

 i

 i

Hands-On
Artificial

Intelligence for
Android

Understand Machine Learning and
Unleash the Power of TensorFlow in

Android Applications with Google ML Kit

Vasco Correia Veloso

www.bpbonline.com

ii

FIRST EDITION 2022
Copyright © BPB Publications, India
ISBN: 978-93-55510-242

All Rights Reserved. No part of this publication may be reproduced, distributed or
transmitted in any form or by any means or stored in a database or retrieval system,
without the prior written permission of the publisher with the exception to the program
listings which may be entered, stored and executed in a computer system, but they
can not be reproduced by the means of publication, photocopy, recording, or by any
electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and
publisher’s knowledge. The author has made every effort to ensure the accuracy of these
publications, but publisher cannot be held responsible for any loss or damage arising
from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their
respective owners but BPB Publications cannot guarantee the accuracy of this
information.

Distributors:
BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991

MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297

DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400

BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj,
New Delhi-110002 and Printed by him at Repro India Ltd, Mumbai

www.bpbonline.com

 iii

Dedicated to

My wife Ana, for all her encouragement and support

iv

About the Author

Vasco Correia Veloso has been developing software for over 20 years. He has
developed software in many programming languages and systems: from the
assembly, through C, C++, and Prolog to Java, Scala, and Kotlin. On big and small
computers, using everything from floppy disks to SSDs, on-premises, and cloud,
he’s been there, done that, and used it. His academic background includes courses
in applied mathematics and a degree in computer and software engineering.

He loves to learn how things work and share his learnings with others. He
disassembled his grandfather’s watch as a kid and grew up to (dis)assemble not
only software but also hardware in the form of embedded systems.

The field of artificial intelligence has spiked his curiosity since HAL 9000 appeared
on the silver screen.

Vasco brings teams together to produce well-crafted software. He enjoys sharing
knowledge by teaching and learning and continues to design software and
connected devices.

In his spare time, he takes up photography and has a keen interest in aviation. He
has flown ultralight aircraft and believes that the focus necessary to fly and reach
the destination while enjoying the scenery along the way also applies to software
engineering.

 v

About the Reviewers

v	Riccardo Mascarenhas is a passionate and ambitious senior full-stack
developer with 10+ years of experience. He likes to work on both the backend
and frontend. He has worked extensively with Java, Kotlin, and almost all features
of the Spring framework on the backend. His frontend skills are considered
good while familiar with its technologies, like Angular and AngularJS, NgRx,
Karma, Jest, Codecept.js, Cypress.io, and Jasmine. But his real knowledge lies
on the backend side, where he likes many modern architectural approaches,
like Domain-Driven Design, CQRS, and microservices architecture.

 He is a perfectionist who genuinely cares about proper testing and code quality
- TDD is the way to go! Riccardo has experience with testing tools like Junit,
Mockito, REST Assured, and Cucumber. He's worked with multiple databases
in his careers, such as MongoDB, PostgreSQL, and Oracle. Besides that, he also
is experienced with JDBC, and he knows his way in tools like Maven, Git, and
Docker.

v	Sergei Miliaev graduated from Voronezh State University’s Physics
Department in 2010 and defended his PhD thesis at the university in 2013.
Sergei started working on computer vision and machine learning research in
2009 with the tasks of semantic image segmentation and natural scene text
understanding with Moscow Lomonosov State University and Microsoft
Research Cambridge. He joined VisionLabs as the Principal Researcher in
2013, and he leads the research teams that work on face recognition and vehicle
recognition algorithms there. The face recognition solutions developed by
VisionLabs using these algorithms have been demonstrating top performances
on the ongoing Face Recognition Vendor Test organized by the National
Institute of Standards and Technology. He has authored 20 papers, and his
research interests are computer vision, machine learning, and deep learning.

vi

Acknowledgement

It is said that it takes a village to raise a child. Likewise, it takes more than one
person to write a book. I want to thank my friend and former colleague Manuel
Lopes for being a guinea pig to ensure that the first examples were easy to follow.
Riccardo Mascarenhas is a great sparring partner and was kind enough to review
my usage of Kotlin in this text. I appreciate Sergei Miliaev’s honest feedback on
all things related to machine learning and artificial intelligence. In the last few
years, Ramon Wieleman was—knowingly or otherwise—a significant influence in
getting me out of my comfort zone. My alma mater ISEL in Lisbon, Portugal, will
always have a special place in my heart for all the experiences I had during my
time there.

 vii

Preface

Artificial intelligence and its machine learning discipline are two big topics
nowadays. As technology progresses, previously inaccessible algorithms are no
longer limited to research laboratories and can be used in everyday electronics. We
show how developers can build full-fledged machine learning applications that
run on their Android phones and recognize, apply effects on, and classify images,
including people’s faces.

We begin with a quick introduction to Android application development basics with
examples in the Java language, using the Android Studio integrated development
environment. The next step is to build an Android application in Kotlin because
this is becoming the de facto language for Android application development. All
further examples in the book are written in Kotlin.

We will provide a brief description of artificial intelligence and some fundaments
of machine learning. We then go over the history of artificial intelligence and
describe some of the most common machine learning algorithms, with examples.

We then show the development of Android applications, which can use machine
learning to recognize images, identify faces, apply effects to photographs, and
more. These applications are based on TensorFlow models—some of them are
built and trained by the reader—and are converted to TensorFlow Lite for mobile
applications.

Chapter 1 shows how to get started with Android Studio and build a simple
Android application using Java. We also walk through the structure of an Android
application project in Android Studio. Finally, we explore how the different classes
and resources in the application work together, including the Android permissions
model, and discuss how the traditional Model-View-Controller pattern can be
applied to the development of Android applications.

Chapter 2 intends to show how to receive and process user events in an Android
application. Android applications may serve a single purpose, but they usually
do not have a single screen. Multiple screens can be implemented with multiple
activities. We explain how different activities are built and how their communication
mechanism works via intents.

Chapter 3 shows how to build the application that serves as the basis for examples
in the following chapters. We also build a data persistence layer to be used by an

viii

application and show how it is used to create an application database, supported
by the SQLite engine and the Room ORM.

Chapter 4 looks at the term artificial intelligence and how it became an extensive
study discipline from a historical and philosophical perspective. Starting from this
high-level perspective, we isolate the field of machine learning from this extensive
corpus of research to understand the challenges researchers aim to overcome.

Chapter 5 helps readers understand TensorFlow’s fundamental concepts. It is one
of the most popular frameworks that can be used to implement and train machine
learning models. The chapter also covers TensorFlow’s installation.

Chapter 6 is about training classification models for image recognition. We use two
well-known datasets to create TensorFlow classification models for this purpose:
one geared toward handwritten digits and another toward clothing.

Chapter 7 covers one of our image application building blocks—capturing live
images using the device’s camera. We show how the CameraX library can be used
to streamline the entire process.

Chapter 8 shows how to use the machine learning models created in Chapter 6 in an
Android application using TensorFlow Lite. An application is also created to analyze
the images captured by the camera, building upon the techniques shown in chapter 7.

Chapter 9 covers the usage of the Google ML Kit library in an Android application
to process the images captured by the phone camera and detect faces that may be
present in the images.

Chapter 10 explores using a TensorFlow Lite model in an Android application to
recognize the most prominent face in images previously captured and analyzed.

Chapter 11 shows how we can build an Android application for face recognition
capable of extending its set of recognizable faces at runtime. It integrates the
concept of persistently adding a face to the application, making it recognizable
between application runs.

Chapter 12 demonstrates the possible usages of Generative Adversarial Networks
(GANs). We show how GANs can be used to automatically generate realistic
images. GANs can also process authentic images, which are presented as a GAN
that applies a specific transformation effect to photographs.

Chapter 13 briefly touches the world of natural language processing, a task for
which recurrent neural networks are particularly well suited. We showcase a model
that attempts to describe the scenes depicted in images in plain English. A sample
application is built to use this model to provide descriptions of photographs.

 ix

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/p47kbua

The code bundle for the book is also hosted on GitHub at https://github.com/
bpbpublications/Hands-On-Artificial-Intelligence-for-Android. In case there's
an update to the code, it will be updated on the existing GitHub repository.
We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

x

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

 xi

Table of Contents

 1. Building an Application with Android Studio and Java..................................... 1
 Introduction .. 1
 Structure .. 1
 Objectives .. 2
 Setting up Android Studio ... 2
 Creating a simple Android application .. 4
 Android project structure ... 6
 Running the application ... 9
 Using an Android emulator... 9
 Using a real device ... 12
 The Android application lifecycle ... 16
 Android application resources .. 20
	 Resource	qualifiers ... 21
 Identifying resources in application code .. 22
 Localization .. 23
 The Android application manifest .. 26
 Application permissions .. 29
 Describing the features required by the application .. 31
 Applying the Model-View-Controller pattern .. 32
 An alternative to MVC is the Model-View-Presenter 33
 Data binding allows a new pattern – Model-View-ViewModel 34
 Which pattern should be used? .. 35
 Conclusion .. 35

 2. Event Handling and Intents in Android ... 37
 Introduction .. 37
 Structure .. 37
 Objectives .. 38
 User events ... 38

xii

 Modifying the layout of an activity .. 38
 Using the Android Studio layout editor .. 39
 The ConstraintLayout .. 41
 Placing a new component on the layout .. 42
 Using string resources in components .. 44
	 Changing	the	component	identifier ... 45
 The XML version of the button ... 45
 Registering to receive events .. 46
 Reacting to the event ... 47
 Adding an activity to our application .. 48
 Intents in Android applications ... 53
 Creating an intent.. 54
 Showing our about activity with an intent ... 54
 Returning a value from the target activity .. 56
 Using Intents across Android applications .. 63
	 Intent	filters	in	the	application	manifest ... 64
 Starting another application with an implicit intent 65
 Conclusion .. 68

 3. Building Our Base Application with Kotlin and SQLite 69
 Introduction .. 69
 Structure .. 69
 Objectives .. 70
 A first glance at the Kotlin language ... 70
 Fundamentals of the Kotlin language .. 72
 Packages ... 72
 Code organization .. 73
 Visibility ... 73
 Data types .. 73
 Variables and properties ... 74
 Type inference .. 76
 Functions ... 77

 xiii

 Lambda expressions ... 79
 Nullability .. 82
 Classes and objects ... 84
 Using a SQLite database in our application .. 87
 Implementing SQLite in Android ... 87
 Testing SQLite-based databases ... 92
 Consequences of using SQLite directly ... 93
 Understanding object-relational mapping ... 93
 Working with a database with Room ORM ... 94
 Getting started ... 94
	 Defining	the	data	entities ... 96
 Creating Data Access Objects (DAO) ... 97
 Creating the database ... 101
 Using database views ... 103
 Object references are not supported ... 104
 Converting object references to database types .. 104
 Using database migrations .. 106
 Running queries outside of the main thread .. 108
 Testing Room-based databases ... 109
 Conclusion .. 112

 4. An Overview of Artificial Intelligence and Machine Learning 113
 Introduction .. 113
 Structure .. 113
 Objectives .. 113
 The past and the future of artificial intelligence ... 114
	 Depictions	of	artificial	intelligence	in	literature .. 114
	 Artificial	intelligence	is	not	a	new	idea ... 116
 Thinking about intelligent systems ... 119
 Defining machine learning ... 120
 Linear regression algorithm ... 123
 Clustering methods .. 124

xiv

 Neural networks .. 125
 Deep neural networks .. 126
 Opportunities to improve machine learning ... 127
 Improving performance and accuracy ... 127
 Working toward explainability .. 129
 Avoiding bias ... 129
 Thinking about security ... 130
 Conclusion .. 131

 5. Introduction to TensorFlow ... 133
 Introduction .. 133
 Structure .. 133
 Objectives .. 134
 Installing TensorFlow .. 134
 Preparing Python... 135
 Creating virtual environments for TensorFlow ... 137
 Installing TensorFlow in the virtual environments 138
 Verifying the TensorFlow version installed ... 139
 Tensors ... 140
 Creating tensors with the constant() function .. 142
 Creating tensors with generated data .. 143
 Operations with tensors ... 145
 Variables .. 151
 Graphs ... 152
 Simple model training... 154
 Loading and preparing the dataset .. 156
 Training a linear regression model with one feature...................................... 158
 Training a linear regression model with all features...................................... 163
 Using a deep neural network for regression .. 164
 Conclusion .. 168

 xv

 6. Training a Model for Image Recognition with TensorFlow 169
 Introduction .. 169
 Structure .. 169
 Objectives .. 169
 Recognizing handwritten digits .. 170
 Preparing and loading the MNIST dataset ... 170
 Building the model ... 173
 Saving the model .. 176
 Testing the saved model with an image loaded from the disk 176
 Recognizing simple clothing items ... 179
 Preparing and loading the Fashion-MNIST dataset 179
 Building the model ... 180
 Finding a better model ... 182
 Evaluating both models with a realistic image ... 186
 Conclusion .. 188

 7. Android Camera Image Capture with CameraX ... 189
 Introduction .. 189
 Structure .. 189
 Objectives .. 190
 Ways of working with cameras on Android .. 190
 Intents .. 190
 Specialized camera APIs .. 190
 Getting started with the CameraX API ... 192
 Requesting permissions to use the device’s cameras 194
 Setting up the camera preview .. 196
 Taking a picture .. 201
	 Configuring	CameraX	for	image	capture .. 201
	 Saving	the	captured	image	as	a	JPEG	file .. 202
 Adding a trigger button ... 203
 Displaying the captured image .. 205
 Conclusion .. 207

xvi

 8. Using the Image Recognition Model in an Android Application 209
 Introduction .. 209
 Structure .. 209
 Objectives .. 210
 Fundamentals of TensorFlow Lite ... 210
 Converting TensorFlow models into TensorFlow Lite 211
 Training an existing TensorFlow Lite model ... 212
 Setting up image analysis in the Android application 214
 Cropping captured images ... 217
 Converting captured YUV images to bitmaps .. 219
 Using TensorFlow Lite in the application .. 222
 Creating modules for TensorFlow Lite APIs ... 222
 Working with a converted model .. 224
 Working with a trained existing TensorFlow Lite model 231
 Generating code for working with a model with metadata 235
 Running TensorFlow Lite on dedicated hardware 236
 Graphical Processing Units ... 236
 More than just GPUs .. 238
 Faster performance is not guaranteed .. 238
 Conclusion .. 239

 9. Detecting Faces with the Google ML Kit .. 241
 Structure .. 241
 Objectives .. 242
 Understanding the Google ML Kit .. 242
 Looking at face detection with the Google ML Kit 243
 Including Google ML Kit in our Android application 244
 Enabling view binding ... 244
	 Configuring	the	project’s	dependencies ... 245
 Adding metadata for the Google Play Services .. 246
 Preparing the user interface ... 246
 Configuring the CameraX use cases ... 248

 xvii

 Creating the image analysis class .. 248
 Scanning images for faces in real-time ... 252
	 Configuring	the	minimum	image	resolution ... 252
 Creating the face detector object .. 252
 Analyzing an image ... 255
 Using the face detection results ... 256
 Conclusion .. 260

 10. Verifying Faces in Android with TensorFlow Lite.. 261
 Introduction .. 261
 Structure .. 261
 Objectives .. 262
 Understanding face recognition .. 262
 Understanding normalization ... 264
 Normalizing a ratio scale ... 264
 Using the Euclidean norm for normalization .. 266
 Looking at the FaceNet model ... 267
	 Converting	Hiroki	Taniai’s	implementation	of	FaceNet	to	TensorFlow	Lite . 269
 Working with the MobileFaceNets model ... 273
 Using the Euclidean distance to identify a face .. 274
 Incorporating the MobileFaceNets model in an Android application 275
 Adjusting the user interface .. 275
 Extracting embeddings from face images .. 277
	 Writing	a	new	image	analyzer	for	face	verification 279
 Displaying the distance between two face embeddings vectors 283
 Obtaining face embeddings for testing .. 284
 Conclusion .. 286

 11. Registering Faces in the Application ... 287
 Introduction .. 287
 Structure .. 287
 Objectives .. 288

xviii

 Building the identity store .. 288
 Implementing a view model to interface with the identity store 291
 Processing multiple faces from camera images ... 294
 Designing the user interface... 298
 Adding new faces to the application .. 298
 Recognizing faces .. 305
 Listing the face detection results .. 306
 Putting everything together .. 308
 Running the Android face recognition application 312
 Conclusion .. 313

 12. Image Processing with Generative Adversarial Networks 315
 Introduction .. 315
 Structure .. 315
 Objectives .. 315
 Understanding Generative Adversarial Networks....................................... 316
 Training a simple GAN ... 318
 Applying a special effect to photographs .. 326
 Transforming images into anime-style pictures .. 326
 Converting the GAN to the TensorFlow Lite format 327
 Trying the GAN in the computer .. 328
 Taking anime-styled pictures in Android .. 330
 Repurposing the image capture application .. 330
 Capturing an image into memory ... 331
 Transforming the captured image .. 332
	 Saving	the	modified	image	in	the	device’s	gallery ... 337
 Putting it all together .. 338
 Conclusion .. 342

 13. Describing Images with NLP .. 343
 Introduction .. 343
 Structure .. 343
 Objectives .. 344

 xix

 Understanding recurrent neural networks .. 344
 Evolving into long short-term memory networks .. 345
 Performing automatic image captioning ... 346
 Understanding the Show and Tell model ... 347
 Converting the Show and Tell model to TensorFlow Lite 349
 Implementing automatic image captioning in Android 353
 Repurposing the image capture application .. 353
 Incorporating the TensorFlow Lite model .. 353
 Implementing beam search .. 356
	 Saving	metadata	in	JPEG	image	files .. 361
 Putting it all together .. 364
 Conclusion .. 365

 Index ...367-374

xx

Building an Application with Android Studio and Java 1

Chapter 1
Building an

Application with
Android Studio and

Java
Introduction
This chapter shows how to get started with Android Studio and build a
straightforward Android application using Java. We explain how the application’s
different classes and resources work together, including the Android permissions
model. Finally, we discuss how the traditional Model-View-Controller pattern can
be applied to the development of Android applications.

Structure
We cover the following topics in this chapter:

•	 Setting up Android Studio
•	 Creating a simple Android application
•	 Android project structure
•	 Running the application
•	 The Android application lifecycle
•	 Android application resources
•	 The Android application manifest
•	 Applying the Model-View-Controller pattern

2 Hands-On Artificial Intelligence for Android

Objectives
By the end of the chapter, you have a sample application running both in an emulator
and a real device. You are also able to reason about the basics of Android application
development.

Setting up Android Studio
Welcome to this exciting journey, where we put in practice the most recent
developments in artificial intelligence under the form of Android applications.

All journeys must have a starting point. We begin ours by familiarizing ourselves
with the preferred development environment for building Android applications—
the Android Studio IDE.

Delving into this IDE’s details is not the purpose of this book, but we wish that
those who are not so familiar with Android Studio can also follow the applications
we build throughout this book. We provide as many references as possible so that
readers of all backgrounds feel supported.

The very first step is to download the installation package. Open the browser and
navigate to the Android Studio website at https://developer.android.com/studio.

The correct installation package should have been automatically detected for you.
Download and use it as appropriate for your operating system. At the time of
writing, packages were available for Windows, Linux, mac, and Chrome OS. All
screenshots and examples in this book have been made on a Linux computer, so
you may notice some small differences if you are using Windows or macOS. Do not
worry; these differences in Android Studio are purely cosmetic, and functionality is
identical in all platforms.

If you have questions specific to your environment, the Android Studio user guide
contains an installation section with details for each of the aforementioned platforms.
It is available at https://developer.android.com/studio/install.

Once presented with the configuration wizard, you may proceed with the standard
installation. This installs the IDE itself, an emulator, the latest version of the Android
SDK, and local copies of additional libraries to be used in the development of
Android applications.

Building an Application with Android Studio and Java 3

Figure 1.1 illustrates an example of what options are selected with this kind of
installation:

Figure 1.1: Standard Android Studio installation options

We are presented with a window identical to the one in figure 1.2 once the installation
is complete and Android Studio is ready:

Figure 1.2: Android Studio welcome window

4 Hands-On Artificial Intelligence for Android

Creating a simple Android application
Android Studio can create a simple Android application for us. This feature comes
in handy because it frees us from memorizing all the folders and configuration files
that must be in place before a proper Android application can be built.

Click on the “Create New Project” button in the welcome window to get started. You
are then presented with a wizard that aims to gather a set of minimal information,
which is dependent on the purpose and name of the application being created.

The first screen serves two purposes. On the one hand, it allows us to choose the
target platform for our application. On the other hand, it offers us a set of predefined
activities to get started. We want to build an Android phone application. We discuss
activities later in this book, so let’s choose the Empty Activity template for Phone
and Tablet applications (see figure 1.3):

Figure 1.3: New Project Wizard: The choice of an Activity

Then, we need to decide on a package name and choose where our application
is located so that Android Studio knows where and how to generate the project
structure, configuration files, and minimal code.

Building an Application with Android Studio and Java 5

Our first application aims to demonstrate the basics of Android applications, so let’s
call it a Demonstration Application.

You can then choose to customize the place where the project is generated instead of
the default location.

As the title of this chapter implies, we are starting our work with Java. Let’s select
the Java language in the Language drop box.

Take a look at figure 1.4 for an example of a possible project configuration:

Figure 1.4: New Project Wizard: Application details

Android Studio creates our template application after we click on the Finish button,
loads the project to its main window, and proceeds to create an index of the code. The
primary IDE window appears on screen with the project contents once everything is
ready. Its most exciting part (for now) should look like figure 1.5.

Our application is now ready to run. We do not need to make any changes. Android
Studio has generated an application on the lines of Hello World for us.

Figure 1.5: Android Studio window after creating the project

6 Hands-On Artificial Intelligence for Android

Android project structure
As with all software development projects, Android applications have a predefined
project structure that must be respected. Part of this structure is imposed by the
build tool in use, which, in the case of the project we generated, is Gradle. However,
the set of platform-specific files defines the most important part. Some of these files
are mandatory for all Android applications, while others become mandatory as we
add features to the application.

Let’s take a quick look at the project structure automatically generated for us by
Android Studio. Figure 1.6 provides an expanded view of the latter:

Figure 1.6: Expanded view of the demonstration application Android project structure

The Android project tree view allows us to focus on the essential project items. From
top to bottom, we can find the following types of files:

•	 The application manifest - This file contains critical information about the
application and is used by various build and deployment tools, the Android
operating system, and Google Play Store.

•	 The application package name - This is usually identical to the primary
Java package name, which is the best practice. In our example, that would
be com.example.demonstrationapplication. The application package
name is important because it is used to uniquely identify the application
in several places throughout the Android ecosystem, namely, the operating
system, and Google Play Store.

Building an Application with Android Studio and Java 7

•	 The different application components - These would be the application
activities and the services, content providers, and broadcast providers it
exposes. We define these later on.

•	 The application permissions - You must have installed Android applications
that explicitly ask for your permission to access specific resources, such as
the device location, file storage or SD card, or microphone. These requests
were made by the operating system based on the requirements described in
the permissions section of the application manifest.

•	 The application requirements, in terms of software and hardware. Constraints
like the minimum Android API version that the application needs to run, or
the need for a camera, are described in this section. Google Play Store uses it
to determine which devices can run the application.

•	 The application Java code - It goes without saying that an application without
code is useless. This section has the entire application code, including the
different testing scenarios.

•	 The application resources - An Android application can use several kinds of
resources. The Android Studio template generated quite a few of them:

o Drawables: As the name implies, these resource files describe
items that can be drawn on the screen. There are different kinds
of drawables, depending on their purpose. Not all drawables are
bitmaps (or image files); some are collections of vectors in an XML
format.

o Layouts: These are the layouts of the application’s screens. In other
words, they define the structure of the different sections of the User
Interface (UI). These files describe the different UI elements’ locations
and their types, names, attributes, and placement constraints.

o Something called mipmaps: These are a specific type of drawables.
This directory must only contain the application launcher icons,
and they are separated from the other drawables because we can
provide versions of the images with different resolutions, selected
automatically for the best experience in different devices.

o Value files: The best practice concerning the use of any kind of values
in software development is to avoid specifying them directly in the
code (that practice is known as hardcoding). Instead, we should
strive to store them as constant values. The advantage is that they
get descriptive names this way and can be easily changed in a single
location. The Android build platform allows us to use value files to
store several kinds of values, like colors, numbers, identifiers, Boolean

8 Hands-On Artificial Intelligence for Android

values, and strings, among others. These values can be accessed from
our code or other resources, depending on their type.

The project structure shown in figure 1.6 is known as the Android project tree. It does
not directly represent the actual project structure as it is stored in the file system. We
need to use the Project tree to see the real file system tree.

Here, you will notice that a dropdown menu is present right above the project
structure. The Android option is selected in this figure, so it is showing us the
Android project tree. A tree similar to the illustration in figure 1.7 is displayed if you
select the Project option instead.

Figure 1.7: The Project tree showing the project structure as on disk

Building an Application with Android Studio and Java 9

It contains much more detail as far as the actual file system structure is concerned.
It also allows access to files that are not shown in the Android view, like the raw
Gradle configuration files.

Unfortunately, it also adds quite a bit of visual clutter, so the Android project tree
is preferable for most work. Also, most of the Gradle configuration settings are
accessible from the IDE, so you may not need to edit the files directly.

Of course, the choice of the project tree to use depends on technical factors as well as
personal preferences. Some developers prefer to edit as much as possible inside files
or customize their build environment. There are also other project trees available in
Android Studio. Just choose the one you need from the Project dropdown box. You
are free to explore and choose the way of working you prefer.

Tip: The launcher is the name given to the device home screen. The home
screen is managed by a special type of application called a launcher because its
main objective is to allow the user to start (launch) the different applications
installed in the device. A launcher can use whichever method it wants to display
the applications to the user, so the Android community has adopted the term
“launcher” to refer both to this application and to its user interface.

Running the application
Applications, like greyhounds, are meant to run. We don’t build them so they can lie
around doing nothing. So the question begs to be asked: how do we run an Android
application?

Well, an application that targets a specific kind of device (a phone in our case) requires
such a device to run. Generally speaking, we cannot run Android applications
directly in our computer’s primary operating system.

So, there are two choices to run an Android application: it runs on one physical
device like a phone or it runs on something called an emulator.

Using an Android emulator
We know that there are several kinds of Android phones in the market. They run
different versions of Android, and they offer different combinations of hardware
features. For example:

•	 Different phones have different screen sizes and resolutions.

•	 Some older phones may not have a GPS or a front camera.

•	 Most tablets run primarily in landscape (horizontal) orientation, whereas
most phones are used in portrait (vertical) orientation.

10 Hands-On Artificial Intelligence for Android

While it is true that the majority of modern devices have similar hardware, there are
many older devices in use which do not.

If our application can use a feature but it is not critical, we want to know if it can
handle the feature’s absence gracefully.

One way of handling this is to buy as many devices as possible and test the application
in each one of them.

This approach becomes expensive and difficult to manage quickly. Some companies
offer an application testing service on a fleet of physical devices, and this helps, but
we don’t want to ship our application to a third-party service every time we change
a few lines of code, do we? These services can be useful at the end of the application
development cycle, not at the beginning.

Emulators come to the rescue. An emulator pretends to be a physical device, but
it really is virtual. Just like we can run different operating systems inside a virtual
machine, we can run Android inside a virtual machine.

These virtual machines are different because they allow us to turn off and on many
hardware options, and they can also emulate some hardware. For example, we can
send GPS coordinates to our application without an actual GPS device.

These virtual machines allow us to run the Android operating system as if it were
running on a physical device, so they are called Android Virtual Devices (AVD)
in the tooling. Most developers also use the term “Android emulator” or only
“emulator” when the context is clear.

How does Android Studio work with the emulator? The emulator is part of the
Android SDK Tools, a different package. Fortunately, this package is installed by
default when we install Android Studio. The IDE also has special bindings that
allow us to see the available emulators from its user interface.

You find two dropdown boxes roughly around the middle of the Android Studio
window, in the toolbar. This is illustrated in figure 1.8:

Figure 1.8: Target Android device drop box

Building an Application with Android Studio and Java 11

The first dropdown box is called the Run Configurations dropdown and should
have been populated automatically with an entry that refers to our application.

The second is the one we are interested in—the AVD dropdown. It should also have
been populated already, but this time it contains the name of the emulator created
during the Android Studio installation.

The emulator name looks strange, but it’s logical. Let’s dissect it. It comprises three
sections separated by an underscore (_). In the case of the name shown in figure 1.8:

•	 The AVD skin, which mimics the looks of a physical device, is Pixel_3a. So,
it resembles a Google Pixel 3 phone.

•	 The Android API level describes the software capabilities and directly relates
to the Android operating system version. The emulator runs API level 30 in
this case, which corresponds to Android 11.

•	 The image architecture identifies the underlying processor architecture. Our
AVD has an x86 image architecture, which means it is meant to run on Intel-
compatible systems.

We can change this predefined AVD name. We wanted to discuss the default name
because it introduces some essential concepts relevant to the following section,
where we create a different AVD.

At this point, we have already selected the application and the AVD. Now, we need
to press the green “play” button to the right of the AVD dropdown box. This is the
Run button that builds the application, automatically starts the emulator, and loads
the application into it.

This process takes some time. The actual time depends on your computer and the
complexity of the application being prepared.

The progress of all tasks is displayed at the bottom of the Android Studio window.
You can find the name of the current task and a progress bar there.

12 Hands-On Artificial Intelligence for Android

Once the process is complete, you see a window similar to the one shown in figure
1.9 on your screen.

Figure 1.9: Emulator running the generated application

It presents a particular border designed to mimic the looks of an actual phone.
You find the usual Android screen inside it. Our application will be running in the
foreground.

Our application screen may not appear right away, especially if this is the first time
the emulator is launched. We see this delay because the application must first be
transferred to the emulator, which can take a few moments. Also, the emulator is not
a real device, so it is, potentially, a lot slower.

The bottom line is to use as many emulators as necessary to test your applications
in different Android versions and different screen sizes. Once you’ve confirmed that
your application is behaving as you want, take the next step and test it on one or
more real devices.

Using a real device
Granted, emulators are fun, but nothing beats the warm feeling one gets when their
application runs on a real device for the first time!

Configuring the device
The first thing you need to do is prepare your device for connecting to the computer
you’re using to develop the application:

Building an Application with Android Studio and Java 13

1. Enable the Developer Options in the device. Open the Settings app, go to
the About Phone screen and tap on the Build Number seven times in a row
(the About Phone screen may be inside the System section in some Android
versions).

2. In your device, open the Settings app, select Developer Options, and
enable USB Debugging (Developer Options may be inside the System
section in some Android versions).

Configuring macOS or Chrome OS
You don’t need to configure anything if your development environment runs macOS
or Chrome OS.

Configuring (Ubuntu) Linux
If you’re running Ubuntu Linux, you need to ensure that your user account belongs
to the plugdev group and that the udev rules for Android devices are installed.

Run the id command to check if your user account is already in the plugdev group.
You don’t need to change anything if the output of the command already includes
this group. Consider this example:

1. > id

2. uid=1000(vveloso) gid=1000(vveloso)
groups=1000(vveloso),4(adm),24(cdrom),27(sudo),30(dip),
46(plugdev),116(lpadmin),126(sambashare),
136(kvm),140(libvirt),999(docker)

Otherwise, you need to run the following command to add yourself to the plugdev
group:

1. sudo usermod -aG plugdev $LOGNAME

This change only takes effect at the next login, so it is a good idea to log out and log
in again before continuing.

Finally, install the udev rules for Android devices with the following command to
ensure that they are in place in Ubuntu Linux:

1. sudo apt-get install android-sdk-platform-tools-common

Configuring Windows
You need to download the correct drivers for your device so that Windows can
recognize it as an Android development device when you plug it in.

You can download the Google driver package from https://developer.android.com/
studio/run/win-usb if you’re using a Google device.

14 Hands-On Artificial Intelligence for Android

For any other devices, you need the driver package published by the manufacturer.
At the time of writing, a comprehensive list of these packages is available at https://
developer.android.com/studio/run/oem-usb.

You need to download the correct package for your device and follow the
manufacturer’s instructions to install it.

If the manufacturer provides no installation instructions, the pages at the preceding
addresses contain generic instructions that may also apply to your device.
Unfortunately, the numerous makes and models of Android devices makes it
difficult to provide instructions for each one.

Connecting the device to the computer
Now that the device and the computer are configured, it’s time to use a USB cable to
connect the device to the computer.

Some devices may ask you if you want to use the USB connection as Charging only
or for File transfer (or similar wording). Ensure that you select File transfer
for a proper connection to the computer.

Recent Android versions ask you for permission before communicating with the
computer when the Debugging Mode is active. Ensure that you authorize the
connection if this happens.

Running the application on the device
Once the device is connected to the computer and is properly recognized, a new
entry appears in the same target Android device dropdown box we used when
discussing the emulator (see figure 1.8).

The following figure shows how this dropdown box looks after the author’s device
is connected to the computer. Note that the virtual device also appears in the list.

Figure 1.10: Target Android device dropdown with a physical device

Building an Application with Android Studio and Java 15

Now that the device is connected and selected in the dropdown list, we can run the
application as we did before—by clicking on the green Run button.

Android Studio executes the same process: the application is built, downloaded to
the device, installed, and finally executed. So, it is expected that the process takes
some time. Remember that you can follow the steps of the process by looking at the
Android Studio window’s bottom. The current step and its progress appear there.
Don’t forget to unlock your phone to use the app.

Figure 1.11 shows what the application looks like on the author’s phone. Note that
the application background is black in this device, while it was white in the emulator,
as shown in figure 1.9.

Figure 1.11: Application running on the author's phone

The dark colors result from the author’s phone being configured to use dark mode, a
setting that became available in Android 10. As the name implies, it asks applications
to adopt a user interface based on dark colors. In the case of our demonstration
application, this was supported automatically with the color scheme shown.

16 Hands-On Artificial Intelligence for Android

We have chosen to maintain this difference to stress that it is essential to test our
application on different devices with different configurations.

Dark mode, for example, can have a dramatic impact on how an application is
presented to the user. In some cases, the application’s user interface may need
improvements to look good in both light and dark modes.

The same applies to all other potential differences between devices.

The Android application lifecycle
We start applications as needed when we use them on our computers, and we close
them once we are done using them. Quite simple.

Mobile devices like phones and tablets, watches, TVs, automobile dashboards, or
Internet of Things (IoT) devices are usually resource-constrained, which means
some shared resources are limited and must be used sparingly.

Examples of such resources are memory, and the battery power in the case of mobile
devices.

Only a few applications can run simultaneously when memory is limited. Maybe
not even one whole application can fit in the memory at once, so special care must
be taken to avoid exhausting the device memory so that it can run such applications
and continue to operate regularly.

Likewise, the amount of power a battery can provide until it discharges is limited.
There is a direct relationship between the work the device is doing and the amount
of power it needs to function. The more applications are running, the more power
is consumed. So, specific battery power management techniques must be used to
minimize power consumption and increase the amount of time between charges.
One of the techniques used to achieve these goals is to close unnecessary or unused
applications.

To solve these and other similar problems, application management in the Android
operating system is more complicated than in our computers.

Android applications don’t just run and stop running. They can be suspended,
resumed, and invoked in different manners. We look at how applications can be
invoked in the following chapters.

For now, let’s take a look at the different lifecycle stages of an Android application.

We are in a bit of a chicken-and-egg situation. You see, most Android applications
are built around the concept of activity. The lifecycle stages we are discussing apply
to all the activities that belong to an application, so we need to discuss an activity’s
lifecycle to fully understand what an activity is. But we need to talk about activities
to discuss their lifecycle.

Building an Application with Android Studio and Java 17

We have chosen to wait until the next chapter to delve deeper into activities. At this
point, we can think of an activity as an application screen. One activity is left behind
and another is started every time the user navigates from one screen to another.

For example, the screen showing the list of emails would be implemented as an
activity in an email application. The screen showing one email message would be a
different activity.

Take a look at figure 1.12. It shows a state diagram representing the Android activity
lifecycle.

An activity goes through a sequence of states from the moment it is launched until
the moment it is completely removed from memory. Each of these states corresponds
to a lifecycle event with well-defined responsibilities.

Launch
The launch stage is not an event per se. It corresponds to an action by the user, which
results in the activity being launched by the operating system; for example, when
the user taps on the application’s icon on the home screen. The operating system
has loaded the application into memory and is now ready to start working with the
activity.

Create
The system has just finished creating the activity.

It is now time for the activity to prepare its essential internal state. The activity
only goes through this stage once during its lifetime, so it is at this point that the
activity runs its one-time preparation logic; for example, creating its user interface
or restoring its state from a previous execution.

Start
The activity is now created, but it is still in the background.

It may take advantage of this state to initialize the user interface created in the Create
stage. Note that the Start stage can be called from the Create stage and the Restart
stage, so this is the best location to initialize the user interface state.

Both the Create and Start stages can deal with the user interface. The difference is
that Start can be called multiple times but Create cannot. Create is responsible for

18 Hands-On Artificial Intelligence for Android

creating the user interface, while Start is responsible for setting up the user interface
state (that is, what is being displayed).

Figure 1.12: Android activity lifecycle

Building an Application with Android Studio and Java 19

Resume
Finally, the activity has been placed in the foreground. The user can now interact
with it.

Now is the time for the activity to enable any features that only make sense when
it is visible and in the foreground (interacting with the user), such as a live camera
preview.

Running
The activity is in the foreground, fully visible on the screen, and the user interacts
with it. It corresponds to our usual notion of an application running.

Pause
The activity is paused by the system when it is no longer in the foreground.

An activity left the foreground after something happened, indicating that the user
will no longer interact with it immediately. For example, the user starts interacting
with another activity or application, including taking a phone call, or the device’s
screen turns off.

This stage is the opposite of the Resume stage. Generally speaking, it should be used
to release resources or suspend procedures started in the Resume stage.

The system places the activity back in the Resume stage if the user returns to it.

Stop
The system stops the activity when it is no longer visible to the user.

An activity stopped being visible when another activity covered the entire screen or
when it finished running and is about to be terminated.

Resources that are not required when the activity is not visible should be released at
this point. It is also the last appropriate stage to save the activity state.

Restart
The user has returned to the activity.

The system now brings the activity back to the foreground and back to the Start
stage.

Destroy
The system is destroying the activity.

It can happen when the activity is finishing its regular operation and the application is
terminating, or when the system needs to recreate the activity due to a configuration

20 Hands-On Artificial Intelligence for Android

change. For example, rotating the device is a configuration change that causes
activities to be destroyed and recreated due to changes in the screen orientation.

All resources that were not released earlier should be released at this point.

Shut down
The activity is no longer in memory.

Killed
This stage also means that the activity is no longer in memory, but it is different from
the shutdown stage because it is triggered when the operating system needs to free
memory up.

Note that this removal of the activity from memory may occur after either the Pause
or Stop stage. The activity has had the opportunity to release some of its resources
and save most or all of its state.

There is a call for attention about this stage in figure 1.12 because it breaks the usual
lifecycle flow. Even when handled properly, it may cause some mismatch between
the user’s expectations and the actual activity state when it is recreated.

The next chapter discusses in detail the different ways how activities can store their
state.

Android application resources
We presented an overview of the different application resources in the Android
project structure section. In this section, we look at the details of resource usage in an
Android application.

As we saw in figure 1.6 and figure 1.7 in the Android project structure section, our
demonstration project was generated with different kinds of resources already
provisioned.

Resources are placed in subdirectories inside the res/ project directory. The most
common resource types were already generated and defined in the preceding section.

Android application projects support a fixed set of resources, each with its purpose,
and the resource subdirectory names reflect the type of resources that it contains.

