updated. Reinforcement learning with
human feedback (RLHF) presents an alternative approach to super-
vised finetuning, potentially improving modeling performance.

In summary, the versatility and efficiency of pretrained LLMs
continue to advance, offering new opportunities and strategies for
effectively adapting these models to a wide array of tasks and
domains. As research in this area progresses, we can expect fur-
ther improvements and innovations in using pretrained language
models.

> Reader quiz:

19-A

When does it make more sense to use in-context learning over
finetuning and vice versa?

19-B

In prefix tuning, adapters, and LoRA, how can we ensure that the
model preserves (and not forgets) the original knowledge?
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Q20. Evaluating Generative
Language Models

> Q:

What are the standard metrics for evaluating the quality of text
generated by large language models?

> A:

Perplexity, BLEU, and ROUGE scores are some of themost common
evaluation metrics used in natural language processing to assess
the performance of Large Language Models (LLMs) across various
tasks.

Why do we care about metrics? Ultimately, there is no way around
human quality judgments, but human evaluations are tedious,
expensive, hard-to-automate, and subjective. Hence, we develop
metrics to provide objective summary scores to measure progress
and compare different approaches.

Overview

Perplexity is directly related to the loss function used for pre-
training LLMs and is commonly used to evaluate text generation
and text completion models. Essentially, it quantifies the average
uncertainty of the model in predicting the next word in a given
context – the lower the perplexity, the better.

The BLEU (Bilingual Evaluation Understudy) score is a widely used
metric for evaluating the quality of machine-generated translations.
It measures the overlap of n-grams between the machine-generated
translation and a set of human-generated reference translations. A
higher BLEU score indicates better performance, ranging from 0
(worst) to 1 (best).

The ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
score is a metric primarily used for evaluating automatic summa-
rization (and sometimes machine translation) models. It measures
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the overlap between the generated summary and reference sum-
maries.

We can think of perplexity as an intrinsic metric and BLEU and
ROUGE as extrinsic metrics. To illustrate the difference between
intrinsic and extrinsicmetrics, think of optimizing the cross entropy
to train an image classifier. The cross entropy is a loss function
we optimize during training, but our end goal is to maximize
the classification accuracy. Since classification accuracy cannot
be optimized directly during training – it’s not differentiable –
we minimize the surrogate loss function like the cross entropy.
Minimizing the cross entropy loss more or less correlates with
maximizing the classification accuracy.

Perplexity is often used as an evaluation metric to compare the
performance of different languagemodels, but it is not the optimiza-
tion target during training. BLEU and ROUGE are more related to
classification accuracy, or rather precision and recall. In fact, BLEU
is a precision-like score to evaluate the quality of a translated text.
ROUGE is a recall-like score to evaluate summarized texts.

The following paragraphs will discuss the mechanics of these
metrics in more detail.

Perplexity

Perplexity is closely related to the cross entropy that is directly
minimized during training, which is why we refer to perplexity as
an intrinsic metric.

Perplexity is defined as 2H(p,q)/n, where H(p, q) is the cross en-
tropy¹¹⁸ between the true distribution of words p and the predicted
distribution of words q. As cross entropy decreases, perplexity
decreases as well – the lower the perplexity, the better. And n is
the sentence length (the number of words or tokens) to normalize
the score.

¹¹⁸While we typically compute the cross entropy using a natural logarithm, we calculate
the cross entropy and perplexity with a base-2 logarithm for the intuitive relationship to hold.
However, whether we use a base-2 or natural logarithm is a minor implementation detail.
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In practice, since the probability for each word in the target
sentence is always 1, we compute the cross entropy as the logarithm
of the probability scores returned by the model we want to evaluate.
In other words, if we have the predicted probability score for each
word in a sentence s, we can compute the perplexity directly as
follows:

Perplexity(s) = 2−
1
n log2(p(s)).

In the formula above

• s is the sentence or text we want to evaluate, for example,
“The quick brown fox jumps over the lazy dog”;

• p(s) are the probability scores returned by the model;
• n is the number of words or tokens.

For example, if the model returns the following probability scores,

[0.99, 0.85, 0.89, 0.99, 0.99, 0.99, 0.99, 0.99],

the perplexity is

2−
1
8

∑
i log2 p(wi)

= 2−1/8·
∑

log2(0.99∗0.85∗0.89∗0.99∗0.99∗0.99∗0.99∗0.99))

= 1.043

If the sentencewas “The fast black cat jumps over the lazy dog”with
probabilities [0.99, 0.65, 0.13, 0.05, 0.21, 0.99, 0.99, 0.99], the corre-
sponding perplexity would be 2.419.

(Interested readers can find a code implementation and example of
this calculation in the supplementary materials¹¹⁹.)

A high perplexity indicates that a language model is less effective
at predicting the next word in a sequence, implying greater uncer-
tainty in its predictions. We aim for a low perplexity in language
models, as it indicates better performance in predicting the next

¹¹⁹https://github.com/rasbt/MachineLearning-QandAI-book

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/rasbt/MachineLearning-QandAI-book
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word in a sequence, reflecting a more accurate understanding of
language patterns and context.

BLEU score

BLEU is the most popular and widely used metric for evaluating
translated texts. It’s used in almost all LLMs capable of translation,
including popular tools such as OpenAI’sWhisper and GPTmodels,
so it’s worth discussing how it works.

BLEU was originally developed to capture or automate the essence
of human evaluation; the original BLEU paper found a high cor-
relation with human evaluations¹²⁰ (although this was later dis-
proven¹²¹).

BLEU is a reference-based metric that compares the model output
to human-generated references. In short, BLEU measures the lex-
ical overlap between the model output and the human-generated
references based on a precision score.

So, how does it work exactly? As a precision-based metric, BLEU
counts howmanywords in the generated text (candidate text) occur
in the reference text divided by the reference text length, where
the reference text is a sample translation provided by a human, for
example. (Instead of using individual words, this is commonly done
for n-grams, but for simplicity, we will stick to words or 1-grams.)

The BLEU score calculation is summarized in the illustration below,
and interested readers can also find a code implementation in the
supplementary materials¹²².

¹²⁰Papineni, Roukos, Ward, and Zhu (2002). BLEU: a Method for Automatic Evaluation of
Machine Translation, https://aclanthology.org/P02-1040/.

¹²¹Callison-Burch, Osborne, and Koehn (2006). Re-evaluating the role of BLEU in machine
translation research, https://aclanthology.org/E06-1032/.

¹²²https://github.com/rasbt/MachineLearning-QandAI-book

https://github.com/rasbt/MachineLearning-QandAI-book
https://aclanthology.org/P02-1040/
https://aclanthology.org/E06-1032/
https://github.com/rasbt/MachineLearning-QandAI-book
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Figure 20.1. Calculation of the 1-gram BLEU score for illustration purposes. (In
practice, BLEU is often computed for 4-grams.)

BLEU has several shortcomings¹²³ that are mostly owed to the fact
that BLEU measures string similarity and similarity alone is not
sufficient for capturing quality. Furthermore, since BLEU relies
on exact string matches, it is sensitive to lexical variations and
incapable of identifying semantically similar translations that use
synonyms or paraphrases. In other words, BLEU may assign lower
scores to translations that are, in fact, accurate and meaningful.

Is BLEU flawed? Yes. Is it still useful? Also yes. BLEU is a helpful
tool to measure or assess whether a model improves during training
– it’s a proxy for fluency. However, it is not very well suited to give

¹²³I can highly recommend Benjamin Marie’s insightful article, “12 Critical Flaws of BLEU,”
based on 37 studies published over 20 years: https://medium.com/@bnjmn_marie/12-critical-
flaws-of-bleu-1d790ccbe1b1.

https://medium.com/@bnjmn_marie/12-critical-flaws-of-bleu-1d790ccbe1b1
https://medium.com/@bnjmn_marie/12-critical-flaws-of-bleu-1d790ccbe1b1
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a correct assessment of the quality of the generated translations
and is not well suited for detecting issues. In other words, use it as
a model selection tool, not a model evaluation tool¹²⁴.

ROUGE score
Where BLEU is commonly used for translation tasks, ROUGE¹²⁵ is
a popular metric for scoring text summaries.

There are quite some similarities between BLEU and ROUGE. The
precision-based BLEU score checks how many words in the can-
didate translation occur in the reference translation. The ROUGE
score also takes a flipped approach, checking how many words in
the reference text appear in the generated text (here typically a
summarization instead of translation) – this can be interpreted as
a recall-based score.

Modern implementations compute the ROUGE as an F1 score that
is the harmonic mean of recall (how many words in the reference
occur in the candidate text) and precision (how many words in the
candidate text occur in the reference text) as illustrated in the figure
below.

¹²⁴The currently most popular alternatives to BLEU are METEOR and COMET.
¹²⁵Lin (2004). ROUGE: A Package for Automatic Evaluation of Summaries,

https://aclanthology.org/W04-1013/

https://aclanthology.org/W04-1013/
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Figure 20.2. Illustration of the 1-gram ROUGE score computation. (In practice,
ROUGE is often computed for bigrams, that is, 2-grams.)

(Interested readers can find a computational example in the supple-
mentary materials¹²⁶.)

Besides this ROUGE-1 (the F1-score based ROUGE score for 1-
grams), there are more variants:

1. ROUGE-N: This measures the overlap of N-grams between
the candidate and reference summaries. For example,
ROUGE-1 would look at the overlap of individual words
(1-grams), while ROUGE-2 would consider the overlap of
2-grams (bigrams).

2. ROUGE-L: This metric measures the longest common sub-
sequence (LCS) between the candidate and reference sum-
maries. It captures the longest co-occurring in-order subse-
quence of words, which may have gaps in between.

¹²⁶https://github.com/rasbt/MachineLearning-QandAI-book

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/rasbt/MachineLearning-QandAI-book
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3. ROUGE-S: This metric measures the overlap of skip-bigrams,
which are word pairs with a flexible number of words in
between. It can be useful to capture the similarity between
sentences with different word orderings.

ROUGE shares similar weaknesses as BLEU. Like BLEU, ROUGE
does not account for synonyms or paraphrases. It measures the
n-gram overlap between the candidate and reference summaries,
which can lead to lower scores for semantically similar but lexically
different sentences. It is still worth knowing about ROUGE since all
papers introducing new summarization models at computational
linguistic conferences in 2021 use ROUGE – 69% of these papers
use only ROUGE according to Repairing the Cracked Foundation:
A Survey of Obstacles in Evaluation Practices for Generated Text¹²⁷.

BERTScore

BERTScore¹²⁸ can be used for translations and summaries, and it
captures the semantic similarity better than traditional metrics like
BLEU and ROUGE. In particular, it’s more robust to paraphrasing.

For readers familiar with the inception score for generative vi-
sion models, BERTScore takes a similar approach of using embed-
dings¹²⁹ from a pretrained model. Here, BERTScore measures the
similarity between a candidate text and a reference text by leverag-
ing the contextual embeddings produced by the BERT model¹³⁰.

We can summarize the BERT score computation via the following
steps:

1. Obtain the candidate text via the LLM you want to evaluate
(PaLM, LLaMA, GPT, BLOOM, etc.)

¹²⁷https://arxiv.org/abs/2202.06935
¹²⁸Zhang, Kishore,Wu,Weinberger, and Artzi (2019). BERTScore: Evaluating Text Generation

with BERT, https://arxiv.org/abs/1904.09675.
¹²⁹See Q1 for more information about embeddings.
¹³⁰BERT is an encoder-style transformer, further discussed in Q18.

https://arxiv.org/abs/2202.06935
https://arxiv.org/abs/2202.06935
https://arxiv.org/abs/2202.06935
https://arxiv.org/abs/1904.09675
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2. Tokenize the candidate and reference texts into subwords
(preferably using the same tokenizer used for training BERT)

3. Use a pretrained BERTmodel to create the embeddings for all
tokens in the candidate and reference texts

4. Then, compare each token embedding in the candidate text to
all token embeddings in the reference text, computing their
cosine similarity

5. Align each token in the candidate text with the token in the
reference text that has the highest cosine similarity

6. Compute the final BERTScore by taking the average similar-
ity scores of all tokens in the candidate text.

(Interested readers can find a computational example in the supple-
mentary materials¹³¹.)

Figure 20.3. Illustration of how to compute the BERTScore.