The following subdirectory names and the corresponding resource types are
supported inside the res/ directory:

Building an Application with Android Studio and Java 21

Directory Resource type
Animator Property animations defined as XML files. A property animation is a

definition of how an object’s field (property) value changes over time. It
may or may not have visual consequences.

anim Tween animations defined as XML files. Tween animations are view object
animations altering a view object’s position, size, rotation, or transparency.
A view object is an object drawn on the screen.

color State list of colors defined as XML files. Not the same as color values because
a color state list defines the colors applied to a view object depending on its
state, while a color value defines a single color as a constant value.

drawable Resources that can be drawn on the user interface. Can be defined as bitmap
files like PNG, JPG, or GIF or as XML files. The file format depends on the
specific type of resource.

mipmap Drawable files representing launcher icons.
layout User interface layouts defined as XML files.
menu Application menus defined as XML files.
Raw Arbitrary files that are not processed in any way.
values Simple values like strings, integers, and colors defined as XML files.

You may mix resources in the same file, but the following file names are
commonly defined by convention and to make it easier for you:

•	 strings.xml for string values
•	 colors.xml for color values
•	 arrays.xml for resource arrays
•	 dimens.xml for dimension values
•	 styles.xml for styles

xml Arbitrary XML files.
font Font files. XML, TTF, TTC, or OTF file formats are supported.

Table 1.1: Supported resource directory names in Android projects

The preceding table should give you a good idea of the different types of resources
that can be used in Android applications.

Resource qualifiers
We would like to point out that the preceding table’s directory names describe the
default resources. The Android operating system can automatically choose the most
appropriate resource for the current context.

22 Hands-On Artificial Intelligence for Android

For example, we can define different versions of the same layout resource for
different screen sizes, resolutions, or screen orientations. Think about defining a
friendly user interface, considering whether the screen is in portrait or landscape
mode—the system automatically chooses the correct definition.

We can take advantage of this feature by applying qualifiers to the directory names.

In the case of our layout example, the directory structure could be as follows:
res/
 layout/
 our-screen.xml
 layout-land/
 our-screen.xml

The default portrait layout is located in the layout directory, and the alternative, that
is, landscape layout, is in the layout-land directory. Both definitions have the same
name, so the system knows that they are different definitions for the same resource.

Android Studio comes with some tools that free us from having to manually create
these directories, but different tools are used for different resources. Drawable
resources can be managed with the Image Asset Studio, layouts with the Activity
Design, and strings with the Translations Editor.

We do not discuss all resource types, qualifiers, or editing tools in detail as this
is out of the scope of this book. We discuss only the necessary resource types for
our application in this and the following chapters. You may, of course, find further
information in the Android documentation for developers at https://developer.
android.com/guide/topics/resources.

Identifying resources in application code
So far, we have discussed the storage of resources in XML files. How are those
resources accessed at different points of our application? How do we load a string,
for example?

A resource identifier (ID) is always available for each resource. This identifier is
composed of the resource type and name. The resource name can be the resource’s
file name or the value of the android:name XML attribute if the resource is a simple
XML value.

We can use the special R class from the Java or Kotlin application code to refer to our
application resources. This class is automatically generated and contains references
to all the resources. The class members are generated following the composition of
the resource identifiers.

Building an Application with Android Studio and Java 23

Suppose we have the following string resources defined in their XML file:

1. <resources>

2. <string name="app_name">Demonstration Application</string>

3. </resources>

We then take advantage of the R class in our code to access this resource of string
type:

1. R.string.app_name

Another example is available in our demonstration application. The MainActivity
class contains the following excerpt, where a layout is being attached to the content
view (we discuss what this means in the next chapter, Event Handling and Intents in
Android) in line 3:

1. protected void onCreate(Bundle savedInstanceState) {

2. super.onCreate(savedInstanceState);

3. setContentView(R.layout.activity_main);

4. }

The syntax is a little different if we need to refer to a resource from within another
resource’s XML file. It is something like the following:

1. @string/app_name

For example, we are referencing a string resource called hello_world in line 4 of the
following XML fragment:

1. <TextView

2. android:layout_width="wrap_content"

3. android:layout_height="wrap_content"

4. android:text="@string/hello_world"

5. app:layout_constraintBottom_toBottomOf="parent"

6. app:layout_constraintLeft_toLeftOf="parent"

7. app:layout_constraintRight_toRightOf="parent"

8. app:layout_constraintTop_toTopOf="parent" />

Localization
When we develop an Android application, we must consider that our potential users
do not all understand the same language.

24 Hands-On Artificial Intelligence for Android

We should then consider making our application accessible to users speaking other
languages. The process of doing so is called localization because it is all about making
our application suitable for a different locale. It goes beyond translation because it
should also consider cultural differences.

We can accomplish this by taking advantage of the same resource qualifiers.

Tip: A locale defines several aspects that describe a user’s experience related to the
language. This combination is relevant because some details, like the date and time
formats or the spelling, differ among regions that use the same language. In Android,
for example, we use the qualifier en-US to represent English as used in the United
States.

One of the many resource qualifiers that can be used is the locale name, like fr for
French, pt for Portuguese, and so on.

The language qualifier may be applied to drawable resources in addition to string
resources.

So, when a specific user’s device is set to a locale that is not the default language, the
system selects the correct resources from all the variants in the application.

All we need to do is include those variants in the application’s resources.

String resources
When we open the strings.xml file from the res/values directory, which by
convention is an XML file containing only string resources, Android Studio gives us
the opportunity to open the Translations Editor.

Figure 1.13: Opening the translations editor in Android Studio

The user interface of the translations editor is quite simple. It consists of a grid layout
with columns for the resource name, its file location, the default resource value, and
the values for each locale.

Building an Application with Android Studio and Java 25

Figure 1.14: The translations editor

Naturally, there are no locales and no translations when the editor is opened for the
first time.

We can add a locale by clicking on the icon highlighted in figure 1.14. A list of
supported locales appears, so we can select the appropriate language. Further locales
can be added by repeating this procedure.

Once locales have been added, they appear in the translations editor as new columns.
They also appear as qualified resources in the Android project tree.

Figure 1.15: The translations editor with one locale set

The translation process is simple.

To insert a new translation, click on its cell and type the translation at the bottom
of the screen. Resources that have not been fully translated yet have their names
painted red to make it easier to find them. One of the two resources in figure 1.15 is
being translated, and the other has no translation yet.

We should check the corresponding checkbox in the Untranslatable column if a
string resource is impossible to translate. This tells the linter that the absence of a
translation is not a problem.

As soon as a locale is defined, the system chooses the best language at runtime and
automatically uses its text.

Other types of resources
Unfortunately, there is no built-in support for localizing other types of resources.

26 Hands-On Artificial Intelligence for Android

This lack of support means that you need to create the appropriate directories within
the res/ directory hierarchy, including the language qualifier.

For example, if you have images that should be adjusted depending on the locale
stored as drawables, you would need to create another drawable folder as follows:
res/
 drawable/
 drawable-pt/

You may ask, when does an image need to be localized? Some cultures assign different
meanings to colors, for example, or some iconography may not be appropriate in
some regions of the globe.

The kind of resources that should be localized depends on their contents and the
regions of the world where you intend to distribute the application. It’s always
good to seek advice when you want to launch your application in regions you’re not
familiar with.

The Android application manifest
We have touched the subject of application manifest briefly earlier. In a few words, the
application manifest aims to inform the system about the application’s components,
permission, and hardware requirements.

The application manifest is a file named AndroidManifest.xml placed in the
manifests directory.

Let’s get started by looking at the manifest automatically generated by Android
Studio for our demonstration application.

1. <?xml version="1.0" encoding="utf-8"?>

2. <manifest xmlns:android=”http://schemas.android.com/apk/res/
android”

3. package="com.example.demonstrationapplication">

4.

5. <application

6. android:icon="@mipmap/ic_launcher"

7. android:label="@string/app_name"

8. android:roundIcon="@mipmap/ic_launcher_round"

9. android:theme="@style/Theme.DemonstrationApplication">

10. <activity android:name=".MainActivity">

Building an Application with Android Studio and Java 27

11. <intent-filter>

12. <action android:name="android.intent.action.MAIN" />

13. <category android:name="android.intent.category.
 LAUNCHER" />

14. </intent-filter>

15. </activity>

16. </application>

17.

18. </manifest>

Lines 2 and 3 begin the manifest. Like most XML files, the applicable namespace is
imported and, more importantly, the base application package is set. Usually, this
package’s name is the same as the base package for the application’s Java or Kotlin
code. It is essential to know that this package name becomes the application’s unique
identifier once it’s compiled, so choose it carefully.

The actual application definition begins in line 5 with the application element.

Lines 6 to 9 define basic user interface settings like the application’s theme, launcher
icons, and label.

Activities are application components. As such, they must appear in the manifest;
otherwise, the system does not know about them.

The main (and only) activity in our demonstration application is described in lines
10 to 15 in the activity element.

Note that the name of the activity is its Java class name. It needs to be fully
qualified; however, it starts with a period, so the system automatically prefixes it
with the application’s package name. So, .MainActivity becomes com.example.
demonstrationapplication.MainActivity.

We find the intent-filter element inside this activity element. We discuss intents
in detail in the next chapter. For the time being, know that this definition allows the
launcher to start our application by launching the MainActivity activity.

This manifest represents the bare minimum required to build and launch an Android
application.

The build system configuration defines other aspects of the application, such as its
version number and the minimum Android SDK version that it requires. These are
set in the build.gradle file for the application and injected in the manifest at build
time.

28 Hands-On Artificial Intelligence for Android

Here’s an excerpt of this file as used by our demonstration application:

1. plugins {

2. id 'com.android.application'

3. }

4. android {

5. compileSdkVersion 30

6. buildToolsVersion "30.0.3"

7.

8. defaultConfig {

9. applicationId "com.example.demonstrationapplication"

10. minSdkVersion 16

11. targetSdkVersion 30

12. versionCode 1

13. versionName "1.0"

14.

15. testInstrumentationRunner "androidx.test.runner.
 AndroidJUnitRunner"

16. }

17.

18. // (other build settings)

19. }

20. dependencies {

21. // (required libraries)

22. }

The android section in line 4 states that the application is compiled with version
30 of the Android SDK and that it targets version 30; however, it can run with a
minimum version as low as 16. The latter version defines the lowest Android version
that is compatible with your application. In this case, SDK version 16 corresponds
to Android 4.1, code name Jelly Bean. If your application requires Android features
that became available in later versions, you must update the minimum SDK version
accordingly.

The same section states that the current version number is 1 and that the version
name is 1.0. These must be increased every time you release a new application so
that users see that an update is available.

Building an Application with Android Studio and Java 29

You don’t need to manually edit the build configuration file. These settings can be
changed using the Module Settings dialog box in Android Studio if you prefer.

To open the Module Settings, select the app module in the tree and press the F4
key, or right-click on it and select the Open Module Settings option from the pop-
up menu.

Figure 1.16: Our demonstration application module settings

We can include other elements to describe different requirements of the application.
Let’s look at the elements that we use in this book’s applications.

Application permissions
By design, Android applications live in a sandbox. They have limited access to the
system and the device’s features.

Whenever an application exposes some functionality that requires a usually blocked
feature by the sandbox, the application needs to ask the user for permission to use
that feature.

Of course, applications should not request permissions that they do not need. Users
are, thankfully, more aware of privacy issues. We must always ensure that the
features we wish to implement require additional permissions to be granted.

Let’s imagine that our application needs to establish a connection to the Internet
for some reason. For example, it might need to update its machine learning model
periodically.

30 Hands-On Artificial Intelligence for Android

By default, Android applications are not allowed to open sockets, so no network
connections are allowed.

In order to overcome this limitation, we need to declare the permission request in
the manifest file. We use the users-permission element to do so, as shown in line
5 in the following excerpt:

1. <?xml version="1.0" encoding="utf-8"?>

2. <manifest xmlns:android=”http://schemas.android.com/apk/res/
android”

3. package="com.example.demonstrationapplication">

4.

5. <uses-permission android:name="android.permission.INTERNET"
/>

6.

7. <application>

8. <!-- normal application configuration -->

9. </application>

10. </manifest>

From now on, the system is aware that our application needs to make network
connections.

This specific permission is classified as normal in Android. These permissions are
granted automatically during installation. However, some other permissions are
classified as dangerous. Think about permissions that give the application access to
personal information, calls, text messages, external storage, and such.

These permissions must be declared in the manifest as well, but they are not granted
during installation since Android 6.0 (API 23). If the application is installed in a
device running this version or a more recent one, it must ask the user for permissions
at runtime.

Asking for permissions at runtime should be done programmatically and only when
the application needs the permission. For example, if the application needs camera
access, it should only ask for permission when the user wants to activate the camera
and not before that.

There is a specific API to ask for permissions at runtime, which we demonstrate in
full in the next chapter. For now, it is essential to know that specific code needs to be
written to check permissions and that it can take advantage of the following:

Building an Application with Android Studio and Java 31

•	 The ContextCompat class to check if the permission has already been granted

•	 The RequestPermission contract, from the AndroidX library, to leverage
permission requests already implemented in the system

Many permissions are available; you can find the full list at https://developer.
android.com/reference/android/Manifest.permission. The classification assigned
to each permission is also listed on this page, so we can know beforehand if the
runtime permission process is required.

Describing the features required by the
application
We discussed how our application could be allowed to use device and system
features in the previous section. What if the feature we need is not present in the
users’ device?

Suppose the application cannot operate without the feature being present in the
device, regardless of permissions. In that case, we want to tell the user that there is a
compatibility problem and maybe not allow the application’s installation.

Google Play can perform this filtering and inform the user when the application is
not compatible with their device.

Our application must declare the hardware or software features it needs in its
manifest for this mechanism to work. At the same time, it should state whether the
feature is required, that is, whether the application can function when the feature is
not present.

This declaration is made by using the uses-feature element in the manifest file. The
following excerpt shows a possible declaration for an application that needs to use
the device’s camera:

1. <?xml version="1.0" encoding="utf-8"?>

2. <manifest xmlns:android=”http://schemas.android.com/apk/res/
android”

3. package="com.example.demonstrationapplication">

4.

5. <uses-feature

6. android:name="android.hardware.camera"

7. android:required="true" />

8. <uses-feature

32 Hands-On Artificial Intelligence for Android

9. android:name="android.hardware.camera.autofocus"

10. android:required="true" />

11.

12. <application>

13. <!-- normal application configuration -->

14. </application>

15. </manifest>

Note that the application is declaring that both features are required. This means
Google Play does not allow installation of the application in devices without a
camera or with a camera lacking an autofocus feature. If the application functions
without a camera, the android:required attribute should be set to false.

Some permissions imply that the corresponding feature usage is required, so it is
always a good idea to explicitly declare the features. This way, there are no surprises
at installation or runtime.

The full list of features supported by this manifest element is documented at https://
developer.android.com/guide/topics/manifest/uses-feature-element, along with
their relationship with permissions.

Applying the Model-View-Controller
pattern
Generally speaking, the job of the vast majority of applications is to gather and
process some data, display that data to the user, and allow the user’s actions to
modify said data.

It is easy to identify three distinct concerns from this sentence:

•	 To model, store, and process data

•	 To present data to users and allow them to act on this data

•	 To effect changes on data based on user actions

A vastly accepted paradigm of software development is that different parts of the
program should handle different concerns; the same unit of code must have one
well-defined responsibility. This principle is known as the principle of separation of
concerns.

For quite some time, software development’s golden architectural pattern was the
Model-View-Controller (MVC) pattern. This pattern allows for easier separation of
concerns between the different parts of the application:

Building an Application with Android Studio and Java 33

•	 The model handles the design of data in the application and related tasks

•	 The view is responsible for displaying the data to the user and allowing them
to interact with the data

•	 The controller receives requests from the view and translates them into
model updates

Figure 1.17: MVC pattern dependencies

After being translated into the Android world, this pattern is often implemented
with the view layout as the view, the activity as the controller, and the application’s
data model as the model.

The disadvantages of this application of the MVC pattern in Android applications
are often:

•	 Business logic easily creeps into the controller because of its dependencies
on both the view and model. The model may become anemic.

•	 The controller is difficult to test because it is tightly coupled to the Android
API.

An alternative to MVC is the Model-View-
Presenter
A slightly different pattern was introduced to facilitate testing and reduce coupling
between the view and the controller—the Model-View-Presenter (MVP).

There are small but relevant differences between MVP and MVC:

•	 The model remains the same

•	 The view is now not only the view layout but also the activity

34 Hands-On Artificial Intelligence for Android

•	 The presenter replaces the controller and is responsible for updating the
view and modifying the model

Figure 1.18: MVP pattern dependencies

Testability is improved when using this pattern because the presenter is not tightly
coupled to the Android API. Ideally, it should not have any relationship to it
whatsoever.

Some disadvantages include:
•	 Two new interfaces need to be introduced to prevent a circular dependency

between the view and the presenter

•	 The danger of having too much business logic in the presenter remains, and
it can only be mitigated by developer discipline

Data binding allows a new pattern – Model-
View-ViewModel
The introduction of the Data Binding Library for Android allows us to use a new
pattern—Model-View-ViewModel (MVVM).

Again, the differences are small when it is compared to MVP:

•	 The model is still the same

•	 The ViewModel replaces the presenter and is responsible for supplying a
mechanism through which components can be notified of model changes
(events, or an observable) and invoke actions to update the model

•	 The view binds directly to the events exposed and accepted by the ViewModel

Figure 1.19: MVVM pattern dependencies

Building an Application with Android Studio and Java 35

Testability remains good because the ViewModel is not tightly coupled to the Android
API. There is no need to implement additional interfaces because the ViewModel
never needs to know who the consumer of its data events is.

An alternative to the Data Binding Library is a reactive programming model to
transmit the model updates to the view.

Its disadvantages include:
•	 Complexity is added through the introduction of an additional library

•	 There is now the danger of allowing logic to appear in the view; again, only
developer discipline can prevent this

Which pattern should be used?
It depends on the complexity of the application and personal taste.

Minimal applications with a simple model and little logic may get away with an
MVC implementation. MVP or MVVM become better choices when models become
non-trivial and more logic is required.

Note that the fundamental principle of both MVP and MVVM is the same—an
intermediate entity isolates the view from the model. Only the mechanism by which
events and commands are exchanged is different.

The choice ultimately boils down to personal preference.

Conclusion
Android Studio is a powerful tool for building and running an Android application.
It allows us to browse the project’s structure easily and identify and edit the different
files and resources that compose the application.

Android applications have a well-defined lifecycle, whose primary purpose is to
allow the operating system to optimize resource usage on the device (mainly battery
and memory).

The way they are built lends itself to the application of well-defined patterns for
segregation of concerns like the Model-View-Controller, the Model-View-Presenter,
or the Model-View-ViewModel. It is up to the developer to choose the most
appropriate pattern for the application at hand.

Android applications do not exist in isolation, so the next chapter shows how
different activities can communicate. It also addresses the usage of services exposed
by third-party applications for the benefit of our application.

36 Hands-On Artificial Intelligence for Android

Event Handling and Intents in Android 37

Chapter 2
Event

Handling and
Intents in Android

Introduction
This chapter intends to show how to receive and process user events in an Android
application. We cannot interact with our users without this mechanism. Android
applications may also serve a single purpose, but they usually do not have a single
screen. Multiple screens can be implemented with multiple activities. We can also
use another application’s features, which requires communication between the
participating applications. We explain how the different activities are built and how
this communication mechanism works via intents.

Structure
We cover the following topics in this chapter:

•	 User events

•	 Modifying the layout of an activity

•	 Registering to receive events

•	 Adding an activity to our application

•	 Intents in Android applications

•	 Using Intents across Android applications

38 Hands-On Artificial Intelligence for Android

Objectives
By the end of this chapter, you can build an Android application with multiple
activities that respond to user interaction. You also understand what intents are and
how they are used to communicate between activities, regardless of their respective
application.

User events
Simply put, user events are how the user’s interactions are communicated to the
application.

The user may interact with the application in several different ways, including:

•	 Tapping on buttons

•	 Typing on an input box

•	 Choosing an option from a dropdown list

•	 Making a gesture on the screen

As covered in the previous chapter, Android screens are managed by activities. So,
it is the activity’s responsibility to register its interest in any events coming from its
user interface elements.

Note: Although it is true that an activity manages each screen, there are different
ways of implementing user experiences with different screens. An alternative
and possibly more efficient way to do so involves using a single activity that
displays different fragments as appropriate for the user journey. A fragment
can be seen as a set of user interface elements grouped in a component that an
activity can display. For the sake of simplicity, we keep using activities for now.

Modifying the layout of an activity
We have generated a new application for this chapter using the steps outlined in the
previous chapter. As you know, the generated layout for the main activity is almost
empty. It only contains a hello world user interface element, which is not very useful
for us.

So, we want to add a new user interface element to this screen. Something that makes
it clear to the user that they can interact with it.

Let’s add a button to our main activity.

Event Handling and Intents in Android 39

Using the Android Studio layout editor
Activity layouts can be modified by directly editing the XML file, but that is
cumbersome and error-prone. It is much better to use the layout editor from Android
Studio.

Open the project in Android Studio and locate the activity_main.xml file inside
the res/layout directory in the Android project tree to open the layout editor to
change our main activity’s layout.

A new tab containing the layout editor should open.

Figure 2.1: The layout editor

The layout editor is divided into four significant sections:

•	 The component palette and tree on the left-hand side. It lists the different
user interface component types known to the layout editor.

•	 The layout design section is in the middle.

•	 The attributes editor on the right-hand side. It displays the available attributes
for the selected component. There is no component selected in figure 2.1, so it
displays the layout properties.

•	 The editing mode toolbar at the top. It allows us to switch between the three
editing modes available.

The layout design section contains a toolbar with several tools. Some of them are
highlighted in figure 2.1 and described here:

40 Hands-On Artificial Intelligence for Android

1. The design surface selector: It allows us to see the design, the blueprint, or
both. The figure shows both design and blueprint surfaces. The blueprint
surface (in blue) draws only the outlines of components and is useful for
advanced layouts, mainly when using invisible components in the design
surface, such as guidelines.

2. The orientation selector: We can preview the layout in portrait or landscape
orientations using this selector. It also allows us to work in night or day
mode and automatically creates variants of our current layout (for example,
it can create a landscape variant if the layout is in portrait). These variants
are useful to fine-tune the layout to specific orientations or user interface
types.

3. The preview device selector: The preview shown is based on particular
device screen characteristics, like size and resolution. We can select different
devices from this list and visualize how our layout adapts to their different
characteristics.

4. The preview API version selector: Some features of the layout may look
different when rendered in different API versions.

5. The theme selector: Themes are collections of attributes applied to all the
views in the application. For example, a theme can be used to ensure that all
views have a specific background color. This selector comes in handy to see
how the layout looks when a particular theme is applied.

6. The language selector: As mentioned in the previous chapter, it is a good
practice to translate the application’s strings into different languages.
However, that results in strings with different lengths and characters. We can
use this selector to check if the layout needs to be adjusted to accommodate
all the languages we use in the application.

7. The view options: We can use this selector to toggle the display of additional
elements in the layout preview. Some allow us to understand how the layout
appears on the device, such as a simulation of the system user interface. We
may find others useful while working, such as for visualizing margins and
constraints.

8. The code view: Only the XML layout file is available for editing in this view
mode.

9. The split view: The tab is divided into two sections when this view mode is
active: one contains the XML code, and the other contains the design view.
It is useful to see how changes in the XML affect the design and vice-versa.

10. The design view: The tab only contains the designer. This view mode is the
active mode in figure 2.1.

Event Handling and Intents in Android 41

The ConstraintLayout
When we look at the component palette section, we find a component tree that
shows the parent-child relationship between the layout components.

The root component in this tree is the class responsible for arranging the layout
components. Our layout uses the ConstraintLayout class, which happens to be the
one used by default in the newly generated code.

This type of layout is powerful and flexible. It allows us to create responsive layouts
that rearrange themselves when the screen characteristics change. The feature that
allows such behavior is the definition of relationships, called constraints, between
the different views in the layout.

Let’s click on the Hello World view in the layout editor. Note that it is centered on
the screen with the help of four constraints. The arrows with wavy lines shown in
figure 2.2 represent the constraints.

Figure 2.2: Visualizing layout constraints

42 Hands-On Artificial Intelligence for Android

In this case, the Hello World text view is connected (or aligned) to all four corners of
the parent view, which is the layout view. These connections ensure that it remains
horizontally and vertically centered in the view, regardless of its dimensions.

It is not mandatory to define all four constraints, but every component must have at
least one horizontal and one vertical constraint. Otherwise, it is not rendered at the
expected location when the application runs on the device.

Placing a new component on the layout
We are finally ready to place our first button!

Drag the Button view item from the palette into the design view. Drop it horizontally
centered in the lower third of the layout. A new component is created with a default
text and identifier.

You should now see something similar to figure 2.3:

Figure 2.3: A freshly placed button

Note that there are exclamation points on a red background in all three sections: the
component tree, the toolbar, and the attributes pane.

They provide a visual indication of problems with the current layout. In this case,
the required horizontal and vertical constraints for the button are missing. There’s a
nice tip to this effect in the attributes pane.

Adding the missing constraints is simple. Note that the selection box around the
button has square and round handles. The round handles are used to set constraints.

Event Handling and Intents in Android 43

Let’s place our button horizontally centered on the layout and slightly above the
bottom of the layout:

1. Drag the left round handle. An arrow is drawn as you drag; connect the
arrow to the left border of the layout. Note that the button is placed at the
border when you let go of the arrow tip. Do not worry; this happens because
there are no other constraints to pull the component in another direction.

2. Drag the right round handle to create a constraint connected to the right
border of the layout. The button is placed in the middle once you let go
because there are now two constraints pulling in opposite directions. The
lines become wabbly or springy to indicate this opposition.

3. Drag the bottom round handle to create a constraint connected to the bottom
of the layout. The button is now placed against the bottom edge.

4. We want the button to be placed at some distance from the edge. Drag the
button a little upward. Note that the vertical constraint now shows a number
next to it. We just defined a margin.

Your layout probably looks like the one in figure 2.4 now.

Yellow triangles with an exclamation mark replaced all red exclamation marks. This
means the layout is now technically correct, but some best practices are not being
followed.

If you click on the yellow triangle, a new panel appears at the bottom of the view
explaining the issues found. In our case, it reports that the text is hardcoded and that
we should use string resources.

Figure 2.4: The button with constraints defined

44 Hands-On Artificial Intelligence for Android

Let’s fix the resources problem.

Using string resources in components
Follow these steps to replace a selected component’s text with a string resource:

1. Expand the Declared Attributes section in the attributes pane (if not
expanded already).

2. Find the text attribute in this section. Click on the pick a resource button
next to the text box to pick a resource.

3. Click on the plus button in the dialog box to add a new resource.

4. Fill in the resource details. We suggest using about_button as the string
identifier and About as our new button’s value. Leave main as the source set
and strings.xml in the values folder as the target file.

Figure 2.5 illustrates this flow:

Figure 2.5: Adding a string resource from the layout editor

Steps 3 and 4 are replaced by a simple selection of the existing resource from the
dialog box if you have already created the string resources you want to use.

We recommend choosing string identifiers that help understand the context where
the string is used. This practice improves the maintainability of the resources and

Event Handling and Intents in Android 45

helps choose the best translation later on, hence our suggestion of about_button for
the new string identifier.

Changing the component identifier
A default identifier is assigned to the component when we place it in the layout
editor. This identifier is often not the most suitable.

The button was assigned the button identifier in our example. We have designed
the button to look like it describes something by choosing About as its text. Although
it is true that it is a button (and the only one, for that matter), let’s choose a better
identifier.

Change the value of the id field in the attributes pane, for example, to btn_about,
and press enter. A renaming dialog appears; confirm the refactoring operation.

There is no rigid rule about the composition of the identifier names. Most developers
agree that it is good to use a descriptive name to convey the type of component and
semantics. It helps identify the component when we refer to it in the code. Again, it’s
about improving maintainability, hence our suggestion of btn_about, which tries to
refer to a button used for a feature called about.

The XML version of the button
All the steps we took to add and customize the button in the layout editor could
have been performed directly in the XML layout file.

If we switch to the layout editor’s code or split-view mode, we can see what the
actual button code looks like in the XML file. The new button element is located
inside the full layout file, next to the existing elements.

1. <Button

2. android:id="@+id/btn_about"

3. android:layout_width="wrap_content"

4. android:layout_height="wrap_content"

5. android:layout_marginBottom="36dp"

6. android:text="@string/about_button"

7. app:layout_constraintBottom_toBottomOf="parent"

8. app:layout_constraintEnd_toEndOf="parent"

9. app:layout_constraintStart_toStartOf="parent" />

We can see all the changes we made in this button element: the string resource in line
6, the constraints in lines 7 to 9, and the identifier in line 2.

46 Hands-On Artificial Intelligence for Android

Note that the identifier in line 2 does not have a resource type classification prefix
like the string resource identifier in line 6 has. The recommendation to choose
descriptive names is especially relevant for component identifiers.

Registering to receive events
A button in our user interface is not useful if our application does nothing when the
user clicks on it.

Our application expresses its desire to be informed of an event by registering an
event listener through the existing View class methods.

Views expose a few events:
•	 onClick(): Fired when the user taps or clicks on a component

•	 onLongClick(): Fired when the user touches and holds or clicks on and
holds a component

•	 onKey(): Fired when a hardware key is pressed while a component is focused

•	 onFocusChange(): Fired when the user navigates away from or onto a
component

•	 onTouch(): Fired when the user performs a touch action, which can also
include gestures

•	 onCreateContextMenu(): Fired when a context menu is being built, usually
due to a long click

We are interested only in the onClick() event now. This event is fired when the user
taps on our button.

Event registration is a task that is performed only once. So, keeping in mind the
activity lifecycle diagram from the previous chapter, the best place to register for
events is during the activity’s creation. We do it in the activity’s onCreate() method.

Note: Some events are not available on all devices. Note that the brief description
we provided mentions hardware keys. Some devices have touchscreens, others
have physical keys, trackpads, or keyboards, and yet others have both. So, events
may have different physical sources and, for that reason, may not be available
on all devices. For example, onKey() is only available on devices with physical
keys.

We need to find the view we are interested in and then implement the listener
interface whose method is invoked when the event is triggered. In Java, we can do it
easily with a method reference:

Event Handling and Intents in Android 47

1. @Override

2. protected void onCreate(Bundle savedInstanceState) {

3. super.onCreate(savedInstanceState);

4. setContentView(R.layout.activity_main);

5.

6. findViewById(R.id.btn_about)

7. .setOnClickListener(this::onAboutButtonClicked);

8. }

9.

10. private void onAboutButtonClicked(View view) {

11.

12. }

The preceding code snippet demonstrates this procedure.

In line 6, we searched for the view emitting the event we are interested in through the
findViewById() method. This identifier needs to be the same identifier we specified
in the layout file. We use the automatically generated R class to avoid mismatches.
Remember the best practice of choosing descriptive identifiers? It is useful because
we can now just read the code and know that it refers to our about button.

Then, we registered for the event in line 7. This registration is only about providing
a callback that is called when the event is produced.

Reacting to the event
We have registered for the event, but we have not done anything useful with it so far.

Let’s start by displaying a simple dialog box with information about our application.

Naturally, we need to have the information text ready. The dialogue box also needs
a title and some text for the button that the user uses to dismiss it. So, we begin by
adding all of them to our string resources file:

1. <string name="about_text">I\'m a demonstration application meant
to showcase some essential techniques used for building Android
applications.</string>

2. <string name="about_title">About myself</string>

3. <string name="done_button">Done</string>

48 Hands-On Artificial Intelligence for Android

The Android SDK provides an implementation of a dialog box suitable for our
purpose in the AlertDialog class. In addition to displaying a message, it supports
up to three buttons and a list of selectable items or a custom layout, but we do not
need all of that to display a small message.

Since the onAboutButtonClicked() method is invoked when the onClick() event
is fired, it is the natural place to create our dialog box:

1. private void onAboutButtonClicked(View view) {

2. new AlertDialog.Builder(this)

3. .setTitle(R.string.about_title)

4. .setMessage(R.string.about_text)

5. .setNeutralButton(R.string.done_button, null)

6. .show();

7. }

Note that we can provide an event listener as well in line 5. This listener is called
when the user taps on the button. We have specified a null listener because we do
not need to execute any action when that happens; we can allow the dialog to be
dismissed.

Figure 2.6: A simple dialog box

Like with most other Android user interface elements, this dialog box is dismissed
when the user touches outside or clicks on the Back button.

Adding an activity to our application
As we mentioned earlier, we can have multiple activities in the same Android
application. Each activity manages its layout, or screen if you prefer.

Let’s replace the about dialog with an activity.

Event Handling and Intents in Android 49

The first step is the creation of the activity and its layout. We take advantage of
Android Studio’s tools to do this seamlessly.

Start by right-clicking on the application root in the Android project layout. Then,
choose New | Activity | Empty Activity from the context menu.

Figure 2.7: Creating an activity using Android Studio’s tools

This option brings up the New Android Activity dialog box. Let’s name this
activity AboutActivity:

Figure 2.8: Details for our new About activity

50 Hands-On Artificial Intelligence for Android

An empty layout is generated, along with its activity class, when we click on the
Finish button.

We need to build the layout now. We are creating a screen with information about
the application, so we can add two text views: one for the title and one for the
description message.

The process is identical to the one we followed earlier:
1. Open the layout editor by double-clicking on the activity_about.xml

layout file in the res/layout directory.

2. This step is not mandatory, but try to enable the option to show all constraints
in the view options menu (number 7 in figure 2.1). See the difference in the
blueprint area and decide for yourself if and when this feature is useful.

3. Drag one TextView from the palette onto the layout design area. We use this
view to display a title.

o Set its constraints so that it is placed at some distance from the top
and centered horizontally

o Define its identifier

o Set its text to reuse the string resource we created earlier for the
dialog box’s title

o It may be fun to change the text view appearance. Select one of the
existing styles for the textAppearance attribute

4. Drag another TextView from the palette. This one will display the application
description.

o Set its constraints so that it is placed horizontally and vertically
centered

o Define its identifier

o Set its text to reuse the string resource we created earlier for the
dialog box’s message

o Note that the text view automatically resizes to fit the text width up
to its parent’s limits. In this case, it touches the layout’s outer edges
without any margins

o Set the text view’s paddingLeft and paddingRight attributes for
visual improvement. For example, try a setting of 32dp (device
pixels) on both.

Upon completing these steps, you should have a layout design similar to the one in
figure 2.9. If you have activated the option to show all constraints, the blueprint view
always displays them.

Event Handling and Intents in Android 51

Even with such a simple layout, we can see how the blueprint view on the left differs
from the layout design view on the right. As we mentioned previously, the blueprint
view’s purpose is to focus only on the layout’s structure.

Figure 2.9: A possible layout for the activity describing the application

The new TextView elements in the activity_about.xml file should be similar
to the following excerpt. Pay attention to the usage of element, string, and style
identifiers to prevent hardcoding these resources’ values in the layout itself.

1. <TextView

2. android:id="@+id/txt_about_title"

3. android:layout_width="wrap_content"

4. android:layout_height="wrap_content"

5. android:layout_marginTop="32dp"

6. android:text="@string/about_title"

7. android:textAppearance="@style/TextAppearance.AppCompat.
 Display1"

52 Hands-On Artificial Intelligence for Android

8. app:layout_constraintEnd_toEndOf="parent"

9. app:layout_constraintStart_toStartOf="parent"

10. app:layout_constraintTop_toTopOf="parent" />

11.

12. <TextView

13. android:id="@+id/txt_about_message"

14. android:layout_width="wrap_content"

15. android:layout_height="wrap_content"

16. android:paddingLeft="32dp"

17. android:paddingRight="32dp"

18. android:text="@string/about_text"

19. app:layout_constraintBottom_toBottomOf="parent"

20. app:layout_constraintEnd_toEndOf="parent"

21. app:layout_constraintStart_toStartOf="parent"

22. app:layout_constraintTop_toBottomOf="@+id/txt_about_title" />

Remember our earlier discussion of the application manifest? The new activity was
also added to the manifest automatically. Pay attention to line 8 in the following
excerpt:

1. <application

2. android:allowBackup="true"

3. android:icon="@mipmap/ic_launcher"

4. android:label="@string/app_name"

5. android:roundIcon="@mipmap/ic_launcher_round"

6. android:supportsRtl="true"

7. android:theme="@style/Theme.Activities">

8. <activity android:name=".AboutActivity"></activity>

9. <activity android:name=".MainActivity">

10. <intent-filter>

11. <action android:name="android.intent.action.MAIN" />

12. <category android:name="android.intent.category.
 LAUNCHER" />

13. </intent-filter>

Event Handling and Intents in Android 53

14. </activity>

15. </application>

Now that we have completed our new activity, how do we display it once the user
clicks on the about button? We do this using something called an intent.

Intents in Android applications
Android activities do not communicate through method calls. It is not possible to,
for example, somehow call a method in a different activity from the activity in the
foreground. Activities communicate asynchronously through a form of message
passing.

Intents are the materialization of these messages.

They are mainly used for three purposes:

•	 To start an activity

•	 To start a service

•	 To send a broadcast message

A service is a component that runs in the background and does not have a user
interface. It may be started once to execute a specific task, at a scheduled time, or at
intervals. Services are out of the scope of this book; you can visit https://developer.
android.com/guide/components/services for more information about them.

As the name implies, a broadcast message is a message that any application can
receive. They can be sent by applications or by the system. Charging or startup
messages are examples of broadcasts sent by the system. An application can send
a broadcast just by using the sendBroadcast() method in its Context object.
Do not confuse a broadcast with a user event. The first comes from outside of the
application and is based on intents, while the second is exclusively internal and is
based on callbacks.

Intents may be explicit or implicit.

An explicit intent specifies which application is meant to receive it. The target
application’s package name or a fully qualified class name is used in an explicit
intent.

On the other hand, an implicit intent is generic and does not specify its target
application. Often, the sender application does not even know which application
receives it. Instead of naming a specific component, implicit intents declare an action
to perform; for example, sending an email or showing a location on a map.

54 Hands-On Artificial Intelligence for Android

Creating an intent
An intent is an instance of the Intent class.

The following are the most important pieces of information that can be present in an
intent object:

•	 The name of the component to be started. It is required only when building
an explicit intent because it identifies the target application or component. As
mentioned earlier, this needs to be a fully qualified class name or a package
name.

•	 The name of the action to be performed. This name is optional and is a string
understood by the target application. There are predefined action names in
the Intent class and elsewhere. We can define any other name, as long as the
receiving activity understands it.

•	 The category of the intent. It is not required and is used to determine the kind
of component that should handle the intent. The description of the Intent
class contains the list of categories available.

•	 The data that makes up the intent’s payload, if any. This data is transferred
as a URI and, optionally, an MIME type. It is not necessary if the intent’s
action does not require data transfer.

The system can determine an intent’s target component by looking at the combination
of all these attributes.

Showing our about activity with an intent
It is now clear that the best way to start our new activity is using an explicit intent.

We begin by changing the contents of the onAboutButtonClicked() method that
we implemented earlier in the MainActivity class:

1. private void onAboutButtonClicked(View view) {

2. final Intent aboutIntent = new Intent(

3. this,

4. AboutActivity.class);

5. startActivity(aboutIntent);

6. }

Remember that we know which component we want to target with this intent, so we
can use this shorthand constructor to specify the target component while creating
the intent.

Event Handling and Intents in Android 55

Its first parameter is a reference to the context, that is, the application package that
implements the target class. We supply a reference to the activity’s object because it
is also a context object.

The second parameter is the class that receives the intent.

We can also specify the component separately. Although it is not as convenient for
this specific usage, the following implementation is equivalent:

1. private void onAboutButtonClicked(View view) {

2. final Intent aboutIntent = new Intent();

3. aboutIntent.setComponent(

4. new ComponentName(this, AboutActivity.class));

5. startActivity(aboutIntent);

6. }

Note: It was not necessary to specify any action or category names in this case.
The precise set of intent attributes that are necessary varies depending on the
activity being launched.

With these changes in place, our user sees AboutActivity on the screen when they
tap on the About button.

The Android system keeps a stack of the previous activities in memory for navigation
purposes. A bit like the history in an internet browser, the activity history allows
users to return to the previously displayed activities using the device’s Back button.

So, we do not need any button in our AboutActivity to switch back to
MainActivity; the system takes care of this navigation. All we need to do is to click
on the device’s Back button. It causes the previous activity to be displayed, and that
is the MainActivity.