BERTScore is more robust to paraphrasing and captures semantic
similarity better due to its contextual embeddings. However, it

¹³¹https://github.com/rasbt/MachineLearning-QandAI-book

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/rasbt/MachineLearning-QandAI-book
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may be computationally more expensive as it requires using a pre-
trained BERT model for the evaluation.

It’s important to note that while BERTScore provides a useful
automatic evaluation metric, it is also not perfect and should
be used alongside other evaluation techniques, including human
judgment.

Conclusion

All metrics covered above are surrogates or proxies to evaluate how
useful the model is in terms of measuring how well the model
compares to human performance for accomplishing a goal¹³². As
mentioned earlier, the best way to evaluate LLMs is to assign
human raters who judge the results. However, since this is often
expensive and not easy to scale, we use the aforementioned metrics
to estimate model performance. To quote from the InstructGPT¹³³
paper:

“Public NLP datasets are not reflective of how our
language models are used. . . . [They] are designed to
capture tasks that are easy to evaluate with automatic
metrics.”

Moreover, it is also important to incorporate ethical considerations
when assessing LLMs to ensure they are used responsibly and fairly.

> Reader quiz:

Q20-A

Looking at step 5 in the previous figure illustrating the BERTScore
computation, we see that the cosine similarity between the two

¹³²Besides BERTScore, ROUGE, BLEU, and perplexity, several other popular evaluation
metrics are used to assess the predictive performance of LLMs. Interested readers can
learn more in the Evaluation of Text Generation survey by Celikyilmaz, Clark, and Gao
https://arxiv.org/abs/2006.14799.

¹³³Ouyang and colleagues (2022). Training Language Models To Follow Instructions With
Human Feedback, https://arxiv.org/abs/2203.02155.

https://arxiv.org/abs/2006.14799
https://arxiv.org/abs/2203.02155
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embeddings of “cat” are not 1.0, where 1.0 indicates a maximum
cosine similarity. Why is that?

Q20-B

In practice, we might find that the BERTScore is not symmetric.
This means that switching the candidate and reference sentence
could result in different BERTScores for specific texts. How could
we address this?



Chapter 4. Production,
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Q21. Stateless And Stateful Training

> Q:

What is the difference between stateless and stateful training
workflows in the context of production and deployment systems?

> A:

Both stateless training and stateful training refer to different ways
of training a production model.

Stateless (re)training

Stateless training is a conventional, traditional approach where
we first train an initial model on the original training set and
then retrain it as new data arrives. Hence, stateless training is also
commonly referred to as stateless retraining¹³⁴.

Figure 21.1. Illustration of stateless retraining.

As illustrated in the figure above, stateless retraining is like a sliding
window approach where we retrain the initial model on different
parts of the data from a given data stream. For example, to update
the initial model (Model 1) to a newer model (Model 2), we train the
model on 30% of the initial data and 70% of the most recent data at
a given point in time.

Stateless retraining is a straightforward approach where we can
adapt the model to the most recent changes in the data and

¹³⁴Huyen, C. (2022). Designing Machine Learning Systems. O’Reilly Media, Inc.
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feature-target relationships via retraining themodel from scratch in
user-defined checkpoint intervals. This approach is prevalent with
conventional machine learning systems that cannot be finetuned
as part of a transfer or self-supervised learning workflow (see Q2).
For example, standard implementations of tree-based models such
as random forests and gradient boosting (XGBoost, CatBoost, and
LightGBM) fall into this category.

Stateful training

In stateful training, we train the model on an initial batch of data
and then update it periodically (as opposed to retraining it) when
new data arrives.

Figure 21.2. Illustration of stateful training.

In the illustration of stateful training above, we do not retrain the
initial model (Model 1.0) from scratch but update or finetune it as
new data arrives. This approach is particularly attractive for models
compatible with transfer learning or self-supervised learning.

The stateful approach mimics a transfer or self-supervised learn-
ing workflow where we adopt a pretrained model for finetuning.
However, stateful training differs fundamentally from transfer and
self-supervised learning as it updates the model to accommodate
concept, feature, and label drifts. In contrast, transfer and self-
supervised learning aim to adopt the model for a different classifi-
cation task. For instance, in transfer learning, the target labels often
differ. In self-supervised learning, we obtain the target labels from
the dataset features.

One significant advantage of stateful training is that we do not need
to store data for retraining – we can use it to update the model as
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soon as it arrives. This is particularly attractive when data storage
is a concern due to privacy or resource limitations.

> Reader quiz:

21-A

Suppose you train a classifier for stock trading recommendation
using a random forest model, including the moving average of the
stock price as a feature. Now, since new stock market data arrives
daily, you are thinking about how to update the classifier daily to
keep it up to date. Should you take a stateless training or stateless
retraining approach to update the classifier?

21-B

Suppose you deployed a large language model (transformer) such
as ChatGPT that can answer user queries. The dialogue interface
includes a “thumbs up” and “thumbs down” button so that users
can give direct feedback based on the generated queries. While
collecting the user feedback, you are not updating the model
immediately as new feedback arrives. However, you are planning
to release a new or updated model at least once per month.
Is this a good candidate for stateless or stateful retraining?
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Q22. Data-Centric AI

> Q:

What is data-centric AI, how does it compare to the conventional
modeling paradigm, and how do we decide it’s the right fit for a
project?

> A:

Data-centric AI is a paradigm or workflow where we keep the
model training procedure fixed and iterate over the dataset to
improve the predictive performance of a model.

In the context of data-centric AI, we can think of the conventional
workflow¹³⁵, which is often part of academic publishing, as model-
centric AI. However, in an academic research setting, we are typ-
ically interested in developing new methods (for example, neural
network architectures or loss functions). Here, we consider exist-
ing benchmark datasets to compare the new method to previous
approaches to determine whether it is an improvement over the
status quo.

¹³⁵While data-centric AI is a relatively new term, the idea behind it is not new. Many readers
want to point out that they had used a data-centric approach in their projects before the term
was coined. In my opinion, data-centric AI was created to make “caring about data quality”
attractive again – data collection and curation is often considered tedious or thankless. This is
analogous to how the term deep learning made neural networks attractive again.
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Figure 22.1. Illustrating a data-centric versus model-centric machine learning
workflow.

Why can’t we have both?

In short, data-centric AI focuses on changing the data to improve
performance. Model-centric approaches focus on modifying the
model to improve performance. Ideally, we can do both in an
applied setting where we want to get the best possible predictive
performance. However, if we are in a research setting or an ex-
ploratory stage of an applied project, varying too many variables
simultaneously is messy. If we change both model and data simul-
taneously, it is hard to pinpoint which change is responsible for the
improvement.

What are the different methods for data-centric AI?

It is important to emphasize that data-centric AI is a paradigm and
workflow, not a particular technique. So, data-centric AI implicitly
includes

• analyses and modifications of training data, from outlier
removal to missing data imputation;
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• data synthesis and data augmentation techniques;
• data labeling and label cleaning methods;
• the classic active learning setting where a model suggests
which data points to label.

We consider an approach data-centric if we only change the data
(using the methods above), not the other aspects of the modeling
pipeline.

What are the advantages of data-centric AI?

In machine learning and AI, we often use the phrase “garbage in,
garbage out.” Here, it means that poor-quality data will result in
a poor predictive model. Or in other words, we cannot expect a
well-performing model from a low-quality dataset.

There is one pattern I often observe in applied academic projects
where researchers want to use machine learning to replace an
existing methodology. Often, researchers only have a small dataset
of examples (let’s say 100s of training examples). Labeling data is
often expensive or considered boring and thus best avoided. In these
cases, the researchers would spend unreasonable time trying out
different machine learning algorithms and weeks on model tuning.
In these cases, investing additional time or resources in labeling
additional data would be worthwhile.

The main advantage of data-centric AI is that it puts the data first.
So, if we invest resources to create a higher-quality dataset, all
modeling approaches will benefit from it downstream.

How do we decide if data-centric AI is the right fit?

Taking a data-centric approach is often a good idea in an applied
project where we want to improve the predictive performance to
solve a particular problem. It makes sense to start with a modeling
baseline and improve the dataset since it can often be more worth-
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while than trying out bigger, more expensive models¹³⁶.

If our task is to develop a new or better methodology, such as a new
neural network architecture or loss function, then a model-centric
approach might be a better choice. Using an established benchmark
dataset, and not changing it, will make it easier to compare the new
modeling approach to previous work.

In a real-world project, alternating between data-centric andmodel-
centric modes makes a lot of sense. Early on, investing more in data
quality makes sense because it will benefit all models. Then, once
a good dataset is available, it makes sense to hone in on the model
tuning part, to improve performance.

> Reader quiz:

22-A

A recent trend is the increased use of predictive analytics in health-
care. For example, suppose your healthcare provider developed
an AI system that analyzes patients’ electronic health records
and provides recommendations for lifestyle changes or preventive
measures. For this, the provider requires you to monitor and share
your health data (such as pulse and blood pressure) daily. Is this an
example of data-centric AI?

22-B

Suppose you train a convolutional neural network, specifically
a ResNet-34, to classify images in the CIFAR-10 and ImageNet
datasets. To reduce overfitting and improve classification accu-
racy, you are experimenting with different data augmentation
techniques, such as image rotation and cropping. Is this approach
data-centric?

¹³⁶In the paper “A Few More Examples May Be Worth Billions of Parameters”
(https://arxiv.org/abs/2110.04374), the researchers found that increasing the model size usually
improves performance, but so does the addition of training examples. Assuming small training
sets (<2k) for classification, extractive question answering, and multiple choice tasks, adding 100
examples can result in the same performance gain as adding billions of parameters.
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Q23. Speeding Up Inference

> Q:

What are techniques to speed up model inference through opti-
mization without changing the model architecture and without
sacrificing accuracy?

> A:

In machine learning and AI, model inference refers to making
predictions or generating outputs using a trained model.

The main general techniques for improving model performance
during inference include parallelization, vectorization, loop tiling,
operator fusion, and quantization, which are discussed in detail in
the sections below.

Other techniques to improve inference speeds include knowledge
distillation and pruning, which are discussed in Q6. However,
knowledge distillation and pruning affect the model architecture,
resulting in smaller models, which is why they are out of scope for
this question.

Parallelization

One commonway to achieve better parallelization during inference
is to run the model on a batch rather than a single sample at a
time. This is sometimes also referred to as batch inference and
assumes that were are receiving multiple inputs samples or user
inputs simultaneously or within a short time window, as illustrated
in the figure below.
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Figure 23.1. Comparison of sequential inference and batch inference.

Note that setting a reasonable timeout to run the inference is
essential even if the desired batch size is not reached. This is to
ensure that users don’t have to wait too long.

Furthermore, if we exceed a given batch size per time unit, we
can divide the input samples or batch into several smaller subsets
or “chunks.” These chunks can then be processed simultaneously
rather than sequentially if we have multiple compute cores. This is
similar to the data parallelism multi-GPU strategy described in Q7.

Vectorization

Vectorization refers to performing operations on entire data struc-
tures, such as arrays (tensors) or matrices, in a single step rather
than using iterative constructs like for-loops. Ysing vectorization,
multiple operations from the loop are performed simultaneously
using SIMD (Single Instruction, Multiple Data) instructions that are
available on most modern CPUs. This approach takes advantage of
the low-level optimizations in many computing systems (such as
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BLAS¹³⁷) and often results in signficant speed-ups.

For example, suppose we wanted to compute the dot product
between two vectors. The non-vectorized way of doing this would
be to use a for-loop, iterating over each element of the arrays one
by one. However, this can be quite slow, especially for large arrays.
With vectorization, you can perform the dot product operation on
the entire arrays at once as shown in the figure below.

Illustration of a classic for-loop versus a vectorized dot product computation
in Python.

In the context of linear algebra or deep learning frameworks
like TensorFlow or PyTorch, vectorization is typically done au-
tomatically. This is because these frameworks are designed to
work with multi-dimensional arrays (also known as tensors), and
their operations are inherently vectorized. This means that when
you perform functions using these frameworks, you automatically
leverage the power of vectorization, resulting in faster and more

¹³⁷BLAS stands for Basic Linear Algebra Subprograms (https://en.wikipedia.org/wiki/Basic_-
Linear_Algebra_Subprograms) and is a specification that prescribes a set of low-level routines
for performing common linear algebra operations such as vector addition, scalar multiplication,
dot products, matrix multiplication, and others. Many array and deep learning libraries like
NumPy and PyTorch use BLAS under the hood.

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
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efficient computations.