56 Hands-On Artificial Intelligence for Android

Figure 2.10 illustrates the flow we just implemented:

Figure 2.10: Getting to the About activity from the main activity and back

Returning a value from the target activity
We have seen how we can use an intent to show another activity. What if it becomes
necessary to have data sent back from the activity we have invoked?

It is a three-step process:

1. The source activity creates an intent as earlier but uses the startActivity
ForResult() method to start the target activity this time.

This method requires code to be provided, which identifies the result’s
source once it arrives. It is known only to the source activity.

2. The target activity creates an intent with the result, stores it using the
setResult() method, and terminates it by calling the finish() method.

The first parameter to setResult() is the result code. The standard code is
RESULT_OK and RESULT_CANCELED.

Event Handling and Intents in Android 57

3. The source activity gets its onActivityResult() method called with the
result.

The activity needs to use the request code and the result code to determine
what to do with the information.

Relatively straightforward, right?

We have modified our sample application to contain a new activity with a yes/no
question. This activity contains the question’s text and two buttons so that the user
can answer. Figure 2.11 illustrates this new activity.

The following components were placed in it, repeating the same procedures
illustrated earlier. The activity was also added to the manifest file.

1. <TextView

2. android:id="@+id/txt_question"

3. android:layout_width="wrap_content"

4. android:layout_height="wrap_content"

5. android:text="@string/question"

6. app:layout_constraintBottom_toBottomOf="parent"

7. app:layout_constraintEnd_toEndOf="parent"

8. app:layout_constraintStart_toStartOf="parent"

9. app:layout_constraintTop_toTopOf="parent" />

10.

11. <Button

12. android:id="@+id/btn_yes"

13. android:layout_width="wrap_content"

14. android:layout_height="wrap_content"

15. android:layout_marginBottom="32dp"

16. android:text="@string/yes"

17. app:layout_constraintBottom_toBottomOf="parent"

18. app:layout_constraintEnd_toStartOf="@+id/guideline"

19. app:layout_constraintStart_toStartOf="parent" />

20.

21. <Button

22. android:id="@+id/btn_no"

58 Hands-On Artificial Intelligence for Android

23. android:layout_width="wrap_content"

24. android:layout_height="wrap_content"

25. android:layout_marginBottom="32dp"

26. android:text="@string/no"

27. app:layout_constraintBottom_toBottomOf="parent"

28. app:layout_constraintEnd_toEndOf="parent"

29. app:layout_constraintStart_toStartOf="@+id/guideline" />

30.

31. <androidx.constraintlayout.widget.Guideline

32. android:id="@+id/guideline"

33. android:layout_width="wrap_content"

34. android:layout_height="wrap_content"

35. android:orientation="vertical"

36. app:layout_constraintGuide_percent="0.5" />

Note: We have used a vertical guideline to have the two buttons equally separated
from each other horizontally.

Naturally, the companion activity class also needs to be modified to work with the
new buttons and return the result.

The following changes have been made to the onCreate() method, and new
methods have been added as necessary:

1. @Override

2. protected void onCreate(Bundle savedInstanceState) {

3. super.onCreate(savedInstanceState);

4. setContentView(R.layout.activity_question);

5.

6. findViewById(R.id.btn_yes)

7. .setOnClickListener(this::onYesButtonClicked);

8. findViewById(R.id.btn_no)

9. .setOnClickListener(this::onNoButtonClicked);

10. }

11.

Event Handling and Intents in Android 59

12. private void onNoButtonClicked(View view) {

13. returnAnswer("no");

14. }

15.

16. private void onYesButtonClicked(View view) {

17. returnAnswer("yes");

18. }

19.

20. private void returnAnswer(String answer) {

21. final Intent result = new Intent();

22. result.putExtra("answer", answer);

23. setResult(RESULT_OK, result);

24. finish();

25. }

The code responsible for capturing and handling user events should be familiar. The
interesting part is the returnAnswer() method. As we described earlier, it creates an
intent, sets it as the activity’s result with setResult(), and terminates the activity
by calling finish().

The actual result data is sent within the intent as a piece of extended data. The URI
and MIME type can also be set if the desired result data fits this pattern. In a nutshell,
any data that can be sent in an intent to start an activity can also be sent in an intent
as a result.

Finally, we need to invoke this new activity and consume its result.

We have modified the main activity, so it has another button to ask the question now.
The identifier of the hello world text view has also been changed. We use this view
to display the answer.

1. <TextView

2. android:id="@+id/txt_mainMessage"

3. android:layout_width="wrap_content"

4. android:layout_height="wrap_content"

5. android:text="@string/hello_world"

6. app:layout_constraintBottom_toBottomOf="parent"

7. app:layout_constraintLeft_toLeftOf="parent"

60 Hands-On Artificial Intelligence for Android

8. app:layout_constraintRight_toRightOf="parent"

9. app:layout_constraintTop_toTopOf="parent" />

10.

11. <Button

12. android:id="@+id/btn_about"

13. android:layout_width="wrap_content"

14. android:layout_height="wrap_content"

15. android:layout_marginBottom="36dp"

16. android:text="@string/about_button"

17. app:layout_constraintBottom_toBottomOf="parent"

18. app:layout_constraintEnd_toStartOf="@+id/guideline1"

19. app:layout_constraintStart_toStartOf="parent" />

20.

21. <androidx.constraintlayout.widget.Guideline

22. android:id="@+id/guideline1"

23. android:layout_width="wrap_content"

24. android:layout_height="wrap_content"

25. android:orientation="vertical"

26. app:layout_constraintGuide_percent="0.33" />

27.

28. <androidx.constraintlayout.widget.Guideline

29. android:id="@+id/guideline2"

30. android:layout_width="wrap_content"

31. android:layout_height="wrap_content"

32. android:orientation="vertical"

33. app:layout_constraintGuide_percent="0.67" />

34.

35. <Button

36. android:id="@+id/btn_question"

37. android:layout_width="wrap_content"

38. android:layout_height="wrap_content"

Event Handling and Intents in Android 61

39. android:layout_marginBottom="36dp"

40. android:text="@string/question_button"

41. app:layout_constraintBottom_toBottomOf="parent"

42. app:layout_constraintEnd_toEndOf="parent"

43. app:layout_constraintStart_toStartOf="@+id/guideline2" />

Figure 2.11 depicts the new layout of the main activity.

The necessary modifications to the MainActivity class include:

•	 Registering for a new user event and handling it by calling QuestionActivity
expecting a result

•	 Handling the result returned by QuestionActivity

1. @Override

2. protected void onCreate(Bundle savedInstanceState) {

3. super.onCreate(savedInstanceState);

4. setContentView(R.layout.activity_main);

5.

6. findViewById(R.id.btn_about)

7. .setOnClickListener(this::onAboutButtonClicked);

8. findViewById(R.id.btn_question)

9. .setOnClickListener(this::onQuestionButtonClicked);

10. }

11.

12. private void onQuestionButtonClicked(View view) {

13. final Intent questionIntent = new Intent(this,

14. QuestionActivity.class);

15. startActivityForResult(questionIntent, REQUEST_AN_
 ANSWER);

16. }

17.

18. private void onAboutButtonClicked(View view) {

19. final Intent aboutIntent = new Intent(this,

20. AboutActivity.class);

62 Hands-On Artificial Intelligence for Android

21. startActivity(aboutIntent);

22. }

23.

24. @Override

25. protected void onActivityResult(int requestCode, int
resultCode, @Nullable Intent data) {

26.

27. if (requestCode == REQUEST_AN_ANSWER) {

28. setMessage(

29. resultCode == RESULT_OK

30. ? getString(R.string.answer_is,

31. data.getStringExtra("answer"))

32. : getString(R.string.hello_world)

33.);

34. } else {

35. super.onActivityResult(requestCode, resultCode,
 data);

36. }

37. }

38.

39. private void setMessage(String text) {

40. ((TextView) findViewById(R.id.txt_mainMessage))

41. .setText(text);

42. }

Note that the implementation of onActivityResult() needs to check if:

•	 The request code is the one it knows how to handle

•	 The result code indicates a valid result

Note: The activity is closed by the system when the user presses the Back button
on the question activity. In this case, no result was set. The onActivityResult()
method is still called by the system, but with the standard RESULT_CANCELED
result code.

Event Handling and Intents in Android 63

The main activity changes its message to display the result received when it receives
a valid result. Lines 30 to 32 from the previous excerpt show how we can use and
format string resources.

Figure 2.11: The question activity flow

Figure 2.11 illustrates the end state of all the activities we have created and modified
in this section, along with the expected flow:

1. First, the user taps on the QUESTION button

2. Then, the question activity is displayed

3. The main activity is updated when the user taps on one of the answers

Using Intents across Android applications
When we described intents in the previous section, we mentioned that the Android
system uses a combination of all fundamental intent attribute values to determine
the activity that must be started: the component and action names, the category, and
the data type.

It follows that we can start activities from any application in the device, provided
that the target activity allows it.

64 Hands-On Artificial Intelligence for Android

Intent filters in the application manifest
Remember the difference between explicit and implicit intents? An implicit intent
does not specify an activity name and contains only an action and category name
and, optionally, a data type.

To advertise the implicit intents that an activity can receive, they must be included
in the application’s manifest file under the form of intent filters.

Each intent filter declares the combination of the action name, category name, and
data type that the activity can accept.

Let’s look at our declaration of MainActivity in the manifest file again:

1. <activity android:name=".MainActivity">

2. <intent-filter>

3. <action android:name="android.intent.action.MAIN" />

4. <category android:name="android.intent.category.LAUNCHER"
 />

5. </intent-filter>

6. </activity>

In the previous chapter, we stated that the intent-filter element was meant to
allow the application to be started by the launcher. It now makes more sense—it
means that the MainActivity activity can accept intents with the given action and
category names.

Let’s pretend that our MainActivity was also able to accept some text to send
somewhere. We would then add a second intent filter, which would look like this:

1. <intent-filter>

2. <action android:name="android.intent.action.SEND" />

3. <category android:name="android.intent.category.DEFAULT" />

4. <data android:mimeType="text/plain" />

5. </intent-filter>

Note that the category name is android.intent.category.DEFAULT in this case.
You must declare this category name to receive implicit intents because it is used to
mark the default action to be performed on some data type. This category is not used
when creating the intent, but startActivity() and startActivityForResult()
handle the implicit intent as if it had been specified.

Event Handling and Intents in Android 65

Note: Intent filters do not affect explicit intents. Do not use intent filters if
you must prevent other applications from starting your activities with explicit
intents. Set the “exported” attribute to false for that activity instead. Consider
this example:

1. <activity android:name=".AboutActivity"

2. android:exported="false" />

Starting another application with an implicit
intent
Now that we know how to advertise our activities to other applications, we can see
how we can start other applications from our demonstration application.

You have probably already realized that the approach is similar to the one we chose
regarding explicit intents.

Let’s send the user to a web page using a web browser.

We first add a new button to our MainActivity so that the user can trigger the new
feature. Refer to figure 2.12 for an illustration of the main activity’s new layout.

1. <Button

2. android:id="@+id/btn_web"

3. android:layout_width="wrap_content"

4. android:layout_height="wrap_content"

5. android:text="@string/show_web_page"

6. app:layout_constraintBottom_toBottomOf="@+id/btn_about"

7. app:layout_constraintEnd_toStartOf="@+id/guideline2"

8. app:layout_constraintStart_toStartOf="@+id/guideline1" />

Then, we register to be informed when the user taps on the button:

1. @Override

2. protected void onCreate(Bundle savedInstanceState) {

3. super.onCreate(savedInstanceState);

4. setContentView(R.layout.activity_main);

5.

6. // (existing event registrations come here)

7.

66 Hands-On Artificial Intelligence for Android

8. findViewById(R.id.btn_web)

9. .setOnClickListener(this::onWebButtonClicked);

10. }

Finally, we create an implicit intent and start the target activity:

11. private void onWebButtonClicked(View view) {

12. final Intent webIntent = new Intent(

13. Intent.ACTION_VIEW,

14. Uri.parse("https://www.bpbonline.com"));

15. startActivity(webIntent);

16. }

Note that this new intent only contains an action name and the data URI. It does not
name any activity or package; the system finds the correct activity to start.

However, this approach has a problem— our application crashes if no activity
can handle the intent. The startActivity() method throws android.content.
ActivityNotFoundException if the system cannot resolve the intent to an activity.

Naturally, the first option to prevent the crash is to catch the exception:

1. try {

2. startActivity(webIntent);

3. } catch (ActivityNotFoundException ex) {

4. Log.d("MainActivity", "Can't show the web page.", ex);

5. }

Suppose you do not want to deal with exception handling in this situation or that
you want to use the intent to determine beforehand if an application capable of
viewing web pages is available.

In that case, the intent object exposes the resolveActivity() method, which can
be invoked to determine if a target activity can be found:

1. if (webIntent.resolveActivity(getPackageManager()) != null) {

2. startActivity(webIntent);

3. }

However, there is a catch.
Calling this method means the application is querying the system's list of installed
applications, albeit indirectly. Starting with Android 11, applications need to declare
these queries in the application manifest in most cases.

Event Handling and Intents in Android 67

It is, undoubtedly, required for this use case.

Our little application’s manifest needs to be extended with a new queries section, so
the resolveActivity() method works with our web intent in Android 11:

1. <queries>

2. <intent>

3. <action android:name="android.intent.action.VIEW" />

4. <category android:name="android.intent.category.
 BROWSABLE" />

5. <data android:scheme="https" />

6. </intent>

7. </queries>

Best practice: Applications are only supposed to ask for strictly necessary permissions.
The capability to query the list of installed applications is a type of permission.

Therefore, unless your application has a compelling use case for resolving
activities for implicit intents before submitting them to the system, the best
practice, in this case, is to handle the exception.

Once everything is in place, we should have an application that can execute the flow
illustrated in figure 2.12:

Figure 2.12: The web activity flow

68 Hands-On Artificial Intelligence for Android

As usual, the user can return from the browser to our main activity by clicking on
the Back button.

The flow for starting an activity in another application and receiving a result
is also identical to the one we demonstrated earlier. The other activity is started
with startActivityForResult(), and the source activity handles the result in
onActivityResult().

Of course, the intent needs to be specified according to the other activity’s
expectations when starting third-party activities. A list of some common intents is
available at https://developer.android.com/guide/components/intents-common.
html. If the desired action is not present in this list, you must contact the application’s
developers.

Conclusion
In this chapter, we saw how to work with activities—modifying and creating them
and handling the user’s interactions with their components. We then explained how
intents are used to help activities start other activities and transfer data back and
forth. Finally, we took advantage of the features implemented in other applications
to add functionality to our application.

The Kotlin language is becoming the go-to language for writing Android applications,
so the next chapter presents its fundamental features and syntax. It also shows
how an Android application can take advantage of an embedded database and the
available options for Android developers.

Building Our Base Application with Kotlin and SQLite 69

Chapter 3
Building Our Base

Application with
Kotlin and

SQLite
Introduction
This chapter explores how to build the application that serves as the basis for
examples in the following chapters. The big difference is that it is written in the
Kotlin language instead of Java. Kotlin is a relatively new language that was adopted
as an alternative to Java in Android Studio.

Some example applications need to store user data permanently. We build a data
persistence layer to be used by an application and show how this is used to create an
application database, supported by the SQLite engine and the Room ORM.

Structure
We cover the following topics in this chapter:

•	 A first glance at the Kotlin language

•	 Fundamentals of the Kotlin language

•	 Using a SQLite database in our application

•	 Object-relational mapping

•	 Working with a database with Room ORM

70 Hands-On Artificial Intelligence for Android

Objectives
By the end of this chapter, you are familiarized with the most significant differences
between Java and Kotlin. You can read the Kotlin code used in the examples and
explanations and are familiar with the advantages of Kotlin over Java.

You can also understand how to store different application data types in the device
and interact with the Android system for that purpose.

A first glance at the Kotlin language
How do we use Kotlin to write our Android application? We can mix Kotlin and Java
in the same project, but the easiest and simplest way is to generate an application
from scratch already configured for the Kotlin language.

Let’s do it then. We create a new Android application project, similar to what we did
in the previous chapters, with the difference being that we ensure that we select the
Kotlin language in the project configuration dialog box. Take a look at figure 3.1:

Figure 3.1: Creating a Kotlin-based project

Building Our Base Application with Kotlin and SQLite 71

That’s all it takes. The code is generated in the Kotlin language now. The location is
the same as for the Java files to make it easier to mix languages, but the file extension
is now .kt instead of .java.

Best practices: Languages can be mixed in the same project, but we do not
recommend it. It is a lot easier to read and understand a codebase if it is written
in the same language.

Now that the empty activity has been generated, let’s see how the Kotlin version is
different from the Java one.

First, recall the old Java code:

1. package com.book.example.activities;

2.

3. import androidx.appcompat.app.AppCompatActivity;

4. import android.os.Bundle;

5.

6. public class MainActivity extends AppCompatActivity {

7. @Override

8. protected void onCreate(Bundle savedInstanceState) {

9. super.onCreate(savedInstanceState);

10. setContentView(R.layout.activity_main);

11. }

12. }

Now, look at the new Kotlin code:

1. package com.book.example.base

2.

3. import androidx.appcompat.app.AppCompatActivity

4. import android.os.Bundle

5.

6. class MainActivity : AppCompatActivity() {

7. override fun onCreate(savedInstanceState: Bundle?) {

8. super.onCreate(savedInstanceState)

9. setContentView(R.layout.activity_main)

72 Hands-On Artificial Intelligence for Android

10. }

11. }

They’re strikingly similar, albeit using different paradigms. We discuss the Kotlin
syntax and semantics in the upcoming sections, but we can already make a small list
of the most significant differences in these few lines of Kotlin code:

•	 Semicolons are optional at the end of the statements

•	 There are no visibility declarations because Kotlin defaults to public visibility

•	 Kotlin requires an explicit override keyword in overridden methods

•	 There is no extends keyword, but only a colon

•	 The base class constructor is invoked explicitly

•	 Type names come after the variable name

•	 Nullable variables must be declared explicitly with a question mark on the
type name; Kotlin’s default is that variables cannot be null

Fundamentals of the Kotlin language
Kotlin is quite intuitive for a Java developer, but it’s better to take some time to
discuss the basics of this new language.

One of the arguments in favor of Kotlin is that it has the most recognizable aspects
of functional languages like Scala and does away with the extreme verbosity that we
all recognize in Java.

Although Java got a lot better after streams, lambdas, method references, and default
interface methods were introduced in version 8, Kotlin can still make a difference.
Let’s see how.

Note: What follows is by no means a comprehensive description of the Kotlin
language. It should be enough for you to understand our usage of Kotlin in this
book, but there is much more to explore.

Packages
Kotlin code files may start with a package declaration, like Java.

Unlike Java, however, there is no connection between a package declaration and
the file’s location in the file system. It is recommended that they match to ease
the developer’s cognitive burden (a fancy way of saying that it saves you from
memorizing their locations), but it is not required.

Building Our Base Application with Kotlin and SQLite 73

A package declaration is optional. All declarations inside that file are placed in the
default package when it is absent.

Code organization
Unlike Java, Kotlin does not require a function to be inside a class. Additionally, it
does not require variable declarations to be inside a class.

Visibility
Just like Java, Kotlin does not require a declaration’s visibility to be explicitly
modified. When not modified, that symbol (variable, function, class, and so on) is
public.

Kotlin supports the following visibility modifiers:

•	 Private

•	 Protected

•	 Internal

•	 Public

Generally speaking, private declarations are only visible within the same scope—file
for top-level declarations or class for member declarations. Protected declarations
are the same as private, except for subclasses, where they are also visible. Internal
declarations are visible only inside the same module. Finally, public declarations are
the default and are visible everywhere.

Data types
Kotlin supports the same basic data types as Java, except that it does not distinguish
between primitive and boxed types. All types look like objects to the user, regardless
of their internal representation.

The following numeric types are supported:

•	 Byte

•	 Short

•	 Int

•	 Long

•	 Float

•	 Double

74 Hands-On Artificial Intelligence for Android

Floating-point properties are initialized with numeric literal constants with a decimal
part (for example, 1.0) and default to the Double data type. To specify the Float
type explicitly, add an f suffix (for example, 1.0f).

There are also types dealing with Boolean values, characters and strings:

•	 Boolean

•	 Char

•	 String

An interesting deviation from Java and other languages is that arrays are represented
as Array class instances. The Array class receives a type parameter that defines
the type of its elements. Arrays are created using the arrayOf() function or the
constructor that takes a size and an initializer function:

1. val lettersArray: Array<String> = arrayOf("a", "b", "c")

2. val stringNumbersArray: Array<String> =

3. Array(10) { index -> index.toString() }

For efficiency purposes, specific array classes are defined for types that can be
represented internally as primitives: integers, shorts, and so on. These have their
own types, such as IntArray, and builder methods, such as intArrayOf().

1. val anArray: IntArray = intArrayOf(1, 2, 3, 4)

Items in the array can still be accessed in the usual way with square brackets:

1. println(anArray[1])

Although an array is an instance of the Array class or one of the specialized classes,
item indexing with square brackets works, thanks to a Kotlin feature called operator
overloading. We are not covering this topic in this book, but it is a powerful feature
that should be used cautiously. Readers with a background in C++ are probably
familiar with a similar implementation in that language.

Variables and properties
A property is declared using the var or val keyword, followed by the variable name,
a colon, the variable type, and an initializer.

The property is mutable when using the var keyword, and the property becomes
immutable (that is, read-only) when using the val keyword.

The following is a declaration of a mutable property:

1. var age: Int = 42

Building Our Base Application with Kotlin and SQLite 75

It can be modified in a function in the usual way:

1. fun birthday() {

2. age = age + 1

3. }

An immutable property is defined just by using the val keyword:

1. val age: Int = 42

In Java, we would call it a final variable. We get a compilation error if we attempt to
change its value:

1. fun birthday() {

2. age = age + 1 // ERROR: Val cannot be reassigned

3. }

The initialization of a property is mandatory: there are no default property values.
When the property is declared inside a class, its initialization may be done through
the class constructor.

When declared inside a function, properties are just variables. However, they gain
powerful additional features and become real properties in the object-oriented sense
when declared in global or class scope.

Remember the simple declaration of an age property?

1. var age: Int = 42

The following would be a possible equivalent implementation of the same
declaration, but in Java:

1. private int age = 42;

2.

3. public int getAge() {

4. return age;

5. }

6.

7. public void setAge(int value) {

8. age = value;

9. }

76 Hands-On Artificial Intelligence for Android

That’s right. As a rule of thumb, mutable Kotlin properties are composed of a backing
field, a setter, and a getter. Naturally, immutable properties cannot have a setter.

Because of this, property declarations also allow us to redefine their setters and
getters. This flexibility has many uses.

For example, we can redefine the accessor’s visibility. In the following excerpt, the
mutable property can be modified only within the current scope. Other users can
only read it.

1. var age: Int = 42

2. private set

Or we can manipulate the value returned by the getter. The following excerpt
manipulates the property’s backing field:

1. var name: String = "mary"

2. get() = field.capitalize()

We can also have an immutable property that is backed only by some other function:

1. val isEmpty: Boolean

2. get() = this.size() == 0

The power behind this automatic generation of getters or setters makes even more
sense once we realize that the need for writing those accessors as disjoint functions
in classes has disappeared.

Tip: Always define a property or variable as immutable, using the val keyword.
This way, you avoid having mutable state in your application, which can be a
problem with parallel programming. If you decide later that you must change
the property’s contents, you can always change it into a var.

Type inference
Surely you have noticed that all declarations presented so far have included the type
being used in the property.

Kotlin supports type inference, which means it is not necessary to specify the type
of a property or the return type of a function as long as the compiler can figure it out
automatically from the code.

For example, given the following declarations:

1. val longWithType: Long = 1234

2. val intWithType: Int = 987

Building Our Base Application with Kotlin and SQLite 77

The following ones are equivalent:

1. val longWithoutType = 1234L

2. val intWithoutType = 987

Note that we did not specify the property types in the second excerpt. Due to their
initializers, the compiler can determine the correct type to use.

Pay particular attention to line 1 on both excerpts. We need to ensure that the correct
suffix is used when a type is not specified and we use numeric literal constants as
initializers, hence the L suffix to denote a long integer in the second version.

It may be tempting – and scary – to think that this kind of type inference means
no type safety in Kotlin. This thought is not true: Kotlin remains a strongly typed
language. The feature is there to save us some typing. If the compiler is faced with
an ambiguous expression, it refuses to compile the declaration.

Tip: Be careful with type inference, especially when exposing public functions
or properties. The lack of a type declaration may make it difficult for a human
reader to fully understand the function or property’s semantics. Consider
including the type when it is not clear from the full declaration.

Functions
We already know that some packages and static functions are always imported
automatically in Kotlin code files. Thus, the following is a perfectly valid Kotlin
program:

1. fun main() {

2. println("here I am!")

3. }

Let’s dissect these three lines, shall we?

The function declaration begins immediately without the need for an enclosing
class. It starts with the fun keyword, which is shorthand for function. There is no
visibility declaration, which means the function is public. Finally, there is no return
value type, which means the function does not return anything.

One function call lies inside the function body. Note that there is no import statement
for this function because many static functions are imported automatically by the
Kotlin compiler. There is no semicolon; it is optional.

We add the return type after the argument list, preceded by a colon, when we need
to return a value from our function.

78 Hands-On Artificial Intelligence for Android

1. fun add(x: Int, y: Int): Int {

2. return x + y

3. }

This new function is then invoked like we expect to do in Java:

1. fun main() {

2. println("I can add 2 and 2 together: " + add(2, 2))

3. }

When the function body can be reduced to a single expression, we can even omit the
curly braces and use an equals sign, as follows:

1. fun add(x: Int, y: Int): Int = x + y

Nice, right? Almost like a property declaration!

As discussed in the previous section, type inference also applies to functions. So, the
following is an equally correct declaration of the add() function:

1. fun add(x: Int, y: Int) = x + y

It is expected that the function returns an integer because it adds two integers. Its
expression is clear, so this is a case when omitting the type from the declaration does
not harm the understanding of the function’s semantics.

In Java, we can talk about functions and methods. The difference is that the former
return some value while the latter do not return anything. This distinction does not
exist in Kotlin.

Kotlin always declares functions, which means that they always have a return
value. What about void functions or functions that do not return anything, like the
preceding main() function?

There is a particular type in Kotlin used when a function does not return anything
useful—Unit. The Unit type cannot be instantiated, a bit like the Void type in Java.
Unlike Java’s Void type, however, it is impossible to convert the null value to an
instance of Unit.

The compiler uses type inference, so we do not need to specify Unit as the return
type of a function with no return statement. Therefore, the following declaration of
the main() function is equivalent to the one we presented initially.

1. fun main(): Unit {

2. println("here I am!")

3. }

Building Our Base Application with Kotlin and SQLite 79

Of course, it is preferable to omit the return type declaration for functions like this.

Given that these functions do return a value (Unit), the following is also legal Kotlin
code, albeit not idiomatic and not very useful:

1. fun main(): Unit /* redundant type */ {

2. // I do nothing

3. return Unit // this statement is unnecessary

4. }

5. val result: Unit = main() // why would we do this?

Nobody should write code like this.

Lambda expressions
Lambda expressions in Kotlin have a syntax similar to Java, albeit with some
differences.

The first difference is that we do not need to define a functional interface to represent
a function type. Function types exist in Kotlin.

1. val add: (Int, Int) -> Int =

2. { a: Int, b: Int -> a + b }

The preceding excerpt defines a property called add. This property has a type like
any other, which, in this case, is a function type. The property becomes a reference to
a function that takes two integer arguments and returns an integer value.

It is initialized using the usual pattern, but in this case, we declare a lambda using
curly braces. Inside this body, we declare the function’s arguments on the arrow
operator’s left-hand side and its body on the right-hand side.

Note that the function arguments must be qualified with their types. This is necessary
because type inference works from right to left, that is, it needs a fully qualified type
on the right side operand to infer the type of the left side operand.

Taking advantage of type inference, we can rewrite the property declaration as
follows:

1. val add = { a: Int, b: Int -> a + b }

Then we can use it as a function declared with the fun keyword:
1. fun main() {

2. println("I can add 2 and 2 together: " + add(2, 2))

3. }

80 Hands-On Artificial Intelligence for Android

It is seldom useful to declare properties that hold functions. However, knowing how
to declare a property (or variable) of a function type, we can now introduce the
concept of a higher-order function.

A higher-order function is a function that takes another function as an argument.

We already have a function that adds two integers. We can write the following if we
want to define a function that doubles the result of an operation on two integers:

1. fun twice(a: Int, b: Int, operation: (Int, Int) -> Int): Int =

2. 2 * operation(a, b)

Note that the last argument of the twice function is a function type. It accepts any
function that takes two integers as arguments and returns an integer value.

We can now write this:

1. val add = { a: Int, b: Int -> a + b }

2.

3. fun twice(a: Int, b: Int, operation: (Int, Int) -> Int) =

4. 2 * operation(a, b)

5.

6. fun main() {

7. println("I can double 2+2: " + twice(2, 2, add))

8. }

In this specific situation, we don’t gain anything from having the add() function
defined as a function type property. We can rewrite this excerpt using a method
reference:

1. fun add(a: Int, b: Int) = a + b

2.

3. fun twice(a: Int, b: Int, operation: (Int, Int) -> Int) =

4. 2 * operation(a, b)

5.

6. fun main() {

7. println("I can double 2+2: " + twice(2, 2, ::add))

8. }

Note the two colons before the name of the add() function in this version. They
indicate that we do not want to invoke it but rather take its reference and assign it a
variable, in this case, the twice() function’s last argument.

Building Our Base Application with Kotlin and SQLite 81

If we want to write a lambda function directly as the twice() function’s operation
argument, we can:

1. twice(2, 2, { a,b -> a + b })

It’s simple and, again, quite similar to Java.

Our twice() function illustrates a particularity with Kotlin’s syntax regarding
lambda functions. When the function type argument is the last in the function’s
argument list, the recommended way of writing the lambda function is outside of
the argument list:

1. twice(2, 2) { a,b -> a + b }

This syntax takes some getting used to. Its benefit becomes apparent when chaining
functions that take lambdas as their only argument. Let’s take the IntArray class as
an example. We can operate on the array’s elements by chaining some of this class’s
functions:

1. val result = intArrayOf(1, 2, 3)

2. .filter {

3. it % 2 == 0

4. }

5. .map {

6. it * 2

7. }

8. println(result) // prints [4]

In this excerpt, we take an array of integers, filter it so that only even numbers are
present, and double these numbers. Both the filter() and map() functions take
a single argument, which is a function of (Int) -> Int type. You can now see
how Kotlin’s syntax of favoring placing the last lambda argument outside of the
function’s argument list improves legibility in situations like this.

This excerpt also showcases another bit of syntactic sugar that Kotlin applies to
lambda functions. When the function receives only one argument, it is unnecessary
to use the arrow operator to declare it. Instead, use the predefined variable it to
refer to the single argument inside the lambda’s body. Short lambdas then kind of
read like an English sentence: map it (times) 2.

All these details may look a bit overwhelming at first, but it’s only a matter of practice
before they become second nature.

82 Hands-On Artificial Intelligence for Android

Nullability
In Java, every variable of a non-primitive type can hold a null reference. So, it is
relatively easy to cause NullPointerExceptions if we are not careful. Many good
applications’ code is littered with null checks:

1. if (/* something is not null */) {

2. // use something

3. }

And yet, the danger of trying to dereference a null reference exists. All these checks
add unnecessary cognitive and runtime complexity to the application. Developers
are often left wondering if a function’s result can ever be null when the code’s
original writer did not document that.

Kotlin’s type system’s goal is to eliminate that uncertainty and, with it, the danger
of null references; no usages of types allow null values unless expressly stated
otherwise.

However, many functions return nullable values when interacting with Java code.
We need to be able to receive these nullable values from Java and handle them
properly.

On the other hand, we may need to write a Kotlin function that does not always
return a value. In this case, we are forced to return a null value because the Kotlin
language does not have an equivalent to Java’s Optional class.

When a property or argument must be allowed to contain a null value, the developer
must suffix the type name with a question mark:

1. val name: String = null

2. // Error: null cannot be a value of non-null type String

3.

4. val name: String? = null

5. // OK

The same principle applies to function return values.

This way, we can be sure that a given value can never be null unless explicitly
declared.

What if the value is null and we forget to check it? When working with nullable
values, the compiler forces us to perform null checks:

1. val name: String? = "john"

2. println(name.capitalize()) // COMPILATION ERROR

Building Our Base Application with Kotlin and SQLite 83

We can obtain compilable code using a standard if statement:

1. val name: String? = "john"

2. if (name != null) {

3. println(name.capitalize())

4. }

Another option is to use the safe call operator (?.). This operator results in a null
check that executes the call and returns its result if the value is not null, returning
null otherwise.

1. val first: String? = "john"

2. val last: String? = null

3. println(first?.capitalize()) // prints "John"

4. println(last?.capitalize()) // prints "null"

You can combine the safe call operator with the let() or run() functions if you
want to do something only if a value is not null:

1. val first: String? = "john"

2. val last: String? = null

3. first?.let { // prints "john"

4. println(it)

5. }

6. last?.run { // does not print anything

7. println("no")

8. }

It is also possible to use the Elvis operator (?:), which bears some resemblance to the
ternary operator. When given a nullable reference, it returns the reference’s value if
it is not null; otherwise, it returns another value.

1. val name: String? = null

2. val trueName = name ?: "unknown"

We can also combine it with the safe call operator:

1. val name: String? = null

2. val nameLength = name?.length ?: -1

In the previous excerpt, the nameLength variable contains -1 if name was null.

84 Hands-On Artificial Intelligence for Android

Finally, for completeness, we can force a NullPointerException by using the not-
null assertion operator (!!.). It returns the reference if it is not null and throws a
NullPointerException otherwise:

1. fun changeCase(name: String?) =

2. name!!.capitalize()

The preceding function throws a NullPointerException if the name parameter is
null. Otherwise, it returns the capitalized version of the parameters’ contents.

Tip: Generally speaking, using the not-null assertion operator is a bad practice.
Try to avoid null values as much as possible in your program, handling them
at the earliest. You may even consider using external libraries like Arrow Core
(https://arrow-kt.io), which add popular functional programming abstractions
to Kotlin, such as Option, Try, or Either.

Classes and objects
It should not come as a surprise that Kotlin also supports classes, once again, with
some improvements and extra features when compared to Java.

We start with the class declaration. Like in Java, a class is declared using the class
keyword followed by its name and body:

1. class Animal {

2. /* ... */

3. }

Kotlin’s syntax diverges from Java’s at this point. Kotlin classes have a primary
constructor and can have several secondary constructors. A default constructor that
takes no parameters is generated if no constructor is defined.

The definition of the primary constructor follows the class name. The simplest way
to declare it is to provide the constructor’s argument list. This can then be used for
property initialization.

Classes are instantiated by calling the class name as if it was a function. There is no
“new” keyword in Kotlin.

1. class Pet(birth: LocalDate) {

2. val age = YEARS.between(birth, LocalDate.now())

3. }

4.

5. val p = Pet(LocalDate.of(2005, Month.FEBRUARY, 2))

Building Our Base Application with Kotlin and SQLite 85

6.

7. println(p.age) // today, prints 16

Suppose we want to have class properties initialized directly from constructor
arguments. In that case, Kotlin supports an abbreviated syntax—use the val
keyword before the argument declaration (or var if the property must be mutable).

1. class Pet(birth: LocalDate, val name: String) {

2. val age = YEARS.between(birth, LocalDate.now())

3. }

4.

5. val p = Pet(LocalDate.of(2005, Month.FEBRUARY, 2), "Scruffy")

6.

7. println("${p.name} is ${p.age} years old.")

8. // prints: Scruffy is 16 years old.

We must use the constructor keyword if we need to change the constructor’s
visibility or add annotations to it:

1. class Application @Inject constructor(customers: Repository) {

2. /* ... */

3. }

Secondary constructors are simple to declare with the constructor keyword. They
must delegate to the primary constructor and always run after all initializations have
completed. The delegation is accomplished by placing a colon after the secondary
constructor’s declaration and invoking the primary constructor using the this
keyword.

Suppose we want to specify a default name if the pet’s name is not known. We can
do it using a secondary constructor:

1. class Pet(birth: LocalDate, val name: String) {

2. val age = YEARS.between(birth, LocalDate.now())

3.

4. constructor(birth: LocalDate) : this(birth, "Unknown") {

5.

6. }

7. }

86 Hands-On Artificial Intelligence for Android

We can also do it by providing a default value to the name argument in the primary
constructor. Like Java, Kotlin supports default argument values.

1. class Pet(birth: LocalDate, val name: String = "Unknown") {

2. val age = YEARS.between(birth, LocalDate.now())

3. }

There is also a particular type of class in Kotlin—the data class:

1. data class User(val id: Int, val name: String)

A Kotlin data class is a class that is meant to be used as a vehicle for transporting
data. It is very convenient because the compiler automatically generates the
toString(), hashCode(), and equals() functions, among others, by using the
data class declaration.

Kotlin classes are final by default. They must be declared with the open modifier to
allow inheritance. The same applies to any functions inside the class—they must be
declared open to be overridden.

Derived classes declare their ancestor by following their declaration with a colon
and the ancestor’s constructor invocation:

1. open class Pet(birth: LocalDate, val name: String = "Unknown") {

2. val age = YEARS.between(birth, LocalDate.now())

3. }

4.

5. class Dog(birth: LocalDate, name: String = "Rufus"): Pet(birth,
name)

6.

7. val p = Dog(LocalDate.of(2005, Month.FEBRUARY, 2))

8.

9. println("${p.name} is ${p.age} years old.")

10. // prints: Rufus is 16 years old.

In the preceding excerpt, we declared a new Dog class that extends from Pet. At the
same time, we changed the default pet name. Note that Dog does not have any new
properties or functions, so there is no need to declare the class's body.

The implementation of an interface is done similarly, except that interfaces do not
have constructors.

Building Our Base Application with Kotlin and SQLite 87

In addition to constructors and properties, Kotlin classes can, of course, also contain
functions. Functions declared in interfaces or open functions declared in the base
class are implemented in the derived class with the override modifier, as seen in the
MainActivity class earlier in this chapter.

Singletons are quickly declared in Kotlin as object declarations:

1. object Directories {

2.

3. fun findLogDirectory(): String {

4. /* ... */

5. }

6.

7. }

There is no need to have all the Java boilerplate of static instance variables to hold
the object’s reference.

This section was a rapid introduction to the way classes are handled in the Kotlin
language. You are encouraged to explore other related Kotlin features, like nested
classes, inner classes, object expressions, and companion objects.

Using a SQLite database in our application
Sometimes an Android application needs to store variable amounts of records in
the device. These could be an optimization, such as a cache of downloaded data, or
something related to the application’s usage in that device.

A database may be a good option whenever such records have a fixed structure, are
repeatable and need to be queried, or have relations between them.

Let’s take a quick look at the support that Android offers for these needs.

Implementing SQLite in Android
SQLite is a small and self-contained SQL database engine. This statement means
that SQLite allows building an application that takes advantage of an SQL database
without a dedicated database server.

In practical terms, the SQLite libraries work with single-file databases or with in-
memory databases. The latter is suitable for testing or volatile data, and the former
is what most applications use to persist user data under the form of records (rows in
relational database terminology).

88 Hands-On Artificial Intelligence for Android

SQLite is used as any other database engine. The application issues SQL statements
to create, alter, and delete tables and insert, update, and delete rows in those tables.

The Android system includes APIs for handling SQLite databases, so no extra library
is required in an Android application.

Like any other database, the first task is to design the tables. In other words, we need
to define the structure of the data that we want to store.

Suppose we want to store some basic user information. We can come up with a table
that contains the following data:

Column name Data type Notes
ID Integer User ID number: must be unique
NAME String The user name

Table 3.1: A possible structure for a table containing user information

The set of information about the database tables and their columns is called the
database schema. We can then translate part of this schema into our code as an object.