Loop tiling

Loop tiling (also often referred to as loop nest optimization¹³⁸) is
an advanced optimization technique to enhance data locality by
breaking down a loop’s iteration space into smaller chunks or
“tiles.” This ensures that once data is loaded into cache, all possible
computations are performed on it before it is cleared.

The concept of loop tiling for accessing elements in a 2-dimensional
array is illustrated in the figure below. In a regular for-loop, we
iterate over columns and rows one element at a time, whereas in
loop tiling, we subdivide the array into smaller tiles.

Illustration of loop tiling for a 2-dimensional array.

Note that in high-level languages, such as Python, we don’t usually
perform loop tiling because Python does not allow control over
the cache memory like lower level languages such as C or C++.
These kinds of optimizations are often handled by underlying
libraries like NumPy or PyTorch when performing operations on
large arrays.

Operator fusion

Operator fusion, sometimes called loop fusion, is an optimization
technique that combines multiple loops into a single loop. This is

¹³⁸https://en.wikipedia.org/wiki/Loop_nest_optimization

https://en.wikipedia.org/wiki/Loop_nest_optimization
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illustrated in the figure below, where two separate loops to calculate
the sum and the product of an array of numbers are fused into a
single loop.

Illustration of operator fusion, fusing two for loops (left) into one (right).

This can improve the performance of a model by reducing the over-
head of loop control, decreasingmemory access times by improving
cache performance, and possibly enabling further optimizations
through vectorization.

Doesn’t this contradict the concept of loop tiling earlier, where
we break down a for-loop into multiple loops? However, they
are complementary techniques used for different optimizations,
and they are applicable in different situations. Operator fusion is
about reducing the total number of loop iterations and improving
data locality when the entire data fits into cache. Loop tiling is
about improving cache utilization when dealing with larger multi-
dimensional arrays that do not fit into cache.

Related to operator fusion is the concept of reparameterization,
which can often also be used to simplify multiple operations into
one. Popular examples include training a network with multi-
branch architectures that are reparameterized into single-stream ar-
chitectures during inference¹³⁹. This reparameterization approach

¹³⁹In RepVGG, for example, each branch during training consists of a series of convolutions.
Once training is complete, the model is reparameterized into a single sequence of convolutions.
For more details, see Ding, Zhang, Ma, Han, Ding, and Sun (2021). RepVGG: Making VGG-style
ConvNets Great Again https://arxiv.org/abs/2101.03697.

https://arxiv.org/abs/2101.03697
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differs from traditional operator fusion as it does not merge mul-
tiple operations into a single operation. Instead, it rearranges the
operations in the network to create a more efficient architecture
for inference.

Quantization

Quantization reduces the computational and storage requirements
of machine learning models, particularly deep neural networks.
This technique involves converting the continuous, floating-point
numbers representing weights and biases in a trained neural
network to discrete, lower-precision representations such as
integers.Using less precision reduces the model size and makes it
quicker to execute, which can lead to significant improvements in
speed and hardware efficiency during inference.

In the realm of deep learning, it has become increasingly common
to quantize trained models down to 8-bit¹⁴⁰ and 4-bit¹⁴¹ integers.
This technique is especially prevalent in the deployment of large
language models, for instance.

There are twomain categories of quantization. For instance, in post-
training quantization, the model is first trained normally with full-
precisionweights, and then theweights are quantized after training.
Quantization-aware training, on the other hand, introduces the
quantization step during the training process. This allows themodel
to learn to compensate for the effects of quantization, which can
help maintain the model’s accuracy.

However, it’s important to note that quantization can occasionally
lead to a reduction in model accuracy, which is why it is not as
good a fit to answer the original question as the other categories
above.

> Reader quiz:

¹⁴⁰Dettmers, Lewis, Belkada, and Zettlemoyer (2022). LLM.int8(): 8-bit Matrix Multiplication
for Transformers at Scale, https://arxiv.org/abs/2208.07339.

¹⁴¹Frantar, Ashkboos, Hoefler, and Alistarh (2022). GPTQ: Accurate Post-Training Quantiza-
tion for Generative Pre-trained Transformers, https://arxiv.org/abs/2210.17323.

https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2210.17323
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23-A

Q7 covered several different multi-GPU training paradigms to
speed up the model training. Using multiple GPUs can, in theory,
also speed up model inference. However, in practice, there are
several reasons why this approach is often not the most efficient
or practical one. Can you think of what these reasons are?

23-B

Vectorization and loop tiling (or loop blocking) are two different
strategies for optimizing operations that involve accessing array
elements. When would you use which?



Chapter 5. Predictive
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Q25. Poisson and Ordinal Regression

> Q:

Consider Poisson regression and ordinal regression; when do we
use which over the other?

> A:

Usually, we use Poisson regression is for when the target variable
represents count data¹⁴² (positive integers). As an example of count
data, consider the number of colds contracted on an airplane or the
number of guests visiting a restaurant on a given day.

Figure 25.1. An illustration of ordinal labels

Ordinal data is a subcategory of categorical data where the cate-
gories have a natural order, for example, 3 > 2 > 1. Ordinal data is
often represented as positive integers andmay look similar to count
data. For example, consider the star rating on Amazon (1 star, 2
stars, 3 stars, etc.). However, ordinal regression does not make any
assumptions about the distance between the ordered categories. As
another example of ordinal data, consider disease severity, severe
> moderate > mild > none. While we typically map the disease
severity variable to an integer representation (4 > 3 > 2 > 1), there
is no assumption that the distance between 4 and 3 (severe and
moderate) is the same as the distance between 2 and 1 (mild and
none).

In short, we use Poisson regression for count data. We use ordinal

¹⁴²Besides the target variable representing counts, the data should also be Poisson-distributed,
which means that the mean and variance are roughly the same. (For large means, we can use a
normal distribution to approximate a Poisson distribution.)
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regression when we know that certain outcomes are “higher” or
“lower” than others, but we are not sure how much or if it even
matters.

> Reader quiz:

25-A

Suppose we want to predict the number of goals a soccer player
will score in a particular season. Is this a problem that can be solved
using ordinal regression or Poisson regression?

25-B

Suppose you asked someone to sort the last three movies they have
watched based on their order of preference. Ignoring the fact that
this dataset is a tad to small for machine learning, what approach
would be best suited for this kind of data?
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Q27. Proper Metrics

> Q:
What are the three properties of a distance function that make it a
proper metric?

List the three properties of a metric space. Then discuss whether
commonly used loss functions such as mean squared error and the
cross-entropy loss are proper metrics.

> A:

Consider two vectors or points v andw and their distance d(v,w).

Figure 27.1. Euclidean distance between two two-dimensional vectors.

The criteria of a proper metric are the following:

1. The distance between two points is always non-negative
d(v,w) ≥ 0. Also, the distance can only be zero if the two
points are identical, that is, v = w.

2. The distance is symmetric, i.e., d(v,w) = d(w,v).
3. The distance function satisifies the triangle inequality for any

three points: v,w,x, which means that

d(v,w) ≤ d(v,x) + d(x,w).
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To get a better intuition for the triangle inequality, think of the
points as vertices of a triangle. And if we consider any triangle, the
sum of two sides is always larger than the third.

Figure 27.2. Illustration of the triangle inequality.

Is the mean squared error a proper metric?

Themean squared error loss (MSE) computes the squared Euclidean
distance between a target variable y and a predicted target value ŷ :

MSE = 1
n

∑n
i=1

(
y(i) − ŷ(i)

)2
.

The index i denotes the i-th datapoint in the dataset or sample. For
simplicity, we will consider the squared error (SE) loss between two
data points (however, the insights below also hold for the MSE):

SE(y, ŷ) = (y − ŷ)
2
.

Criterion 1. The SE satisfies the first part of the first criterion: The
distance between two points is always non-negative. Since we are
raising the difference to the power of 2, it cannot be negative.

Criterion 2. How about the second criterion, the distance can only
be zero if the two points are identical? Due to the subtraction in
the SE, it is intuitive to see that it can only be 0 if the prediction
matches the target variable, y = ŷ.

We saw tha the SE satisfies the first criterion of a proper metric,
and we can again use the square to confirm that it also satisfies the
second criterion, the distance is symmetric. Due to the square, we
have (y − ŷ)

2
= (ŷ − y)

2
.
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Criterion 3.At first glance, it seems that the squared error loss also
satisfies the triangle inequality. Intuitively, you can check this by
choosing three arbitrary numbers (here: 1, 2, 3):

1. (1− 2)2 ≤ (1− 3)2 + (2− 3)2

2. (1− 3)2 ≤ (1− 2)2 + (2− 3)2,

3. (2− 3)2 ≤ (1− 2)2 + (1− 3)2.

However, there are values where this is not true, for example
d(a, c) = 4, d(a, b) = 2, and d(b, c) = 3, where 42 ⪇= 22 + 32.

¹⁴³ the triangle inequality does not hold.

In contrast, the root-mean squared error does satisfy the triangle
inequality, and the example above works out: 4 ⪇ 2 + 3.

The root-squared error
√

(y − ŷ)
2 is essentially the same as the

L2 or Euclidean distance between two points, which is known to
satisfy the triangle inequality¹⁴⁴.

Since it does not satisfy the triangle inequality via the example
above, we conclude that the (mean) squared error loss is not a
proper metric while the root-mean squared error (or Euclidean
distance) is a proper metric.

Is the cross-entropy loss a proper metric?

Cross-entropy is used to measure the distance between two prob-
ability distributions. In machine learning contexts, we use the
discrete cross-entropy loss (CE) between class label y and the
predicted probability p when we train logistic regression or neural
network classifiers on a dataset consisting of n training examples:

CE(y,p) = − 1
n

∑n
i=1 y

(i) · log
(
p(i)

)
.

¹⁴³Example taken from Chai, Draxler (2014). Root mean square error (RMSE) or
mean absolute error (MAE)? Arguments against avoiding RMSE in the literature,
https://gmd.copernicus.org/articles/7/1247/2014/. However, I could not find any three
scalar values a, b, and c to reproduce this.

¹⁴⁴For example, see references in https://en.wikipedia.org/wiki/Euclidean_distance.

https://gmd.copernicus.org/articles/7/1247/2014/
https://en.wikipedia.org/wiki/Euclidean_distance


Q27. Proper Metrics 173

Again, for simplicity, we will look at the cross-entropy function (H )
between only two data points:

H(y, p) = −y · log(p).

Criterion 1. The cross-entropy loss satisfies one part of the first cri-
terion. The distance is always non-negative because the probability
score is a number in the range [0, 1]. Hence, log(p) ranges between
−∞ and 0. The important part is that the H function (see above)
includes a negative sign. Hence, the cross-entropy ranges between
∞ and 0 and thus satisfies one aspect of criterion 1.

However, the cross entropy loss is not zero for two identical points.
For example H(0.9, 0.9) = −0.9 log(0.9) = 0.095.

Criterion 2. The second criterion is violated by the cross-entropy
loss because it’s not symmetric: −y · log(p) ̸= −p · log(y).

Let’s illustrate this with a concrete, numeric example:

−1 · log(0.5) = 0.693

−0.5 · log(1) = 0.

Criterion 3.Does the cross-entropy loss satisfy the triangle inequal-
ity,
H(r, p) ≥ H(r, q) +H(q, p)?

It does not. We can illustrate this with an example. Suppose we
choose r = 0.9, p = 0.5, q = 0.4. We have

H(0.9, 0.5) = 0.624

H(0.9, 0.4) = 0.825

H(0.4, 0.5) = 0.277.

We can see that 0.624 ≥ 0.825 + 0.277 does not hold.

We can conclude that while the cross-entropy loss is a useful
loss function for training neural networks via (stochastic) gradient
decent, it is not a proper distance metric as it does not satisfy any
of the three criteria above.
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> Reader quiz:

27-A

Suppose we consider using the mean absolute error (MAE) as an
alternative to the root mean square error (RMSE) for measuring
the performance of a machine learning model, where

MAE = 1
n

∑n
i=1

∣∣y(i) − ŷ(i)
∣∣

and

RMSE =

√
1
n

∑n
i=1

(
y(i) − ŷ(i)

)2
.

However, a colleague argues that the MAE is not a proper distance
metric in metric space because it involves an absolute value, so we
should prefer using the RMSE. Is this argument correct?

27-B

Based on your answer to 27-A, would you say that the MAE is
better than the RMSE, or vice versa?



Q28. The k in k-fold cross-validation 175

Q28. The k in k-fold cross-validation

> Q:

K-fold cross-validation is a common choice for evaluating machine
learning classifiers because it lets us use all training data to simulate
howwell a machine learning algorithmmight perform on new data.
What are the advantages and disadvantages of choosing a large k?

> A:

We can think of k-fold cross-validation as a workaround for model
evaluation when we have limited data. In machine learning model
evaluation, we care about the generalization performance of our
model – how well it performs on new data.

In k-fold cross-validation, we use the training data for model
selection and evaluation by partitioning it into k validation rounds
and folds. If we have k folds, we have k iterations, leading to k
different models. So, using k-fold cross-validation, we usually eval-
uate the performance of a particular hyperparameter configuration
by computing the average performance over the k models. This
performance reflects or approximates the performance of a model
trained on the complete training dataset after evaluation¹⁴⁵.

¹⁴⁵You can find a longer and more detailed explanation in my 2018 articleModel Evaluation,
Model Selection, and Algorithm Selection in Machine Learning, https://arxiv.org/abs/1811.12808.

https://arxiv.org/abs/1811.12808
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Figure 28.1. Illustration of k-fold cross-validation for model evaluation where
k=5. The average performance over the five validation folds and models can be
used to approximate the performance of the final model.

Training folds become too similar

If k is too large, the training sets are too similar between the
different rounds of cross-validation. The k models are thus very
similar to the model we obtain by training on the whole training
set. In this case, we can still leverage the advantage of k-fold
cross-validation: evaluating the performance for the entire training
set¹⁴⁶ via the held-out validation fold in each round. However,
a disadvantage of a large k is that analyzing how the machine
learning algorithm with the particular choice of hyperparameter
setting behaves on different training datasets is more challenging.

Increases computational budget

Besides the issue mentioned above with datasets that are too simi-
lar, running k-fold cross-validation with a large value of k is also
computationally more demanding. A larger k is more expensive
since it increases (1) the number of iterations and (2) the training
set size at each iteration. This is especially an issue if we work with
relatively large models that are expensive to train, for example,

¹⁴⁶Here, we obtain the training set by concatenating all k-1 training folds in a given iteration.
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contemporary deep neural networks. Common choices for k are
typically 5 or 10 for practical and historical reasons ¹⁴⁷.

Figure 28.2. Comparison of 5-fold and 10-fold cross-validation. In 10-fold cross-
validation, we use 9/10 (90%) of the data for training in each round, whereas in
5-fold cross-validation, we only use 4/5 (80%) of the data.

However, this does not mean large training sets are bad. Besides
reducing the variance of the performance estimates (which can
be good or bad), they can reduce the pessimistic bias of the
performance estimate (which is mostly a good thing) if we assume
that the model training can benefit from more training data ¹⁴⁸.

Reminding ourselves of the purpose of k-fold cross-validation

When deciding upon an appropriate value of k, we are often
guided by computational performance and conventions. However,
it’s worthwhile to define the purpose and context when we are
using k-fold cross-validation. For example, if we care primarily
about approximating the predictive performance of the final model,
using a large k makes sense. This way, the training folds are very
similar to the combined training dataset, yet, we still get to evaluate
the model on all data points via the validation folds.

¹⁴⁷The common recommendation goes back to Kohavi’s work in 1995, A Study
of Cross-Validation And Bootstrap For Accuracy Estimation And Model selection,
https://dl.acm.org/doi/10.5555/1643031.1643047. This study found that k=10 offers a good
bias and variance trade-off for classical machine learning algorithms (decision trees and naive
Bayes classifiers) on a handful of small datasets.

¹⁴⁸See figure 15 in Q5 for an example of a learning curve.

https://dl.acm.org/doi/10.5555/1643031.1643047
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On the other hand, if we care to evaluate how sensitive a given
hyperparameter configuration and training pipeline is to different
training datasets, then choosing a smaller number for kmakesmore
sense.

Since most practical scenarios consist of two steps: (1) tuning
hyperparameters and (2) evaluating the performance of a model,
we can also consider a two-step procedure. For instance, we can use
a smaller k during hyperparameter tuning. This will help speed up
the hyperparameter search and probe the hyperparameter configu-
rations for robustness (in addition to the average performance, we
can also consider the variance as a selection criterion). Then, after
hyperparameter tuning and selection, we can increase the value of
k to evaluate the model¹⁴⁹.

> Reader quiz:

28-A

To provide the model with as much training data, we consider
using leave-one-out cross-validation (LOOCV). LOOCV is a special
case of k-fold cross-validation where k is equal to the number
of training examples such that the validation folds only contain
a single data point. A colleague mentions that LOOCV is defect
for discontinuous loss function and performance measures such as
classification accuracy. For instance, for a validation fold consisting
of only one example, the accuracy is always either 0 (0%) or 1 (99%).
Is this really a problem?

28-B

We discussed model selection and model evaluation as two use
cases of k-fold cross-validation. Can you think of other use cases?

¹⁴⁹However, reusing the same dataset for model selection and evaluation introduces biases,
and it is usually better to use a separate test set for model evaluation. Also, nested cross-
validation may be preferred as an alternative to k-fold cross-validation.
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Q29. Training and Test Set
Discordance

> Q:
You trained a model that performs much better on the test dataset
than on the training dataset. Since a similar model configuration
worked well on a similar dataset before, you suspect something
might be unusual with the data. What are some approaches and
mitigation issues for looking into training and test set discrepan-
cies?

> A:

Before investigating the datasets in more detail, we should check
for technical issues in the data loading and evaluation code. For
instance, a simple sanity check is to temporarily replace the test set
with the training set and to reevaluate the model. In this case, we
should see identical training and test set performances (since these
datasets are now identical). If we notice a discrepancy, we likely
have a bug in the code – in my experience, such bugs are often
related to incorrect shuffling or inconsistent (often missing) data
normalization.

Since the test set performance is much better than the training set
performance, we can rule out overfitting. More likely, there are
substantial differences in the training and test data distributions.
These distributional differences may affect both the features and
the targets. Here, plotting the target or label distributions of training
and test data is a good idea. For example, a common issue is that the
test set is missing certain class labels if the dataset was not shuffled
properly before splitting it into training and test data. For small
tabular datasets, it is also feasible to compare feature distributions
in the training and test set using histograms.

Looking at feature distributions is a good approach for tabular data,
but this is trickier for image and text data. A relatively easy and
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more general approach to check for training-test set discrepancies
is adversarial validation.

Adversarial validation is a technique to identify the degree of
similarity between the training and test data. In adversarial vali-
dation, we first merge the training and test set into a single dataset.
Then we create a binary target variable that distinguishes between
training and test data. For instance, can we use a new “Is test?” label
where we assign the label 0 for training data and the label 1 for test
data. We then use k-fold cross-validation or repartition the dataset
into a training and test set and train a machine learning model as
usual. Ideally, we want the model to perform poorly, indicating
that the training and test data distribution is similar. On the other
hand, if the model performs well in predicting the Is test label, it
suggests a discrepancy between training and test data that we need
to investigate further.

Figure 29.1. Outline of the adversarial validation workflow for detecting
training and test set discrepancies.

What are some mitigation issues if we detect a training-test set
discrepancy using adversarial validation? If we work with a tabular
dataset, we can remove features one at a time to see if it can help
address the issue – this is because spurious features can sometimes
be highly correlated with the target variable. For this, we can use
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sequential feature selection algorithms¹⁵⁰ with an updated objec-
tive: for example, instead of maximizing classification accuracy,
we minimize classification accuracy. For cases where removing
features is not so trivial (for example, image and text data), we can
also investigate whether removing individual training instances
that are different from the test set can address the discrepancy issue.

Reader quiz:

29-A

What is a good performance baseline for the adversarial prediction
task?

29-B

Since training datasets are often bigger than test datasets, adver-
sarial validation often results in an imbalanced prediction problem
(we have more examples with “Is test?” equal to false. Is this an
issue, and if so, how can we mitigate that?

¹⁵⁰SequentialFeatureSelector: The popular forward and backward feature selection ap-
proaches (including floating variants), https://rasbt.github.io/mlxtend/user_guide/feature_selec-
tion/SequentialFeatureSelector/)

https://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
https://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
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Q30. Limited Labeled Data

> Q:
Suppose we plotted a learning curve¹⁵¹ and found that the machine
learning model overfits and could benefit from more training data.
Name different approaches for dealing with limited labeled data in
supervised machine learning settings.

> A:

Next to collecting more data, there are several methods more or less
related to regular supervised learning that we can use in limited-
labeled data regimes.

1) Label more data

Collecting additional training examples is often the best way to
improve the performance of a model¹⁵². However, this is often
not feasible in practice. Listed below are various alternative ap-
proaches.

2) Bootstrapping the data

Similar to the topics discussed in Q5, Reducing Overfitting with
Data, it can be helpful to “bootstrap” the data by generating
modified (augmented) or artificial (synthetic) training examples to
boost the performance of the predictive model.

Of course, improving the quality of data can also lead to improved
predictive performance of a model, as discussed in Q22, Data-
Centric AI.

3) Transfer learning

Transfer learning describes training a model on a general dataset
(e.g., ImageNet) and then finetuning the pretrained target dataset
(e.g., a specific dataset consisting of different bird species). Transfer

¹⁵¹See Q5, Figure 14 for a refresher of what a learning curve looks like.
¹⁵²A learning curve is a good diagnostic to find out whether the model can benefit frommore

data. See Figure 15 in Q5 for details.
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learning is usually done in the context of deep learning, where
model weights can be updated. This is in contrast to tree-based
methods since most decision tree algorithms are nonparametric
models that do not support iterative training or parameter up-
dates¹⁵³.

Figure 30.1. Illustration of transfer learning.

4) Self-supervised learning

Similar to transfer learning, self-supervised learning, the model
is pretrained on a different task before it is finetuned to a target
task for which only limited data exists. However, in contrast to
transfer learning, self-supervised learning usually relies on label
information that can be directly and automatically extracted from
unlabeled data. Hence, self-supervised learning is also often called
unsupervised pretraining. Common examples include “next word”
(e.g., used in GPT) or “masked word” (e.g., used in BERT) prediction
in language modeling. Or, an intuitive example from computer
vision includes inpainting: predicting the missing part of an im-
age that was randomly removed. (For more details about self-
supervised learning, also see Q2.)

¹⁵³While decision trees for incremental learning are not commonly
implemented, algorithms for training decision trees in an iterative fashion do exist
(https://en.wikipedia.org/wiki/Incremental_decision_tree).
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Figure 30.2. Illustration of inpainting for self-supervised learning.

5) Active learning

In active learning, we typically involve manual labelers or users for
feedback during the learning process. However, instead of labeling
the entire dataset upfront, active learning includes a prioritization
scheme for suggesting unlabeled data points for labeling that
maximize the machine learning model’s performance.

The name active learning refers to the fact that the model is actively
selecting data for labeling in this process. For example, the simplest
form of active learning selects data points with high prediction
uncertainty for labeling by a human annotator (also referred to as
an oracle).

Figure 30.3. Illustration active learning.

6) Few-shot learning
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In a few-shot learning scenario, we often deal with extremely small
datasets where we usually only have a handful of examples per
class. In research contexts, 1-shot (1 example per class) and 5-shot
(5 examples per class) are very common.
An extreme case of few-shot learning is zero-shot learning, where
no labels are provided. A recently popular example of zero-shot
learning is GPT-3 and related language models. Here, the user has
to provide all the necessary information via the input prompt, as
illustrated in the figure below.

Figure 30.4. Example of zero-shot classification with ChatGPT.

(For more details about self-supervised learning, also see Q3.)

7) Meta-learning

We can think of meta-learning as “learning to learn” – we develop
methods that learn howmachine learning algorithms can best learn
from data.
Over the years, the machine learning community developed several
approaches for meta-learning. To further complicate matters, meta-
learning can refer to different processes.

Meta-learning is one of themain subcategories of few-shot learning
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(mentioned above). Here, the focus is on learning a good feature
extraction module. The feature extraction module converts support
and query images into vector representations. These vector repre-
sentations are optimized for determining the predicted class of the
query example via comparisons with the training examples in the
support set. (This form of meta-learning is illustrated in Q3, Figure
13.)

Another branch of meta-learning, unrelated to the few-shot learn-
ing approach above, is focused on extracting meta-data (also called
meta-features) from datasets for supervised learning tasks. The
meta-features are descriptions of the dataset itself. For example,
these can include the number of features and statistics of the
different features (kurtosis, range, mean, etc.).