1. object UserTable {

2. const val TABLE_NAME = "USER"

3. const val COLUMN_ID = "ID"

4. const val COLUMN_NAME = "NAME"

5. }

Once in possession of the structure and names of the tables we need in our database,
we can begin to use the Android SQLite API. We start by defining a class that extends
from SQLiteOpenHelper.

1. class SQLiteUserDatabase(context: Context)

2. : SQLiteOpenHelper(context, DATABASE_NAME, null, DATABASE_
 VERSION) {

3. /* ... */

4. }

SQLiteOpenHelper provides all the machinery necessary to manage the following
responsibilities:

•	 Storing the database file in a private location. The database file is placed in
a location in the device’s filesystem accessible only by the application that
created it.

•	 Creating and updating the database only when needed.

Building Our Base Application with Kotlin and SQLite 89

•	 Versioning the database. Our code is then informed if there is a need to
change the database schema.

As depicted in the previous excerpt, the class’s constructor needs a database name,
which is the name of the file that contains the data, a number that identifies the
version of the database schema, and an Android context. It is necessary to increment
the version number every time a new application is released with changes in the
database schema.

It is mandatory to override two functions from the SQLiteOpenHelper class.

The first is the onCreate() function, which is responsible for creating the database
schema and is executed when the database does not exist yet. Our implementation
may just need to execute the necessary SQL to create the table we designed earlier.

1. override fun onCreate(db: SQLiteDatabase) {

2. db.execSQL("""

3. CREATE TABLE ${UserTable.TABLE_NAME} (

4. ${UserTable.COLUMN_ID} INTEGER PRIMARY KEY,

5. ${UserTable.COLUMN_NAME} TEXT

6.)

7. """.trimIndent())

8. }

Note that we are taking advantage of Kotlin’s string templates to build the SQL
statement that creates our table. There is nothing fancy going on, just simple SQL
statements.

The second mandatory function is onUpgrade(). It is called when the system
determines that the database had been created previously, but it is an older version.
This mismatch happens when we change the database version supplied in the
constructor. Our implementation is then responsible for making all adjustments
necessary to the existing database, ensuring that its schema is updated.

Many different upgrade strategies are possible. For the sake of demonstration, we
assume that the user table is some sort of cache that is rebuilt as necessary. So, data
can be discarded, and the table can simply be removed and rebuilt. Other scenarios
may need a more complicated approach.

1. override fun onUpgrade(db: SQLiteDatabase,

2. oldVersion: Int, newVersion: Int) {

3. db.execSQL("DROP TABLE IF EXISTS ${UserTable.TABLE_NAME}")

4. onCreate(db)

5. }

90 Hands-On Artificial Intelligence for Android

Now that the code for creating and updating the database is in place, it is time to
work with data. Let’s see how we can implement the fundamental create, update,
and delete operations.

We need to call the getWritableDatabase() method from the SQLiteOpenHelper
class to get a writable reference to an instance of the actual database. This call is a
heavy operation, which is why the SQLiteOpenHelper class keeps the reference
alive for us until the database is closed or its getReadableDatabase() counterpart
is called. This way, a second write operation does not incur the high cost of opening
and preparing the database.

The insertion of a new record can be implemented as follows:

1. fun insertUser(user: User): Boolean {

2. val userValues = ContentValues().apply {

3. put(UserTable.COLUMN_ID, user.id)

4. put(UserTable.COLUMN_NAME, user.name)

5. }

6. return writableDatabase.let {

7. it.insert(UserTable.TABLE_NAME, null, userValues) != -1L

8. }

9. }

We create an instance of the ContentValues class with the column names and the
data that each column will contain. Afterward, we call the insert() function on
the writable database instance obtained from getWritableDatabase(). The former
only needs the table name and the values, returning the number of rows inserted or
-1 if an error occurs.

A replace operation translates into a SQL UPDATE statement. This statement is
generated by calling the update() function on a writable database instance. It also
returns the number of rows that were affected by the operation.

1. fun updateUser(user: User): Boolean {

2. val userValues = ContentValues().apply {

3. put(UserTable.COLUMN_NAME, user.name)

4. }

5. return writableDatabase.update(

6. UserTable.TABLE_NAME, userValues,

7. "${UserTable.COLUMN_ID}==?",

Building Our Base Application with Kotlin and SQLite 91

 arrayOf(user.d.toString())

8.) > 0

9. }

Similar to its insert() cousin, it needs the table names and the values being updated.
Just like a SQL UPDATE statement, it also requires the WHERE clause condition and an
array of values to be used as arguments to the condition. This separation prevents
the typical SQL injection security vulnerability because the condition arguments are
not used directly in the condition string, making it impossible to manipulate the
resulting statement.

The update() function also returns the number of rows affected by the operation.

The removal of rows can be achieved by the delete() function. Its usage is identical
to its cousin update().

1. fun removeUser(userId: Int): Int =

2. writableDatabase

3. .delete(UserTable.TABLE_NAME, "${UserTable.COLUMN_ID}==?",

4. arrayOf(userId.toString()))

Finally, the only operation missing from the basic set of operations is a reading
operation. Like it is necessary to call getWritableDatabase() to obtain a writable
database reference, we also need to call getReadableDatabase() to obtain a
readable database reference. This call results in a heavy operation as well, and the
same rules apply.

The well-known SELECT SQL statement is generated internally by the query()
function. Its most straightforward usage is shown in the following excerpt, where
we only need to supply the set of columns we want to read and the name of the
target table. It also supports other clauses, such as the WHERE, GROUP, HAVING, and
ORDER, but we do not address them here.

The query() function returns a Cursor, which is akin to an iterator because it
allows us to access all items in the set of tuples returned by the SELECT statement. It
provides some functions to that end, including moveToFirst(), moveToNext(), and
moveToPosition() as well as count(), to retrieve the number of rows returned.

1. fun listUsers(): List<User> =

2. readableDatabase.let { db ->

3. db.query(UserTable.TABLE_NAME, arrayOf(UserTable.COLUMN_ID,

4. UserTable.COLUMN_NAME), null, null, null, null,

92 Hands-On Artificial Intelligence for Android

 null)

5. .use { cursor ->

6. List(cursor.count) { index ->

7. cursor.moveToPosition(index)

8. User(

9. cursor.getInt(cursor.getColumnIndex(

10. UserTable.COLUMN_ID)),

11. cursor.getString(cursor.getColumnIndex(

12. UserTable.COLUMN_NAME))

13.)

14. }

15. }

16. }

The cursor must be closed once it is no longer needed. This operation releases
resources associated with it and ensures that the application is free from leaks. To do
so, we used the Kotlin function use() in the previous excerpt.

Testing SQLite-based databases
Proper operation of the database class can be validated using a unit test. The test
needs to be instrumented because this class requires a valid Android context.

1. @RunWith(AndroidJUnit4::class)

2. class SQLiteUserDatabaseTest {

3. @Test

4. fun userIsInserted() {

5. SQLiteUserDatabase(ApplicationProvider.getApplicationContext(),
 null)

6. .use { database ->

7. val inserted = database.insertUser(User(1, "test"))

8. assertTrue(inserted)

9. val users = database.listUsers()

10. assertThat(users, contains(User(1, "test")))

11. }

Building Our Base Application with Kotlin and SQLite 93

12. }

13. }

Note that we have created an instance of SQLiteUserDatabase with a null database
name in this test. This absence of a name prevents creating a file, creating an in-
memory database that is destroyed once the test finishes instead.

Note: Any class that derives from SQLiteOpenHelper also exposes a close()
function. This function must be called to release resources when the database
is no longer necessary; it’s proper housekeeping. The current advice is to call it
from the onDestroy() callback of the calling Activity.

Consequences of using SQLite directly
As we saw in the previous section, the Android API that encapsulates the SQLite
libraries is quite powerful. It is also a pretty low-level API.

By using the SQLiteOpenHelper and its methods, we have the full power of SQLite
at our fingertips. Still, our implementation does not have any explicit relationship to
the application’s data model. We must manually verify whether the conditions we
chose for each operation are sound every time we modify the data model.

We need to write code to convert our data model classes to and from the API data
model. In other words, we need to manually map the class attributes to table columns.

Schema migrations also pose problems. For example, we must write an update
manually if the database schema needs to be modified because a new attribute was
added to a data model class and its corresponding table needs a new column. We
must be careful and define a migration path for all database versions.

These inconveniences do not mean that the SQLiteOpenHelper API should not be
used. They mean that many applications do not need this added complexity.

Understanding object-relational mapping
Some of the preceding problems can be alleviated using a technique known as
Object-Relational Mapping (ORM).

ORM intends to reduce the developer’s workload by taking care of the conversion
between the classes representing the data model and the database tables that
implement its storage.

Looking back at the code from the SQLite in Android section, an ORM implementation
would take care of handling the ContentValues creation and population, calling
the getters in the Cursor, and copying data to and from the User class in general.

94 Hands-On Artificial Intelligence for Android

Besides mapping class attributes to and from table columns, an ORM can create SQL
queries automatically. It often infers the table column names from the class attribute
names and the table name from the class name. With this information in hand, it can
build SQL statements. The complexity of these SQL statements depends, of course,
on the level of sophistication of the ORM implementation.

Using an ORM has at least three significant advantages over using a database’s API
directly:

•	 The ORM can automatically validate and ensure that the database schema
always matches the application’s data model classes

•	 The same kind of validation can be applied to SQL queries and statements
in general

•	 It can correlate classes with tables, so an ORM can often build the database
schema automatically

Fortunately, there is a small ORM included in the Android Jetpack library collection.
It is called Room, and the following section shows how it can be used in an Android
application.

Working with a database with Room ORM
The Room library provides some benefits over the Android SQLite API. It is not a
full-featured ORM like Hibernate, but it already provides some features that make
the developer’s life easier:

•	 Code generation based on annotations

•	 SQL queries can be validated at compile time

•	 Friendlier database migrations

Getting started
Naturally, the Room library is not included by default in projects generated by
Android Studio because all applications don’t need to persist structured data.

To get started with Room, we must check if all the following artefacts and
configurations are present in the application module’s Gradle build file:

•	 Enable annotation processing with the kapt compiler plugin. This plugin
enables code generation based on annotations by the Room compiler.

•	 Include the Room library dependencies:
o The runtime and compiler dependencies are mandatory in all

projects, and the room-testing dependency is highly recommended

Building Our Base Application with Kotlin and SQLite 95

o The room-ktx dependency is only necessary when we use Room on
Kotlin with coroutines. We show a sample of this usage later on, so
we must ensure that it is included.

•	 Enable exporting the database schemas. This detail makes testing easier later
on.

Our app module’s Gradle build file has received the modifications shown in the
following excerpt.

In our example, the database schema files are stored in a schemas directory inside
the application module. Don’t forget to include this directory when using a version
control system.

1. plugins {

2. // ...

3. id 'kotlin-kapt'

4. }

5.

6. android {

7. // ...

8. defaultConfig {

9. // ...

10. javaCompileOptions {

11. annotationProcessorOptions {

12. arguments += ["room.schemaLocation":

13. "$projectDir/schemas".toString()]

14. }

15. }

16. }

17. }

18.

19. dependencies {

20.

96 Hands-On Artificial Intelligence for Android

21.

22. kapt "androidx.room:room-compiler:2.2.6"

23. implementation "androidx.room:room-ktx:2.2.6"

24. androidTestImplementation "androidx.room:room-testing:2.2.6"

25.

26. // ...

27. }

After each modification to the Gradle file, Android Studio shows a notification
requesting a project synchronization. This synchronization is necessary for the IDE
to remain coherent with the Gradle files.

If the notification is not shown or missed, use the Sync Project option with Gradle
Files in the File menu to run the Android Studio's Gradle synchronization procedure.

Defining the data entities
Once all dependencies and plugins are in place, we can start using the Room API in
our project.

We start by defining an entity. Remember how we defined a data class in the SQLite
example representing the table columns and data types? We do the same thing with
Room, with the advantage of not needing to write SQL separately to define the
table schema. Instead, we use annotations to instruct the Room compiler on how to
generate the schema automatically.

Just like in the SQLite example, let’s invent a User entity:

1. @Entity

2. data class User (

3. @PrimaryKey val id: Int,

4. val name: String,

5. val level: Int

6.)

Its definition is almost identical to the one in the SQLite example. We added a level
field to help with other examples later on, but that is not the most relevant difference.

There are two requirements to define an entity using the Room library:
o The data class must be annotated with the @Entity annotation
o The entity must have a primary key

Building Our Base Application with Kotlin and SQLite 97

The primary key is a column that contains a value that uniquely identifies each row
in the table. We use the @PrimaryKey annotation to mark that column for the Room
compiler.

More complex data definitions may require a primary key composed of more than
one column. These are defined differently in the @Entity annotation. An example of
the latter appears later in the chapter.

The definition mentioned earlier tells the Room compiler to generate an entity with
table and column names based on the class and property names and that its primary
key is the ID property. To infer the database elements’ names from the class definition
is Room’s default behavior.

Several annotation parameters can be used to customize many aspects of the table
schema, starting with the table and column names.

The following excerpt changes the table name and one column name. It also instructs
Room to generate an index based on the level property to optimize future queries
based on this property.

1. @Entity(tableName = "user")

2. data class User (

3. @PrimaryKey val id: Int,

4. @ColumnInfo(name = "user_name") val name: String,

5. @ColumnInfo(index = true) val level: UserLevel

6.)

Several other parameters are available in each annotation. We encourage you to look
at the JavaDoc documentation for each annotation to find out more.

Creating Data Access Objects (DAO)
Although the Room library has already made it easier to define entities, its full
power is unleashed when generating DAOs. These objects are used to work with the
tables' data similar to the SQLite example: inserting, removing, and updating rows.

Room’s compiler generates a class implementing each DAO, so it requires the DAO
definition to be written as an interface declaration.

We again use annotations to instruct Room to generate code for the DAOs. Some
annotations allow us to build the insert, delete, and update methods easily.

The following excerpt shows the full definition of a DAO that exposes insert and
delete operations:

98 Hands-On Artificial Intelligence for Android

1. @Dao

2. interface UserDao {

3.

4. @Insert

5. fun insert(vararg users: User)

6.

7. @Delete

8. fun delete(user: User)

9.

10. }

Simple, right? The Room’s compiler does the hard work of generating the
implementation at build time.

These convenience functions can optionally return information about their execution:

o The insert function can return the row identifiers of the newly inserted
rows. Do not confuse these with the entity’s data identifier; the row identifiers
are internal to SQLite.

o The delete and update functions can return the number of rows affected by
the respective database operation.

So, we can extend the previous definition to include an update function and have
the delete and update functions return the number of rows affected.

1. @Dao

2. interface UserDao {

3.

4. @Insert

5. fun insert(vararg users: User)

6.

7. @Delete

8. fun delete(user: User): Int

9.

10. @Update

11. fun update(vararg users: User): Int

12.

13. }

Building Our Base Application with Kotlin and SQLite 99

Our DAO is taking shape, but it is not very useful yet. It needs the ability to query
the database.

Queries are also simple to declare: we use the @Query annotation in a function. This
annotation then receives the SQL command as its value.

So we still need to write SQL manually, but the Room library brings added value in
two ways:

o The queries are verified at compile time. The table and column names must
match the entity’s definition; otherwise, an error is raised.

o The code for managing the list of rows and copying data from the columns
in the query’s result set into the data class’s properties is generated
automatically.

Two lines are all it takes to generate the simplest query possible:
1. @Query("SELECT * FROM user")

2. fun findAll(): List<User>

We may also use parameterized queries. We declare the query parameters as
arguments in the function definition and use the arguments’ names preceded by a
colon in the SQL:

1. @Query("SELECT * FROM user WHERE level = :level")

2. fun findAllByLevel(level: UserLevel): List<User>

Projections can be implemented automatically as well.

Let’s imagine that we only need a list of all the user names in our table, so it is
wasteful to retrieve all the other table columns. The SQL change is trivial—we just
specify the column name in the statement. What about the result’s mapping to a
class?

The Room library allows us to declare the mapping easily. Just declare a data class
containing the column definitions that we need. They must, of course, match the
definitions in the original entity data class.

1. data class UserName (

2. @ColumnInfo(name = "user_name") val name: String,

3.)

The DAO function declaration then becomes identical to any other query:

1. @Query("SELECT user_name FROM user")

2. fun findAllUserNames(): List<UserName>

100 Hands-On Artificial Intelligence for Android

Joins are mapped automatically as well.

To demonstrate the usage of queries joining tables, let’s suppose that the application
keeps an audit log of user actions. This audit log registers a timestamp each time a
user does something.

Each user is expected to perform more than one action, so the table’s primary key
needs to disambiguate between them. This disambiguation is achieved by combining
the user identifier with the entry’s timestamp. So, we chose to use a composite key to
demonstrate how these are implemented with the Room library's help.

The first step is to define the auditing entity. Its only difference from the user entity
is the use of a composite primary key. Composite primary keys are not defined with
annotations but have their names listed in the @Entity annotation’s primaryKeys
parameter.

The second step is to define the mapping for the results of the join. Just like we
did before for the projection, we declare a data class matching the definitions of all
columns involved.

1. @Entity(tableName = "audit", primaryKeys = ["userId", "timestamp"
])

2. data class AuditEntry (

3. val userId: Int,

4. val timestamp: Long

5.)

6.

7. data class FullAuditEntry(

8. val userId: Int,

9. val timestamp: Long,

10. @ColumnInfo(name = "user_name") val userName: String,

11. @ColumnInfo(name = "level") val userLevel: Int

12.)

Note: Note how confusing the definition of the FullAuditEntry data class has
become because it contains a mixture of default and explicit column names. We
did it on purpose to show that the best practice is to be as consistent as possible.
Try not to mix default and explicit column naming in your entity definitions.

Now that all entity definitions are in place, we can write the SQL for the join and the
DAO function signature:

Building Our Base Application with Kotlin and SQLite 101

1. @Dao

2. interface AuditDao {

3.

4. @Insert

5. fun insert(vararg entries: AuditEntry)

6.

7. @Query("SELECT * FROM audit " +

8. "INNER JOIN user ON audit.userId = user.id")

9. fun findAllWithUserDetails(): List<FullAuditEntry>

10.

11. }

Creating the database
When we worked with the Android API for SQLite, we had to extend an abstract
class provided by the API. The same principle stands when using the Room library.

Our application’s database is declared by extending from the RoomDatabase class.
However, Room is more powerful, so its compiler generates additional code to
manage the database and needs more information.

So, we need to provide a @Database annotation listing the entities managed by this
database and the current database version. The functions that provide instances of
the DAOs we designed are implemented in this database class.

Our application database class looks like the following excerpt:

1. @Database(

2. entities = [User::class, AuditEntry::class],

3. version = 1)

4. abstract class ApplicationDatabase: RoomDatabase() {

5.

6. abstract fun userDao(): UserDao

7.

8. abstract fun auditDao(): AuditDao

9.

10. }

102 Hands-On Artificial Intelligence for Android

Again, note that the same concept of versioning exists for databases managed by the
Room library. Migrations are not entirely generated automatically. We address the
topic of database schema migrations with Room later in this chapter.

The actual database is created using the databaseBuilder() function in the Room
object. It leverages the builder pattern and requires at least three parameters: an
Android context, the type reference of the database class, and the database name.

Creating a database managed by Room is also an expensive operation. The current
recommendation is to follow the singleton pattern, reusing a single instance of the
database across all application activities. The most common implementation of a
thread-safe singleton pattern is shown in the following excerpt:

1. companion object {

2.

3. private const val DATABASE_NAME = "app.db"

4.

5. @Volatile private var instance: ApplicationDatabase? = null

6.

7. fun getDatabase(context: Context): ApplicationDatabase =

8. instance ?: synchronized(this) {

9. instance ?:

10. Room.databaseBuilder(

11. context.applicationContext,

12. ApplicationDatabase::class.java,

13. DATABASE_NAME)

14. .build()

15. .also { instance = it }

16. }

17.

18. }

The double-checked locking pattern is used to ensure that only one instance of
the database is created in the presence of multiple threads attempting to use it
concurrently. This pattern consists of obtaining an explicit lock only if it is necessary
to modify the shared resource, rechecking the condition after the lock is obtained to
prevent creating the resource twice. It is used in combination with the @Volatile
annotation, so a memory barrier is placed on write operations to the annotated
property. We encourage you to read more on these concurrent programming topics
if you are not familiar with them yet.

Building Our Base Application with Kotlin and SQLite 103

Using database views
We can replace the simple query with a join that we built earlier with a database
view.

The procedure is simple—we place a @DatabaseView annotation on the mapping
data class and move the SQL query.

1. @DatabaseView(

2. "SELECT audit.userId, audit.timestamp, user.user_name, user.level " +

3. "FROM audit " +

4. "INNER JOIN user ON audit.userId = user.id")

5. data class FullAuditEntry(

6. val userId: Int,

7. val timestamp: Long,

8. @ColumnInfo(name = "user_name") val userName: String,

9. @ColumnInfo(name = "level") val userLevel: UserLevel

10.)

The DAO function signature remains identical, but its associated SQL query now
refers to the view name:

1. @Query("SELECT * FROM fullauditentry")

2. fun findAllWithUserDetails(): List<FullAuditEntry>

A database view is also a database entity, so it must be registered in the @Database
annotation’s views parameter as well.

1. @Database(

2. entities = [User::class, AuditEntry::class],

3. views = [FullAuditEntry::class],

4. version = 1)

5. abstract class ApplicationDatabase: RoomDatabase() {

6.

7. abstract fun userDao(): UserDao

8.

9. abstract fun auditDao(): AuditDao

10.

11. }

104 Hands-On Artificial Intelligence for Android

The advantage of having a database view instead of a longer SQL query is that a
view is a database object, so the longer SQL query is processed and optimized only
once by the database. In contrast, a traditional SQL query may need to be processed
every time it is used. Therefore, a database view may be more efficient.

Object references are not supported
Let’s get this out of the way—the Room library does not support object references in
the database entities.

Other ORM frameworks allow the embedding of entity relationships in the entity
definitions. Hibernate, for example, allows such embeddings. Looking back at the
previous AuditEntry example, we could use this feature to directly insert a reference
to the User entity in the AuditEntry entity. With the proper annotations, the
framework would issue the appropriate query to the database when the embedded
User reference is queried. It would eliminate the need for the FullAuditEntry class
and associated view.

However, this technique hides the actual cost of seemingly inoffensive property
accesses. In the context of applications with a user interface, these accesses tend to
eventually make their way into calls made within the UI logic itself because they
make it easier for the UI and database models to merge. But this is a bad practice.

Making database calls within the UI in an Android application is particularly bad
because the UI thread is blocked for extended periods, which often causes rendering
issues.

The Room developers decided to address both problems by not supporting object
references in entities. This way, it is necessary to explicitly declare the entities and
their queries, making it clear that a database roundtrip is required while separating
the UI and persistence models.

This feature brings a problem. What about the objects that do not represent entity
relationships but are helpful, such as enums or time management classes?

Converting object references to database types
Going back to the previous AuditEntry example, you may have noted that its
timestamp property’s type is Long. This type allows us, for example, to store the
timestamp as the number of milliseconds since the epoch (January 1st 1970).

But then we need to be aware of precisely what that number means every time we
access the property. It would be much better if we could use, say, Instant as it is
then clear that the timestamp property represents a fixed point in time.

1. @Entity(tableName = "audit", primaryKeys = ["userId", "timestamp"

Building Our Base Application with Kotlin and SQLite 105

])

2. data class AuditEntry (

3. val userId: Int,

4. val timestamp: Instant

5.)

However, a compile-time error is generated if we just change the type. The message
is quite helpful. It reads: Cannot figure out how to save this field into the database. You can
consider adding a type converter for it.

While it does not directly support object references in entity definitions, the Room
library allows us to define type converters so we can have the objects in our classes
but store their supported representation in the database instead.

1. class InstantConverters {

2.

3. @TypeConverter

4. fun fromTimestamp(value: Long?): Instant? {

5. return value?.let { Instant.ofEpochMilli(it) }

6. }

7.

8. @TypeConverter

9. fun instantToTimestamp(instant: Instant?): Long? {

10. return instant?.toEpochMilli()

11. }

12.

13. }

The previous excerpt defines a converter that can convert an Instant into a Long
value for database storage and back. This converter now needs to be registered,
so the Room library becomes aware of its existence. We register it using the @
TypeConverters annotation in our database class.

1. @Database(

2. entities = [User::class, AuditEntry::class],

3. views = [FullAuditEntry::class],

4. version = 1)

106 Hands-On Artificial Intelligence for Android

5. @TypeConverters(InstantConverters::class)

6. abstract class ApplicationDatabase: RoomDatabase() {

7.

8. abstract fun userDao(): UserDao

9.

10. abstract fun auditDao(): AuditDao

11.

12. }

Different database types can be used in converters; the choice depends on the most
suitable type for representing the converted object.

We could replace the Int used for the User entity’s level property for an enum
and store it in the database as a String; enums have nice name() and valueOf()
methods that we could use, and they are string-based.

Using database migrations
We have already addressed the need to have database migration procedures to cope
with application upgrades that require different database schemas.

Remember that the @Database annotation requires a version number to be defined?
Although the Room library does not handle migrations automatically, it does manage
migration sequences. We can register migration handlers with their respective
version numbers, and they are called as necessary in the correct order.

This way, we ensure that users don’t lose data when they upgrade the application.

Suppose we wanted to add a password hash field to our User entity.

The first step would be to add the property to the entity:

1. @Entity(tableName = "user")

2. data class User (

3. // ...

4. @ColumnInfo(name = "pwd_hash") val passwordHash: String

5.)

Then, we must change the database version in the @Database annotation:

1. @Database(

2. // ...

3. version = 2)

Building Our Base Application with Kotlin and SQLite 107

These two changes are sufficient to define a new database schema with an
accompanying version number.

Let’s declare a migration path from version 1 to version 2, along with the necessary
SQL statements. Note that we are adding a non-null column, so we must define a
reasonable default value:

1. abstract class ApplicationDatabase: RoomDatabase() {

2. // ...

3. companion object {

4. // ...

5. internal val MIGRATION_1_2 = object : Migration(1, 2) {

6. override fun migrate(database: SupportSQLiteDatabase) {

7. database.execSQL(

8. "ALTER TABLE user ADD COLUMN pwd_hash TEXT NOT NULL DEFAULT
 ''")

9. }

10. }

11. }

12. }

Now, we must register it with the Room database builder using the addMigrations()
function in the existing getDatabase() function:

1. fun getDatabase(context: Context): ApplicationDatabase =

2. instance ?: synchronized(this) {

3. instance ?:

4. Room.databaseBuilder(

5. context.applicationContext,

6. ApplicationDatabase::class.java,

7. DATABASE_NAME)

8. .addMigrations(MIGRATION_1_2)

9. .build()

10. .also { instance = it }

11. }

108 Hands-On Artificial Intelligence for Android

Now your application knows how to upgrade a version 1 database to version 2.

Running queries outside of the main thread
If we try to use the Room library from within the UI thread, we get a friendly
IllegalStateException. It tells us that it “cannot access database on the main
thread since it may potentially lock the UI for a long period of time.”

So, we are forced to move all database operations outside of the main thread.

There are a few ways to do so. One involves using Kotlin coroutines along with the
Android Jetpack’s ViewModel library. The ViewModel class was designed to store UI
data independently of the activity’s lifecycle, so it survives configuration changes
that cause the activity to be destroyed and recreated. It implements the MVVM
design pattern we discussed in Chapter 1, Building an Application with Android Studio
and Java.

As an example, we can declare a view model as follows. The findUsers() function
launches a new coroutine within the context of the main thread. It then runs the
DAO function in a dispatcher dedicated to I/O tasks, which means it runs in an I/O
thread. The result of the DAO function is passed to the consumer function, back in
the main thread.

1. class UsersViewModel(application: Application)

2. : AndroidViewModel(application) {

3.

4. private val database = ApplicationDatabase.getDatabase(

5. getApplication<Application>().applicationContext)

6.

7. fun findUsers(consumer: (List<User>) -> Unit) {

8. viewModelScope.launch {

9. val users = withContext(Dispatchers.IO) {

10. database.userDao().findAll()

11. }

12. consumer(users)

13. }

14. }

15. }

Building Our Base Application with Kotlin and SQLite 109

One possible usage of our view model in the activity’s onCreate() function could
be as follows:

1. val model: UsersViewModel by viewModels()

2. findViewById<Button>(R.id.someButton).setOnClickListener {

3. model.findUsers {

4. // do something

5. }

6. }

The following dependencies are required in our application’s Gradle configuration
to use these view model functions and classes:

1. dependencies {

2.

3. // ...

4.

5. implementation "androidx.lifecycle:lifecycle-viewmodel-
 ktx:2.3.0"

6. implementation "androidx.activity:activity-ktx:1.2.1"

7. }

You can find more information about the ViewModel class at https://developer.
android.com/topic/libraries/architecture/viewmodel and about using Kotlin
coroutines in Android at https://developer.android.com/kotlin/coroutines.

Testing Room-based databases
We have seen one possible way of testing the SQLite-based implementation of a
database in the previous sections. The tests for our Room-based implementation are
not significantly different.

The basic principle remains the same. We still need to build an instrumented test
because the database code still requires an Android context. After all, the Room
library continues to be backed by SQLite.

Afterward, we build our instrumented Android JUnit test and create an in-memory
database with the inMemoryDatabaseBuilder() method:

1. db = Room.inMemoryDatabaseBuilder(context,

2. ApplicationDatabase::class.java).build()

110 Hands-On Artificial Intelligence for Android

Finally, we use our DAOs to execute operations and verify that the database's data
matches our expectations. A possible test of our user DAO is exemplified in the
following excerpt:

1. val dao = db.userDao()

2.

3. dao.insert(

4. User(1, "regular", UserLevel.NORMAL),

5. User(2, "super", UserLevel.SUPERUSER)

6.)

7.

8. val users = dao.findAll()

9. assertThat(users, containsInAnyOrder(

10. User(1, "regular", UserLevel.NORMAL),

11. User(2, "super", UserLevel.SUPERUSER)

12.))

Migrations are another part of our database implementation that must be tested
carefully. We must ensure that any existing database remains usable after an
application upgrade.

This is made possible by the Room testing library. It provides a helper class that can
recreate older schemas to run the migrations and verify that the database remains
stable afterward.

The first step is to ensure that each version’s schemas are available and that the
testing library has been added to our dependencies. We did that already while setting
up our Gradle definitions in the Getting started section. With those settings, the Room
library generates the schemas automatically every time the application is compiled.

The second step is to make the saved schema definitions available for tests. The
following Gradle configuration excerpt adds the schema directory to the source
directories used for Android tests:

1. android {

2. // ...

3. sourceSets {

4. androidTest.assets.srcDirs +=

5. files("$projectDir/schemas".toString())

6. }

7. }

Building Our Base Application with Kotlin and SQLite 111

The final step is to write the testing code. We use the MigrationTestHelper class
to do the following:

•	 Create the older schema version

•	 Insert test data in the database according to the older schema version

•	 Run the appropriate migration paths

•	 Validate that the test data was converted correctly, if applicable

We need to register our own application database class with the MigrationTestHelper
class, which is typically used in conjunction with a JUnit @Rule:

1. @get:Rule

2. val helper: MigrationTestHelper = MigrationTestHelper(

3. InstrumentationRegistry.getInstrumentation(),

4. ApplicationDatabase::class.java.canonicalName,

5. FrameworkSQLiteOpenHelperFactory()

6.)

The test database with the old schema is created with the createDatabase()
method, and we can take the opportunity to insert the test data at the same time.

Note that the automatically generated DAOs cannot be used because we are working
with different database schema versions. The DAOs always expect the latest schema.
The preceding excerpt demonstrates a test that validates only one migration path,
but we might need to verify the intermediate migration steps. For example, when
migrating to version 3 from version 1 through version 2.

1. helper.createDatabase(databaseName, 1)

2. .apply {

3. insert("user", SQLiteDatabase.CONFLICT_FAIL,

4. ContentValues().apply {

5. put("id", 1)

6. put("user_name", "previous")

7. put("level", "NORMAL")

8. }

9.)

10. close()

11. }

112 Hands-On Artificial Intelligence for Android

The migration paths under test can then be executed with runMigrations
AndValidate(). This function also verifies that the resulting schema matches the
structure extracted from the entity declarations.

1. val db = helper.runMigrationsAndValidate(databaseName, 2, true,

2. ApplicationDatabase.MIGRATION_1_2)

After this step, we can use the database instance to verify that the test data has been
migrated correctly using the SQLite API, as described in the corresponding section.

Testing database implementations may be tedious, but it is essential to ensure that
the application’s data remains available and coherent.

Conclusion
The fundamentals of the Kotlin language were explained in this chapter. You should
now be able to read the code examples presented in this chapter and other sources.

We presented the main features of the two ways of implementing an embedded SQL
database in an Android application, along with their advantages and disadvantages,
and introduced the Object-Relational Mapping concept. This presentation’s goal was
to allow you to choose the best approach for your application. We also stressed the
importance of testing the application’s code with examples applied to the specific
case of databases.

The next chapter explores the subject of artificial intelligence. It highlights some
aspects of this field of research’s history, along with some of its philosophical and
practical challenges. It also intuitively explains some common algorithms used with
machine learning and how machine learning is not the same as artificial intelligence
but a part of it.

An Overview of Artificial Intelligence and Machine Learning 113

Chapter 4
An Overview of

Artificial Intelligence
and Machine

Learning
Introduction
Let’s look at the term artificial intelligence and how it became an extensive study
discipline, accompanied by a historical and philosophical perspective. Starting
from this high-level perspective, we then isolate the field of machine learning from
this extensive corpus of research to understand the challenges researchers aim to
overcome.

Structure
•	 The past and future of artificial intelligence

•	 Intelligent systems

•	 Machine learning

•	 Problems affecting machine learning

Objectives
We aim to offer a good foundation to understand the history behind today’s research.
We also intend to clarify that this work is not without challenges, and it is not only

114 Hands-On Artificial Intelligence for Android

technical but also philosophical and practical. Some pitfalls must be kept in mind so
that practitioners can avoid them.

The past and the future of artificial
intelligence
We believe that humans have dreamed about machines ever since they figured out
how to use tools. These tools, after all, made many tasks easier and faster. Other tasks
were impossible to accomplish without tools, so these technological advancements
expanded humanity’s horizons and increased its desire for further innovations.

Some of these desired innovations were dreamed of under the form of complex
machinery with varying degrees of autonomy, like today’s concept of robots.

Depictions of artificial intelligence in literature
How far back does the dream of intelligent or autonomous machines go? Literature
is a good medium to understand the thought patterns and desires of those who came
before us.

Jules Verne’s 1880 steam elephant from The Steam House is a beautiful description of
a powerful four-legged all-terrain machine, but it still needed an operator. We may
need to look for intelligent machines elsewhere.

It is thought that Homer’s Illiad was written circa 8th century BC. This classical
Greek poem describes the automated gates that grant access to the god’s heavenly
citadel, the devices controlling the Hephaestus god’s furnaces, and the wheeled
tripods that can travel to the assembly of gods and return to Hephaestus’s house at
his bidding.

In their paper titled Homer’s Intelligent Machines (2019), Genevieve Liveley and
Sam Thomas argue that these devices already display some weak autonomy: Homer
describes them as being ordered to work instead of being operated. They also
point out that Homer already described autonomous ships in his Odyssey through
Alcinous’s speech:

Tell me also your country, nation, and city, that our ships may shape their purpose
accordingly and take you there. For the Phaeacians have no pilots; their vessels have
no rudders as those of other nations have, but the ships themselves understand what
it is that we are thinking about and want; they know all the cities and countries in
the whole world, and can traverse the sea just as well even when it is covered with
mist and cloud, so that there is no danger of being wrecked or coming to any harm.
– Odyssey 8:521-585, translation by Samuel Butler (via Project Gutenberg), emphasis
ours.

An Overview of Artificial Intelligence and Machine Learning 115

The Greeks were not the only ones to dream of autonomous machines, as other
mythologies, like the Hindu, also have accounts of automatons.

Moving closer to our time, the 18th-century French philosopher Étienne Bonnot
de Condillac argued in his book Traité des sensations that all human ability and
knowledge result from transformed sensations. For the sake of his argument, he
imagined a statue animated by an empty soul that is fed individual sensations—
pieces of knowledge—one at a time until it obtains, or learns, the possible human
knowledge and passions. We can, of course, discuss what he meant by an empty soul:
did he mean the ghost in the machine, as Gilbert Ryle (1949) defined it? Either way, he
was already postulating the ways a humanoid object might learn. The similarities
with the training process of machine learning models are striking.

There is a myriad of examples of semi-autonomous, fully autonomous, and even
intelligent robots in literature as we progress through the 20th century.

Some well-known examples come from Isaac Asimov’s positronic robots. He started
writing short stories with such characters in 1939, condensing some in a narrative
published as his book I, Robot in 1950. What makes Asimov’s robots unique are the
Three Laws of Robotics: dogmas that every positronic robot must obey, that are
designed to prevent them from harming humans. Asimov clearly had in mind the
possibility of robots being ordered—or even deciding on their own—to cause harm
and so, built a set of rules to prevent it. Even today, many have expressed the concern
that artificial intelligence might, one day, turn against its human creators. The theme
of artificial beings causing humanity’s demise has since been explored at length in
many science-fiction books and Hollywood movies; the most marketed might well
be the Terminator series.

We could not end our series of examples of artificial intelligence in literature without
mentioning two of the most well-known contemporary intelligent artificial beings:
Marvin The Paranoid Android from Douglas Adams’ 1978 radio comedy The
Hitchhiker’s Guide to the Galaxy and HAL-9000 from Arthur C. Clarke’s 1968 book
2001: A Space Odyssey.

HAL is not a robot but an intelligent operating system that controls a spaceship and
can learn from its human interactions. Unfortunately for the crew, it learned about
human emotions in the worst possible way: facing its upcoming disconnection
because of some malfunctions, it decides to defend itself by killing the crew. It
became known for the phrase, I’m sorry, Dave. I can’t do that.

Marvin is an extremely intelligent humanoid robot (thus an Android) that becomes
depressed because it has never received any task that would require it to use
more than a fraction of its brainpower to accomplish. According to itself: The best
conversation I had was over forty million years ago and that was with a coffee machine.
Quite a coffee machine that must have been!

116 Hands-On Artificial Intelligence for Android

Artificial intelligence is not a new idea
We have looked at just a few examples demonstrating that humans have been
dreaming of creating autonomous and intelligent beings. With all these dreams, it
would only be a matter of time before people would attempt to go from theory to
practice.

And so they did. One exciting example of a contraption that fell halfway between
dream and reality was The Turk, also known as the Mechanical Turk or Automaton
Chess Player. Built in 1770 by Wolfgang von Kempelen, it depicted a human torso
dressed in oriental clothes at a table with a chessboard. It was supposedly able
to win a game of chess against any human opponent. Although many praised its
mechanical abilities at chess, it was an elaborated hoax. A human would sit inside
the table and operate the machine to play the game.

Figure 4.1: An illustration of how the Turk might work.
© UB der HU zu Berlin, Historische Sammlungen: 3639 v:F8

Choosing chess to demonstrate The Turk’s alleged capabilities makes sense because
it is believed that the game requires thinking or intelligence to be played skillfully.

In 1912, a real chess-playing automaton was built by Leonardo Torres y Quevedo.
It played an end game of king and rook against king. It always played the side with
the king and rook and would always win against its human opponent. It was pretty
advanced for its period (Vigneron, 1914).

Chess was also used as a study vehicle in early AI work. Claude Shannon pointed out
in his paper Programming a Computer for Playing Chess (1950) that it’s an interesting

An Overview of Artificial Intelligence and Machine Learning 117

problem as it is very well defined in terms of the rules and outcomes. Although it
can be solved using classic dictionary or game theory algorithms (the minimax), the
number of possible moves in the game—estimated at 1043—makes it impractical to
solve using only those algorithms. No chess-playing program was created at that
time, but Shannon demonstrated that a computer could be programmed to play a
satisfactory game of chess.

The 1950s and 1960s brought along better tools (languages like Lisp) and more
computational power to further research efforts. A checkers-playing program was
written by Arthur Samuel in the 1950s. It learned through experience and improved
its abilities from playing against humans and other computers.