The extractedmeta-features provide information for selecting ama-
chine learning algorithm for the given dataset at hand. Using this
approach, we can narrow down the algorithm and hyperparameter
search spaces, which helps reduce overfitting when the dataset is
small.

Figure 30.5. Illustration of the meta-learning process involving the extraction
of meta-data.

8) Weakly supervised learning
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Weakly supervised learning is a procedure where we use an exter-
nal label source to generate labels for an unlabeled dataset. Often,
the labels created by a weakly supervised labeling function are
more noisy or inaccurate than those produced by a human or
domain expert; hence, the term weakly supervised.

Often, we can develop or adopt a rule-based classifier to create
the labels in weakly supervised learning – these rules usually only
cover a subset of the unlabeled dataset.

Figure 30.6. Illustration of weakly supervised learning.

Imagine the context of email spam classification as an example of
a rule-based approach for data labeling. In weak supervision, we
could design a rule-based classifier based on the keyword “SALE”
in the email subject header line to identify a subset of spam emails.
Note that while wemay use this rule to label certain emails as spam-
positive, we should not apply this rule to label emails without SALE
as non-spam but leave those either unlabeled or apply a different
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rule to these¹⁵⁴.

In short, weakly supervised learning is an approach for increasing
the number of labeled instances in the training set. Hence, other
techniques, such as semi-supervised, transfer, active, and zero-shot
learning, are fully compatible with weakly supervised learning.

9) Semi-supervised learning

Semi-supervised learning is closely related to weakly supervised
learning described above: we create labels for unlabeled instances
in the dataset. The main difference between weakly supervised and
semi-supervised learning is how we create the labels¹⁵⁵.

In weak supervision, we create labels using an external labeling
function that is often noisy, inaccurate or only covers a subset of the
data. In semi-supervision, we do not use an external label function
but leverage the structure of the data itself.

Figure 30.7. Illustration of semi-supervised learning.

In semi-supervised learning, we can, for example, label additional
data points based on the density of neighboring labeled data points,
as illustrated in the figure below.

While we can apply weak supervision to an entirely unlabeled
dataset, semi-supervised learning requires at least a portion of

¹⁵⁴There is a subcategory of weakly supervised learning referred to as PU-learning. In PU-
learnining, which is short for positive-unlabeled learning, we only label and learn from positive
examples.

¹⁵⁵Semi-supervised learning is sometimes referred to as a subcategory of weakly supervised
learning and vice versa.
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the data to be labeled. In practice, it is possible first to apply
weak supervision to label a subset of the data and then use semi-
supervised learning to label instances that were not captured by
the labeling functions.

10) Self-training

Self-training is a category that falls somewhere between semi-
supervised learning and weakly supervised learning. In self-
training, we train a model or adopt an existing model to label the
dataset. This model is also referred to as a pseudo-labeler.

Since the model used in self-training does not guarantee accu-
rate labels, self-training is related to weakly supervised learning.
Moreover, while we use or adopt a machine learning model for
this pseudo-labeling, self-training is also related to semi-supervised
learning.

An example of self-training is knowledge distillation, discussed in
Q6.

11) Multi-task learning

Multi-task learning trains neural networks on multiple, ideally
related tasks. For example, suppose we are training a classifier to
detect spam emails; here, spam classification is the main task. In
multi-task learning, we can add one or more related tasks themodel
has to solve. These additional tasks are also referred to as auxiliary
tasks. If the main task is email spam classification, an auxiliary task
could be classifying the email’s topic or language.

Typically, multi-task learning is implemented via multiple loss
functions that have to be optimized simultaneously – one loss
function for each task. The auxiliary tasks serve as an inductive
bias, guiding the model to prioritize hypotheses that can explain
multiple tasks. This approach often results in models that perform
better on unseen data¹⁵⁶.

¹⁵⁶Caruana (1997). Multi-task learning. Machine Learning. 28: 41–75.
https://doi.org/10.1023%2FA%3A1007379606734

https://doi.org/10.1023%2FA:1007379606734
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There are two subcategories of multi-task learning: (1) multi-task
learning with hard parameter sharing and (2) multi-task learning
with soft parameter sharing¹⁵⁷.

Figure 30.8. Illustration of the two main types of multi-task learning. For
simplicity, the figure depicts only two tasks, but multitask learning can be used
for any number of tasks.

The figure above illustrates the difference between hard and soft
parameter sharing. In hard parameter sharing, only the output
layers are task-specific, while all tasks share the same hidden
layers and neural network backbone architecture. In contrast, soft
parameter sharing uses separate neural networks for each task, but
regularization techniques such as distance minimization between
parameter layers are applied to encourage similarity among the
networks.

12) Multi-modal learning

While multi-task learning involves training a model with multiple
tasks and loss functions, multi-modal learning focuses on incorpo-
rating multiple types of input data.

Common examples of multi-modal learning are architectures that
take both image and text data as input¹⁵⁸. Depending on the task,

¹⁵⁷Ruder (2017). An Overview of Multi-Task Learning in Deep Neural Networks.
https://www.ruder.io/multi-task/.

¹⁵⁸Multi-modal learning is not restricted two only two modalities and can be used for any
number of inputs modalities.

https://www.ruder.io/multi-task/
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we may employ a matching loss that forces the embedding vectors
(Q1) between related images and text to be similar, as shown in the
figure below.

Figure 30.9. Illustration of multi-modal learning with a matching loss that
forces embeddings from different types of inputs to be similar.

The figure above shows image and text encoders as separate com-
ponents. The image encoder can be a convolutional backbone or
a vision transformer, and the language encoder can be a recurrent
neural network or language transformer. However, it’s common
nowadays to use a single transformer-based module that can simul-
taneously process image and text data¹⁵⁹.

Optimizing a matching loss, as shown in the previous figure, can
be useful for learning embeddings that can be applied to various
tasks, such as image classification or summarization. However, it is
also possible to directly optimize the target loss, like classification
or regression, as the figure below illustrates.

¹⁵⁹For example, VideoBERT is a model that with a joint module that processes both video and
text for action classification and video captioning. Reference: Sun, Myers, Vondrick, Murphy,
Schmid (2019). VideoBERT: A Joint Model for Video and Language Representation Learning,
https://arxiv.org/abs/1904.01766.

https://arxiv.org/abs/1904.01766
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Figure 30.10. Illustration of multi-modal learning for optimizing a supervised
learning objective.

Intuitively, models that combine data from different modalities
generally perform better than uni-modal models because they can
leverage more information. Moreover, recent research suggests that
the key to the success of multi-modal learning is the improved
quality of the latent space representation¹⁶⁰.

13) Inductive biases

Choosing models with stronger inductive biases can help to lower
data requirements by making assumptions about the structure of
the data. For example, due to their inductive biases, convolutional
networks require less data than vision transformers as discussed in
Q13.

Which techniques should we use?

Now that we covered several techniques for lowering the data
requirements, which ones should we use?

Collecting more data and techniques such as data augmentation
and feature engineering are compatible with all the methods dis-
cussed above. Also, multi-task learning andmulti-modal inputs can
be used with the other learning strategies outlined above. If the

¹⁶⁰Huang, Du, Xue, Chen, Zhao, Huang, (2021). What Makes Multi-Modal Learning Better
Than Single (Provably), https://arxiv.org/abs/2106.04538.

https://arxiv.org/abs/2106.04538
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model suffers from overfitting, techniques from Q5 and Q6 should
also be included.

How about active learning, few-shot learning, transfer learning,
self-supervised learning, semi-supervised learning, and weakly su-
pervised learning?Which technique(s) to try highly depends on the
context, and the figure below provides an overview that can be used
for guidance.
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Figure 30.11. Recommendations for choosing a supervised learning techniques.
The black boxes are not terminal nodes but arch back to Evaluate model
performance (the arrows were omitted to avoid visual clutter).

> Reader quiz:

30-A
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Given the task of constructing a machine learning model that
utilizes images to detect manufacturing defects on the outer shells
of tablet devices similar to iPads, we have access to the following
data:

• Millions of images of various computing devices, including
smartphones, tablets, and computers, which are not labeled.

• Thousands of labeled pictures of smartphones depicting vari-
ous types of damage.

• Hundreds of labeled images specifically related to the target
task of detecting manufacturing defects on tablet devices.

How could we approach this problem using self-supervised learn-
ing or transfer learning?

30-B

In active learning, selecting difficult examples for human inspec-
tion and labeling is often based on confidence scores. Neural
networks can provide such scores by using the logistic sigmoid or
softmax function in the output layer to calculate class-membership
probabilities. However, it is widely recognized that deep neural net-
works exhibit overconfidence on out-of-distribution data¹⁶¹, render-
ing their use in active learning ineffective. So, what are some other
methods to obtain confidence scores using deep neural networks
for active learning?

¹⁶¹Nguyen, Yosinski, Clune, (2015).Deep Neural Networks Are Easily Fooled: High Confidence
Predictions for Unrecognizable Image, https://arxiv.org/abs/1412.1897.

https://arxiv.org/abs/1412.1897


Afterword
I hope you found this book to be a valuable and informative
resource in the pursuit of knowledge in machine learning and AI.

Whether the book has provided helpful explanations and introduc-
tions for future studies or actionable insights that you can apply
in your work, it would make me very happy to know that it has
benefited you.

If you have found this book valuable, I would be grateful if you
could share your experience and spread the word to others who
may also find it helpful as well. (Who knows, if there is enough
interest, I may start a second volume with a selection of brand-new
Q & A’s that I stashed away.)

Thank you for reading, and I wish you the best of luck in all your
endeavors in the fascinating world of machine learning and AI.



Appendix A: Reader Quiz
Solutions

Chapter 1. Neural Networks and Deep Learning

Answer 1-A

Suppose you are training a convolutional network with five convo-
lutional layers followed by three fully connected (FC) layers similar
to AlexNet. You can think of these fully connected layers as two
hidden layers and an output layer in amultilayer perceptron. Which
of the neural network layers can be utilized to produce useful
embeddings?

The final layer before the output layer – the second fully connected
layer in this case – may be most useful for embeddings.
However, we could also use all other intermediate layers to create
embeddings. Since the later layers tend to learn higher-level fea-
tures, these later layers are typically more semantically meaningful
and better suited for different types of tasks, including related
classification tasks.

Answer 1-B

Name at least one type of input representation that is not an
embedding.

• One-hot encoding (covered in Q1)
• Histogram (for example, an image histogram¹⁶² created from
an image)

• A bag-of-word¹⁶³ representation of an input sentence

¹⁶²https://en.wikipedia.org/wiki/Image_histogram
¹⁶³https://en.wikipedia.org/wiki/Bag-of-words_model

https://en.wikipedia.org/wiki/Image_histogram
https://en.wikipedia.org/wiki/Bag-of-words_model
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Answer 2-A

How could we apply self-supervised learning to video data?

• Predict the next frame in the video (analogous to next-word
prediction in large language models such as GPT)

• Predict missing or masked frames (analogous to large lan-
guage models such as BERT)

• Inpainting: Predict masked or missing parts (pixel areas) in a
video

• Coloring: convert the video to grayscale and then train the
model to predict the color

Answer 2-B

Can self-supervised learning be used for tabular data represented
as rows and columns? If so, how can we approach this?

We can remove (mask) feature values and train a model to predict
these (analogous to classic data imputation). An example of a
method that uses this approach is TabNet¹⁶⁴.

It is also possible to use contrastive learning by generating aug-
mented versions of the training examples in the original raw feature
space or the embedding space. For example, the SAINT¹⁶⁵ method
employs this approach.

Answer 3-A

How could we partition the MNIST dataset, consisting of 50,000
handwritten digits from 10 classes (0-9), for a one-shot classification
context?

Similar to a supervised learning approach, we first divide the
dataset into a training set and a test set. We then further divide

¹⁶⁴Arik andPfister (2019). TabNet: Attentive Interpretable Tabular Learning,
https://arxiv.org/abs/1908.07442.

¹⁶⁵Somepalli, Goldblum, Schwarzschild, Bruss, and Goldstein (2021). SAINT: Improved
Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training,
https://arxiv.org/abs/2106.01342.

https://arxiv.org/abs/1908.07442
https://arxiv.org/abs/2106.01342


199

the training and test sets into subsets, one image from each class.
To design the training task, we only consider a subset of classes, for
example, the classes (digits) 0, 1, 2, 5, 6, 8, 9. Then, for testing, we
use the remaining classes 3, 4, 7. For each classification task, the
neural network receives only one example per image.

Answer 3-B

Can you think of some real-world applications or use cases for few-
shot learning?

• Consider a medical imaging scenario for a rare disease. A few-
shot system may only have one or a handful of cases for this
disease and is asked to identify it based on this limited number
of examples.

• Another example of a few-shot system is a recommender that
only has a limited number of items a user rated. Based on this
limited number of examples, the model has to predict future
products the user may like.

• Imagine a warehouse robot that has to learn to recognize new
objects as a company increases its inventory. The robot has
to learn to recognize and adapt to these new objects based on
only a few examples.

Answer 4-A

Suppose you are trying out the lottery ticket hypothesis approach
and find that the performance of the subnetworks is not very good
(compared to the original network). What are some next steps to
try?

• Increase the size of the initial neural network. It might be
possible that the chosen network is too small to contain a
suitable subnetwork.

• Try a different random initialization (e.g., by changing the
random seed). The lottery hypothesis assumes that some
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randomly initialized networks contain highly-accurate sub-
networks that can be obtained by pruning, but not all net-
works may have such sub-networks.

Answer 4-B

How is the lottery ticket hypothesis related to training a neural
network with ReLU activation functions (a ReLU activation function
is defined as max(0, x)?

When training a neural network with ReLU activation functions,
specific activations will be set to zero if the function input is less
than zero. This will cause certain nodes in the hidden layers to not
contribute to the computations – this is sometimes referred to as
“dead neurons.”While ReLU activations do not directly cause sparse
weights, the zero activation outputs sometimes lead to zero weights
that are not recoverable.
This observation supports the lottery hypothesis, which suggests
that well-trained networks may contain sub-networks with sparse,
trainable weights that can be pruned without loss of accuracy.

Answer 5-A

Suppose we train an XGBoost model to classify images based on
manually extracted features we obtained from our collaborators.
The dataset of labeled training examples is relatively small, but
fortunately, your collaborators also have a labeled training set from
an older project on a related domain.
We are considering implementing a transfer learning approach to
train the XGBoost model. Is this a feasible option, and if yes, how
could we do it? (Assume we are only allowed to use XGBoost, no
other classification algorithm or model.)

XGBoost is a tree-based gradient-boosting implementation that
does not support transfer learning (as of this writing). In contrast
to artificial neural networks, XGBoost is a non-parametric model
that we cannot readily update as new data arrives; hence, regular
transfer learning would not work here.
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However, it is possible to use the results of an XGBoost model
trained on one task as features for another XGBoost model. So,
consider an overlapping set of features for both datasets. For
example, we could design a classification task in a self-supervised
fashion for the combined dataset. Then, we train a second XGBoost
model on the target dataset that takes the original feature set as
input, along with the output of the first XGBoost model.

Answer 5-B

Suppose we are working on an image classification problem (for this
example, consider MNIST-based handwritten digit recognition) and
added a decent amount of data augmentation to reduce overfitting
in an image classification context. Unfortunately, we observe that
the classification accuracy became much worse than before. What
are some potential reasons?

When applying data augmentations, we usually have to increase
the training time as well; it is possible that we needed to train the
model longer.

Or, wemay have applied toomuch data augmentation. Augmenting
the data too much can result in excessive variations that do not
reflect the natural variations in the data, leading to overfitting or
poor generalization to new data. In the case of MNIST, this can also
include translating or cropping the image too strongly such that the
digits become unrecognizable due to missing parts.

Another possibility is that we applied naive, domain-inconsistent
augmentation. For example, suppose we are mirroring or flipping
images vertically or horizontally. For MNIST does not make sense
for handwritten digits since this would create numbers that don’t
exist in the real world.

Answer 6-A

Suppose we are using early-stopping as a mechanism to reduce
overfitting. In particular, we are using amodern variant that creates
checkpoints of the best model (for instance, the model with highest
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validation accuracy) during training so that we can load it after the
training has completed – this is a mechanism that can be enabled
in most modern deep learning frameworks.

Now, a colleague recommends tuning the number of training epochs
instead. What are some of the advantages and disadvantages of
each approach?

Tuning the number of training epochs is a simpler and more
universal approach – especially older frameworks don’t support
model checkpointing, so changing the number of training epochs
may be a easier solution, which is particularly attractive for small
datasets and models where each hyperparameter configuration is
cheap to run and evaluate. This approach also eliminates the need
for monitoring the performance on a validation set during training,
making it a straightforward and easy-to-use method.

The early-stopping and checkpointing approach is particularly
attractive if we work with models that are expensive to train. It’s
generally also a more flexible and robust method for preventing
overfitting. However, a downside of this approach can be that in
noisy training regimes, we may end up prioritizing an early epoch
even though the validation set accuracy is not a good estimate of
the generalization accuracy.

Answer 6-B

Ensemble models have been established as a reliable and successful
method for decreasing overfitting and enhancing the reliability
of predictive modeling efforts. However, there is always a trade-
off. What are some of the drawbacks associated with ensemble
techniques?

One obvious downside of ensemble methods is the increased com-
putational cost. For example, if we build a neural network ensemble
of 5 neural networks, this ensemble can be five times as expensive
as every single model.

While we often consider the inferencing costs mentioned above, the
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increased storage cost is another significant limitation. Nowadays,
most computer vision and language models have millions or even
billions of parameters that have to be stored in a distributed setting.
Model ensembling complicates this further.

Reduced interpretability is yet another cost that we incur when us-
ing model ensembles. Understanding and analyzing the predictions
of a single model can already be challenging. Depending on the
ensembling approach, we add yet another layer of complexity that
reduces interpretability.

Answer 7-A

Suppose we are implementing our own version of tensor parallelism,
which works great when we train our model with an SGD (standard
stochastic gradient descent) optimizer.
However, when we try the Adam optimizer, we encounter an out-of-
memory device. What could be a potential problem explaining this
issue?

The Adam optimizer implements an adaptive method that comes
with internal weight parameters. Adam has 2 optimizer parameters
(mean and variance) per model parameter. So, instead of splitting
the weight tensors of the model, we also have to split the optimizer
states to work aroundmemory limitations. (Note that this is already
implemented in most DeepSpeed parallelization techniques.)

Answer 7-B

Suppose we don’t have access to a GPU and are considering using
data parallelism on the CPU. Is this a good idea?

Data parallelism could conceptually work on a CPU, but the bene-
fits would be limited. For example, instead of duplicating the model
in CPUmemory to train multiple models on different batches of the
dataset in parallel, it could make more sense to increase the data
throughput.

Answer 8-A
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Above, we discussed that self-attention is easily parallelizable. And
yet, transformers are considered computationally expensive due to
self-attention. How can we explain this contradiction?

Self-attention has quadratic compute and memory complexity due
to the n-to-n comparisons (where n is the input sequence length),
which makes transformers computationally costly compared to
other neural network architectures. Moreover, decoder-style trans-
formers such as GPT generate outputs one token at a time, which
cannot be parallelized during inference – although generating each
token is still highly parallelizable as discussed above.

Answer 8-B

Since self-attention scores represent importance weights for the
various input elements, can we consider self-attention a form of
feature selection?

Yes, we can think of self-attention as a form of feature selection,
although there are differences between this and other types of
feature selection. It is important to differentiate between hard and
soft attention in this context. Soft attention computes importance
weights for all inputs, whereas hard attention selects a subset of the
inputs. Hard attention is more like masking, where certain inputs
are set to 0 or 1, while soft attention allows for a continuous range
of importance scores.
However, the main difference between attention and feature selec-
tion is that feature selection is typically a fixed operation, while
attention weights are computed dynamically based on the input.
With feature selection algorithms, the selected features are always
the same, whereas, with attention, the weights can change based
on the input.

Answer 9-A

How would you evaluate the quality of the images generated by an
generative AI model?

Automating this evaluation is inherently difficult, and the gold
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standard is currently human evaluation and judgment. However,
a few metrics exist as quantitative measures.

To evaluate the diversity of the generated images, one can compare
the distribution between the conditional class distribution and the
marginal class distribution of generated samples, for example, using
a Kullback-Leibler divergence, which is a measure that is also used
in the VAE to make the latent space vectors similar to a standard
Gaussian. The higher the KL, the more diverse the generated
images.

One can also compare the statistics of generated images to real
images in the feature space of a pre-trained model. A low similarity
indicates that the two distributions are close to each other, which is
generally a sign of better image quality. This approach is also often
known as Fréchet Inception Distance.

Answer 9-B

Given the description of consistency models above, how would you
use them to generate new images?

Like the generators of GANs, VAEs, or diffusion models, a consis-
tencymodel takes a noise tensor sampled from a simple distribution
(such as a standard Gaussian) as input and generates a new image.

Answer 10-A

Suppose we trained a neural network with top-k or nucleus sam-
pling where k and p are hyperparameter choices. Can we make the
model behave deterministically during inference without changing
the code?

Yes, we can make top-k sampling deterministic by setting k=1
so that the model will always select the word with the highest
probability score as the next word when generating the output text.

We can also make nucleus sampling deterministic, for instance, by
setting the probability mass threshold p to 1. By setting p to 1,
you include the entire probability distribution of the tokens in the
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nucleus. This would make the model always choose the token with
the highest probability.

Answer 10-B

Can you think of scenarios where deterministic dropout behavior
during inference is desired?

In some cases, the random behavior of dropout during inference
can be desirable for building model ensembles.

Answer 11-A

Suppose we want to optimize the neural network using plain
stochastic gradient descent (SGD) or an Adam optimizer. What are
the respective numbers of parameters that need to be stored for SGD
and Adam?

SGD only has the learning rate as a hyperparameter, but it does
not have any parameters. So, it does not add any additional param-
eters to be stored besides the gradients calculated for each weight
parameter during backpropagation.

The Adam optimizer is more complex and requires more storage.
Specifically, Adam keeps an exponentially decaying average of past
gradients (first moment) and an exponentially decaying average of
past squared gradients (second raw moment) for each parameter.
Therefore, for each parameter in the network, Adam needs to store
two additional values. So, if we have n parameters in the network,
Adam requires storage for 2n additional parameters.

If the network has n trainable parameters, Adam adds 2n parame-
ters to be tracked. For example, in the case of AlexNet, which con-
sists of 26,926 as calculated earlier, Adam requires 53,852 additional
values in total (two times 26,926).

Answer 11-B

Suppose we are adding three batch normalization (BatchNorm)
layers: one after the first convolutional layer, one after the second
convolutional layer, and another one after the first fully connected
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layer – we typically do not want to add BatchNorm layers to
the output layer. How many additional parameters do these three
BatchNorm layers add to the model?

Each BatchNorm layer learns two sets of parameters during train-
ing: a set of scaling coefficients (gamma) and a set of shifting
coefficients (beta). These are learned so that the model can undo
the normalization when it is found to be detrimental to learning.

Each of these sets of parameters (gamma and beta) has the same size
as the number of channels (or neurons) in the layer they normalize
because these parameters are learned separately for each channel
(or neuron).

So, for the first BatchNorm layer following the first convolutional
layer with 5 output channels, this adds 10 additional parameters.
For the second BatchNorm layer, following the second convo-
lutional layer with 12 output channels, this adds 24 additional
parameters.

The first fully connected layer has 128 output channels, which
means 256 additional BatchNorm parameters. The second fully
connected layer is not accompanied by a BatchNorm layer since
it’s the output layer.

So, BatchNorm adds 10 + 24 + 256 = 290 additional parameters to
the network.

Answer 12-A

How would increasing the stride affect the equivalence discussed
above?

Just increasing the stride from one to two (or larger values) should
not affect the equivalence since the kernel size is equal to the input
size in both scenarios, so there is no sliding-window mechanism at
play here.

Answer 12-B
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Does padding affect the equivalence between fully connected layers
and convolutional layers?

Increasing the padding to values larger than zero will affect the
results. Due to the padded inputs, we will have the sliding-window
convolutional operation where the equivalence with fully con-
nected layers no longer holds. In other words, the padding would
alter the input’s spatial dimensions, which would no longer match
the kernel size, and result in more than one output value per feature
map.

Answer 13-A

Consider the patchification of the input images illustrated in the
figure above. The size of the resulting patches controls a computa-
tional and predictive performance tradeoff. The optimal patch size
depends on the specific application and desired trade-off between
computational cost and model performance. Do smaller patches
typically result in higher or lower computational costs?