Note: An artificial chess player, IBM’s Deep Blue, eventually beat Grandmaster
Gary Kasparov in 1997.

One of the first approaches to building intelligent programs was the so-called expert
systems. These systems’ goal was to solve problems by emulating a human expert’s
reasoning over a body of knowledge. The systems were initially based on rules
formulated using conditional or predicate logic, depending on the programming
language in use (Lisp vs Prolog, for example). There were great expectations
regarding these systems’ capabilities, and many performed exceptionally well in
their specialized domains, but not without some criticism. An example is the 1984
paper by John McCarthy titled Some Expert Systems Need Common Sense. Research
in this field still continues, refining the way these systems learn and infer their
conclusions.

An algorithm called the perceptron algorithm was invented earlier, in 1958, and
was implemented in hardware to recognize images. Unfortunately, it failed to meet
the high expectations at the time because it could not be trained to recognize many
classes of patterns.

The disappointments related to the perceptron, expert systems, and other techniques
led to two periods that came to be known as the AI winters, when machine learning
research stagnated: in the late 70s and between the late 80s and early 90s. Today, we
would recognize these times as hype and disappointment cycles.

It is said that the 21st century brought about the digital age, and with it, new means
of digital storage. The digital age also brought with it digital services, which
meant enormous amounts of data were being generated and collected by and from
worldwide users.

The term Big Data was coined by the end of the 20th century or the start of the 21st
due to this data generation growth.

118 Hands-On Artificial Intelligence for Android

Note: Big Data is a term used to designate a field of work specializing in
processing large amounts of data or highly complex data. Big Data systems
come into play when traditional data processing software can no longer handle
data. By large amounts, we mean amounts in the zettabyte scale (10007 bytes),
according to Sarah Everts in her article Information Overload (2016).

Research in artificial intelligence saw a big boost with Big Data’s birth because
datasets could now be larger and more relevant. It also became easier to ask users
to produce data by employing digital questionnaires and surveys. In addition,
technological advancements allowed the creation of dedicated graphical processing
units (GPUs). Since most graphical processing is inherently mathematics, the rise of
GPUs added a significant amount of computational power to accelerate calculations.

ImageNet is a brilliant example of these new capabilities. In 2006, the AI researcher
Fei-Fei Li struggled with one of the biggest machine learning problems—overfitting
and underfitting or generalization (we discuss these problems later in the chapter).
She realized that part of the answer resided in the size of the training dataset. The
bigger and more varied the dataset, the better.

The Princeton psychologist George Miller had started a project called WordNet in
the late 1980s. WordNet was intended to be like a dictionary, but the words would
be related to each other hierarchically instead of alphabetically. So dog was a
specialization of canine, which, in turn, was a specialization of mammal, and so on.
Given that WordNet’s structure made it a good candidate to be read by machines,
Li started the ImageNet project to use WordNet’s definitions as classification labels
for the most significant image database they could build. Images would be extracted
from the Web and given to humans for classification.

Due to the project’s sheer scale, they eventually decided to use the Amazon
Mechanical Turk service for image classification. Thousands of human workers
would be involved in image classification every year.

The first version of the dataset was published in 2009 along with its accompanying
research paper. Over 3 million images were labeled in two and a half years. Today,
the dataset comprises over 14 million images spread over tens of thousands of
meaningful concepts, and it has contributed to the development of computer vision
systems that can identify images reliably. The project’s website is at http://image-
net.org.

The methodology behind ImageNet was an enormous success, and other projects
also used large datasets with accurate classifications for their purposes. The popular
voice assistants Siri (Apple, 2011) and Google Assistant (Google, 2016) also used
identical techniques to learn how to recognize their user’s speech.

An Overview of Artificial Intelligence and Machine Learning 119

Note: The Amazon Mechanical Turk service’s name is a direct reference to The
Turk because it is also a mechanized interface to work done by humans. Like a
human was playing chess inside The Turk, many humans perform the Amazon
service’s tasks.

Artificial intelligence is, however, more than learning how to classify data.

In 1968, Marvin Minsky was researching the semantic representation of knowledge
and the representation and modification of plans, which is said to have influenced
the creation of new programming paradigms.

Knowledge representation and reasoning is the field of artificial intelligence dedicated
to finding ways to represent information about the world so that a machine can use
it to make decisions or complete tasks.

Today’s research, like intelligent agents and autonomous vehicles, shows that many
reasoning methods need to be combined to achieve artificial intelligence. It takes
more than just learning how to register and classify information; it is necessary to
know what to do with that information in each situation.

Thinking about intelligent systems
Working in artificial intelligence also means having an opinion on whether a
machine can be considered intelligent at all. In other words, this research field also
encompasses studying and understanding the nature of thought and reasoning.

Alan Turing, who is considered the father of theoretical computer science and
artificial intelligence, wrote an influential paper titled Computing Machinery and
Intelligence (1950). In the paper, Turing described a test that could be administered to
a machine to prove whether the machine was capable of demonstrating intelligence.

Turing suggested a few versions of the test. One of those, called the “imitation game”,
has three participants: a human questioner, a human questionee, and a computer.
The questioner does not know which one of the participants is human and can only
communicate with them in written form. The computer’s job is to convince the
questioner that it is human (or that it is the human in the game). The version that
is usually called the “Turing test” is slightly different; in this case, the interviewer
needs to determine which of the participants is the machine.

The intended outcome is the same in any version. The computer must be intelligent
if the interviewer cannot determine which participant is artificial. This affirmation
was based on the argument that communication is the primary way to ascertain
intelligence.

This argument is not without controversy. For example, in his 1980 paper Minds,
Brains and Programs, John Searle defended that it is impossible to use the Turing

120 Hands-On Artificial Intelligence for Android

test to prove that a machine can think. He argued that a machine could manipulate
symbols—written speech—without understanding their meaning. So, it could not
be thinking in the same sense humans do.

John Searle offered a thought experiment to prove his point: the Chinese room. A
way to describe this thought experiment is as follows. Picture a person inside a room
with no knowledge of Mandarin but in possession of an instructions book containing
many Mandarin sentences. The room has one slot in the wall through which written
messages can be exchanged. People outside can send messages in Mandarin, and the
person on the inside can reply by copying the appropriate responses from the book.
From the outside, it would appear that the person in the room knows the Mandarin
language.

Searle argues that the person in the room does not differ from a computer. The person
is merely following instructions and does not understand any of the messages or
their replies. Therefore, it cannot be concluded that a computer could understand
them either.

Other thinkers have made their arguments, and this line of thought is not far from
the philosophy of mind. One may also argue that the hard problem of consciousness
is not too distanced from these discussions. Either way, Searle is not arguing against
the possibility of a super-intelligent machine being built, but only that such a
machine cannot think or fully understand what it is experiencing or communicating.

Note: The hard problem of consciousness is explaining why we say that some
personal experiences feel like something. These subjective and conscious
experiences are also called qualia. The mere existence of this problem is disputed
by many philosophers and accepted by many others.

By now, it is clear that the field of artificial intelligence also includes disciplines
other than engineering. The previous examples and discussions have already shown
influences from game theory, mathematics, statistics, logic, philosophy, and even
psychology. Communication theory, dealing with the encoding and transmission of
information, and linguistics for natural language processing are included as well.
Additionally, biology plays an important role—one of the significant sources of
enthusiasm in research and fiction is replicating the way the human brain works
and learns.

Defining machine learning
From the examples, tests, and thought experiments we discussed so far, it is
evident that a machine must know what to do with the information it receives to be
considered intelligent.

An Overview of Artificial Intelligence and Machine Learning 121

This knowledge may be represented as hardcoded rules, like the early expert systems
we mentioned earlier. This representation is possible when the space state of the
problem or application is known or adequately constrained and can be used to solve
several problems related to planning or scheduling, for example.

Note: Planning and scheduling are also fields of work in the scope of the broader
concept of artificial intelligence, just like machine learning.

Difficulties appear when the space state is primarily unknown or has a vast number
of variables or possibilities. The game of chess is a good example. We mentioned
earlier that the enormous number of possible moves made it a good example of how
classical algorithms provided sub-optimal results.

This kind of unsatisfactory results usually stemmed from the enormous amount of
time necessary to arrive at a solution. Naturally, researchers turned their attention
to solving this issue.

Simon (1972) stated that “in the absence of an effective method guaranteeing the
solution to a problem in a reasonable time, heuristics may guide a decision-maker to
a very satisfactory, if not necessarily optimal, solution.” Heuristics are techniques to
optimize algorithms by reducing the computation time necessary to find a solution,
often at the expense of absolute accuracy.

The usage of heuristics means that, in many scenarios, an approximate result
is acceptable. However, it is still necessary to describe all rules or movements
exhaustively before the algorithms can tackle their problems, which can be
problematic or even impossible for humans. What if the computer could itself learn
how to solve a problem?

It is believed that Arthur Samuel coined the term machine learning in 1959 while
researching the application of the technique to a checkers-playing computer
program. His paper Some studies in machine learning using the game of Checkers shows
his verification of the fact that the program could learn how to play checkers better
than its programmer.

Many machine learning techniques were developed once it was established that
sufficiently approximated solutions to problems were acceptable and that it was
possible to teach computer programs how to find them.

The fundamental premise of machine learning is that a computer program can learn
by example, just like humans. Such programs are based on machine learning models.

A machine learning model is a program that takes some data as its input and outputs
a prediction. It uses one or more algorithms to calculate its predictions, and these
algorithms have parameters. The number, type and semantics of each parameter
depends on the algorithm, but they all have one thing in common—their values can

122 Hands-On Artificial Intelligence for Android

be estimated from data. An example of a model parameter would be the slope used
in the linear regression algorithm described in the next section.

For example, a model could predict a dog’s breed based on its height and coat
color. In this case, the expected output could be the confidence levels that the model
assigned to each breed it knows, for example, 90% poodle and 10% German shepherd.
Teaching the model requires feeding it data, sometimes large amounts. This process
is called training. The model then adjusts its parameters iteratively based on the
input data. These adjustments are necessary to optimize the algorithm’s criteria and,
ultimately, the model’s predictions.

There are a few broad categories of machine learning algorithms:
•	 Supervised learning: This type of algorithm requires the expected output

to be known with regard to the input data. The algorithms then tailor
themselves to produce that output when new unseen data is received. The
recognition of handwritten digits is an example of supervised learning; the
output is known and includes the digits from 0 to 9.

•	 Unsupervised learning: As the name implies, the lack of supervision means
that the program does not know the expected output. It must train itself
to discover, for example, unknown patterns in data. An example would be
detecting anomalies in data, such as an excessively high energy consumption
that could indicate a faulty device.

•	 Reinforcement learning: This algorithm type resembles the way some
animals are trained. It interacts with an environment to fulfill a goal, receiving
positive or negative feedback. It learns the best way to navigate its problem
space by trying to maximize the positive feedback (rewards). An example
would be playing a game—good moves are rewarded, and wrong moves are
penalized.

All algorithms known today do not fit in one category, and some applications require
the usage of techniques from more than one category. That said, these are a good
starting point.

One characteristic common to all of them is that they are not always meant to give a
perfect answer. These answers are usually accompanied by a degree of confidence,
indicating how close to a perfect result they are expected to be.

We now examine some well-known machine learning algorithms from an intuitive
standpoint. Understanding the mathematics behind the algorithms is not required
in many situations, but it helps to have an intuitive grasp of their mechanisms.

The data used to train some algorithms is already labeled, that is, each data tuple
is associated with what we want to predict. So, these are supervised learning
algorithms. Suppose we wanted to predict a dog’s breed based on its height and

An Overview of Artificial Intelligence and Machine Learning 123

coat color. The different races are our labels, and the height and coat color are the
input features in this case.

Linear regression algorithm
This algorithm was borrowed from statistics and is the most straightforward
algorithm used in machine learning.

In a nutshell, it aims to find the line that best represents the linear relationship
between two or more numeric variables, hence the term linear.

It can be better understood with the help of an example. Take a look at the following
graph.

Figure 4.2: An example of linear regression applied to some data

The thick green line represents an approximation of the relation between the
independent variable on the X-axis and the dependent variable on the Y-axis. The
algorithm aims to find the line that predicts the value of Y when only the value of
X is known, hence the term “regression”—modeling a target value based on one or
more independent values.

A simple observation of the graph tells us that the line touches some examples with
remarkable precision but is distant from others. This distance represents the error,
or the lack of accuracy, of any predictions calculated using the line’s parameters and
dependent variables. A line can never touch all data points, so the objective is to find
the line that yields the lowest error possible.

124 Hands-On Artificial Intelligence for Android

Many procedures were developed to discover the necessary parameters for this. The
most well-known procedure is probably using the mean squared error to calculate
the cost and a gradient descent technique to adjust the parameters.

The cost, also known as loss, can be defined as the difference between the actual
and predicted values. The mathematical function used to calculate it depends on the
algorithm and is called the cost function.

The gradient descent technique can be explained quite simply. Imagine a person
descending a slope of a U-shaped valley in thick fog. They do not know when they
reach the bottom; instead, they stop once they no longer notice a significant decrease
in altitude with each step.

In this example, the altitude is our cost. The algorithm stops adjusting the parameters
once the difference between consecutive error margins is no longer relevant. It may
be desired to stop this adjustment earlier, for example, to avoid overfitting. The
problem of overfitting is discussed in this chapter’s Opportunities to improve machine
learning section.

Clustering methods
Clustering, or clustering analysis, is the task of finding examples (data points) similar
to others and grouping them by their similarities. Some groups—called clusters—
are discovered after the task is complete, and each example is assigned to one of
those groups.

The following figure is an example of a set of data submitted to a fictional clustering
algorithm. This algorithm could have found the clusters as marked.

Figure 4.3: Possible data submitted to a clustering algorithm

An Overview of Artificial Intelligence and Machine Learning 125

Clusters are formed according to a measure of their similarity. This metric is obtained
from the features that define the examples. The algorithm is unsupervised when
there are no labels in the dataset, and it can be used, for example, to analyze market
segmentation.

When the dataset contains labels, the supervised clustering algorithm becomes a
classification algorithm. It then aims to determine which class the new data points
(examples) belong to.

There are many clustering algorithms as well. One of the reasons is that it is not easy
to arrive at a shared definition of a “cluster,” and another is that all algorithms are
not suitable for all applications.

Neural networks
It is common knowledge that the brain contains numerous neurons, and each neuron
is connected to other neurons. These connections are called synapses, which form a
network and transmit stimuli between neurons and thus, across this network.

The first research work that effectively laid the foundation for modern theories of
the brain was published by Alexander Bain (1873) and William James (1890). It is
not surprising that, two centuries later, researchers in artificial intelligence became
interested in applying such knowledge in their field. After all, if brains were
composed of neurons and could learn, why couldn’t identical networks be built into
a computer?

Once brought within the context of machine learning, neural networks also became
known as Artificial Neural Networks (ANN) or Simulated Neural Networks
(SNN). As the name implies, they mimic the way neurons communicate in the brain.

They are composed of artificial neurons organized in layers. There is one input layer,
one output layer, and one or more intermediate or hidden layers.

Figure 4.4: A neural network with one hidden layer

126 Hands-On Artificial Intelligence for Android

Each neuron can be seen as a linear regression model with an output threshold (or
bias) and weighted inputs. The weights are used to define the importance of each
input in determining the output. The bias can be used to determine whether the
neuron should activate. An activation function calculates the neuron’s activation
state based on one or more inputs and is affected by the bias value, which anticipates
or delays the neuron’s activation.

The output of one neuron is used to feed the input of the neurons in the following
layer. The neurons in the output layer provide the result of the network’s calculations.
The arrows in figure 4.4 represent this data flow between neurons.

Note: There are different types of neurons: perceptron, which output either zero
or one, and sigmoid neurons, which output values between zero and one. Neural
networks are typically built with the latter.

Neural networks can be trained with labeled or unlabeled data, making them
suitable for supervised and unsupervised learning. The goal of their training remains
the same—to minimize their output errors with relation to the training data. The
classical training method uses the gradient descent technique to find the point of
minimal error.

The network illustrated in figure 4.4 is called a feed-forward network, and it is the
most straightforward design. There are several other neural network architectures,
like Convolutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN).

RNNs save a layer’s output and feed it back to the input to calculate the following
output. So, the typical type of input data for an RNN is a sequence of closely related
data items. RNNs are strong in applications that require some memory. Language
processing is a good example: sentences form sequences of closely related data items
(words).

CNNs contain specialized layers and are primarily used in computer vision
applications to classify images and perform object detection. They can also be used
for unsupervised learning based on images. These specialized layers are called
convolution layers and are used for feature detection, helping reduce the number
of parameters.

These advanced neural network architectures are often implemented in the form of
deep neural networks.

Deep neural networks
Figure 4.4 represents a neural network with one hidden layer. Neural networks with
one or two hidden layers can also be called shallow neural networks. On the other
hand, a neural network with many hidden layers is called a “deep” neural network.

An Overview of Artificial Intelligence and Machine Learning 127

Figure 4.5: An example of a deep neural network

All layers behave in the same way and are defined by the same mathematical
equations as the shallow neural network. The only difference is that there are many
of them.

Deep neural networks have been shown to provide much more accurate results for
several applications as compared to shallow neural networks. The reason behind
this is not clear yet, but any improvements firmly depend on the amount of training
data available.

This lack of clarity illustrates one of the problems regarding neural networks
that researchers are dealing with today—the difficulty of understanding how the
network arrived at any particular result. In other words, the problem is a lack of
explainability.

Opportunities to improve machine
learning
Machine learning is not perfect and has both internal and external problems. We
point out those that are, in our opinion, the main improvement opportunities
currently under research.

Improving performance and accuracy
One of the reasons why machine learning only took off in the 21st century, especially
in what concerns neural networks, is that the technology did not provide sufficient
computational resources before that.

128 Hands-On Artificial Intelligence for Android

Training a machine learning algorithm with large amounts of data is computationally
intensive work. Unfortunately, the central processing units (CPUs) or processors
available at the time were designed for general-purpose computing and not for the
number-crunching tasks required for these calculations.

So, training operations would take enormous amounts of time, limiting research
efforts to what was practical.

Only with the arrival of GPUs and other specialized processors optimized for
complex algebraic calculations did researchers have the resources to use more data
or try better algorithms.

Better algorithms usually mean a new machine learning application or better
accuracy with an existing application.

A machine learning algorithm’s accuracy is measured by comparing the algorithm’s
output with the expected output for a testing dataset. In other words, data for working
with machine learning is often divided into two or three distinct datasets: one for
training, another for testing, and another one for validation. Just like the training
dataset, the testing and validation sets contain data and the expected outcomes.

The validation dataset is used to estimate the model’s behavior during the model
construction phase, when the model’s structure is still in its early stages and we
don’t want to spend a considerable amount of time training the model with the
complete training dataset.

After the algorithm has been trained, it is fed the testing dataset. This set contains
data that the algorithm has never seen, and its output is a reliable measure of its
accuracy. The closer it is to the results expected from the testing set, the more accurate
the algorithm is.

The algorithm or dataset needs to be adjusted if the results are not acceptable for the
application’s purpose.

It goes without saying that the search for an accurate model that generalizes well is a
moving target, and it is as limited by technology as by the existing models. Research
on new technology to support new models continues.

Note: There are two relevant concepts regarding a model’s training accuracy:
overfitting and underfitting. A model “overfits” when it is excessively close
to the training data and thus, not generalizing well. Conversely, it “underfits”
when it is not close enough to the data. It is easier to create an overfitting model
than its opposite. In other words, if the model results’ accuracy, when applied to
the testing data, is significantly lower than the accuracy found during training, it
means that it does not generalize well to “new” data and is probably overfitting.

An Overview of Artificial Intelligence and Machine Learning 129

Working toward explainability
Engineers can usually explain how or why a system works. In fact, most professionals
do not feel comfortable if they do not understand the system themselves.

With simpler machine learning algorithms like statistical linear regression or
clustering, we can explain how any given output was calculated because the model’s
parameters and its equations are known.

Hidden layers are introduced once a neural network or deep neural network is
brought into the picture. Due to these hidden layers, it is no longer possible to
derive one equation that explains the output: the model itself generates additional
parameters internally as it is being trained. The hidden nodes represent these
additional parameters. It is also very difficult, or even impossible, to figure out each
feature’s weight in determining the output.

These models do not expose their internals, which is why machine learning models
can be known as black box models.

A model should be understandable so that engineers and data scientists can know, for
example, if decisions are made ethically (see the following bias problem). Research is
ongoing to find ways to explain how machine learning models arrive at a result. The
resulting field of research is called Explainable Artificial Intelligence (XAI).

Avoiding bias
How can a machine learning algorithm be biased? After all, machines have no
emotions or prejudices per se, and mathematics is not inherently biased, right?

In this chapter, we have seen that machine learning algorithms are trained by feeding
them with data. This data is collected and curated by humans, and humans can
indeed be biased, sometimes quite explicitly.

For example, the dataset may include features that correlate a person’s gender, race,
or beliefs with their purchasing power. Suppose a model is being trained to calculate
a person’s risk profile for credit purposes. Once those features are input into the
model, its training considers them and produces results that discriminate against a
population section.

It is also possible to produce a biased model by accident or oversight.

An example was the Scottish Qualifications Authority (SQA’s) attempt to use a
machine learning system to adjust students’ grades in 2020. These students had
no exams due to the COVID-19 pandemic. Instead, their teachers recommended
individual grades based on their experiences with the pupils during the school
year. SQA was worried that it might lead to inflated grades, so they built a machine
learning model to prevent such inflation. Unfortunately, this model considered

130 Hands-On Artificial Intelligence for Android

historical school performance and geographical data, so students saw their grades
lowered because they lived, or had lived, in an area with a history of lower academic
performance. In total, about 25% of the grades were lowered. The results were
ultimately overturned, and the teacher’s original recommendations were used.

Another example is ImageNet. As we mentioned earlier in this chapter, ImageNet is
a dataset of about 14 million images labeled by tens of thousands of workers via the
Amazon Turk. The dataset structure is sound, but those workers have transposed
their biases into the labels they used to classify the images. Some workers also used
derogatory words or racist slur in their classifications. Kate Crawford and Trevor
Paglen raised this problem in Excavating AI: The Politics of Training Sets for Machine
Learning (September 19, 2019 – https://excavating.ai). Ryan Steed and Aylin Caliskan
have also addressed this matter in their paper Image Representations Learned With
Unsupervised Pre-Training Contain Human-like Biases (2021). A project was started to
improve the ImageNet dataset by crowdsourcing label review.

The problem of perpetuating bias via artificial intelligence is real. Some believe that
each AI system will be a product of its time, just like people, so it is impossible to
eliminate bias. Nevertheless, the problem is real, and efforts are underway to raise
awareness of the issue and propose ways to detect and correct biased algorithms.
Examples are the Fairlean project (https://fairlearn.org/) and the AINow research
institute (https://ainowinstitute.org).

Thinking about security
All computer systems responsible for some relevant process or those that process
valuable data are at risk of being cyberattack targets. Artificial intelligence systems
are no exception to this rule.

A type of threat called an adversarial attack concerns machine learning algorithms.
This attack works by making slight modifications in the algorithm’s input data,
causing the algorithm to misclassify or misbehave. These modifications are often
invisible or ignored by humans performing the same task, but an ML algorithm is
affected by them.

With the growing number of ML-enabled applications in systems that work and
produce effects on the physical world, these attacks can yield serious consequences.
Other types of attacks may be imperceptible even to human users and may be highly
targeted: attackers can also manipulate the systems for their gain instead of harming
others.

Autonomous or semi-autonomous vehicles operating on public roads are a common
target for security researchers. Nir Morgulis et al. have found a technique that
allowed them to print real traffic signs that deceive a machine learning model used
in actual vehicles into misreading speed limits (Fooling a Real Car with Adversarial

An Overview of Artificial Intelligence and Machine Learning 131

Traffic Signs, 2019). Researchers at McAffee have identified similar vulnerabilities in
systems used in Tesla vehicles of the time (Model Hacking ADAS to Pave Safer Roads
for Autonomous Vehicles, 2020).

Probably because of the lack of explain-ability we discussed earlier, there is still no
explanation for why adversarial attacks are so effective.

The current advice for any machine learning system exposed to real-world data,
or data that could be manipulated, is the same as that for any classical system—to
perform threat modeling and execute penetration testing. Such activities against ML
are indeed much more complex, but they should be evaluated nevertheless.

Note: Penetration testing is a term used in software engineering and white-hat
hacking. It represents the activities intended to gain unauthorized access to a
system or impair it in the same way as a malicious attacker, but for research
purposes. Defenses can then be built against such attacks using the insights
gathered.

Conclusion
We have looked at the dream of artificial intelligence since antiquity until today. This
work helped show that humanity has always dreamed about creating intelligent
entities and has found ways to evolve its dream into reality. Science fiction continues
to push the limits of imagination, and we can only look at our past experiences to
speculate about how today’s fiction shapes tomorrow’s reality.

Practitioners in this field must know that machine learning is facing new challenges
and threats, from societal and cultural bias to malicious attacks.

Basic machine learning algorithms have been explained from an intuitive perspective.
This intuition is essential for understanding the work we do in the following
chapters—training and using machine learning models to make predictions and
classify images.

132 Hands-On Artificial Intelligence for Android

Introduction to TensorFlow 133

Chapter 5
Introduction to

TensorFlow

Introduction
This chapter explains TensorFlow’s fundamental concepts. It is one of the most
popular frameworks that can be used to implement and train machine learning
models.

At the same time, it shows how it can be installed in the three most commonly used
operating systems. Python is the language used in TensorFlow’s documentation and
most examples, so we also cover Python installation.

Structure
We cover the following topics in this chapter:

•	 Installing TensorFlow

•	 Tensors

•	 Variables

•	 Graphs

•	 Simple model training

•	 Conclusion

134 Hands-On Artificial Intelligence for Android

Objectives
Upon completing this chapter, you should be able to read simple TensorFlow
examples, experiment with TensorFlow functions in the Python shell, and understand
the TensorFlow code used in the rest of this book.

Installing TensorFlow
TensorFlow is an open-source platform for machine learning developed by Google
and initially released in 2015. It has gained popularity over the years. Its latest
versions include features like support for JavaScript in browsers, the lightweight
TensorFlow Lite library for mobile and edge devices that we use in this book, and a
platform for deploying ML pipelines.

Other popular frameworks, like PyTorch or MxNet, are available, but we chose
TensorFlow for this book primarily because of TensorFlow Lite and its imperative
programming style.

Like any other framework, TensorFlow must be installed before it can be used.
TensorFlow needs a Python environment to work, and its version must match
TensorFlow’s requirements.

At the time of writing, TensorFlow 2 has the following requirements. The most
current ones can be found at https://www.tensorflow.org/install/pip.

•	 A 64-bit operating system, at least:
o Ubuntu 16.04
o Windows 7
o Mac OS 10.12.6
o Raspbian 9.0

•	 Python version between 3.6 and 3.8

TensorFlow 1.15, the latest update in the 1.x version series, has slightly
different requirements in what concerns the Python version:

•	 Python version 3.7 or below

We use TensorFlow 2 as much as possible in this book. Its API has been consolidated,
and the execution model is now one step closer to the imperative model that Python,
Java, or Kotlin programmers already know about.

However, some examples may require TensorFlow 1.15 for a couple of reasons.
Either they require supporting libraries that are not yet updated, or they are too
complex to train in a typical developer computer within a reasonable amount of

Introduction to TensorFlow 135

time. In the latter case, we try to use pre-trained models that may only be compatible
with a specific version of TensorFlow.

The current recommendation is to use a version of Python compatible with both and
try to keep the TensorFlow version as isolated from the system as possible. From the
preceding list of requirements, we use Python 3.7.

Preparing Python
If you already have Python installed in your system, feel free to skip this section. Just
ensure that the version is 3.7 or 3.6.

If you have never worked with the Python programming language, do not worry. It
is easy to understand its basics from the perspective of a Java or Kotlin developer.
We explain any usage of the Python language when it may not be clear for persons
with a Java background.

One crucial difference between Python and Java (or Kotlin, for that matter) is that
indentation matters in Python. There are no curly brackets to delimit code blocks
and scopes; indentation is used instead.

Windows and Mac OS
Installer packages are available at https://www.python.org/downloads/ if you need
to install Python on a Windows or Mac OS machine. You only need to download the
latest package of version 3.7 and run the installer.

Do not forget to add the Python executable to your PATH system variable if asked
to do so by the installer.

Note: When you try to run Python from the command line in Windows 10, you
may be prompted to disable the “python” and “python3” aliases from Settings >
Manage App Execution Aliases. Go ahead and disable them: this only happens
because we are not using the Python distribution available at the Microsoft App
Store, and it is not a problem.

After installation is complete, you should have the Python executable available for
the command prompt (terminal).

Alternative Mac OS installation (advanced)
If you already use the Homebrew package manager, you may use it to install Python
3.7 alongside the system’s existing version. We also use the pyenv tool to manage
different Python environments.

1. brew install pyenv

2. pyenv install 3.7.10

136 Hands-On Artificial Intelligence for Android

3. pyenv global 3.7.10

Add the following to your shell configuration file (~/.zshrc or ~/.bash_profile,
depending on the shell you use) to complete the pyenv setup:

1. if command -v pyenv 1>/dev/null 2>&1; then

2. eval "$(pyenv init -)"

3. fi

Quit the terminal program and start it again or reload the configuration file. Once
you run the python --version command, you should see it prints version 3.7.10.

Ubuntu Linux
The procedure becomes more complicated in an Ubuntu system because different
Ubuntu versions already include different Python versions. For example, Ubuntu
18 comes with Python 2.7, whereas Ubuntu 20 comes with Python 3.8; neither is
compatible with both TensorFlow versions.

Run the following commands to find out which version of Python is installed in an
Ubuntu system:

1. python --version

2. python3 --version

We are using Ubuntu 20, upgraded from previous Ubuntu versions, so your results
may vary. In particular, you may or may not have an executable named python3 in
your system, but this is not a problem.

If Python version 3.7 is not reported in your system, it needs to be installed.

The easiest way to install another Python version without causing any conflicts with
the one used by your Ubuntu system is to install it from its source code.

First, we install the generic dependencies necessary for building Python:
1. sudo apt-get install build-essential checkinstall \

2. libreadline-gplv2-dev libncursesw5-dev libssl-dev \

3. libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev \

4. libffi-dev zlib1g-dev lzma-dev

Then, we download, unpack, build, and install Python 3.7:

1. wget https://www.python.org/ftp/python/3.7.10/Python-3.7.10.tgz

2. tar zxf Python-3.7.10.tgz

3. cd Python-3.7.10

Introduction to TensorFlow 137

4. ./configure --enable-optimizations

5. sudo make altinstall

Once all commands complete successfully, you should have a pyhton3.7 executable
installed in /usr/local/bin. Test your setup by asking for Python’s version:

1. /usr/local/bin/python3.7 --version

Creating virtual environments for TensorFlow
We recommend setting up a virtual Python environment for using each TensorFlow
version.

Note: When using the following “python” command, be sure to use the correct
command for your system! For example, in Ubuntu, you may use “python”,
“python3”, or “/usr/local/bin/python3.7”, depending on the results from the
previous section.

It is necessary to install the virtualenv module first:

1. python -m pip install virtualenv

Then, change to a directory you want to use for working with TensorFlow and create
one virtual environment for each major TensorFlow version.

It is common to have more than one version of Python installed in Ubuntu Linux
systems. Do not forget to specify the full path to version 3.7 if it is not your default
version or if you followed the preceding detailed method:

1. python -m virtualenv .tensorflow1 --python=/usr/local/bin/python3.7

2. python -m virtualenv .tensorflow2 --python=/usr/local/bin/python3.7

You may omit it otherwise. It is not required when Python is installed with pyenv
(Mac OS), and is in the PATH (Windows):

1. python -m virtualenv .tensorflow1

2. python -m virtualenv .tensorflow2

Once the virtual environments are created, we can activate the virtual Python
environment we want to use. It is mandatory to activate the correct environment for
the correct TensorFlow version before using it.

First, change to the directory you chose while creating the virtual environments and
activate the environment of your choice. The exact activation commands differ for
every operating system.

138 Hands-On Artificial Intelligence for Android

Windows
For example, use the following if you want to activate the environment for
TensorFlow 1:

1. C:\Users\vveloso\Work>.tensorflow1\Scripts\activate

2.

3. (.tensorflow1) C:\Users\vveloso\Work>

Note that the name of the currently active environment is placed in the prompt.

Ubuntu Linux and Mac OS
You should use the following if you wish to activate the environment for TensorFlow
1:

1. source .tensorflow1/bin/activate

Installing TensorFlow in the virtual
environments
On Windows 7 or higher, you may need to install Microsoft’s C++ redistributable
libraries first. TensorFlow needs them to work. You can find a link to the correct
download page at https://www.tensorflow.org/install.

TensorFlow 2
Change to your TensorFlow working directory and activate the virtual environment
.tensorflow2.

We use the Python package installer (pip) to install TensorFlow. Let’s update it first:

1. pip install --upgrade pip

Now, we install the latest version of TensorFlow:

1. pip install tensorflow

Note: At the time of writing, the latest version of TensorFlow was version
2.5.1. Some of the code examples may need to be adjusted to work on more
recent versions of TensorFlow. If you need to specify the version, write
“tensorflow==2.5.1” instead.

TensorFlow 1.15
Change to your TensorFlow working directory and activate the virtual environment
.tensorflow1.

Let’s update pip again as we have switched environments:

Introduction to TensorFlow 139

1. pip install --upgrade pip

Now, we install TensorFlow 1.5. Note that we must specify the version:

1. pip install tensorflow==1.15

Note: You may take advantage of faster TensorFlow executions if you have a
CUDA®-compatible GPU card and run Windows or Ubuntu Linux.

Configuration is more complicated in this case and may only work for one
TensorFlow version. It is not required for the work we do in this book, but you
can visit https://www.tensorflow.org/install/gpu for further details.

Verifying the TensorFlow version installed
TensorFlow 1.15

Open a new terminal window, change to your TensorFlow working directory, and
create a file with the following contents. We suggest naming it check-tf-1.py:

1. import tensorflow.compat.v1 as tf

2. hello = tf.constant("hello TensorFlow!")

3. sess = tf.Session()

4. print(sess.run(hello))

5. print(tf.__version__)

Activate the .tensorflow1 environment and run the program.

You should see a message and the TensorFlow version at the end of the program’s
output. There is also other output related to TensorFlow’s inner workings, and it
depends on the operating system’s configuration.

1. ❯ python check-tf-1.py

2.

3. b'hello TensorFlow!'

4. 1.15.0

TensorFlow 2
Create a file with the following contents. We suggest naming it check-tf-2.py:

1. import tensorflow as tf

2. msg = tf.constant('hello TensorFlow!')

3. tf.print(msg)

140 Hands-On Artificial Intelligence for Android

4. print(tf.__version__)

Activate the .tensorflow2 environment and run the program. Like with the previous
program, you should see a message and the TensorFlow version at the end of the
program’s output. The exact version number may be different, but it must begin
with 2.

1. ❯ python check-tf-2.py

2.

3. b'hello TensorFlow!'

4. 2.4.1

Note: All TensorFlow code examples in the following sections are meant to be
used with TensorFlow 2.

The Python interpreter shell
Most code snippets in the following sections can be executed in one go as a program
file, like the version verification, or they can be executed line by line in the Python
interpreter shell. This shell is helpful for quick experiments.

You enter the shell by entering the python command in your terminal after activating
your TensorFlow 2 virtual environment. Figure 5.1 shows a Python shell started on
the author’s system by following these steps:

Figure 5.1: Starting the Python shell

Notice that the shell prompt is the >>> sign, so any Python code line you see in the
following sections starting with >>> was typed in the interpreter shell.

Do not forget to import the TensorFlow package before calling any of its functions in
the shell. Just input import tensorflow as tf before you start working.

Tensors
TensorFlow earned its name because most of its work, if not all, is based on data
structures called tensors.

Introduction to TensorFlow 141

In linear algebra, tensors are generalizations of matrices for higher-order data and
can represent data in ways that would be difficult otherwise (Xuan Bi et al., Tensors
in Statistics, 2021). When one starts searching on the Internet or in libraries for study
materials about tensors, most of the results focus on electromagnetism, relativity,
and other physics-related domains.

Thankfully, understanding the tensors used in TensorFlow is much more
straightforward. Simply speaking, a tensor can be seen as an array that can have
multiple dimensions. Even with this formulation, we need to know some terminology
from linear algebra.

Tensors can be used, for example, to represent the following types of data structures:

•	 Scalars, that is, single numbers

•	 Vectors

•	 Matrices

Figure 5.2 is a visual representation of arrays with varying number of dimensions
representing the corresponding tensors.

The number of dimensions of a tensor is called its order. So, a zero-order tensor
represents a scalar, a first-order tensor a vector, a second-order tensor a matrix, and
so on.

TensorFlow uses shapes to describe a tensor’s dimensions. A tensor’s rank is the
number of dimensions it has, and its shape is the length of each axis or dimension. It
is often represented as an array whose length corresponds to the tensor’s order, and
each element is the size of the corresponding dimension.

Figure 5.2: Tensors with different ranks

As an example, the tensors illustrated in the preceding figure have the following
shapes:

•	 The scalar has a shape []

142 Hands-On Artificial Intelligence for Android

•	 The vector has a shape [3] because it contains three elements

•	 The matrix has a shape [3, 3] because it is a 3x3 matrix

•	 The third-order tensor has a shape [3, 3, 3]

All these tensors were given dimensions of the same size to keep the illustration
simple. However, it is typical and even expected to find real-world tensors with
dimensions of different sizes.

That being said, how do we declare tensors in TensorFlow, and what kind of data
can they contain?

As a typical array, all elements of a tensor need to be of the same data type. Tensors
support storing signed and unsigned integers, floating-point values, complex
floating-point numbers, Booleans, and strings.

Creating tensors with the constant() function
TensorFlow supports creating tensors in several ways. The simplest is the declaration
of constant tensors. This is done using the constant() function. Consider the
following snippet:

1. import tensorflow as tf

2. c1 = tf.constant([1, 2, 3])

3. c2 = tf.constant([[1.4, 2.6, 4], [9.6, 10.7, 7.1]])

4. c3 = tf.constant(['a', 'vector'])

5. print(c1, c2, c3, sep='\n')

The preceding snippet should produce the following output:
1. tf.Tensor([1 2 3], shape=(3,), dtype=int32)

2. tf.Tensor(

3. [[1.4 2.6 4.]

4. [9.6 10.7 7.1]], shape=(2, 3), dtype=float32)

5. tf.Tensor([b'a' b'vector'], shape=(2,), dtype=string)

Note the shape and data type (TensorFlow shows the data type as dtype) of each
tensor. We created tensors with Python integers, floating-point values, and strings.
They show up as int32, float32, and string TensorFlow data types. TensorFlow also
supports other data types. Most of them are listed in Table 5.1:

Introduction to TensorFlow 143

Type TensorFlow data type
Integers (signed and unsigned) int8, int16, int32, int64

uint8, uint16
Floating-point numbers float32, float64
Strings String
Boolean values Bool
Complex numbers complex64, complex128

Table 5.1: TensorFlow data types

The dtype parameter can be used to specify the exact TensorFlow data type to apply
during tensor creation:

1. c1 = tf.constant([1,2,3], dtype=tf.float64)

Creating tensors with generated data
In addition to the constant() tensor initialization function, we can initialize tensors
with generated data.

They can be filled with zeros, ones, or any other value. The corresponding functions
are, logically, zeros(), ones(), and fill(). The former two only need the desired
tensor’s shape as an argument, while the latter also needs the value that is to be
placed in each tensor element.

1. c1 = tf.zeros([3])

2. c2 = tf.ones([3,2])

3. c3 = tf.fill([2, 3, 1], 42.0)

If we were to print these three tensors, the output would be similar to the following:

1. tf.Tensor([0. 0. 0.], shape=(3,), dtype=float32)

2.

3. tf.Tensor(

4. [[1. 1.]

5. [1. 1.]