Using smaller patches increases the number of patches for a given
input image, leading to a higher number of tokens being fed into the
transformer. This results in increased computational complexity,
as the self-attention mechanism in transformers has quadratic
complexity with respect to the number of input tokens. Conse-
quently, smaller input patches make the model computationally
more expensive.

Answer 13-B

Following up on the question above, do smaller patches typically
lead to a higher or lower prediction accuracy?

Using larger input patches may result in the loss of finer details and
local structures in the input image, which can potentially negatively
affect the model’s predictive performance. Interested readers might
enjoy the FlexiViT ¹⁶⁶ paper that studies the computational and

¹⁶⁶Beyer, Izmailov, Kolesnikov, Caron, Kornblith, Zhai, Minderer, Tschannen, Alabdul-
mohsin, Pavetic. FlexiViT: One Model for All Patch Sizes, https://arxiv.org/abs/2212.08013.

https://arxiv.org/abs/2212.08013
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predictive performance trade-offs as a consequence of the patch
size and number.

Chapter 3. Natural Language Processing

Answer 15-A

Consider the case of homophones – words that sound the same
but have different meanings. For example, the words there and
their sound the same but have different meanings. Are homophones
another example of when the distributional hypothesis does not
hold?

Homophones are words that are spelled differently and sound the
same but have different meanings. Due to the different meanings,
we expect two homophones to appear in other contexts. For exam-
ple, “I can see you over there” and “Their paper is very nice.”

Since the distributional hypothesis says that words with similar
meanings should appear in similar contexts, homophones do not
contradict the distribution

Answer 15-B

Can you think of other domains where a concept similar to the
distributional hypothesis applies?

The underlying idea of the distributional hypothesis can be applied
to other domains, for example, computer vision. In the case of
images, objects that appear in similar visual contexts are likely to
be semantically related. Or, on a lower level, neighboring pixels are
likely semantically related as they are part of the same object – this
idea is used in masked autoencoding for self-supervised learning
on image data¹⁶⁷.

Another example is protein modeling. For example, researchers
showed¹⁶⁸ that language transformers that are trained on protein

¹⁶⁷We covered masked autoencoders in Q2.
¹⁶⁸Rives, Meier, Sercu, Fergus (2020). Biological structure and function

emerge from scaling unsupervised learning to 250 million protein sequences,
https://www.biorxiv.org/content/10.1101/622803v1.full.

https://www.biorxiv.org/content/10.1101/622803v1.full
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sequences (a string representation where each letter represents
an amino acid, for example, “MNGTEGPNFYVPFSNKTGVV…”)
learn embeddings where similar amino acids cluster together. For
example, the hydrophobic amino acids such as V, I, L, andM appear
in one cluster, and aromatic amino acids such as F, W, and Y appear
in another cluster. In this context, we can think of an amino acid
as an equivalent to a word in a sentence.

Answer 16-A

Could the use of text data augmentation help with privacy con-
cerns?

Assuming that the existing data does not suffer from privacy con-
cerns, data augmentation helps generate variations of the existing
data without the need to collect additional data, which can help
with privacy concerns.

However, if the original data includes personally identifiable in-
formation, even augmented or synthetic data could potentially be
linked back to individuals, especially if the augmentation process
doesn’t sufficiently obscure or alter the original data.

Answer 16-B

What are some instances where data augmentation may not be
beneficial for a specific task?

Data augmentation might be less beneficial if the original dataset is
already large and diverse enough that the model isn’t overfitting or
underperforming due to a lack of data. This is, for example, often
the case when pretraining LLMs.

Also, the performance of highly domain-specific models (for exam-
ple, in the medical, law, and financial domains) could be adversely
affected by techniques such as synonym replacement and back
translation due to replacing domain-specific terms with a certain
meaning.

In general, in contexts of tasks highly sensitive to wording choices,
data augmentation must be applied with particular care.
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Answer 17-A

Considering that self-attention compares each sequence element
with itself, what is the time and memory complexity of self-
attention?

The self-attention mechanism has quadratic time and memory
complexity.

More precisely, we can express the time and memory complexity of
self-attention as O(N2 × d) where N is the length of the sequence,
and $d is the dimensionality of the embedding of each element in
the sequence.

This is because self-attention involves computing a similarity score
between each pair of elements in the sequence, resulting in anN ×
N similarity matrix. This matrix is then used to compute weighted
averages of the sequence elements, resulting in an N × d output
representation.

This can make self-attention computationally expensive and
memory-intensive, particularly for long sequences or large values
of d.

Answer 17-B

We discussed self-attention in the context of natural language
processing. Could this mechanism be useful for computer vision
applications as well?

Yes. Interestingly, self-attention may partly be inspired by the spa-
tial attention mechanisms¹⁶⁹ used in convolutional neural networks
for image processing. Spatial attention is a mechanism that allows
a neural network to focus on specific regions of an image that
are relevant to a given task. It works by selectively weighting the
importance of different spatial locations in the image, which allows
the network to “pay more attention” to certain areas and ignore
others.

¹⁶⁹Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, Bengio (2015). Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention, https://arxiv.org/abs/1502.03044.

https://arxiv.org/abs/1502.03044
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Answer 18-A

As discussed earlier, BERT-style encoder models are pretrained
using masked language modeling and next-sentence prediction
pretraining objectives. How could we adopt such a pretrained model
for a classification task, for example, predicting whether a text has
a positive or negative sentiment?

If we want to adapt a pretrained BERT model for classification, you
need to add an output layer for classification – this is often referred
to as classification head.

As discussed, BERT uses a [CLS] token for the next-sentence
prediction task during pretraining. Instead of training it for next-
sentence prediction, we can finetune a new output layer for our
target prediction task, for example, sentiment classification.

The embedded [CLS] output vector serves as a summary of the
entire input sequence. We can think of it as a feature vector and
train a small neural network on top of it, typially a fully connected
layer followed by a softmax activation function to predict the class
probabilities. The fully connected layer’s output size should match
the number of classes in our classification task. Then, we can train
it using backpropagation as usual. Different finetuning strategies
(updating all layers versus only th

Answer 18-B

Can we finetune or a decoder-only model like GPT for classifica-
tion?

Yes, we can finetune a decoder-only model like GPT for classifica-
tion tasks, although it might not be as effective as using encoder-
based models like BERT.

In contrast to BERT, we do not need to use a special [CLS],
but the fundamental concept is similar to finetuning an encoder-
style model for classification. We add a classification head (a fully
connected layer and a softmax activation) and train it on the
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embedding (the final hidden state) of the first output token. (This
is analogous to using the [CLS] token embedding.)

Answer 19-A

When does it make more sense to use in-context learning over
finetuning and vice versa?

In-context learning is useful if we don’t have access to the model.
Besides, in-context learning is useful if we want to adapt the model
to similar tasks that the model wasn’t trained to do.

In contrast, finetuning is useful for adapting the model to a new
target domain. For example, suppose the model was pretrained
on a general corpus, and we want to apply it to financial data or
documents. Here, it would make sense to finetune the model on
data from that target domain.

Note that in-context learning can be usedwith a finetunedmodel as
well. For example, when a pretrained language model is finetuned
on a specific task or domain, in-context learning then leverages the
model’s ability to generate responses based on the context provided
within the input that may bemore accurate given the target domain
compared to in-context learning without finetuning.

Answer 19-B

In prefix tuning, adapters, and LoRA, how can we ensure that the
model preserves (and not forgets) the original knowledge?

This is done implicitly. In prefix tuning, adapters, and LoRA, the
original knowledge of the pretrained language model is preserved
by keeping the core model parameters frozen while introducing
additional learnable parameters that adapt to the new task.

Answer 20-A

Looking at step 5 in the previous figure illustrating the BERTScore
computation, we see that the cosine similarity between the two
embeddings of “cat” are not 1.0, where 1.0 indicates a maximum
cosine similarity. Why is that?
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If we used an embedding technique that processes each word
independently, for example, Word2Vec, we would expect the cosine
similarity between the “cat” embeddings to be 1.0. However, we
are using a transformer model to produce the embeddings in this
case. Transformers use self-attention mechanisms¹⁷⁰ that consider
the whole context (i.e., input text) when producing the embedding
vectors. Since the word “cat” is used in two different sentences,
the BERT model produces a different embedding for these two
instances of “cat.”

Answer 20-B

In practice, we might find that the BERTScore is not symmetric.
This means that switching the candidate and reference sentence
could result in different BERTScores for specific texts. How could
we address this?

Switching the candidate and reference texts has the same effect as
calculating the maximum cosine similarity scores across columns
(as shown in step 5 of the previous figure) versus rows, which can
result in different BERTScores for specific texts. That’s why the
BERTScore is often computed as an F1 score similar to ROUGE in
practice. I.e., we calculate the BERTScore one way (“recall”) and
the other (“precision”) and then compute the harmonic mean (F1
score).

Chapter 4. Production, Real-World, And Deployment Scenarios

Answer 21-A

Suppose you train a classifier for stock trading recommendation
using a random forest model, including the moving average of the
stock price as a feature. Now, since new stock market data arrives
daily, you are thinking about how to update the classifier daily to
keep it up to date. Should you take a stateless training or stateless
retraining approach to update the classifier?

Random forests, typically based on CART decision trees, cannot

¹⁷⁰See Q17 for more information about self-attention.
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be readily updated as new data arrives. Hence, a stateless training
approach would be the only viable option. On the other hand,
suppose we switched to using neural network models such as
recurrent neural networks. In that case, a stateful approach could
makemore sense since the neural network could be readily updated
on new data. (However, in the beginning, comparing stateful and
stateless systems side by side is always a good idea before deciding
which method works best.)

Answer 21-B

Suppose you deployed a large language model (transformer) such
as ChatGPT that can answer user queries. The dialogue interface
includes a “thumbs up” and “thumbs down” button so that users can
give direct feedback based on the generated queries.While collecting
the user feedback, you are not updating the model immediately as
new feedback arrives. However, you are planning to release a new
or updated model at least once per month. Is this a good candidate
for stateless or stateful retraining?

A stateful retraining approachmakes themost sense here. Instead of
training a new model on a combination of existing data, including
user feedback, it makes more sense to update the model based on
user feedback. Large language models are usually pretrained in a
self-supervised fashion and then finetuned via supervised learning.
Training large language models is very expensive, so updating the
model via stateful retraining makes sense rather than training it
from scratch again.

Answer 22-A

A recent trend is the increased use of predictive analytics in health-
care. For example, suppose your healthcare provider developed an
AI system that analyzes patients’ electronic health records and pro-
vides recommendations for lifestyle changes or preventive measures.
For this, the provider requires you to monitor and share your health
data (such as pulse and blood pressure) daily. Is this an example of
data-centric AI?
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From the information provided, it is unclear whether this is a data-
centric approach. The AI system relies heavily on data inputs to
make predictions and recommendations, but that’s true for any
machine learning approach for AI. To determine whether this
approach is an example of data-centric AI, we need to know how
the AI system was developed. If the AI system was developed by
using a fixedmodel and refining the training data, this could qualify
as a data-centric approach; otherwise, it’s just regular machine
learning and predictive modeling.

Answer 22-B

Suppose you train a convolutional neural network, specifically
a ResNet-34, to classify images in the CIFAR-10 and ImageNet
datasets. To reduce overfitting and improve classification accu-
racy, you are experimenting with different data augmentation
techniques, such as image rotation and cropping. Is this approach
data-centric?

If we are keeping the model fixed – that means reusing the same
ResNet-34 architecture – and only changing the data augmentation
approach to investigate its influence on the model performance,
we could consider this a data-centric approach. However, data
augmentation is also routinely done as part of anymodernmachine
learning pipeline, and the use of data augmentation alone does
not imply whether it’s a data-centric approach. A data-centric
approach, under the modern definition, suggests that we actively
study the difference between various dataset-enhancing techniques
while keeping the remaining modeling and training pipeline fixed.

Answer 23-A

Q7 covered several different multi-GPU training paradigms to speed
up the model training. Using multiple GPUs can, in theory, also
speed up model inference. However, in practice, there are several
reasons why this approach is often not the most efficient or practical
one. Can you think of what these reasons are?

For instance, one downside of using multi-GPU strategies for infer-
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ence is the additional communication overhead between the GPUs.
However, for inference tasks, which are relatively small compared
to training since they don’t require gradient computations and
updates, the time it takes to communicate between GPUs could
outweigh the time saved by parallelization.

Also, managing multiple GPUs means higher equipment and en-
ergy costs. In practice, optimizing models for single-GPU or CPU
performance is usually more worthwhile. If multiple GPUs are
available, processing multiple samples in parallel on separate GPUs
often makes more sense than processing the same sample via
multiple GPUs.

Answer 23-B

Vectorization and loop tiling (or loop blocking) are two different
strategies for optimizing operations that involve accessing array
elements. When would you use which?

Loop tiling is often combined with vectorization. For example, after
applying loop tiling, each tile can be processed using vectorized
operations. This allows us to use SIMD instructions on data that
is already in the cache, increasing the effectiveness of both tech-
niques.

Chapter 5. Predictive Performance and Model Evaluation

Answer 25-A

Suppose we want to predict the number of goals a soccer player will
score in a particular season. Is this a problem that can be solved
using ordinal regression or Poisson regression?

If we try to predict the number of goals a player scores (based on
data from past seasons, for example), it’s a Poisson regression prob-
lem. On the other hand, we could also apply an ordinal regression
model to the different players to rank them by the number of goals
they will score. However, since the goal difference is constant and
can be quantified (for example, the difference between 3 and 4 goals
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is the same as 15 and 16 goals), it’s not an ideal problem for an
ordinal regression model.

Answer 25-B

Suppose you asked someone to sort the last three movies they have
watched based on their order of preference. Ignoring the fact that
this dataset is a tad to small for machine learning, what approach
would be best suited for this kind of data?

This is a ranking issue that resembles an ordinal regression issue,
but there are some differences. Since we are only aware of the
relative order of the movies, a pairwise ranking algorithm might
be a more appropriate solution than an ordinal regression model.

However, if the person is asked to assign numerical labels to each
movie on a scale, such as 1 to 5 (similar to the star rating system
on Amazon), then it would be possible to train and use an ordinal
regression model on this type of data.

Answer 27-A

Suppose we consider using the mean absolute error (MAE) as an
alternative to the root mean square error (RMSE) for measuring the
performance of a machine learning model, where

MAE = 1
n

∑n
i=1

∣∣y(i) − ŷ(i)
∣∣

and

RMSE =

√
1
n

∑n
i=1

(
y(i) − ŷ(i)

)2
.

However, a colleague argues that the MAE is not a proper distance
metric in metric space because it involves an absolute value, so we
should prefer using the RMSE. Is this argument correct?

Since the MAE is based on an absolute value around the distance, it
naturally satisfies the first criterion: it can’t be negative. Also, the
MAE is the same if we swap the values y and ŷ; hence, it satisfies
the second criterion. How about the triangle inequality? Similar to
how the RMSE is the same as the Euclidean distance or L2 norm, the
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MAE is similar to the L1 norm between two vectors. Since all vector
norms satisfy the triangle inequality¹⁷¹, our colleague is incorrect.

Furthermore, even if the MAE were not a proper metric, it can
still be a useful model evaluation metric; for example, consider the
classification accuracy.

Answer 27-B

Based on your answer to 27-A, would you say that the MAE is better
than the RMSE, or vice versa?

The MAE assigns equal weight to all errors, while the RMSE places
more emphasis on errors with larger absolute values due to the
quadratic exponent. As a result, the RMSE is always larger than the
MAE. However, no metric is universally better than the other, and
they have both been used to assess model performance in countless
studies over the years¹⁷².

Answer 28-A

To provide the model with as much training data, we consider
using leave-one-out cross-validation (LOOCV). LOOCV is a special
case of k-fold cross-validation where k is equal to the number
of training examples such that the validation folds only contain
a single data point. A colleague mentions that LOOCV is defect
for discontinuous loss function and performance measures such as
classification accuracy. For instance, for a validation fold consisting
of only one example, the accuracy is always either 0 (0%) or 1 (99%).
Is this really a problem?

This is not a problem if we only care about the average performance.
For example, If we have a dataset of 100 training examples, and
the model predicts 70 out of the 100 validation folds correctly,
we estimate the model accuracy as 70%. However, suppose we

¹⁷¹Horn and Johnson: Matrix Analysis, Cambridge University Press, 1990.
¹⁷²If you are interested in additional comparisons betweenMAE and RMSE, you may like the

following article byWillmott andMatsuura:Advantages of the Mean Absolute Error (MAE) over
the Root Mean Square Error (RMSE) in assessing average model performance, https://www.int-
res.com/abstracts/cr/v30/n1/p79-82.

https://www.int-res.com/abstracts/cr/v30/n1/p79-82
https://www.int-res.com/abstracts/cr/v30/n1/p79-82
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are interested in analyzing the variance of the estimates from
the different folds. In that case, LOOCV is not very useful since
each fold only consists of a single training example, so we cannot
compute the variance of each fold and compare it to other folds.

Answer 28-B

We discussed model selection and model evaluation as two use cases
of k-fold cross-validation. Can you think of other use cases?

Another use case of k-fold cross-validation is model ensembling.
For example, in 5-fold cross-validation, we train five different
models since we have five slightly different training sets. However,
instead of training a final model on the whole training set, we can
combine the five models into a model ensemble (this is particularly
popular on Kaggle). See Figure 18 in Q6 for an illustration of this
process.

Answer 29-A

What is a good performance baseline for the adversarial prediction
task?

As a performance baseline, it’s a good idea to implement a zero-
rule classifier, i.e., a majority class classifier. Since we typically have
more training than test data, we can compute the performance of a
model that always predicts “Is test? False”, which should result in
70% accuracy if we have partitioned the original dataset into 70%
training data and 30% test data. If the of the model trained on the
adversarial validation dataset exceeds this baseline noticeably (say
80%), then we may have a serious discrepancy issue to investigate
further.

Answer 29-B

Since training datasets are often bigger than test datasets, adversar-
ial validation often results in an imbalanced prediction problem (we
have more examples with “ Is test?” equal to false. Is this an issue,
and if so, how can we mitigate that?
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Overall, this is not a big issue since we are mainly interesting
if there is a strong deviation from a random baseline. I.e., if we
compare the accuracy of the adversarial validation model against
the baseline (rather than 50% accuracy) then there should be no
issue. However, it may be even better to consider evaluationmetrics
like Matthew’s correlation coefficient or ROC or precision-recall
area-under-the-curve values instead of classification accuracy.

Answer 30-A

Given the task of constructing a machine learning model that
utilizes images to detect manufacturing defects on the outer shells
of tablet devices similar to iPads, we have access to the following
data:

• Millions of images of various computing devices, including
smartphones, tablets, and computers, which are not labeled.

• Thousands of labeled pictures of smartphones depicting vari-
ous types of damage.

• Hundreds of labeled images specifically related to the target
task of detecting manufacturing defects on tablet devices.

How could we approach this problem using self-supervised learning
or transfer learning?

• While we often like to think of self-supervised learning and
transfer learning as separate approaches, they don’t have to
be exclusive. For instance, we could pretrain a model on a
labeled or larger unlabeled image data using self-supervised
learning (here: the million of unlabeled images corresponding
to the various computing devices).

• Instead of starting with random weights, we can use the
neural network weights from self-supervised learning to fol-
low up with transfer learning via the thousands of labeled
smartphone pictures. Since smartphones are related to tablets,
transfer learning is a very promising approach here.
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• Finally, after the self-supervised pretraining and transfer
learning, we can finetune the model on the hundreds of
labeled images of the target task, the tablets.

Answer 30-B

In active learning, selecting difficult examples for human inspection
and labeling is often based on confidence scores. Neural networks
can provide such scores by using the logistic sigmoid or softmax
function in the output layer to calculate class-membership probabil-
ities. However, it is widely recognized that deep neural networks ex-
hibit overconfidence on out-of-distribution data¹⁷³, rendering their
use in active learning ineffective. So, what are some other methods
to obtain confidence scores using deep neural networks for active
learning?

Besides mitigation techniques for the overconfident scores from a
neural network’s output layer, we can also consider various ways
of ensembling to obtain confidence scores. For instance, instead
of disabling dropout during inference, we can leverage dropout
to obtain multiple different predictions for a single example to
compute the predicted label uncertainty.

Another option is to construct model ensembles from different seg-
ments of the training set using k-fold cross-validation, as discussed
in the ensemble section of Q6.

¹⁷³Nguyen, Yosinski, Clune, (2015).Deep Neural Networks Are Easily Fooled: High Confidence
Predictions for Unrecognizable Image, https://arxiv.org/abs/1412.1897.

https://arxiv.org/abs/1412.1897


Appendix B: List of
Questions

Below is a list of all questions for readers who prefer a quick, spoiler-
free overview before reading the book.

Chapter 1. Neural Networks and Deep Learning

• Q1. In deep learning, we often use the terms embedding
vectors, representations, and latent space. What do these
concepts have in common, and how do they differ?

• Q2. What is self-supervised learning, when is it useful, and
what are the main categories of approaches?

• Q3. What is few-shot learning? And how does it differ from
the conventional training procedure for supervised learning?

• Q4. What is the lottery ticket hypothesis, and if it holds true,
how can it be useful in practice?

• Q5. Suppose we train a neural network classifier in a super-
vised fashion and notice that it suffers from overfitting. What
are some of the common ways to reduce overfitting in neural
networks through the use of altered or additional data?

• Q6. Suppose we train a neural network classifier in a super-
vised fashion and we already employ various dataset-related
techniques to mitigate overfitting. How can we change the
model or make modifications to the training loop to further
reduce the effect of overfitting?

• Q7. What are the different multi-GPU training paradigms,
and what are their respective advantages and disadvantages?

• Q8. What are the main factors that have contributed to the
success of transformers?
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• Q9. What are the popular categories of deep generative
models in deep learning (also called generative AI ), and what
are their respective downsides?

• Q10. What are the common sources of randomness
when training deep neural networks that can cause non-
reproducible behavior during training and inference?

Chapter 2. Computer Vision

• Q11. How do we compute the number of parameters in
a convolutional neural network? Suppose we are working
with a convolutional network with 2 convolutional layers
with kernel size 5. The first convolutional layer has 3 input
channels and 5 output channels. The second convolutional
layer has 5 input and 12 output channels. The stride of these
convolutional layers is 1.
Furthermore, the network has 2 pooling layers with kernel
size 3 and stride 2. Lastly, the network has 2 fully connected
hidden layers with 192 and 128 hidden units each, where the
output layer is a classification layer for 10 classes. The archi-
tecture of this network is illustrated in the figure below.What
is the number of trainable parameters in this convolutional
network?

• **Q12. **Under which circumstances are fully connected and
convolutional layers equivalent?

• Q13. Why do vision transformers (ViTs) generally require
larger training sets than convolutional neural networks
(CNNs)?

Chapter 3. Natural Language Processing

• Q13. What are the main factors that have contributed to the
success of transformers?

• Q15.What is the distributional hypothesis in NLP? Where is
it used, and how far does it hold true?
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• Q16. What are common data augmentation techniques for
text data?

• Q17. The scaled-dot product attention mechanism proposed
by the original transformer architecture in the influential
Attention Is All You Need paper is often referred to as self-
attention. Why is it called “self”-attention, and how is it
different from regular attention?

• Q18.What are the differences between encoder- and decoder-
based language transformers?

• Q19. What are the different ways we can use and finetune
pretrained large language models (LLMs)?

• Q20.What are the standard metrics for evaluating the quality
of text generated by large language models?

Chapter 4. Production, Real-World, And Deployment Scenarios

• Q21. What is the difference between stateless and stateful
training workflows in the context of production and deploy-
ment systems?

• Q22. What is data-centric AI, how does it compare to the
conventional modeling paradigm, and how do we decide it’s
the right fit for a project?

• Q23. What are techniques to speed up model inference
through optimization without changing the model
architecture and without sacrificing accuracy?

Chapter 5. Predictive Performance and Model Evaluation

• Q25. Consider Poisson regression and ordinal regression;
when do we use which over the other?

• Q27.What are the three properties of a distance function that
make it a proper metric?
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• Q28. K-fold cross-validation is a common choice for evalu-
ating machine learning classifiers because it lets us use all
training data to simulate how well a machine learning algo-
rithm might perform on new data. What are the advantages
and disadvantages of choosing a large k?

• Q29. You trained a model that performs much better on the
test dataset than on the training dataset. Since a similar model
configuration worked well on a similar dataset before, you
suspect something might be unusual with the data. What
are some approaches and mitigation issues for looking into
training and test set discrepancies?

• Q30. Suppose we plotted a learning curve and found that the
machine learning model overfits and could benefit frommore
training data. Name different approaches for dealing with
limited labeled data in supervised machine learning settings.
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