6. [1. 1.]], shape=(3, 2), dtype=float32)

7.

8. tf.Tensor(

9. [[[42.]

144 Hands-On Artificial Intelligence for Android

10. [42.]

11. [42.]]

12.

13. [[42.]

14. [42.]

15. [42.]]], shape=(2, 3, 1), dtype=float32)

One-dimensional tensors containing sequences of values can be created with the
linspace() and range() functions.

The linspace() function generates a fixed-size sequence of values within an
interval, such that the first and last are the interval limits and the intermediate values
are evenly spaced. It takes three parameters: the first and last values and the number
of values to generate.

1. c1 = tf.linspace(3, 8, 5)

2. c2 = tf.linspace(3, 8, 6)

The tensors created by the preceding lines look as follows:

1. tf.Tensor([3. 4.25 5.5 6.75 8.], shape=(5,), dtype=float64)

2.

3. tf.Tensor([3. 4. 5. 6. 7. 8.], shape=(6,), dtype=float64)

The range() function also creates a tensor with a sequence of values, but it uses a
step definition (the interval between values). It accepts the first and upper values
and the interval between them as arguments. Unlike linspace(), range() does not
include the upper value in its output.

Compare the following two usages of range() with linspace(). Both want values
in the [1, 5) interval, but the first specifies a step of 1, whereas the second needs a
step of 0.5:

1. c1 = tf.range(1, 5, 1)

2. c2 = tf.range(1, 5, 0.5)

The resulting tensors would be as shown below:

1. tf.Tensor([1 2 3 4], shape=(4,), dtype=int32)

2.

3. tf.Tensor([1. 1.5 2. 2.5 3. 3.5 4. 4.5], shape=(8,), dtype=float32)

Introduction to TensorFlow 145

Some functions create tensors with randomly generated values, differing in their
distribution. Two of those are random.normal() and random.uniform(). Both of
these functions receive the shape of the desired tensor as their first parameter. The
former chooses random values with a normal distribution and allows the user to
define the distribution’s mean and standard deviation, so the probability of a value
being chosen falls in a curve similar to figure 5.3. The latter chooses them with a
uniform distribution, so all values are equally probable. Instead of the mean and
standard deviation, it allows the user to define the minimum and maximum value
limits.

Possible usages of these functions are illustrated in the following code snippet:
1. c1 = tf.random.normal([100], mean=0.0, stddev=1.0)

2. c2 = tf.random.uniform([100], minval=0.0, maxval=3.0)

There are other functions for initializing tensors with random values as well. For
details on these and other functions, take a look at the TensorFlow documentation at
https://www.tensorflow.org/api_docs/python/tf.

Figure 5.3: A normal distribution

Operations with tensors
So far, we have not seen any practical differences between tensors and traditional
multi-dimensional arrays. This section changes that.

146 Hands-On Artificial Intelligence for Android

TensorFlow defines many differentiable mathematical operations on tensors, which
makes sense because machine learning algorithms are mathematical by nature, as
we saw in Chapter 4, An Overview of Artificial Intelligence and Machine Learning.

TensorFlow’s mathematical functions include exponential and logarithmic
operations, rounding, comparisons, reductions, and many more. Listing them all is
outside the scope of this book, but you can refer to the TensorFlow documentation
at the previously mentioned address to know more about them.

The functions performing basic mathematical operations can be described as follows:

Function Operation
add(x, y) Adds two tensors element-wise
subtract(x, y) Subtracts two tensors element-wise
multiply(x, y) Multiplies two tensors element-wise
divide(x, y) Divides the elements of two tensors using the Python

division style: integer division results in a floating-point
value

scalar_mul(scalar, y) Multiplies the elements of a tensor by a scalar

Table 5.2: Basic mathematical operations (x and y are tensors)

The following listing contains a partial transcript of a Python shell session that
demonstrates these functions’ usage and results:

1. >>> tf.add([1,2], [3, 4])

2. <tf.Tensor: shape=(2,), dtype=int32, numpy=array([4, 6],
dtype=int32)>

3. >>> tf.subtract([1,2], [3, 4])

4. <tf.Tensor: shape=(2,), dtype=int32, numpy=array([-2, -2],
dtype=int32)>

5. >>> tf.multiply([1,2], [3, 4])

6. <tf.Tensor: shape=(2,), dtype=int32, numpy=array([3, 8],
dtype=int32)>

7. >>> tf.divide([1,2], [3, 4])

8. <tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.33333333,
0.5])>

9. >>> tf.scalar_mul(5, tf.constant([1,2]))

10. <tf.Tensor: shape=(2,), dtype=int32, numpy=array([5, 10],
dtype=int32)>

Introduction to TensorFlow 147

Besides element-wise operations, TensorFlow supports linear algebra operations
like matrix and vector operations:

Function Operation
linalg.matmul(a, b) Multiplies two matrices a and b
linalg.matvec(a, v) Multiplies a matrix a by a vector v
linalg.eye(num_rows, num_columns) Creates an identity matrix
linalg.inv(a) Computes the inverse of an invertible square

matrix a

Table 5.3: Some matrix and vector operations

The following listing taken from a Python shell session provides the respective
demonstration:

1. >>> a = tf.constant([[1,2,3],[4,5,6]])

2. >>> b = tf.constant([[1,2],[3,4],[5,6]])

3. >>> tf.linalg.matmul(a,b)

4. <tf.Tensor: shape=(2, 2), dtype=int32, numpy=

5. array([[22, 28],

6. [49, 64]], dtype=int32)>

7.

8. >>> v = tf.constant([1,2,3])

9. >>> tf.linalg.matvec(a,v)

10. <tf.Tensor: shape=(2,),dtype=int32, numpy=array([14, 32],
dtype=int32)>

11.

12. >>> tf.linalg.eye(3,3)

13. <tf.Tensor: shape=(3, 3), dtype=float32, numpy=

14. array([[1., 0., 0.],

15. [0., 1., 0.],

16. [0., 0., 1.]], dtype=float32)>

The usual operators “+”, “-“, “*” and “/” are also defined for tensors.

When using tensors on arithmetic operations, they must have compatible shapes.
For example, adding two tensors of different shapes, like a matrix and a vector, is
impossible. In this case, the smaller tensor can be broadcasted into a compatible

148 Hands-On Artificial Intelligence for Android

shape. Vector broadcasting transforms a vector to another shape by replicating its
elements as necessary. This replication is the reason for the operation’s name.

The broadcast_to() function performs this action. It receives the original vector
and the desired shape as parameters and outputs the broadcasted vector.

Usage of the broadcast_to() function is illustrated in the following listing:

1. >>> tf.broadcast_to([1,2,3], [3,3])

2. <tf.Tensor: shape=(3, 3), dtype=int32, numpy=

3. array([[1, 2, 3],

4. [1, 2, 3],

5. [1, 2, 3]])>

Finally, we can also reshape and slice tensors and extract individual elements from
them:

Function Operation
slice(t, begin, size) Extracts a slice from a tensor t starting at the begin index,

with size shape
reshape(t, shape) Creates a new tensor with the same elements as tensor t

but with the specified shape
reverse(t, dimensions) Reverses specific dimensions of tensor t
gather(t, indices,
axis)

Extracts slices from an axis of tensor t according to indices

gather_nd(t, indices) Extracts slices from tensor t according to the shapes
defined as indices

Table 5.4: Some tensor transformation functions

Tensor slicing can be demonstrated as follows. Remember that the size argument of
the slice function is a shape, so it contains the size of each dimension in the desired
slice.

1. >>> a = tf.constant([[1,2,3],[4,5,6]])

2. >>> v = tf.constant([1,2,3])

3.

4. >>> tf.slice(v, [1], [2])

5. <tf.Tensor: shape=(2,), dtype=int32, numpy=array([2, 3],
dtype=int32)>

6.

Introduction to TensorFlow 149

7. >>> tf.slice(a, [0,1], [2,2])

8. <tf.Tensor: shape=(2, 2), dtype=int32, numpy=

9. array([[2, 3],

10. [5, 6]], dtype=int32)>

11. >>> tf.slice(a, [1,1], [1,2])

12. <tf.Tensor: shape=(1, 2), dtype=int32, numpy=array([[5, 6]],
dtype=int32)>

Reshaping is quite intuitive. Remember that the resulting shape must contain the
same number of elements as the original tensor:

1. >>> a = tf.constant([[1,2,3],[4,5,6]])

2.

3. >>> tf.reshape(a, [6])

4. <tf.Tensor: shape=(6,), dtype=int32, numpy=array([1, 2, 3, 4, 5,
6], dtype=int32)>

5.

6. >>> tf.reshape(a, [3,2])

7. <tf.Tensor: shape=(3, 2), dtype=int32, numpy=

8. array([[1, 2],

9. [3, 4],

10. [5, 6]], dtype=int32)>

Tensor reversing is not complicated either. Keep in mind that we need to indicate
which dimensions of the tensor should be reversed:

1. >>> a = tf.constant([[1,2,3],[4,5,6]])

2.

3. >>> tf.reverse(a, [0])

4. <tf.Tensor: shape=(2, 3), dtype=int32, numpy=

5. array([[4, 5, 6],

6. [1, 2, 3]], dtype=int32)>

7.

8. >>> tf.reverse(a, [1])

9. <tf.Tensor: shape=(2, 3), dtype=int32, numpy=

10. array([[3, 2, 1],

150 Hands-On Artificial Intelligence for Android

11. [6, 5, 4]], dtype=int32)>

12.

13. >>> tf.reverse(a, [0,1])

14. <tf.Tensor: shape=(2, 3), dtype=int32, numpy=

15. array([[6, 5, 4],

16. [3, 2, 1]], dtype=int32)>

Gathering specific elements from tensors may seem a little bit trickier.

Generally speaking, try to remember that the gather() function mostly extracts
slices composed of entire tensor axises, whereas gather_nd() can extract slices
composed of individual tensor elements. In other words, indices in gather() refer
to an axis whereas they refer to individual elements in gather_d().

1. >>> a = tf.constant([[1,2,3],[4,5,6]])

2. >>> v = tf.constant([1,2,3,4,5,6,7,8,9,10])

3.

4. >>> tf.gather(a, indices=[0,2], axis=1)

5. <tf.Tensor: shape=(2, 2), dtype=int32, numpy=

6. array([[1, 3],

7. [4, 6]], dtype=int32)>

8.

9. >>> tf.gather(a, indices=[1], axis=0)

10. <tf.Tensor: shape=(1, 3), dtype=int32, numpy=array([[4, 5, 6]],
dtype=int32)>

11.

12. >>> tf.gather_nd(v, [[1],[8],[4]])

13. <tf.Tensor: shape=(3,), dtype=int32, numpy=array([2, 9, 5],
dtype=int32)>

14.

15. >>> tf.gather_nd(a, [[0,1],[1,1],[0,0]])

16. <tf.Tensor: shape=(3,), dtype=int32, numpy=array([2, 5, 1],
dtype=int32)>

17.

18. >>> tf.gather_nd(a, [[[0,0],[1,1]],[[1,0],[1,2]]])

Introduction to TensorFlow 151

19. <tf.Tensor: shape=(2, 2), dtype=int32, numpy=

20. array([[1, 5],

21. [4, 6]], dtype=int32)>

Tip: Refer to the documentation at https://www.tensorflow.org if you’re
wondering whether some operation that we have not covered here is available
in TensorFlow. This can also help if you have doubts about their usage.

Variables
Although never explicitly mentioned, all tensors created in the previous section are
immutable.

That said, the constant() function’s usage to create them might have been a hint. It
does not mean that constant values are used but that the resulting tensor is constant,
and so, immutable.

TensorFlow variables are used to represent shared, persisted, and mutable state.
They are implemented in the Variable class and behave like tensors because a
tensor backs their data structure.

Provide an initial value to the TensorFlow Variable class to create a variable:
1. >>> m = tf.constant([[1,2],[3,4]])

2. >>> mvar = tf.Variable(m)

3.

4. >>> vvar = tf.Variable([1,2,3])

5.

6. >>> mvar

7. <tf.Variable 'Variable:0' shape=(2, 2) dtype=int32, numpy=
 array([[1, 2],

8. [3, 4]], dtype=int32)>

9. >>> vvar

10. <tf.Variable 'Variable:0' shape=(3,) dtype=int32, numpy=array([1,
2, 3], dtype=int32)>

Variables are assigned names automatically. Use the name argument when creating
them if you want to customize their name:

1. >>> tf.Variable(v, name='My Variable')

2. <tf.Variable 'My Variable:0' shape=(2, 2) dtype=int32, numpy=

152 Hands-On Artificial Intelligence for Android

3. array([[1, 2],

4. [3, 4]], dtype=int32)>

Once created, the variable’s contents can be changed by assigning them. Traditional
Python assignments cannot be used as these are not programming language
variables but TensorFlow variables. Instead, we must use the assign() function in
the variable instance.

Suppose we wanted to multiply our matrix variable mvar from the previous example
by two. The corresponding scalar multiplication function operates on the tensor
backing the variable, but, as we know, it does not modify the tensor. A new tensor
is returned instead. So, it is necessary to assign the operation’s result back to the
variable:

1. >>> new_tensor = tf.scalar_mul(2, mvar)

2. >>> mvar.assign(new_tensor)

3. <tf.Variable 'UnreadVariable' shape=(2, 2) dtype=int32, numpy=
 array([[2, 4],
 [6, 8]], dtype=int32)>

We can also add or subtract values from the variable’s contents during its assignment:

1. >>> mvar.assign_sub([[1,1],[1,1]])

2. <tf.Variable 'UnreadVariable' shape=(2, 2) dtype=int32, numpy=
 array([[1, 3],
 [5, 7]], dtype=int32)>

3.

4. >>> mvar.assign_add([[2,2],[2,2]])

5. <tf.Variable 'UnreadVariable' shape=(2, 2) dtype=int32, numpy=

6. array([[3, 5],

7. [7, 9]], dtype=int32)>

Graphs
TensorFlow can work in two execution modes: eager and graph.

Note: The default execution mode in TensorFlow 2 is the eager mode.

Eager execution means that all TensorFlow functions execute their work as soon as
they are invoked. This mode enabled all the experimentation in the Python shell

Introduction to TensorFlow 153

shown in the previous sections: the function was called, and the result was ready as
soon as we entered the Python line of code.

On the other hand, graph execution means operations are first stored in a data
structure and executed later. The entire process of building a TensorFlow graph can
be compared to the compilation of Java code into bytecode: with TensorFlow, Python
functions are compiled into graphs.

It is more complicated to write TensorFlow programs that take advantage of graphs,
but this added complexity brings benefits in the form of frequent performance
improvements. Graph operations can be automatically parallelized and optimized
by the compiler.

In TensorFlow 1, users had to deal with a session concept that was used to execute
graphs. However, TensorFlow 2 was redesigned and eliminated the need to handle
sessions. So, the concept of graphs would be relegated to the background, allowing
users to focus on the problem they want to solve.

Many operations with graphs are hidden underneath the higher layers of the
TensorFlow and Keras API. However, it is helpful to have a basic understanding of
their workings.

Graphs in TensorFlow 2 are composed of operations and tensor objects. Operations
define units of computation, while tensors contain the data used and flowing between
operations. Their desired sequence of execution defines the graph’s structure.

A normal Python function can be executed within a TensorFlow graph by converting
it using tf.function(). This function returns an instance of a data object known
as a Function that compiles the Python function into a graph and executes it as
needed.

Consider the following toy function for example:

1. def some_function(x):

2. r = tf.reverse(x, [0])

3. return tf.scalar_mul(2, r)

It can be compiled to a graph simply by calling:

1. some_graph_function = tf.function(some_function)

From this moment on, some_graph_function() should produce the same result as
some_function(). The only difference is that the former runs as a graph internally,
whereas the latter runs imperatively.

154 Hands-On Artificial Intelligence for Android

The following diagram shows a possible visualization of the graph generated by this
compilation.

Figure 5.4: The graph of some_function()

Note that this graph doesn’t have to deciphered to use TensorFlow, nor is knowledge
about their construction necessary. Figure 5.4 is only meant to illustrate the elements
on a TensorFlow graph.

It is necessary to keep some best practices in mind when writing functions to be
compiled as a TensorFlow graph:

•	 Create TensorFlow variables outside of the function, passing them as
arguments to be modified by the function

•	 Avoid taking arguments that are not TensorFlow objects

•	 Do not depend on outer Python variables: pass all dependencies as arguments
to the function

•	 This is an optimization mechanism, so try to include as many computations
inside the function as possible

These small steps help ensure that the function is compiled into a graph that
preserves its imperative behavior.

Simple model training
Now that we have a high-level idea of how TensorFlow works, let’s look at the
training of a simple model.

Introduction to TensorFlow 155

The data for this example is a subset of the Monitoring of CO2 emissions from passenger
cars – Regulation (EU) 2019/631 dataset from the European Union Open Data project.
The subset was obtained by reducing the number of features to four:

•	 The vehicle’s mass in kilograms labeled as m (kg)

•	 The engine’s displacement in cubic centimeters labeled as ec (cm3)

•	 The vehicle’s CO2 emissions in grams per kilometer labeled as Enedc (g/
km)

•	 The vehicle’s fuel type: petrol or diesel

Rows from the reduced dataset were further processed to remove duplicated entries
and entries with zero values in any column.

This reduced dataset is used to predict a vehicle’s CO2 emissions. We present one
model based only on the vehicle’s mass and another based on its mass, displacement,
and fuel type.

Our Python code begins by importing all the necessary libraries. Do not forget to
activate the TensorFlow 2 virtual environment before starting work:

1. import pandas as pd

2. import tensorflow as tf

3. import matplotlib.pyplot as plt

4. import numpy as np

5. import seaborn as sns

6. from tensorflow import keras

7. from tensorflow.keras import layers

8. from tensorflow.keras.layers.experimental import preprocessing

Some libraries have not yet been used, so installing them in your system may be
necessary. Use pip to install them after activating the virtual environment:

1. pip install pandas matplotlib numpy seaborn

•	 Pandas is a data analysis and manipulation tool documented at https://
pandas.pydata.org/

•	 Matplotlib is a data visualization library from https://matplotlib.org/

•	 Numpy is a scientific computing package from https://numpy.org/

•	 Seaborn is a statistical data visualization package from https://seaborn.
pydata.org/

156 Hands-On Artificial Intelligence for Android

All graphics in this section were generated with matplotlib or seaborn.

Loading and preparing the dataset
We then proceed to load the dataset from a CSV file:

1. co2 = pd.read_csv("CO2_subset.csv")

2. co2 = pd.get_dummies(co2, columns=['Ft'], prefix='', prefix_sep='')

The dataset contains a fuel type column that is not numeric; it defines a category,
so it is necessary to translate it into a numeric column. Such translation can be
accomplished using a transformation known as one-hot encoding. It works by
turning the different categories into columns. Each row then gains a one (1) in the
column corresponding to its original category, leaving the remaining columns set to
zero (0).

The second line in the preceding code accomplishes this task by converting the
dataset from a format like the one illustrated in the following table:

m (kg) Enedc (g/km) Ft ec (cm3)
1253.0 95.0 diesel 1461.0
1448.0 132.0 petrol 1197.0
1395.0 130.0 petrol 1197.0
1165.0 85.0 diesel 1461.0

Table 5.5: Original data as loaded from the CSV file

It converts the dataset into:

m (kg) Enedc (g/km) ec (cm3) diesel petrol
1253.0 95.0 1461.0 1 0
1448.0 132.0 1197.0 0 1
1395.0 130.0 1197.0 0 1
1165.0 85.0 1461.0 1 0

Table 5.6: After replacing non-numeric data with numeric columns

From left to right, the columns represent the vehicle’s mass in kilograms, its specific
CO2 emissions in grams per kilometer, its engine capacity in cubic centimeters, and
its fuel type.

We then proceed to divide the dataset into one training dataset and one test dataset,
both containing the features and labels. Remember that features are the independent

Introduction to TensorFlow 157

variables and labels are the dependent variables. In other words, the features are the
values fed into the model, and the labels are the model’s output.

The purpose of the test dataset is to verify the accuracy of the model’s predictions:

1. train_dataset = co2.sample(frac=0.8, random_state=0)

2. test_dataset = co2.drop(train_dataset.index)

3. train_features = train_dataset.copy()

4. test_features = test_dataset.copy()

5. train_labels = train_features.pop('Enedc (g/km)')

6. test_labels = test_features.pop('Enedc (g/km)')

7. test_results = {}

Lines 1 and 2 from the preceding excerpt reserve approximately 80% of the dataset
for training and the remaining 20% for testing. The testing set is used to verify the
model’s accuracy after it is trained. We do not use a validation set for simplicity.

We then set the Enedc (g/km) column aside from both because it is our label, that
is, it’s what we want to predict.

The following excerpt creates a plot of the training dataset and displays it on the
screen:

1. sns.pairplot(train_dataset[['m (kg)', 'Enedc (g/km)', 'ec (cm3)']],
diag_kind='kde')

2. plt.show()

The plot should be identical to the one shown in figure 5.5. In this plot, each column
is related to all the others in a matrix sharing the y-axes across a single row and the
x-axes across a single column.

158 Hands-On Artificial Intelligence for Android

It is apparent from this plot that there is a relationship between the different columns
in the dataset, by looking at the shapes of emissions-related cells.

Figure 5.5: Visualizing the CO2 emissions training dataset

Training a linear regression model with one
feature
Let’s start with the simplest model possible: one feature and one label. We attempt to
predict the amount of CO2 emissions from the vehicle’s displacement:

Introduction to TensorFlow 159

1. def build_model(norm):

2. model = tf.keras.Sequential([

3. norm,

4. layers.Dense(units=1)

5.])

6. model.compile(

7. optimizer=tf.optimizers.Adam(learning_rate=0.1),

8. loss='mean_absolute_error')

9. return model

10.

11. def fit_model(model, features):

12. history = model.fit(

13. features, train_labels,

14. epochs=100,

15. # configure logging

16. verbose=1,

17. # Calculate validation results on 20% of the training data

18. validation_split = 0.2)

19. return history

20.

21. # normalize across only one feature

22. displacement = np.array(train_features['ec (cm3)'])

23. displacement_normalizer = preprocessing.Normalization(input_
shape=[1,])

24. displacement_normalizer.adapt(displacement)

25.

26. displacement_model = build_model(displacement_normalizer)

27. displacement_model.summary()

We begin by defining two functions that help us work with the linear regression
models.

The build_model() function uses the Keras sequential API to create a model with
one neural layer. This API is called sequential because it allows us to define a linear

160 Hands-On Artificial Intelligence for Android

stack of layers. In the preceding listing, this is accomplished by providing an array
of layers in lines 2-5. Two layers are defined: one normalization layer taken from the
build_model() parameter and one neural layer implemented by the Dense class.

The Dense class is instantiated in line 4 by setting the units parameter to 1. This
configuration results in a layer with one output and no activation function.

If you remember the description of the linear regression model from the previous
chapter, we need to use a loss function along with a gradient descent algorithm to
search for the best loss value. There are a few implementations of loss functions and
gradient descent algorithms in TensorFlow. We are using the Adam gradient descent
with a mean absolute error loss function in this example.

So, the model built by the build_model() function is a linear regression model
with one neural layer. Once the build_model() function returns, it has already
configured the model for training by calling its compile() function.

The fit_model() function executes the actual training. We define a fixed number
of iterations, or epochs, for the training. It always runs this number of iterations,
regardless of the loss function value.

Lines 21 to 24 create a normalization step across the displacement column, which
is our feature for this model. Normalization aims to apply the same scale across all
features and weights. Features often fall within different scales and ranges, so they
must be comparable to each other somehow. The Normalization() class ensures
that all data fits into a distribution centered around zero with a standard deviation
of 1.

Finally, line 26 builds the model, and line 27 displays a summary of the model. This
summary shows that the model we just created contains two trainable parameters
out of a total of five parameters in the dataset:

1. history = fit_model(displacement_model, train_features['ec (cm3)'])

2.

3. test_results['displacement_model'] = displacement_model.evaluate(

4. test_features['ec (cm3)'], test_labels, verbose=1)

Now that the model has been created, it is time to train it. The training operation
takes some time, and the amount of time needed depends on the computing
resources available, the dataset size, the model structure, and the algorithms in use.
This dataset is relatively small and the model is simple, so training should only take
around one minute.

Line 3 from the previous excerpt runs the testing phase. We check how well the
model performs against the testing dataset and store it for comparison purposes.

Introduction to TensorFlow 161

Once the model has been trained, we can use it to make predictions. We can also
visualize the loss values generated during training. Let’s first define some utility
functions to generate the graphics:

1. def plot_loss(history):

2. plt.plot(history.history['loss'], label='loss')

3. plt.plot(history.history['val_loss'], label='val_loss')

4. plt.ylim([14, 30])

5. plt.xlabel('Epoch')

6. plt.ylabel('Error [g/km]')

7. plt.legend()

8. plt.grid(True)

9. plt.show()

10.

11. def plot_enedc(x, y):

12. plt.scatter(train_features['ec (cm3)'], train_labels,
 label='Data')

13. plt.plot(x, y, color='k', label='Predictions')

14. plt.xlabel('ec (cm3)')

15. plt.ylabel('g/km')

16. plt.legend()

17. plt.show()

18.

19. def plot_predictions(model):

20. x = tf.linspace(0.0, 8500, 8501)

21. y = model.predict(x)

22. plot_enedc(x, y)

The following two lines should plot and display the loss values and a set of
predictions:

1. plot_loss(history)

2. plot_predictions(displacement_model)

Our model should have generated loss values similar to the ones shown in the
following figure. Remember that the loss is nothing other than the neural network’s

162 Hands-On Artificial Intelligence for Android

prediction error. There are two lines: one for the training loss and another for the
validation loss. The former represents the error of predictions using the training
dataset, whereas the latter is calculated using the validation dataset.

Figure 5.6: Single-variable linear regression loss values

We get a plot similar to the following one if we now ask the model to make some
predictions. It looks like the model is not too far off.

Figure 5.7: Single-variable linear regression model predictions

Introduction to TensorFlow 163

Training a linear regression model with all
features
We have used only one feature so far. What if we create a model with all features in
the dataset? Would it show any improvement?

1. # Linear regression with multiple variables

2.

3. # Normalize across the entire set

4. normalizer = preprocessing.Normalization()

5. normalizer.adapt(np.array(train_features))

6.

7. # Build the model

8. full_displacement_model = build_model(normalizer)

9. full_displacement_model.summary()

10.

11. # Train and test the model

12. history = fit_model(full_displacement_model, train_features)

13. test_results['full_linear_model'] = full_displacement_model.
evaluate(

14. test_features, test_labels, verbose=1)

Let’s train a model using the utility functions defined in the previous section, but
this time on the entire dataset. Notice that the only difference is that the normalizer
now works across all columns instead of just one; we no longer constrain the input
shape.

It was unnecessary to modify the model created in the build_model() function as
we do not restrict the shape of the network’s inputs to a specific value. The dense
neural layer used automatically configures itself according to the shape of the
previous layer’s outputs.

The model summary shown in line 9 of the preceding excerpt reports more trainable
parameters than the single-feature model, as expected.

1. plot_loss(history)

164 Hands-On Artificial Intelligence for Android

Looking at the loss function graphic, it is apparent that the model with multiple
variables performs better than the model with one variable.

Figure 5.8: Multiple variables linear regression model loss

Using a deep neural network for regression
One may wonder whether Deep Neural Networks (DNNs) perform better with this
class of problems. It is pretty easy to adapt our code to use a DNN:

1. def build_dnn_model(norm):

2. model = keras.Sequential([

3. norm,

4. layers.Dense(64, activation='relu'),

5. layers.Dense(64, activation='relu'),

6. layers.Dense(1)

7.])

8. model.compile(loss='mean_absolute_error',

9. optimizer=tf.keras.optimizers.Adam(0.001))

10. return model

Introduction to TensorFlow 165

The build_dnn_model() function in the previous excerpt creates a deep neural
network. Note that there are two differences:

•	 We have added two more layers to the model in the Keras sequential API
call.

•	 The new layers have non-linear activation functions. By default, the Dense
layer is created with a linear activation function. We specified a non-linear
activation function that allows the model to adjust itself better to data
structures with some complexity. The ReLU activation function outputs only
non-negative values; any negative values are constrained to zero. It was
chosen because it generally allows models to perform well and be easy to
train.

We can now build and train the model. Let’s start with a single-variable model, like
before:

1. dnn_displacement_model = build_dnn_model(displacement_normalizer)

2. dnn_displacement_model.summary()

3.

4. history = fit_model(dnn_displacement_model, train_features['ec
(cm3)'])

5. test_results['dnn_displacement_model']=dnn_displacement_model.
evaluate(

6. test_features['ec (cm3)'], test_labels, verbose=1)

There are many more parameters to train, but the loss function is about the same:

Figure 5.9: Single-variable DNN model loss values

166 Hands-On Artificial Intelligence for Android

However, by looking at a plot of its predictions, we see that the DNN model can
reflect the non-linearity of the data:

Figure 5.10: Single-variable DNN model predictions

Let’s train a DNN model based on all features:

1. full_dnn_model = build_dnn_model(normalizer)

2. full_dnn_model.summary()

3.

4. history = fit_model(full_dnn_model, train_features)

5. test_results['full_dnn_model'] = full_dnn_model.evaluate(

6. test_features, test_labels, verbose=1)

Again, the only difference is that we use the normalizer created with all columns in
the features training dataset.

The model summary shows even more trainable parameters as expected, and the
loss function has once again improved significantly, as shown in figure 5.11.

We have been collecting each model’s evaluation results against the training dataset
to compare their performances.

1. pd.DataFrame(test_results, index=['Mean absolute error [g/km]']).T

Introduction to TensorFlow 167

The previous line displays the test results:

Mean absolute error [g/km]
displacement_model 20.863403
full_linear_model 15.731938
dnn_displacement_model 20.852592
full_dnn_model 14.670211

Table 5.7: Performance of the different models based on the test data

As we can see in table 5.7, the single-variable models have shown the same
performance. In such simple cases, there is no gain from building a DNN. When all
features are used, however, the DNN outperforms the linear model.

No unique tuning of either model’s hyperparameters (layer parameters) was done,
so different results may be obtained with different layer parameters.

Figure 5.11: Multiple variables DNN model loss values

We can now use the test training data to plot a graph of the model’s predictions. This
graphic can help visually examine the data pattern. The graphic’s X-axis represents
the true values, that is, the values known in the dataset, and the Y-axis represents the
values predicted by the model.

1. test_predictions = full_dnn_model.predict(test_features).flatten()

2.

3. a = plt.axes(aspect='equal')

4. plt.scatter(test_labels, test_predictions)

168 Hands-On Artificial Intelligence for Android

5. plt.xlabel('True Values [g/km]')

6. plt.ylabel('Predictions [g/km]')

7. plt.xlim([0, 400])

8. plt.ylim([0, 400])

9. _ = plt.plot(lims, lims)

Looking at Figure 5.12, we notice that the model performs acceptably but shows a
slight tendency toward lower emission values in general.

Tip: If you choose your dataset to build a regression model but the training stage
outputs its loss values as “nan” (not a number), double-check to ensure that the
data does not contain null (zero) or invalid values.

Figure 5.12: Multiple variables DNN model predictions

Conclusion
This chapter covered the basics of TensorFlow, along with its installation and usage
with the Python programming language. We have now the foundations for reading
TensorFlow code and understanding its underlying data structures, illustrated by a
simple regression model.

The next chapter continues our work with TensorFlow. We use it to create a model
capable of classifying images.

Training a Model for Image Recognition with TensorFlow 169

Chapter 6
Training a Model for

Image Recognition
with TensorFlow

Introduction
The previous chapter presented an approach to model training. Let’s expand those
concepts by training classification models for image recognition. We use two well-
known datasets to create TensorFlow classification models for this purpose: one
geared toward handwritten digits and another toward clothing.

Structure
We cover the following topics in this chapter:

•	 Recognizing handwritten digits

•	 Recognizing simple clothing items

Objective
By the end of this chapter, we have fully trained TensorFlow models for specific
image recognition tasks. We also have understood the differences in behavior
between the different types of models.

170 Hands-On Artificial Intelligence for Android

Recognizing handwritten digits
The Modified National Institute of Standards and Technology (MNIST) dataset
is the most well-known dataset in the world of Machine Learning (ML). It is often
considered the hello world dataset in what concerns ML projects. So, it is only fitting
that our first image classification project should use it.

The MNIST dataset consists of images of all ten digits, handwritten. It is intended to
train machine learning models to translate the handwritten digits to their numerical
counterparts, in other words, to build an elementary Optical Character Recognition
(OCR) system.

Preparing and loading the MNIST dataset
We begin by importing the necessary libraries and preparing some valuable functions
to examine our dataset and progress as follows:

1. def draw_image(img, label=''):

2. plt.imshow(img)

3. plt.xticks([])

4. plt.yticks([])

5. plt.grid(False)

6. plt.xlabel(label)

7.

8. def show_image(img):

9. plt.figure()

10. draw_image(img)

11. plt.colorbar()

12. plt.show()

13.

14. def draw_set_samples(images, labels):

15. plt.figure(figsize=(5, 5))

16. for i in range(9):

17. plt.subplot(3, 3, i+1)

18. draw_image(images[i], labels[i])

19. plt.show()

20.

Training a Model for Image Recognition with TensorFlow 171

21. def plot(history, label, val_label):

22. plt.plot(history.history[label], label=label)

23. plt.plot(history.history[val_label], label=val_label)

24. plt.xlabel('Epoch')

25. plt.legend()

26. plt.grid(True)

27.

28. def plot_history(history):

29. plt.figure(figsize=(10, 4))

30. plt.subplot(1, 2, 1)

31. plot(history, 'accuracy', 'val_accuracy')

32. plt.subplot(1, 2, 2)

33. plot(history, 'loss', 'val_loss')

34. plt.show()

The MNIST dataset is so well-known that it is referenced in the TensorFlow library
as shown here:

1. mnist = tf.keras.datasets.mnist

2. (train_images, train_labels), (test_images, test_labels) = \
 mnist.load_data()

The preceding three lines are all it takes to transfer and load the dataset. We now
have variables initialized with all training and testing data.

Let’s take a peek at the dataset contents. The following figure represents the first
image in the training dataset:

Figure 6.1: An image from the MNIST dataset

172 Hands-On Artificial Intelligence for Android

It was obtained by calling the show_image() function on the first image in the
dataset:

1. show_image(train_images[0])

If we also examine this image’s shape, we see that it is a bidimensional array with
dimensions (28, 28).

1. train_images[0].shape

So, it is a square image 28 pixels wide and 28 pixels high. Note that figure 6.1 has its
pixels colored according to their values. The scale of the bar to the right is [0, 255],
which means that each pixel can have values in this interval. We are working with
grayscale images because each image contains a single layer.

Most algorithms work better when their inputs are in the interval [0, 1]. So, we must
scale the pixel’s values to fall in this range. One way of doing this is as follows:

1. train_images = train_images / 255.0

2. test_images = test_images / 255.0

Now, all pixels are within the [0, 1] interval. You may use the show_image() method
again to confirm that the scale has changed.

In addition to the train_images array, we have a train_labels array. This array
contains the label for each image in the same position in its corresponding array.
Labels are numbers from zero to nine, thus classifying each handwritten image as
the equivalent number.

Figure 6.2: Some images and labels taken from the MNIST dataset

Training a Model for Image Recognition with TensorFlow 173

Figure 6.2 is an example of this classification. It shows the first few pairs of images
and labels from the training dataset.

Building the model
Now that the data is divided into training and testing sets and prepared, it is time to
build the machine learning model.

The MNIST dataset comes originally from work by LeCun et al. (Gradient-based
learning applied to document recognition, 1998) and is available in its original form
at http://yann.lecun.com/exdb/mnist/. This web page also contains links to other
research work published over the years examining the performance of different
algorithms and methods applied to this dataset.

One can always see that, given the wide range of algorithms listed on that page, there
is no single answer to machine learning problems, not even for those that appear to
be as simple as the recognition of handwritten digits. Research and experimentation
is necessary to find the model that best fits the problem at hand.

Taking inspiration from the works listed on the MNIST web page, let’s first try a
simple neural network with 300 hidden units and cross-entropy loss calculation, as
shown in the following code snippet:

1. model = tf.keras.Sequential([

2. tf.keras.layers.Flatten(input_shape=(28, 28)),

3. tf.keras.layers.Dense(300, activation='relu'),

4. tf.keras.layers.Dense(10)

5.])

6. model.compile(optimizer='adam',

7. loss=tf.keras.losses.SparseCategoricalCrossentropy(

8. from_logits=True),

9. metrics=['accuracy'])

10.

11. history = model.fit(train_images, train_labels,

12. epochs=10, validation_split=0.2)

13.

14. test_loss, test_acc = model.evaluate(test_images, test_labels,

15. verbose=2)

174 Hands-On Artificial Intelligence for Android

16.

17. plot_history(history)

The model itself is built using the Keras sequential API as before. Lines 2-4 in the
preceding code snippet define the model as follows:

•	 The input layer flattens the data, converting the two-dimensional tensors
containing the images into a one-dimensional tensor for the following layers

•	 The hidden layer is a neural network layer with 300 units using the ReLU
activation function

•	 The output layer is a neural network layer with 10 units, one for each label

Note: An activation function is fundamentally the function that calculates the
output of each neuron based on its input(s). It is applied after the inputs are
adjusted with weight and bias factors. Most functions allow the network to
handle non-linear data.

The loss function used for the model’s compilation in line 6 of the preceding code
snippet calculates the cross-entropy loss when integers represent two or more classes.
This function is appropriate for our problem because the labels are indeed integers,
and we have 10 of them. Its from_logits parameter tells the function to calculate
the loss on values in the (-Inf, +Inf) interval; by default, it expects the values to be
part of a probability distribution.

Tip: In TensorFlow, the term logits is used to differentiate a neuron’s output in
the interval (-Inf, +Inf) from a probabilistic output in the interval [0, 1]. It is not
related to the statistical function with the same name.

Line 11 of the previous code snippet trains the model across 10 iterations (epochs)
using 20% of the training set as validation data. The resulting model is then verified
against the test data in line 15, and the training statistics are plotted in line 18.

Figure 6.3 illustrates how these statistics are plotted, showing how the model has
evolved during training:

Training a Model for Image Recognition with TensorFlow 175

Figure 6.3: Training results of an NN model on the MNIST dataset

Its accuracy kept improving, but its validation loss stagnated around the fifth
iteration and appeared to worsen slightly.

When validation metrics diverge from training metrics, it usually means that the
model is overfitting, that is, the model does not have a good performance with data
it has never seen. An approach to prevent overfitting is discussed in the Finding a
better model section later in this chapter.

Let’s take a look at the testing results.

The last epoch resulted in a validation accuracy of 97.93%:

1. loss: 0.0098 - accuracy: 0.9970 - val_loss: 0.0923 - val_accuracy:
0.9793

The testing reported an accuracy of 98%:

1. 313/313 - 0s - loss: 0.0792 - accuracy: 0.9800

We can see that the results from the testing phase are similar to the results from the
last epoch. The testing phase even yielded a slightly better accuracy in comparison
with the training validation accuracy.

A better accuracy while testing indicates that the model does not appear to be
overfitting. With a 2% error rate, it is suitable for our purposes.

Researchers have built much more complicated models with error rates of 0.23%.
However, these are outside of the scope of this book. You can read about them by
following the links on MNIST’s web page.

176 Hands-On Artificial Intelligence for Android

Saving the model
So far, we have worked with models that must be compiled and trained every time
they are used. Repeating the training process is annoying with the small models and
datasets we have used. When models become more complicated and the datasets
become large, such repetition takes very long and needs so many resources that it
becomes impracticable.

Thankfully, TensorFlow can save trained models to disk so that they can be reused
later.

It could not be any simpler. The following single line of code creates a directory
with the given name and stores the model weights, architecture, and training
configuration in files inside it. This data format is called SavedModel.

1. model.save('digits')

The model can be loaded into memory later, even by a different Python program,
simply by calling the load_model() function, as follows:

1. model = tf.keras.models.load_model('digits')

Testing the saved model with an image loaded
from the disk
A machine learning model is only helpful if we can use real-world data to make
predictions. Let’s try to load a picture from the disk and ask our model what it
represents.

We start with a new program. The first step is, naturally, to import the necessary
libraries and load the previously saved model, as follows:

1. import tensorflow as tf

2. import numpy as np

3.

4. model = tf.keras.models.load_model('digits')

Then, we need to load the image we want to be recognized. The Keras API within
TensorFlow exposes some functions for working with images. Its load_img()
function can perform quite a few preprocessing steps with one single call, as shown
in the following code snippet:

1. img = tf.keras.preprocessing.image.load_img('five.png',

2. color_mode='grayscale',

Training a Model for Image Recognition with TensorFlow 177

3. target_size=(28, 28),

4. interpolation='bicubic')

An application capturing data in the real world needs to ensure that it is in the
format expected by the machine learning model. The same applies to images.

Our model has the following requirements:
•	 Images must be grayscale, that is, each pixel must have only one intensity

value

•	 Images must be exactly 28x28 pixels

•	 Pixels must have values in the interval [0,1]

The function call preceding executes the following tasks:
•	 Loads a picture in PNG format from a file named five.png in the current

directory

•	 Transforms the picture into a grayscale picture instead of a color picture

•	 Resizes the picture so that it matches the expected image size

Note: For simplicity, we assume that the original image is already square and
contains only the handwritten digit we want to recognize. A more practical
application would need to fit a square bounding box around the handwritten
digit and crop or resize it to that box.

The only image preprocessing step needed now is to scale the pixel values. We use
the same technique as before:

1. subject = tf.keras.preprocessing.image.img_to_array(img) / 255.0

The image is ready, as shown in figure 6.4, but we cannot use it directly with the
model:

Figure 6.4: The test image after processing

178 Hands-On Artificial Intelligence for Android

It is necessary to specify the batch size, both when training the model and when
using it. The batch size is the number of samples processed in one single run and is
determined by the tensor’s first dimension. This information was already present in
the MNIST dataset provided by TensorFlow when we trained the model.

However, this dimension is not included when we load an image, so we need to add
one dimension to the image’s tensor, as follows:

1. subject = tf.expand_dims(subject, 0)

Now, the tensor’s first dimension is the batch size, and the following two dimensions
contain the image itself.

We can finally ask the model to make a prediction, as follows:

1. predictions = model.predict(subject)

The predictions array contains the output of all 10 neurons on our model’s output
layer for each input image. Its contents are similar to the following:

1. [[-20.973839 -49.22007 -13.484433 4.35287 -80.24498 27.224888
 -23.330673 11.996965 -41.166916 -20.932955]]

Each array element refers to one class. Its value represents the model’s degree of
confidence that the input belongs to that class. We need to pick the index of the
element with the highest degree of confidence.

Let’s transform these values so that they can be interpreted as normalized
probabilities (that is, percentages). The softmax function does this, as shown in the
following snippet:

1. score = tf.nn.softmax(predictions[0])

The score tensor now contains percentages. The sum of all its elements is 1:

1. tf.Tensor(

2. [1.1683121e-21 6.3150229e-34 2.0900991e-18 1.1662971e-10 0.0000000e+00
 9.9999976e-01 1.1066205e-22 2.4355509e-07 1.9852653e-30 1.2170649e-
 21],
 shape=(10,), dtype=float32)

As we can see, the element with the highest value corresponds to the number five
(index 5 in a zero-based indexing system), with a confidence level of 99.999976%:

1. print(

2. "This image looks like a {} ({:.2f}% confidence)."

3. .format(np.argmax(score), 100 * np.max(score))

4.)

Training a Model for Image Recognition with TensorFlow 179

The previous excerpt would output: This image looks like a 5 (100.00%
confidence) because of rounding issues.

Note: Even when using the same input data, model architecture, number of
epochs, and so on, it is not guaranteed that two different training runs will yield
the same results. So, do not worry if your numbers are slightly different from
ours. They will, however, be comparable. Add a call to the tf.random.set_seed()
function, passing an integer value as its parameter, if you want to reproduce
results consistently.

Recognizing simple clothing items
Inspired by the MNIST dataset, Han Xiao, Kashif Rasul, and Roland Vollgraf have
created a dataset with an identical structure but containing clothing images instead
(Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms,
2017). They argue that the MNIST dataset is too easy for today’s algorithms, so a
new challenge is in order.

TensorFlow also includes a direct reference to the Fashion-MNIST dataset that makes
it extremely simple to use.

Preparing and loading the Fashion-MNIST
dataset
Since Fashion-MNIST has the same structure as MNIST, that is, 60.000 grayscale
images of 28x28 pixels, we can reuse most of the code from the previous section. The
reused code is not repeated in the following code excerpts.

Let’s load the dataset and prepare it as we did with MNIST:
1. dataset = tf.keras.datasets.fashion_mnist

2. (train_images, train_labels), (test_images, test_labels) = \

3. dataset.load_data()

4. del dataset

5.

6. # Scale image values so each pixel value is in the [0, 1] interval.

7. train_images = train_images / 255.0

8. test_images = test_images / 255.0

Remember that we also need to scale the pixel values after loading and scaling the
training and testing data. We are ready to use the dataset after this has been done.

180 Hands-On Artificial Intelligence for Android

The following figure shows a sample of the training data with the label corresponding
to each picture:

Figure 6.5: A sample from the Fashion-MNIST dataset

Note that the labels are still numbers. They correspond to the 10 clothing item classes
used to classify each item in the dataset, as shown in the following snippet:

1. classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

Looking at the array from the preceding excerpt, we can understand that the first
row in figure 6.5 shows an ankle boot, followed by a T-shirt and a top. T-shirts and
tops are clustered together in the same class in this dataset.

Building the model
Do you remember that this new dataset was created to be a direct replacement of
MNIST? We can reuse the model we created for the MNIST dataset and see how it
fares with different images.

This time, however, let’s do something a bit different. With our previous configuration
of the MNIST model, we need to run the softmax function separately to transform
the output layer’s results into percentages. We can get percentages from the output

Training a Model for Image Recognition with TensorFlow 181

layer by specifying the softmax function as its activation function. This is shown as
follows:

1. model = tf.keras.Sequential([

2. tf.keras.layers.Flatten(input_shape=(28, 28)),

3. tf.keras.layers.Dense(300, activation='relu'),

4. tf.keras.layers.Dense(10, activation='softmax')

5.])

6. model.compile(optimizer='adam',

7. loss=tf.keras.losses.SparseCategoricalCrossentropy(),

8. metrics=['accuracy'])

9.

10. history = model.fit(train_images, train_labels,

11. epochs=10,

12. validation_split=0.1)

13.

14. test_loss, test_acc = model.evaluate(test_images, test_labels,
 verbose=2)

The training phase ended with 89.30% validation accuracy:
1. Epoch 10/10

2. 1688/1688 [==============================] - 3s 2ms/step - loss:
0.2245 - accuracy: 0.9169 - val_loss: 0.3092 - val_accuracy: 0.8930

The testing phase reported 88.69% accuracy:
1. 313/313 - 1s - loss: 0.3290 - accuracy: 0.8869

Since the accuracy reported by the testing phase is lower than the validation accuracy,
we conclude that the model is overfitting by a small amount.

182 Hands-On Artificial Intelligence for Android

The following figure shows the training statistics for the training and testing phases:

Figure 6.6: Training results of the MNIST network on Fashion-MNIST

Figure 6.6 is similar to figure 6.3 because they have the same architecture and
parameters, and even their input data is similar.

The model can now be saved as follows:

1. model.save('fashion')

Finding a better model
We have concluded that the model was overfitting. Could there be a model
configuration better suited to this problem?

As it turns out, there are many different models proposed for working with the
Fashion-MNIST dataset.

We can try a model that Margaret Maynard-Reid proposed in her article Fashion-
MNIST with tf.Keras (2018). It brings some extra layers, such as convolution, max
pooling, and dropout. It is implemented as follows:

1. model = tf.keras.Sequential([

2. tf.keras.layers.Conv2D(64, 2, padding='same',

3. activation='relu',

4. input_shape=(28,28,1)),

5. tf.keras.layers.MaxPool2D(2),

6. tf.keras.layers.Dropout(0.3),

7. tf.keras.layers.Conv2D(32, 2, padding='same',

Training a Model for Image Recognition with TensorFlow 183

8. activation='relu'),

9. tf.keras.layers.MaxPool2D(2),

10. tf.keras.layers.Dropout(0.3),

11. tf.keras.layers.Flatten(),

12. tf.keras.layers.Dense(256, activation='relu'),

13. tf.keras.layers.Dropout(0.5),

14. tf.keras.layers.Dense(10, activation='softmax')

15.])

16. model.compile(optimizer='adam',

17. loss=tf.keras.losses.SparseCategoricalCrossentropy(),

18. metrics=['accuracy'])

Convolution is an operation that transforms each pixel using the average of its
neighbors, often resulting in a sort of edge detection step. Since convolution steps
are involved, this model is called a Convolutional Neural Network (CNN).

Max pooling is a downsampling operation and usually follows one or more
convolution layers to reduce the number of features. Note that the number and
placement of pooling layers control the image downsampling between layers.

The dropout layer sets input units randomly to zero during training at the rate
specified as its first parameter. It then scales the remaining units by 1/1-rate, so their
sum is unchanged. This operation prevents overfitting.

The new layers require the input layers to have a third dimension, called the channel
dimension. So, we need to add an extra dimension to our training and testing image
sets before training the new model, as follows:

1. new_train_images = tf.expand_dims(train_images, 3)

2. new_test_images = tf.expand_dims(test_images, 3)

Finally, the model can be trained like the previous one, as shown in the following
code excerpt:

1. history = model.fit(new_train_images, train_labels,

2. epochs=10, validation_split=0.1)

3.

4. test_loss, test_acc = model.evaluate(new_test_images, test_labels,
verbose=2)

184 Hands-On Artificial Intelligence for Android

This CNN model is more complicated than the first one we tried, so its training takes
longer.

The last training step reported a validation accuracy of 90.63%:
1. Epoch 10/10

2. 1688/1688 [==============================] - 8s 5ms/step - loss:
0.2661 - accuracy: 0.9026 - val_loss: 0.2457 - val_accuracy: 0.9063

Model evaluation reported a testing accuracy of 90.49%:

313/313 - 1s - loss: 0.2564 - accuracy: 0.9049

Its accuracy is better than the simple model, and it’s overfitting by a smaller margin
(0.14% versus 0.61%).

These improvements come from the different techniques implemented in the new
model’s layers:

•	 The convolution layer detects edges in the images, reducing the amount
of information to the essential. Knowing the type of images in this dataset,
reducing them to their edges should, logically, eliminate most noise.

•	 The max-pooling operation has two benefits. On the one hand, a
downsampling operation reduces the image size, reducing the number
of features the neural network needs to process while keeping the most
important ones. On the other hand, this specific pooling operation helps
reduce the model’s sensitivity to slightly shifted, scaled, or tilted images.

•	 Finally, the dropout layer is explicitly used to turn off a subset of neurons
during training, which changes with each iteration. So, on average, all
neurons participate equally in the training process. The benefit of the dropout
operation is that it helps prevent overfitting, even though the model may
need more iterations (epochs) to complete its training.

Figure 6.7 also shows that the training evolution of our CNN is smooth; loss values
evolve better during training. In comparison, loss values from figure 6.6 almost
stagnated after a couple of epochs.

Training a Model for Image Recognition with TensorFlow 185

Figure 6.7: Initial results of a CNN trained on FashionMNIST

Figure 6.8 shows the training evolution of the same CNN without the dropout layers
to underline the importance of the dropout operation. Note how the validation loss
and accuracy do not evolve favorably.

Figure 6.8: Effects of removing the dropout layers from the CNN

We save this model for later use, as follows:
1. model.save('fashion-cnn')

186 Hands-On Artificial Intelligence for Android

Evaluating both models with a realistic
image
We now have two machine learning models trained on the Fashion-MNIST dataset:

•	 A simple neural network
•	 A convolutional neural network

They have similar test results. The simple neural network achieved 88.69% accuracy
on test data, and the CNN achieved 90.49% accuracy on the same test data.

At first glance, it would seem that they are quite equivalent. Would a 1.8% accuracy
difference matter much for models with an error margin over 10%? However, we
also noticed that the simple neural network was more overfitting than the CNN.
Does this overfitting make a difference?

Let’s apply these models to a realistic image that does not belong to the test set and
has not been processed in the same way.

We use a similar version of the image loading and preprocessing code created for
our MNIST model test. The difference is that this version does not need to apply an
additional softmax conversion on the model’s results and displays the probabilities
for all classes in addition to the most probable. This way, we can better understand
what the model is predicting:

1. def classify_image_file(imageFile):

2. # Load, scale the image down to 28x28 and make it grayscale

3. img = tf.keras.preprocessing.image.load_img(imageFile,

4. color_mode='grayscale',

5. target_size=(28, 28),

6. interpolation='bicubic')

7. # Scalepixel values from the [0,255] to the [0,1] interval.

8. img = tf.keras.preprocessing.image.img_to_array(img) / 255.0

9. classify_image(img)

10.

11. def classify_image(subject):

12. draw.show_image(subject)

13. # Create a batch from this single image.

14. subject = tf.expand_dims(subject, 0)

15. # Get the first prediction from the sing-image batch.

16. score = model.predict(subject)[0]

Training a Model for Image Recognition with TensorFlow 187

17. print(

18. "I'm convinced this is a {} ({:.2f}% confidence)."

19. .format(classes[np.argmax(score)], 100 * np.max(score))

20.)

21. print("But it could also be:")

22. for idx in range(0, score.shape[0]):

23. print(" {:5.2f}% says it's a {}"

24. .format(score[idx] * 100, classes[idx]))

We can now load the model and classify the test image, as follows:
1. model = tf.keras.models.load_model('fashion-cnn')

2.

3. classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',

4. 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

5.

6. classify_image_file("shirt.png")

The preceding code excerpt loads the CNN model. Experimenting with the simple
model is only a matter of loading it and rerunning the classification.

Figure 6.9: The realistic image used to try the FashionMNIST models

Figure 6.9 shows the source image used and how it looked before being submitted to
the model. As with the recognition of handwritten digits, it was necessary to scale
the image in size and pixel values.

It is relevant to mention that all images in the FashionMNIST training and test
datasets have a dark background with pixel values close to or at zero. Note that our

188 Hands-On Artificial Intelligence for Android

realistic image also has a dark background. These models do not perform that well
on images with a light background.
Let’s see how both the models performed. Their full results are shown in table 6.1.
It is apparent that the CNN model is superior, at least when classifying images of
t-shirts, like the one we used.
This improved performance is most likely the result of less overfitting, which means
that the model works better with new data, and of the higher test accuracy the model
has achieved.

Neural network Convolutional neural network
Prediction Bag (53.59% confidence) T-shirt/top (33.33% confidence)

Classes 40.68% says it's a T-shirt/top
0.00% says it's a Trouser
0.69% says it's a Pullover
0.02% says it's a Dress
0.01% says it's a Coat
0.00% says it's a Sandal
5.00% says it's a Shirt
0.00% says it's a Sneaker
53.59% says it's a Bag
0.00% says it's an Ankle boot

33.33% says it's a T-shirt/top
0.38% says it's a Trouser
9.31% says it's a Pullover
2.64% says it's a Dress
0.76% says it's a Coat
1.58% says it's a Sandal
5.94% says it's a Shirt
6.61% says it's a Sneaker
26.35% says it's a Bag
13.09% says it's an Ankle boot

Table 6.1: Results of both models on a realistic image

Conclusion
We built two image classification models based on neural networks for two very
different datasets in this chapter. Although humans would say that both are equally
easy to classify, the higher complexity of the better performing model on the Fashion-
MNIST dataset clearly shows that it’s not the case with machine learning algorithms.

The latter dataset is more challenging to classify, requiring different kinds of layer
operations like convolutions. This kind of operation is used in other neural networks,
some of which are shown in this book’s remaining chapters.

We also illustrated how overfitting could be a problem as it prevents a model from
performing well on different data, and how the dropout operation is a technique to
reduce overfitting.

In the next two chapters, we build an Android application capable of using these
models to classify images of objects captured using the device’s camera.

Android Camera Image Capture with CameraX 189

Chapter 7
Android Camera

Image Capture with
CameraX

Introduction
This chapter covers one of our image application building blocks—capturing live
images using the device’s camera. It showcases how the CameraX library, which is
an Android library built to make it easier for developers to work with the device’s
camera in Android applications, can be used to streamline the entire process.

Structure
We cover the following topics in this chapter:

•	 Ways of working with cameras on Android

•	 Getting started with the CameraX API

•	 Requesting permissions to use the device’s cameras

•	 Setting up the camera preview

•	 Taking a picture

190 Hands-On Artificial Intelligence for Android

Objectives
The advantages of using the CameraX library to capture images in real-time should
be clear upon completing this chapter. We also create a new Kotlin-based Android
application to use CameraX to capture images, building upon the work started in
Chapter 3, Building Our Base Application with Kotlin and SQLite, and briefly introducing
alternative application development techniques and libraries.

Ways of working with cameras on Android
Intents
The simplest way to implement image capture is to delegate the hard work to the
camera application supplied with the device. This method is based on using intents
to invoke the camera application and ask it to save the picture in the device’s storage.

We have used intents in Chapter 2, Event Handling and Intents on Android, and as
you may remember, switching between applications does not provide optimal user
experience. Furthermore, this technique does not allow real-time image analysis.

The application flow for capturing an image using intents resembles the following:
1. Fire an intent to open the camera application. The intent must contain the

path and file name for saving the captured picture in the JPEG format.
2. The user is redirected to the default camera application. They use its user

interface to frame and take the picture.
3. The camera application saves the JPEG file and sets a result on the intent.
4. The user is redirected to the original application.
5. The original application reads and processes the JPEG file contents, eventually

presenting its result to the user.
6. The whole process must be repeated if the image needs to be adjusted.

It is simple to implement, but the user experience is far from optimal, this is why
hardly any applications use this method anymore.

Specialized camera APIs
There are three different APIs for working with cameras on Android applications.

Camera API
The Camera API is now deprecated, meaning it should not be used in new
applications. It is mentioned to make the evolution toward different ways of working
with the camera apparent.

Android Camera Image Capture with CameraX 191

When using the Camera API, the application needs to take care of the following
tasks to show a preview to the user and capture an image:

1. Prepare the preview surface, which is commonly implemented using the
SurfaceView class

2. Initialize the camera and set any settings, including the preview size

3. Connect the camera to the preview surface

4. Start the preview

5. Capture an image; we can also handle image frames individually

6. Restart the preview to capture another image, if desired

7. Stop the preview and release the camera

On top of these tasks, the application had to ensure that the camera is fully released
once it is no longer in the foreground. Remember the application lifecycle described
in Chapter 1, Building an Application with Android Studio and Java—we must implement
the necessary callbacks to start, stop, acquire, and release the camera at appropriate
times.

Another concern is the image size, aspect ratio, and orientation:
•	 Not all cameras support the same resolutions
•	 Not all cameras are placed in the same location on the device
•	 Not all cameras support the same aspect ratios

So, the application had to know how to select the best resolution and aspect ratio
from the ones supported by the camera.

An additional difficulty is imposed by the user’s ability to rotate the device, changing
the application’s layout. The preview had to be adjusted according to the device and
camera orientations when this happens, and it often included resizing and rescaling
the preview image.

Camera2 API
The Camera2 API was developed to support advanced camera use cases that were
difficult or impossible to achieve using the old Camera API. The Camera2 API is
available from the Android API level 21.

This objective means that the API became much more flexible and powerful but also
more complicated.

In addition to all the preceding concerns listed for the old Camera API, the Camera2
API requires the application to do the following:

192 Hands-On Artificial Intelligence for Android

•	 Manage device-specific configurations

•	 Request, configure, and handle the different data streams explicitly; for
example, one for the preview and another for the capture

CameraX API
Given the additional complexity of the Camera2 API, another API was also
introduced for less complicated use cases with API level 21—the CameraX API.

CameraX is geared toward the concept of use cases, which means that the underlying
resources are automatically configured with the most suitable settings for each use
case:

•	 Previewing images on the display
•	 Running image analysis tasks
•	 Saving high-quality images

On top of that, this API is lifecycle-aware, alleviating the resource management
concerns. It also tries to provide consistent behavior across devices, especially in
terms of aspect ratio, rotation, orientation, and image sizes.

From this point forward, we use the CameraX API because the applications described
in this book do not require any of the advanced features provided by the Camera2
API.

Getting started with the CameraX API
Let’s see how we can use the CameraX API in a practical application. Our purpose is
to build an Android application to capture a picture.

We start with a simple Android application using the Kotlin language and one
activity. It is fundamentally the same application as in Chapter 3, Building Our Base
Application with Kotlin and SQLite, without the database code.

Tip: The new CameraX API is available only from API level 21 onward, so do
not forget to change the default API level in the project creation dialog box.

Android Camera Image Capture with CameraX 193

Figure 7.1: Creating the Camera application for Android 5.0 and higher

Once the application has been created, it is necessary to add the dependencies
supporting the CameraX API to our application module’s build.gradle file, as
shown in the following code snippet:

1. dependencies {

2.

3. // (other dependencies)

4.

5. def camerax_version = '1.0.0-rc01'

6. implementation "androidx.camera:camera-core:$camerax_version"

7. implementation "androidx.camera:camera-camera2:$camerax_
 version"

8. implementation "androidx.camera:camera-lifecycle:$camerax_
 version"

9. implementation "androidx.camera:camera-view:1.0.0-alpha20"

10. }

194 Hands-On Artificial Intelligence for Android

For convenience, we use a Gradle plugin that simplifies our development work.
Remember how it was necessary to use the findViewById() function in the previous
chapters? This plugin generates code that eliminates that need by adding properties
to the Activity, Fragment or View that provides direct access to their children views.
It also adds properties to represent other getter and setter pairs in view classes.

The following line should be placed at the top of the same build.gradle file to
enable this plugin:

1. apply plugin: 'kotlin-android-extensions'

Don’t forget to synchronize the Gradle project in Android Studio after modifying
the build files.

Note: The details already covered in chapters 1 through 3 are not repeated from
this point onward. You can refer to those chapters and to the complete source
code accompanying this book for such implementation details.

Requesting permissions to use the device’s
cameras
As we already know, Android applications need to ask for the user’s consent to
perform specific tasks and declare their need to access specific hardware.

The first step to use the device’s cameras is to declare a dependency on such hardware
and its related permissions in the application manifest. The following entries must
be added to the AndroidManifest.xml file before the application tag:

1. <uses-feature android:name="android.hardware.camera.any" />

2. <uses-permission android:name="android.permission.CAMERA" />

Recent Android versions no longer grant these permissions when the application
is installed. Instead, the application needs to request them from the user when they
are needed.

The activity or fragment must check whether the appropriate permission has been
granted when it needs to use the camera.

Permission checks are done using the ContextCompat.checkSelfPermission()
function. If this function does not return the PackageManager.PERMISSION_
GRANTED value, the application must request the desired permission explicitly.

1. private fun cameraPermissionsGranted() =

2. ContextCompat.checkSelfPermission(

3. requireActivity().baseContext, Manifest.permission.CAMERA

Android Camera Image Capture with CameraX 195

4.) == PackageManager.PERMISSION_GRANTED

The preceding function is meant to be used from within a fragment. The
requireActivity() function call in line 3 is not needed when using this function
from an activity.

We check the permission at startup because our application starts the camera preview
immediately:

•	 An activity calls this function on its onCreate() function after setting its
content view

•	 A fragment does it on its onAttach() function because it needs a reference
to the base context, and this reference is available through its parent activity

When the permission has not been granted, the easiest way to request it is to use the
predefined Android permission dialog box. Just like with intents, this permission
request API needs a request code provided by the calling application. You can define
a constant with the integer value of your preference.

Call the following from a fragment:

1. requestPermissions(arrayOf(Manifest.permission.CAMERA),

2. PERMISSION_REQUEST_CODE)

An activity does not have a built-in function for this purpose, so the call is slightly
different:

1. ActivityCompat.requestPermissions(this,

2. arrayOf(Manifest.permission.CAMERA),

3. PERMISSION_REQUEST_CODE)

Once the call is made to the requestPermissions() function, the system presents
the appropriate dialog box to the user requesting the specified permissions.

The result of this operation is communicated to the application through the activity
or fragment callback onRequestPermissionsResult(). So, it is necessary to
override this function in the calling activity or fragment.

This function provides the individual permissions requested and their corresponding
grant results as parameters, so we can examine the parameters directly or use
checkSelfPermission() again.

1. override fun onRequestPermissionsResult(

2. requestCode: Int,

3. permissions: Array<out String>,

4. grantResults: IntArray

196 Hands-On Artificial Intelligence for Android

5.) {

6. if (requestCode == PERMISSION_REQUEST_CODE) {

7. if (cameraPermissionsGranted()) {

8. // start the camera

9. } else {

10. Toast.makeText(context,

11. R.string.permissions_not_granted,

12. Toast.LENGTH_SHORT).show()

13. }

14. }

15. }

As shown in the preceding code excerpt, our application reuses the
cameraPermissionsGranted() function to verify that the permission was granted
and acts accordingly. There is nothing the application can do if the permission was
not granted. It merely informs the user that it cannot proceed.

Tip: Users often enjoy a better experience if the Android Navigation component
is used in the application. The accompanying code uses this component along
with fragments. Any differences between the use of activities or fragments
continue to be highlighted when necessary.

Setting up the camera preview
The first step to implementing a live camera preview is to have a surface in the
application to draw the image frames.

Thankfully, the CameraX libraries already provide a ready-to-use view for this
purpose. They even support scaling, rotation, and frame cropping to help with the
difficulties we enumerated in the previous sections.

We begin setting up the camera preview by adding PreviewView to our layout.
The following code snippet shows a possible configuration of PreviewView when
placed inside a ConstraintLayout:

1. <androidx.camera.view.PreviewView

2. android:id="@+id/previewView"

3. android:layout_width="match_parent"

4. android:layout_height="match_parent"

5. app:layout_constraintBottom_toBottomOf="parent"

Android Camera Image Capture with CameraX 197

6. app:layout_constraintEnd_toEndOf="parent"

7. app:layout_constraintStart_toStartOf="parent"

8. app:layout_constraintTop_toTopOf="parent" />

Depending on its version, AndroidStudio may not support adding this view directly
from the editor. In this case, it is necessary to edit the layout XML code manually.

The second step is to request an instance of the CameraProvider class and set it up
to start CameraX’s preview use case once it is ready.

We split these tasks into two functions for readability and modularity. The first
function, configureCamera(), requests the camera provider and invokes the second
function, configurePreview(), once the camera provider is ready.

1. private fun configureCamera() {

2. ProcessCameraProvider.getInstance(requireContext()).also {

3. cameraProviderFuture -> cameraProviderFuture.addListener({

4. configureCameraUseCase(cameraProviderFuture.get())

5. }, ContextCompat.getMainExecutor(context))

6. }

7. }

Note that the ProcessCameraProvider.getInstance() function does not return
the camera provider instance immediately. Instead, it returns a future instance
that represents an asynchronous process running in the background. One of the
techniques to receive the result of this background process is to use a listener function,
also called a callback. This callback is then invoked once the result is ready. By that
time, the original application code is doing something else, and the background
process has terminated. So, it is necessary to specify the executor where this listener
is going to run. We chose the main executor because it is not associated with the user
interface.

The configureCameraUseCase() function takes care of setting up CameraX’s
preview use case and is shown in the following code excerpt:

1. private fun configureCameraUseCase(

2. cameraProvider: ProcessCameraProvider) {

3. val preview = Preview.Builder().build()

4. preview.setSurfaceProvider(previewView.surfaceProvider)

5.

6. val cameraSelector = CameraSelector.Builder()

198 Hands-On Artificial Intelligence for Android

7. .requireLensFacing(CameraSelector.LENS_FACING_BACK)

8. .build()

9.

10. cameraProvider.bindToLifecycle(this, cameraSelector,

11. preview)

12. }

Lines 3 and 4 from the preceding code snippet create a new instance of the Preview
class and associate it with the PreviewView instance in our view.

A camera is requested in lines 6 and 7. We have chosen to request a camera facing the
back of the device, but we can also request the front camera. At the time of writing,
there is no fine-grained control of the precise camera that is used. CameraX selects
the most appropriate camera according to its algorithms. After all, it was designed
for simplicity.

Another critical task is accomplished in line 10—binding the camera provider to the
use case and the current view’s life cycle. This binding means that CameraX takes
care of acquiring and releasing resources and hardware automatically when the
activity or fragment comes to the foreground, goes to the background, or changes its
layout. We do not need to write code to handle all the life cycle callbacks ourselves.

Finally, the configureCameraUseCase() function needs to be called from the
permission handling blocks we built earlier (either in the activity creation or fragment
view creation callback). We show the fragment usage as follows:

1. override fun onViewCreated(view: View, savedInstanceState:
 Bundle?) {

2. super.onViewCreated(view, savedInstanceState)

3. if (cameraPermissionsGranted()) {

4. configureCamera()

5. } else {

6. requestPermissions(

7. CAMERA_PERMISSIONS_REQUESTED,

8. PERMISSION_REQUEST_CODE)

9. }

10. }

Another call needs to be placed in the permissions result callback:
1. override fun onRequestPermissionsResult(

Android Camera Image Capture with CameraX 199

2. requestCode: Int,

3. permissions: Array<out String>,

4. grantResults: IntArray

5.) {

6. if (requestCode == PERMISSION_REQUEST_CODE) {

7. if (cameraPermissionsGranted()) {

8. configureCameraUseCase()

9. } else {

10. Toast.makeText(context, R.string.permissions_not_
 granted,

11. Toast.LENGTH_SHORT).show()

12. }

13. }

14. }

The preview part of the application is ready to use once all the permission and
camera management code is in place.

The following picture shows what the Android permissions request dialog box may
look like. Its actual appearance varies according to the Android operating system
version and device manufacturer. This specific picture was taken on an emulator.

Figure 7.2: Camera permissions request dialog box

200 Hands-On Artificial Intelligence for Android

The live preview starts once the user gives their permission. The following screenshot
shows the live preview on the author’s device:

Figure 7.3: Camera preview working in landscape orientation

The CameraX framework automatically makes all the necessary adjustments when
the device is rotated and the application layout changes.

Figure 7.4: Camera preview working in portrait orientation

Note how the pictures from both figure 7.3 and figure 7.4 have the appropriate aspect
ratio to fit the preview area correctly.

Tip: One may grant or deny permissions to the application during development
and experimentation. We can reset an application’s permissions definitions
through the corresponding section in the device’s Settings application. The
exact naming may vary, but it is usually “Permission manager” or “Application
permissions.”

Android Camera Image Capture with CameraX 201

Taking a picture
Now that the application has its live camera preview feature implemented, it is time
to do something with it. Let’s take a still picture and save it to the device’s media
location.

Configuring CameraX for image capture
The first step is to change our configureCameraUseCase() function to enable the
CameraX image capture use case:

1. private lateinit var imageCapture: ImageCapture

2.

3. private fun configureCameraUseCase(

4. cameraProvider: ProcessCameraProvider) {

5. val preview = Preview.Builder().build()

6. preview.setSurfaceProvider(previewView.surfaceProvider)

7.

8. imageCapture = ImageCapture.Builder()

9. .setTargetRotation(requireActivity().

10. windowManager.defaultDisplay.rotation)

11. .build()

12.

13. val cameraSelector = CameraSelector.Builder()

14. .requireLensFacing(CameraSelector.LENS_FACING_BACK)

15. .build()

16.

17. cameraProvider.unbindAll()

18.

19. cameraProvider.bindToLifecycle(this, cameraSelector,

20. preview, imageCapture)

21. }

Note that we have configured a new use case in lines 8 through 11. These lines are
the only CameraX configuration necessary to enable image capture.

202 Hands-On Artificial Intelligence for Android

Lines 9 and 10 instruct the ImageCapture class to store a specific rotation setting in
the image metadata, and we set it to the current screen rotation. This rotation must
be applied to the saved image to match the preview. It may need to be reset if the
screen orientation changes, which is not being done in this example for simplicity.

Note: The getDefaultDisplay() function has been deprecated starting from API
level 30. We still use it here because our application targets a lower API level,
but you should remember this when writing applications that target recent
Android versions.

We have added a cleanup operation in line 17. The application switches to another
fragment to display the image once it is saved. It is necessary to unbind all use cases
and bind new ones when the user returns to the preview; otherwise, it may not work
correctly.

Saving the captured image as a JPEG file
The easiest way to capture an image is to save it as a JPEG image. To do so, we need
the appropriate permissions if the user has configured their device to store images
in external storage.

We first add a line to the application’s manifest:

1. <uses-permission

2. android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

Then, we add this permission to the list of permissions being requested from the
user. Instead of using the permission constant as earlier, an array is declared with all
necessary permissions for the app for simplicity:

1. private companion object {

2. private val CAMERA_PERMISSIONS_REQUESTED = arrayOf(

3. Manifest.permission.CAMERA,

4. Manifest.permission.WRITE_EXTERNAL_STORAGE)

5. private val PERMISSION_REQUEST_CODE = 100

6. }

Naturally, the cameraPermissionsGranted() function is also updated, so it uses
the array:

1. private fun cameraPermissionsGranted() =

2. CAMERA_PERMISSIONS_REQUESTED.all {

3. ContextCompat.checkSelfPermission(

Android Camera Image Capture with CameraX 203

4. requireActivity().baseContext, it) ==

5. PackageManager.PERMISSION_GRANTED

6. }

Ideally, each picture should be given a unique file name:

1. private fun getPictureFile(mediaDir: File): File =

2. File(mediaDir,

3. SimpleDateFormat("yyyy-MM-dd-HH-mm-ss-SSS", Locale.US)

4. .format(System.currentTimeMillis()) + ".jpg")

It is now necessary to determine the correct location to store the file:

1. private fun getOutputDirectory(): File =

2. Environment.getExternalStoragePublicDirectory(

3. Environment.DIRECTORY_PICTURES).let {

4. File(it, resources.getString(R.string.app_name)).apply {

5. mkdir()

6. }

7. }

Note: The getExternalStoragePublicDirectory() function has been deprecated
and no longer provides a writable location starting from API level 29. We still
use it here because our application targets a lower API level, but you should
remember this when writing applications that target recent Android versions.

Adding a trigger button
It is impossible to take a picture if the user is unable to give that command, so we add
a Take a picture button to our application. The following code excerpt illustrates
how such a button might be placed in a ConstraintLayout:

1. <Button

2. android:id="@+id/btnTakePicture"

3. android:layout_width="wrap_content"

4. android:layout_height="wrap_content"

5. android:layout_marginBottom="16dp"

6. android:text="@string/takePicture"

7. app:layout_constraintBottom_toBottomOf="parent"

204 Hands-On Artificial Intelligence for Android

8. app:layout_constraintEnd_toEndOf="parent"

9. app:layout_constraintStart_toStartOf="parent" />

Finally, the image capture is triggered once the user clicks on the button. We need to
be careful not to cause an application crash in case the camera is not fully initialized
when the button is activated.

The button’s listener is bound in the same way as in the previous chapters. We added
the following code excerpt to the onViewCreated() function shown earlier:

1. btnTakePicture.setOnClickListener {

2. takePicture()

3. }

The majority of the work for capturing an image is done in the takePicture()
function, as shown here:

1. private fun takePicture() {

2. imageCapture?.let {

3. val pictureFile = getPictureFile(getOutputDirectory())

4. val outputOptions = ImageCapture.OutputFileOptions

5. .Builder(pictureFile)

6. .build()

7. imageCapture.takePicture(

8. outputOptions,

9. ContextCompat.getMainExecutor(context),

10. object : ImageCapture.OnImageSavedCallback {

11. override fun onImageSaved(

12. outputFileResults: ImageCapture.OutputFileResults) {

13. val action = CameraPreviewFragmentDirections

14. .actionCameraPreviewFragmentToPictureFragment(

15. pictureFile.absolutePath)

16. requireView().findNavController().navigate(action)

17. }

18. override fun onError(exception: ImageCaptureException) {

19. Log.e(TAG, "Failed to save the picture.", exception)

20. Toast.makeText(context, R.string.picture_not_saved,

Android Camera Image Capture with CameraX 205

21. Toast.LENGTH_SHORT).show()

22. }

23. }

24.)

25. }

26. }

Line 2 ensures that the function does not attempt to use an uninitialized ImageCapture
use case. The final image location and file name are calculated in line 3, which are
then given to the ImageCapture object’s takePicture() function in line 8.

Lines 10 through 23 create an instance of the callback object that receives the capture
operation’s result. The onError() function is called if an error occurs. When the
operation completes successfully, the onImageSaved() function is called instead.

Lines 13 to 16 use a combination of the Navigation component and the Safe Args
library to navigate to a fragment that displays the saved image. You do not need to
use the Navigation component; we can implement this transition using activities
and intents, as shown in previous chapters.

Displaying the captured image
A new fragment or activity can be used to display the image that was just captured.
An ImageView can be added to its ConstraintLayout for this purpose:

1. <ImageView

2. android:id="@+id/imageView"

3. android:layout_width="wrap_content"

4. android:layout_height="wrap_content"

5. android:layout_marginBottom="16dp"

6. app:layout_constraintBottom_toBottomOf="parent"

7. app:layout_constraintEnd_toEndOf="parent"

8. app:layout_constraintStart_toStartOf="parent"

9. app:layout_constraintTop_toBottomOf="parent" />

The sample application also has a small text label to make it clear that the image
being shown has been loaded from a file:

1. <TextView

2. android:id="@+id/pictureCaption"

206 Hands-On Artificial Intelligence for Android

3. android:layout_width="wrap_content"

4. android:layout_height="wrap_content"

5. android:layout_marginTop="16dp"

6. android:text="@string/captured_picture"

7. android:textSize="18sp"

8. app:layout_constraintEnd_toEndOf="parent"

9. app:layout_constraintStart_toStartOf="parent"

10. app:layout_constraintTop_toTopOf="parent" />

Displaying the captured image with the correct rotation becomes easy with the help
of the Glide library.

Add the following lines to the dependencies section in the module’s Gradle build
file:

1. def glide_version = "4.12.0"

2. implementation "com.github.bumptech.glide:glide:$glide_version"

3. annotationProcessor "com.github.bumptech.glide:compiler:$glide_
 version"

The full implementation of the fragment used in the demonstration application
becomes very simple and is shown in the following code snippet.

If you choose to implement this view using an activity activated by an intent, do not
forget to pass the file path as a parameter. It can be loaded using a call identical to
the one in line 13.

The Safe Args library has generated the classes in line 3, so passing arguments to this
fragment also became significantly simpler.

1. class PictureFragment : Fragment() {

2.

3. val args : PictureFragmentArgs by navArgs()

4.

5. override fun onCreateView(

6. inflater: LayoutInflater, container: ViewGroup?,

7. savedInstanceState: Bundle?

8.): View? =

9. inflater.inflate(R.layout.fragment_picture, container, false)

Android Camera Image Capture with CameraX 207

10.

11. override fun onViewCreated(view: View, savedInstanceState:
Bundle?) {

12. super.onViewCreated(view, savedInstanceState)

13. Glide.with(this).load(args.filePath).into(this.imageView)

14. }

15.

16. }

Conclusion
This chapter has shown how easy it is to use the high-level CameraX library to
abstract several implementation details related to capturing images using the
device’s cameras.

Some auxiliary libraries were introduced that simplify some development tasks:

•	 The Safe Args library was used to pass parameters to fragments in a type-
safe manner, combined with the Navigation component

•	 The Kotlin Android Extensions plugin generates code to transform child
view lookups and getter and setter pairs into Kotlin properties

•	 The Glide library handles different image loading tasks efficiently

In the next chapter, the Camera application is transformed into a real-time image
analysis application, integrating the machine learning models from the previous
chapter in an Android application.

208 Hands-On Artificial Intelligence for Android

Using the Image Recognition Model in an Android Application 209

Chapter 8
Using the Image

Recognition Model
in an Android

Application
Introduction
This chapter shows how we can use the machine learning models created in
Chapter 6, Training a Model for Image Recognition with TensorFlow, in an Android
application using TensorFlow Lite. An application is also created to analyze the
images captured by the device’s camera, building upon the techniques mentioned
in the last chapter.

Structure
We cover the following topics in this chapter:

•	 Fundamentals of TensorFlow Lite

•	 Converting TensorFlow models into TensorFlow Lite

•	 Training an existing TensorFlow Lite model

•	 Setting up image analysis in the Android application

•	 Using TensorFlow Lite in the application

•	 Running TensorFlow Lite on dedicated hardware

210 Hands-On Artificial Intelligence for Android

Objectives
After going through this chapter, you are familiarized with the fundamental concepts
of TensorFlow Lite, the procedure to convert regular TensorFlow models into their
Lite version, and their integration in a working Android application.

Fundamentals of TensorFlow Lite
As its name implies, TensorFlow Lite is a framework that enables the usage of
machine learning models in lower-powered devices such as:

•	 Mobile devices

•	 Embedded devices

•	 IoT devices

The extra care that was taken while creating TensorFlow Lite resulted in libraries
optimized for size and power consumption. These optimizations mean that both the
library and the model sizes are small (especially compared to the desktop versions)
and that they are better suited for battery-operated devices.

Another important point is the difference in the format used in the saved models.
TensorFlow Lite models are stored as a single file, whereas TensorFlow models are
stored as a directory containing several files. This format makes TensorFlow Lite
models easier to transfer to the devices.

The fundamental flow for using TensorFlow Lite models is the same as with
TensorFlow, namely:

•	 Create the TensorFlow Lite model

•	 Use the TensorFlow Lite model to run inference in the device

The TensorFlow Lite models may be created in the following two ways:

•	 By converting a TensorFlow model into a TensorFlow Lite model

•	 By training an existing TensorFlow Lite model using custom data

It must be mentioned that, at the time of this writing, the set of features available for
TensorFlow Lite models is not precisely the same as for TensorFlow. Some operators
may not be supported, so some TensorFlow models may not be converted directly
into TensorFlow Lite models. Documentation about the compatibility of operators
between TensorFlow Lite and TensorFlow is available on the TensorFlow project
web page (https://www.tensorflow.org/).

Using the Image Recognition Model in an Android Application 211

Converting TensorFlow models into
TensorFlow Lite
The best (and recommended) way to convert a TensorFlow model into TensorFlow
Lite format is to start from its saved representation. This statement means that
the model was trained and saved, as we did in the previous chapter, before being
converted.

A command line tool is available to convert models, but the current recommendation
is that the conversion should be done through the Python API.

The TFLiteConverter class from the tf.lite package exposes a function
conveniently named from_saved_model(). It knows how to load a saved model
into a converter.

Once the converter is created with the saved model, a converted model can be
created by calling the converter’s convert() function.

The converted model is then ready to save to a file.

The following Python program shows the conversion procedure of the CNN model
trained in the previous chapter against the Fashion MNIST dataset:

1. import tensorflow as tf

2.

3. model = tf.lite.TFLiteConverter.from_saved_model(

4. '../../chapter-6/fashion-cnn'

5.).convert()

6.

7. with open('converted-fashion.tflite', 'wb') as file:

8. file.write(model)

We can optimize the converted models. These optimizations may be necessary or
convenient in order to:

•	 Reduce the model size
•	 Reduce latency
•	 Convert the model to a data format supported by the target device

Generally speaking, the loss of accuracy caused by such optimization is minimal.
However, model quantization can cause a significant drop in performance in
some cases. As with all software development, testing and evaluating the model’s
performance before and after quantization is necessary.

212 Hands-On Artificial Intelligence for Android

We can choose from the following three optimizations:

•	 Dynamic range quantization: It quantizes the weights from the original
floating-point values to 8-bit integers. It still uses floating-point kernels for
computations.

•	 Full integer quantization: It quantizes the entire model but needs a reference
data set to calibrate the variable tensors (input, activations, and output).

•	 Float-16 quantization: It quantizes the model weights to 16-bit floating-
point values.

Each quantization type is appropriate for a specific use case and target device. For
example, all are compatible with modern CPUs; float-16 quantization is suitable
for GPUs; full integer quantization is compatible with microcontrollers that cannot
handle floating-point values; and so on.

Optimizations are configured in the converter before calling the convert() function.
The following code excerpt shows how to configure the converter to apply float-16
quantization:

1. converter = tf.lite.TFLiteConverter.from_saved_model('existing-
model')

2. converter.optimizations = [tf.lite.Optimize.DEFAULT]

3. converter.target_spec.supported_types = [tf.float16]

Training an existing TensorFlow Lite
model
The TensorFlow Lite framework includes a library called Model Maker, which
contains pre-built models that are suitable for some frequent tasks like:

•	 Image, text, and audio classification
•	 Object detection
•	 Recommendations

Users of these pre-built models only need to supply their custom dataset and train
the chosen model with it. The API for using the different models is placed under the
tflite_model_maker package.

As an example, let’s train an image classification model with the Fashion MNIST
dataset.

Lines 1 through 3 in the following Python program import the necessary libraries.
Line 5 loads the dataset into memory, line 7 accomplishes model training, and line

Using the Image Recognition Model in an Android Application 213

9 performs the model’s evaluation. Finally, line 11 saves the trained model in the
tflite format.

Several image classification models are available in the library. We can choose one
passing the model_spec parameter to the create() function. The library trains the
EfficientNet Lite 0 model by default when this parameter is omitted.

1. import tensorflow as tf

2. from tflite_model_maker import image_classifier

3. from tflite_model_maker.image_classifier import DataLoader

4.

5. (train_data, dummy, test_data) = DataLoader.from_tfds('fashion_
mnist')

6.

7. model = image_classifier.create(train_data)

8.

9. loss, accuracy = model.evaluate(test_data)

10.

11. model.export(export_dir='./created-fashion-mnist')

The image classification model trained by default is a sequential model, and the
training runs by five epochs, as follows:

1. Epoch 5/5

2. 1875/1875 [==============================] - 192s 103ms/step -
loss: 0.7874 - accuracy: 0.8884

This default configuration reaches an accuracy of 88.84% during training with
Fashion MNIST as shown:

1. 313/313 [==============================] - 32s 100ms/step - loss:
0.7738 - accuracy: 0.8918

The corresponding evaluation step reported an accuracy of 89.18%.

We can switch to another supported model in the same category and modify the
training parameters. The full list of supported models is available in the TensorFlow
Lite Model Maker API documentation.

214 Hands-On Artificial Intelligence for Android

Setting up image analysis in the Android
application
The new Android application built in this chapter uses the techniques explained in
the previous chapter to implement camera access and a live camera preview.

For illustration purposes, the application uses a single activity to show the camera
preview and image analysis results instead of multiple fragments this time.

The following fundamentals remain the same and are not repeated in this chapter:

•	 Add the required camera hardware and feature declarations to the application
manifest.

•	 Implement requesting camera permissions in the activity. The starting point
is the onCreate() function in the case of activities.

•	 Configure the CameraX library and start its preview use case.

The application’s main activity uses a ConstraintLayout containing one preview
view and one text view, as displayed in the following code excerpt. The latter is used
to show the analysis result.

1. <androidx.camera.view.PreviewView

2. android:id="@+id/previewView"

3. android:layout_width="match_parent"

4. android:layout_height="0dp"

5. app:layout_constraintBottom_toTopOf="@+id/
 txtClassificationResult"

6. app:layout_constraintEnd_toEndOf="parent"

7. app:layout_constraintStart_toStartOf="parent"

8. app:layout_constraintTop_toTopOf="parent"/>

9.

10. <TextView

11. android:id="@+id/txtClassificationResult"

12. android:layout_width="wrap_content"

13. android:layout_height="wrap_content"

14. android:layout_marginBottom="16dp"

15. android:text="@string/waiting_for_result"

16. app:layout_constraintBottom_toBottomOf="parent"

Using the Image Recognition Model in an Android Application 215

17. app:layout_constraintEnd_toEndOf="parent"

18. app:layout_constraintStart_toStartOf="parent" />

A different use case is required for this new application—the image analysis use
case. As its name implies, this use case enables running analysis tasks on each frame
captured by the camera.

An ExecutorService is introduced in the application as the analysis tasks are
expected to take some time. This executor is responsible for running tasks in a thread
pool separate from the application’s user interface and service threads. This way, the
application’s routine tasks are not affected by any image analysis algorithms.

The ExecutorService is used according to the following sequence of steps:

1. The first step is to declare the necessary property in the Activity class, as
shown:

1. private lateinit var cameraExecutor: ExecutorService

2. A single-threaded executor is then created in the onCreate() function, as
follows:

1. override fun onCreate(savedInstanceState: Bundle?) {

2. super.onCreate(savedInstanceState)

3. setContentView(R.layout.activity_main)

4.

5. cameraExecutor = Executors.newSingleThreadExecutor()

6.

7. // camera configuration goes here

8. }

3. The executor needs to be disposed of when the activity is destroyed, so its
cleanup is placed in the onDestroy() function, as shown:

1. override fun onDestroy() {

2. super.onDestroy()

3. cameraExecutor.shutdown()

4. }

The necessary infrastructure is now in place. The camera is configured, the preview
is working, and an executor service is ready to service tasks.

The image analysis use case is added during the Camera configuration, just like the
capture use case was added in the previous chapter.

216 Hands-On Artificial Intelligence for Android

Since the actual image analysis work needs to be implemented by the application, the
next step is to create a class implementing the ImageAnalysis.Analyzer interface,
as shown in the following code excerpt. This class contains a function that is called
when a new image is ready to be analyzed.

1. class ImageAnalyser : ImageAnalysis.Analyzer {

2.

3. override fun analyze(image: ImageProxy) {

4. image.close()

5. }

6.

7. }

It is necessary to close the image reference before returning from the analyze()
function so that the resources are freed and new images can be captured.

Finally, the newly created class can be linked to the new image analysis use case. If
following the same structure as the image capture application, this configuration is
done in the configureCameraUseCase() function, as follows:

1. private fun configureCameraUseCase(

2. cameraProvider: ProcessCameraProvider

3.) {

4.

5. // preview configuration

6.

7. val imageAnalysis = ImageAnalysis.Builder()

8. .setBackpressureStrategy(

9. ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST)

10. .build().apply {

11. setAnalyzer(

12. cameraExecutor,

13. ImageAnalyser()

14.)

15. }

16.

17. // additional camera selector and provider configuration

Using the Image Recognition Model in an Android Application 217

18.

19. cameraProvider.bindToLifecycle(this, cameraSelector,

20. preview, imageAnalysis)

21. }

There are two details worth mentioning about the preceding code excerpt.

As mentioned earlier, the image analysis is expected to take longer than the interval
between two images captured by the camera. This expectation means that the analysis
becomes late with regard to the image stream. One of two things can happen as a
result of this delay: either all the image frames are buffered and wait for their turn be
analyzed, or any incoming frames are dropped while the analyzer is busy.

The first detail is the choice of expected behavior, that is, the backpressure strategy
setting in line 8 of the code excerpt. The STRATEGY_KEEP_ONLY_LATEST constant
causes frames to be dropped while the analyzer is busy, so each new frame coming
in for analysis is always the latest frame that the camera has captured. Buffering is
activated by the STRATEGY_BLOCK_PRODUCER constant.

The second detail is the association of the newly created image analysis class with
the analyzer use case in line 11 of the code excerpt. Here, we provide an instance of
the class and the executor where the analysis runs.

Cropping captured images
Not all models work with the same aspect ratio, resolution, and color depth as the
device’s camera sensor. This means that the captured images need to be further
processed before being submitted to the machine learning model.

Since the application user captures images with the help of a live preview, it makes
sense that it should already show the appropriate image section and aspect ratio.

The specific aspect ratio depends on the model being used. All models trained in this
and the previous chapter require a square image as an input with a specific size. Apart
from ensuring the correct aspect ratio, the image must be resized before the model
processes it. So, let’s change our application’s camera and preview configuration to
reflect the aspect ratio requirement.

The first change is on the preview view’s layout configuration by adding a dimension
ratio constraint, as follows:

1. <androidx.camera.view.PreviewView

2. android:id="@+id/previewView"

3. android:layout_width="match_parent"

4. android:layout_height="0dp"

218 Hands-On Artificial Intelligence for Android

5. app:layout_constraintDimensionRatio="1:1"

6. app:layout_constraintBottom_toTopOf="@+id/
 txtClassificationResult"

7. app:layout_constraintEnd_toEndOf="parent"

8. app:layout_constraintStart_toStartOf="parent"

9. app:layout_constraintTop_toTopOf="parent"/>

Note the new app:layout_constraintDimensionRatio attribute with a value of
1:1. This configuration results in a square preview view.

The second is to change CameraX’s use case setup to include a viewport definition.
Once set, CameraX calculates the largest possible crop rectangle based on the
viewport settings. The preview view’s viewport helps ensure that the crop rectangle
matches the preview view ratio.

The configureCameraUseCase() function needs to be modified. A use case group
needs to be explicitly created so that the viewport can be set as shown below:

1. private fun configureCameraUseCase(

2. cameraProvider: ProcessCameraProvider

3.) {

4. // preview, imageAnalisys and cameraSelector set up

5.

6. val useCaseGroup = UseCaseGroup.Builder()

7. .addUseCase(preview)

8. .addUseCase(imageAnalysis)

9. previewView.viewPort?.let {

10. useCaseGroup.setViewPort(it)

11. }

12.

13. cameraProvider.unbindAll()

14.

15. cameraProvider.bindToLifecycle(this, cameraSelector,

16. useCaseGroup.build())

17. }

All images analyzed from this point onward have metadata that includes the crop
rectangle to match the image the user sees in the preview view.

Using the Image Recognition Model in an Android Application 219

Converting captured YUV images to bitmaps
Image frames for analysis are delivered to the analyzer class in YUV format.
Unfortunately, TensorFlow Lite does not support the YUV image format and only
supports the RGB format.

Note: Images according to the YUV model are defined in terms of one luma
component (Y) and two chrominance components (UV). The RGB model is
completely different, defining images instead in terms of three channels: one for
each primitive color (red, green, and blue).

This incompatibility means that it is necessary to write code to convert YUV
images to RGB. There are several ways to do this, one of which involves using the
RenderScript framework.

Not only was the RenderScript framework designed to run computationally
intensive tasks efficiently, but it comes with an intrinsic operation that handles this
conversion.

The ImageAnalyser class can be extended with this conversion functionality. First, a
parameter is added to the class’s constructor because an Android Context reference
is necessary to instantiate the RenderScript engine.

Then, both the RenderScript engine and the intrinsic operation are instantiated and
saved as class properties to be reused later, as shown in the following code snippet:

1. class ImageAnalyser(context: Context)

2. : ImageAnalysis.Analyzer {

3.

4. private val rs = RenderScript.create(context)

5. private val script = ScriptIntrinsicYuvToRGB.create(

6. rs, Element.U8_4(rs))

7.

8. // implementation

9. }

The actual conversion can be implemented as a Kotlin extension function, so its
usage is simple.

The conversion function operates on an ImageProxy object, so it is not explicitly
related to the image analysis task. Hence, it is a good approach to place it in a
different Kotlin source code file. It is a top-level function, so, we can leverage Kotlin’s
capability of having top-level functions declared outside of a class, as shown here:

220 Hands-On Artificial Intelligence for Android

1. fun ImageProxy.toBitmap(

2. rs: RenderScript,

3. script: ScriptIntrinsicYuvToRGB): Bitmap {

4. val yuvBytes = toYuvByteArray()

5.

6. val yuvType = Type.Builder(rs, Element.U8(rs))

7. .setX(yuvBytes.size)

8. .create()

9. val input = Allocation.createTyped(

10. rs, yuvType, Allocation.USAGE_SCRIPT

11.)

12.

13. val bitmap = Bitmap.createBitmap(

14. width, height, Bitmap.Config.ARGB_8888

15.)

16. val output = Allocation.createFromBitmap(rs, bitmap)

17.

18. input.copyFrom(yuvBytes)

19. script.setInput(input)

20. script.forEach(output)

21.

22. output.copyTo(bitmap)

23.

24. input.destroy()

25. output.destroy()

26.

27. val matrix = Matrix()

28. matrix.postRotate(imageInfo.rotationDegrees.toFloat())

29.

30. return Bitmap.createBitmap(

31. bitmap, cropRect.left, cropRect.top,

Using the Image Recognition Model in an Android Application 221

32. cropRect.width(), cropRect.height(),

33. matrix, true

34.)

35. }

The previous function allocates the necessary buffers, copies the YUV data from the
underlying ImageProxy instance, and runs the intrinsic operation to perform the
conversion. The image is copied to the target bitmap once the conversion is done.

Note that lines 27 to 30 of the previous code excerpt return a bitmap cropped and
rotated according to the metadata present in the ImageProxy. This operation is
necessary to ensure that the final bitmap has the same aspect ratio and orientation
and contains the same image as the live preview.

For simplicity, the function allocates new buffers every time it is called. An
optimization can be made by caching the buffers and reusing them between calls,
and destroying them and allocating new buffers when the image dimensions change.

The function call made in line 4 of the preceding code excerpt converts the ImageProxy
image data into one contiguous array. This is shown in the following code excerpt.

An interesting detail from this implementation is that the byte array returned is in
NV21 format, containing the image layers in YVU order, as follows:

1. private fun ImageProxy.toYuvByteArray(): ByteArray {

2. require(format == ImageFormat.YUV_420_888)

3. { "Invalid image format" }

4.

5. val yBuffer = planes[0].buffer

6. val uBuffer = planes[1].buffer

7. val vBuffer = planes[2].buffer

8.

9. val ySize = yBuffer.remaining()

10. val uSize = uBuffer.remaining()

11. val vSize = vBuffer.remaining()

12.

13. val nv21 = ByteArray(ySize + uSize + vSize)

14.

15. yBuffer.get(nv21, 0, ySize)

222 Hands-On Artificial Intelligence for Android

16. vBuffer.get(nv21, ySize, vSize)

17. uBuffer.get(nv21, ySize + vSize, uSize)

18.

19. return nv21

20. }

In contrast, the ImageProxy’s layer array contains them in YUV order.

Using TensorFlow Lite in the application
Let’s bring the machine learning models into our application. There are two APIs
that can be used with TensorFlow Lite; they differ only in the model’s ease of use for
the developer:

•	 The TensorFlow Lite Interpreter API supports models without metadata. All
models converted from TensorFlow lack metadata by default.

•	 The TensorFlow Lite Task Library and the Support Library work with
models with metadata. Existing TensorFlow Lite models have metadata by
default. We can also generate code for working with these models in Android
applications.

Both model types have been created in the previous sections—Converting TensorFlow
models into TensorFlow Lite and Training an existing TensorFlow Lite model—so that both
APIs can be explored.

Creating modules for TensorFlow Lite APIs
Each API requires a different set of dependencies in the application, so it is cleaner
to create one project module for each instead of bundling them all in the main
application module.

It is easy to create a new Android library module for each API. Those who are familiar
with Gradle projects can do this operation manually, but Android Studio can offer a
helping hand. Just follow these steps:

1. Select the Project tree from the Project tool window

2. Right-click on the tree’s root element (ImageRecognition)

3. Select New and then Module, as illustrated in figure 8.1:

Using the Image Recognition Model in an Android Application 223

Figure 8.1: Adding a new module to the application

4. Select the Android Library template in the module creation dialog box
that appears. Choose a descriptive module name and a package name, as
illustrated in figure 8.2.

Figure 8.2: New Android library module settings

We create two modules, one for each API. So, the suggestion is to name one
as tensorflow_lite_interpreter and the other as tensorflow_lite_task.

5. Click on the Finish button to create the first module, and repeat the pricess
to create the second module.

224 Hands-On Artificial Intelligence for Android

We need to add both modules’ corresponding entries to the main application
module’s Gradle file once they are created. This is shown as follows:

1. dependencies {

2.

3. // other dependencies

4.

5. implementation project(':tensorflow_lite_interpreter')

6. implementation project(':tensorflow_lite_task')

7.

8. }

It is now possible to use, from the main application, any code added to the new
modules.

Due to how the TensorFlow Lite models included with the application are loaded,
we must disable compression for the model file during packaging. Knowing that
the model files have the tflite extension, compression is disabled by adding the
following configuration to the Gradle project files in the application and modules:

1. android {

2.

3. // other configurations

4.

5. aaptOptions {

6. noCompress "tflite"

7. }

8.

9. }

Working with a converted model
First, the TensorFlow Lite model needs to be included in the project, as follows:

1. Create an assets directory inside the src/main directory of the tensorflow_
lite_interpreter module. You may use Android Studio to create the
directory using the following steps:

a. Right-click on the main directory node in the Project tree

Using the Image Recognition Model in an Android Application 225

b. Select New | Directory | assets

2. Copy to this directory the tflite file corresponding to one of the converted
models from Converting TensorFlow models into TensorFlow Lite or Training an
existing TensorFlow Lite model as follows:

Figure 8.3: Location of the model file inside a module

3. Add a text file to the assets directory containing the model’s labels, one label
per line, as shown:

1. T-shirt/top

2. Trouser

3. Pullover

4. Dress

5. Coat

6. Sandal

7. Shirt

8. Sneaker

9. Bag

10. Ankle boot

4. Add the necessary dependencies on the TensorFlow Lite interpreter libraries
to the module.

5. Add dependency entries to the tensorflow-lite and tensorflow-lite-
support libraries in the tensorflow_lite_interpreter module Gradle
file, as follows:

1. dependencies {

2.

3. // other dependencies

4.

226 Hands-On Artificial Intelligence for Android

5. implementation 'org.tensorflow:tensorflow-lite:2.5.0'

6. implementation 'org.tensorflow:tensorflow-lite-
 support:0.2.0'

7.

8. }

A class can now be added with the necessary code for using the TensorFlow Lite
model. The accompanying source code includes a ConvertedModelClassifier class
in the com.book.example.tflite.interpreter package.

Working with a converted TensorFlow Lite image classification model is conceptually
simple. The following steps are necessary to classify an image:

1. Load the classification labels

2. Load the TensorFlow Lite model

3. Create an instance of the Interpreter class based on the model

4. Set up input and output tensor processing pipelines, as necessary

5. Create the input buffer with the image that is to be classified

6. Create the output buffer that receives the classification results

7. Call the run() function to run the inference and obtain the results

The labels and model are loaded using methods from the FileUtil class, which is
part of the TensorFlow Lite libraries, as shown in the following code excerpt:

1. val labels = FileUtil.loadLabels(

2. context, "labels-fashion.txt")

3. val modelFile = FileUtil.loadMappedFile(

4. context, "converted-fashion.tflite")

The interpreter is instantiated with the model as its constructor argument. Once the
interpreter has loaded the model, its information about the input and output tensors
can be used as follows:

1. val interpreter = Interpreter(modelFile)

2.

3. val inputTensor = interpreter.getInputTensor(0)

4.

5. val outputTensor = interpreter.getOutputTensor(0)

6. val outputBuffer = TensorBuffer.createFixedSize(

Using the Image Recognition Model in an Android Application 227

7. outputTensor.shape(), outputTensor.dataType())

The image that is to be classified is loaded and transformed under the form of a
TensorImage object, as shown here:

1. private fun loadImage(bitmap: Bitmap)

2. : TensorImage {

3. val inputShape = inputTensor.shape() //{1, width, height,
channels}

4. val imageHeight = inputShape[1]

5. val imageWidth = inputShape[2]

6.

7. val tensorImage = TensorImage(inputTensor.dataType())

8. tensorImage.load(bitmap)

9. return ImageProcessor.Builder()

10. .add(ResizeOp(imageWidth, imageHeight,

11. ResizeOp.ResizeMethod.BILINEAR))

12. .add(TransformToGrayscaleOp())

13. .build()

14. .process(tensorImage)

15. }

Note that the preceding excerpt uses an ImageProcessor object to transform the
image into a format suitable for the model to use. Like with the Python version, the
image needs to be resized and converted to grayscale.

An optimization can be made by caching the ImageProcessor instance until the
orientation changes.

Inference can run once the bitmap is loaded in the correct format into a TensorImage,
as shown in the following code excerpt:

1. private fun classify(image: TensorImage): List<Pair<String,
Float>> {

2. interpreter.run(

3. image.buffer,

4. outputBuffer.buffer.rewind())

5.

228 Hands-On Artificial Intelligence for Android

6. return TensorLabel(labels, outputProcessor.process(outputBuffer))

7. .mapWithFloatValue

8. .map { (key, value) -> Pair(key, value * 100.0f) }

9. .sortedByDescending { (_, value) -> value }

10. }

The interpreter is called in lines 2 to 4 of the code excerpt to run the image through
the model and gather its results in the reused output buffer.

The classification results are processed afterward. This function returns a list of all
classes and their confidence levels as a probability, sorted in descending order. This
list can be used to update the user interface with the most recent classifications.

Although not necessary with the Fashion-MNIST model trained in Chapter 6, Training
a Model for Image Recognition with TensorFlow, an output processor has been used for
demonstration purposes. The following excerpt declares it as an identity function, so
the classifications remain unaltered:

1. val outputProcessor: TensorProcessor = TensorProcessor.Builder()

2. .add(NormalizeOp(0.0f, 1.0f))

3. .build()

Any classification postprocessing, for example, when using quantized models,
should be done at this point.

Finally, the image loading and the classification functions can be combined into one
single operation, as depicted here:

1. fun classify(bitmap: Bitmap):

2. List<Pair<String, Float>> =

3. classify(loadImage(bitmap))

This new classify() function takes a bitmap and returns the sorted classification
labels with their corresponding confidence levels.

The ImageAnalyser’s callback can call the classifier’s classify() function on each
frame received from CameraX, as shown:

1. private val classifier = ConvertedModelClassifier(context)

2.

3. override fun analyze(imageProxy: ImageProxy) {

4. try {

5. val result = classifier.classify(

Using the Image Recognition Model in an Android Application 229

6. imageProxy.toBitmap(rs, script)

7.)

8. // the result is then used somehow

9. } finally {

10. imageProxy.close()

11. }

12. }

This excerpt shows one such invocation, assuming that the classifier code is
organized in one class called ConvertedModelClassifier, whose instance is stored
in a classifier property.

ImageAnalyser was implemented in the accompanying code to call a function once
the result is ready. This function was implemented in the main activity so that the
user interface is updated with the classification results.

The analysis task runs in a dedicated thread, so the user interface cannot be updated
directly. Therefore, a Handler is used to run such an update in the application’s
main loop, as shown:

1. class MainActivity : AppCompatActivity() {

2. // (... other declarations ...)

3.

4. private lateinit var imageAnalyser: ImageAnalyser

5. private val mainThreadHandler: Handler =

6. HandlerCompat.createAsync(Looper.getMainLooper())

7.

8. override fun onCreate(savedInstanceState: Bundle?) {

9. super.onCreate(savedInstanceState)

10. // (... other code ...)

11. imageAnalyser = ImageAnalyser(this) { result ->

12. mainThreadHandler.post {

13. onPredictionResult(result)

14. }

15. }

16. // (... other code ...)

17. }

18.

230 Hands-On Artificial Intelligence for Android

19. private fun onPredictionResult(result: List<Pair<String,
 Float>>) {

20. txtClassificationResult.text = result

21. .subList(0, 2)

22. .map { "%s (%.0f%%)".format(it.first, it.second) }

23. .joinToString(", ")

24. }

25.

26. // (... other functions ...)

27. }

The preceding excerpt shows how the analyzer is instantiated and configured so
that the top two classification results are displayed to the user.

Naturally, the camera use case is configured with the ImageAnalyser instance
instantiated in the onCreate() function instead of the local instance that was shown
in an earlier section.

The application is ready to analyze the camera frames once everything has been put
together.

Figure 8.4 is a screenshot of the application running on the author’s device analyzing
the model’s test image, strategically loaded into a computer screen. We can see that
the model successfully recognizes it as a T-shirt:

Figure 8.4: Classifying the test image from a computer screen

Using the Image Recognition Model in an Android Application 231

Real-world objects can work just as well, as figure 8.5 shows. Lighting conditions,
object placement and shape, and the scene’s contrast will, of course, affect the
classification results.

Figure 8.5: Classifying one of the author's new hiking boots

Working with a trained existing
TensorFlow Lite model
As stated earlier, by default, all pre-built models from the TensorFlow Lite library
contain metadata describing the model’s characteristics. The presence of metadata
in the trained model means that the library and its related tools can automatically
use this data, greatly simplifying the code needed to use the model in an application.

Thankfully, Android Studio has built-in support for TensorFlow Lite models with
metadata.

232 Hands-On Artificial Intelligence for Android

Right-click on the tensorflow_lite_task module node in the project tree and select
the New | Other | TensorFlow Lite Model options to add the model file to the
module we have created for it. This is illustrated in figure 8.6:

Figure 8.6: Adding a TensorFlow Lite model to the project

A dialog box appears, asking for the location of the TensorFlow Lite model file we
wish to use. At the same time, it asks if we want the TensorFlow Lite dependencies
to be added to the build configuration.

Choose the location of the pre-existing TensorFlow Lite model already trained with
the Fashion MNIST dataset, saved in the Training an existing TensorFlow Lite model
section. It is strongly advised to rename the model.tflite file to something more
descriptive to avoid conflicts with the TensorFlow Lite API.

Figure 8.7 provides a suggestion of a descriptive name and recommended
configuration options. Click on Finish to update the module’s configuration.

Using the Image Recognition Model in an Android Application 233

Figure 8.7: New TensorFlow Lite model project configurations

AndroidStudio then adds the model file to the ml project directory, includes the
selected dependencies, and displays the information extracted from the model’s
metadata.

One additional step is necessary. As shown in figure 8.7, Android Studio may want
to use specific versions of the TensorFlow Lite libraries. We have added newer
TensorFlow Lite libraries to the tensorflow_lite_interpreter module’s build
configuration in the previous section. It is best to use identical versions in this
module to avoid version conflicts or runtime problems.

Open the build.gradle file for the tensorflow_lite_task module and ensure that
the dependencies section contains the following library versions:

1. dependencies {

2.

3. // other dependencies

4.

5. implementation "org.tensorflow:tensorflow-lite:2.5.0"

234 Hands-On Artificial Intelligence for Android

6. implementation 'org.tensorflow:tensorflow-lite-support:0.2.0'

7. implementation 'org.tensorflow:tensorflow-lite-metadata:0.2.0'

8. implementation 'org.tensorflow:tensorflow-lite-gpu:2.5.0'

9. }

The code necessary to run inference is relatively smaller than the code required to
run inference on a converted model without metadata, as shown here:

1. class TFLiteModelClassifier(context: Context) : Closeable {

2.

3. private val model: FashionMnistModel =

4. FashionMnistModel.newInstance(context)

5.

6. override fun close() {

7. model.close()

8. }

9.

10. fun classify(bitmap: Bitmap): List<Pair<String, Float>> =

11. model.process(TensorImage.fromBitmap(bitmap))

12. .probabilityAsCategoryList

13. .sortedByDescending { category -> category.score }

14. .map { category ->

15. Pair(category.label, category.score * 100.0f) }

16.

17. }

It could be even smaller, but a conversion is added in lines 14 and 15 in the code
excerpt as we want to keep the same output format as before.

Note that the model class is generated automatically and is named after the tflite
file name. The name suggested in figure 8.7 was fashion_mnist_model.tflite, so
the generated class was named FashionMnistModel.

Only a small change to the ImageAnalyser implementation is necessary to use
this model, that is, create an instance of TFLiteModelClassifier instead of
ConvertedModelClassifier, as follows:

1. private val classifier = TFLiteModelClassifier(context)

Using the Image Recognition Model in an Android Application 235

The new model works as good as or even better than the converted model. Figure 8.8
shows its results while running on the author’s device:

Figure 8.8: The new model classifying one of the author's flip-flops

Generating code for working with a model
with metadata
The automatic code generation triggered when adding a model with metadata into
the ml directory in an Android project is very useful. Still, it may sometimes be
desirable to access its metadata or customize the input or output processors.

An additional TensorFlow package is available for generating an Android project
with a model wrapper written in Java, Gradle build configurations, simple
documentation, and of course, the model file itself.

This package is called TensorFlow Support and can be installed in the Python
environment using the pip tool, as follows:

1. pip install tflite-support

The tflite_codegen command-line utility then becomes available. It needs the path
to the model file, a Java package and class name for the generated code, and the
destination directory.

236 Hands-On Artificial Intelligence for Android

The following excerpt shows an example of using this utility to generate code for our
Fashion MNIST model:

1. tflite_codegen --model=./created-fashion-mnist/fashion_mnist_
model.tflite \

2. --package_name=com.book.example.tflite.task.wrapper \

3. --model_class_name=FashionMnistModel \

4. --destination=./created-fashion-mnist-wrapper

The resulting Java code can then be examined, used as-is, or customized as desired.

Running TensorFlow Lite on dedicated
hardware
The techniques that were shown so far rely solely on the device’s CPU to run
inference tasks. Some devices have dedicated Graphical Processing Units (GPUs)
and even specialized hardware, such as a Digital Signal Processor (DSP) or Neural
Processing Unit (NPU). These features may result in reduced processing time during
inference.

Graphical Processing Units
It is easy to enable TensorFlow Lite’s support for GPUs using these steps:

1. Include the tensorflow-lite-gpu library in the project

2. Use the isDelegateSupportedOnThisDevice() function from the
CompatibilityList class to determine whether the device is supported

3. Configure the interpreter to use the GPU delegate

Instantiate the Interpreter class with an Interpreter.Options() object carrying
an instance of the GPU delegate when using it directly. This is shown as follows:

1. val compatibility = CompatibilityList()

2. val options = Interpreter.Options().apply {

3. if (compatibility.isDelegateSupportedOnThisDevice) {

4. addDelegate(GpuDelegate(

5. compatibility.bestOptionsForThisDevice

6.))

7. }

Using the Image Recognition Model in an Android Application 237

8. }

9. compatibility.close()

The procedure is similar when using a class generated automatically from a model
with metadata, as shown in the following code excerpt:

1. val compatibility = CompatibilityList()

2. val options =

3. Model.Options.Builder().apply {

4. if (compatibility.isDelegateSupportedOnThisDevice) {

5. setDevice(Model.Device.GPU)

6. }

7. }

8. .build()

9. compatibility.close()

10. model = FashionMnistModel.newInstance(context, options)

A note of caution when using the GPU delegate is that the TensorFlow Lite interpreter
must be instantiated in the same thread where the delegate is used to prevent runtime
problems on some devices.

The code used to create an instance of the ImageAnalyser class was changed
because the sample application uses a single-threaded executor service to run the
image analyzer, which uses the interpreter to run inference.

This change causes these objects to be created within the scope of the said executor
service. It is single-threaded, so the same thread is used to create the interpreter and
run the analysis, as follows:

1. imageAnalyser = cameraExecutor.submit(Callable {

2. ImageAnalyser(

3. this,

4. TFLiteModelClassifier(this)) { result ->

5. mainThreadHandler.post {

6. onPredictionResult(result)

7. }

8. }

9. })

10. .get()

238 Hands-On Artificial Intelligence for Android

More than just GPUs
A new API is included with Android API level 28 (Pie) and above—the Android
Neural Networks API (NNAPI). It provides acceleration for running models on
devices with supported hardware, including GPU, DSP, or NPU. The TensorFlow
Lite API can use the NNAPI, providing a simple interface for enabling such support.

When using an Interpreter, add the appropriate delegate to the Options object if
running on a supported Android version, as shown:

1. val options = Interpreter.Options().apply {

2. if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.P) {

3. addDelegate(NnApiDelegate())

4. }

5. }

If using a class generated automatically from a model with metadata, enable the
corresponding flag in its Options object, as shown:

1. val options =

2. Model.Options.Builder().apply {

3. if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.P) {

4. setDevice(Model.Device.NNAPI)

5. }

6. }

7. .build()

Faster performance is not guaranteed
We must keep in mind that the hardware acceleration delegates do not support all
possible TensorFlow model operations or configurations.

Also, any additional application hardware requirements may not result in faster
inferences. For example, the application may use the GPU for rendering, thus
competing with the interpreter for GPU time.

So, the recommendation is to profile the application in as many devices as possible
to determine if enabling these accelerations brings any speed improvements.

Using the Image Recognition Model in an Android Application 239

Conclusion
This chapter shows how to use TensorFlow Lite to run inference on an Android
device based on image recognition models trained using TensorFlow in a more
powerful computer.

We now know that there are pre-built models for various application classes created
specifically with TensorFlow Lite in mind. These models can be trained with
application-specific data and evaluated to see how suitable they are for whatever
purpose a developer has in mind.

The next chapters build upon the concepts presented here, reusing the TensorFlow
Lite framework and the CameraX image analysis use case as necessary.

240 Hands-On Artificial Intelligence for Android

Detecting Faces with the Google ML Kit 241

Chapter 9
Detecting

Faces with the
Google ML Kit

This chapter covers the usage of the Google ML Kit library in an Android
application to process images captured by the phone camera and detect faces

that may be present in the image. Incorporating this library in our base image
analysis application with CameraX is the first step toward building a face recognition
application.

Structure
We cover the following topics in this chapter:

•	 Understanding the Google ML Kit

•	 Looking at face detection with the Google ML Kit

•	 Including Google ML Kit in our Android application

•	 Preparing the user interface

•	 Configuring the CameraX use cases

•	 Scanning images for faces in real-time

242 Hands-On Artificial Intelligence for Android

Objectives
By the end of the chapter, you have extended the base Android application using
CameraX for live image analysis to include the detection of faces in captured images.
You have a fully working face detection application then.

Additionally, you understand the different options available in the Google ML
Kit library for detecting faces and the difference between face detection and face
recognition.

Understanding the Google ML Kit
The field of computer vision has been active for decades, and some high-quality
libraries have been developed to make computers “see” for a myriad of applications.

A reference in computer vision algorithms’ implementation is the OpenCV (Open
Source Computer Vision) library. This library has been growing over the past 20
years and includes machine learning algorithms. Its official website, https://opencv.
org, stated that the library already included over 2,500 computer vision algorithms
at the time of writing this book. Given its focus on performance and algorithm
optimization, it is mainly intended for real-time computer vision applications.

OpenCV also supports Android, but the fact that it is a C++ native library, along
with its size and feature set, makes its usage more complicated when compared with
libraries explicitly developed for Android.

The Google ML Kit fills this usability gap for some of the most common computer
vision tasks found in Android applications.

At the time of writing this book, the Google ML Kit contained implementations of
machine learning models and algorithms tailored to the following tasks:

•	 Face detection

•	 Barcode scanning

•	 Image labeling

•	 Object detection and tracking

•	 Human body pose detection

•	 Text and digital ink recognition

•	 Selfie segmentation

This library is optimized for running on Android-based devices and does not need
any cloud resources for its processing. Just like the image classification applications

Detecting Faces with the Google ML Kit 243

developed in the previous chapters, the Google ML Kit library runs its models on
the device.

This chapter focuses on the first algorithm—face detection. However, the basic
techniques and concepts shown here also apply to the others, so it should not be too
difficult to try them out as well.

Strictly speaking, the Google ML Kit library itself does not include the machine
learning models required for each task. Instead, they must be added to the application
using the library. The most straightforward way is to rely on Google Play Services to
automatically download the model when the application is installed; we explore this
option in the upcoming sections.

Note: This book does not cover using OpenCV in Android, but we recommend
taking a look at its website to grasp the algorithms it provides. Its added
complexity may pay off if it fits some other application.

Looking at face detection with the Google
ML Kit
First and foremost, we must understand the significant difference between face
detection and face recognition, or generally speaking, between object detection and
object recognition.

The detection of an object—or face—in an image only means that the algorithm can
perceive the presence of the said object and pinpoint its location in that image. So,
it is unable to determine whether that object matches some other object seen earlier.
In the case of face detection, it cannot tell that any detected face belongs to a specific
person A or B, just that it is a face.

Often, face detection algorithms can detect and provide data about facial features,
for example, the position or shape of the eyes, nose, and mouth. Since this data is
extracted by face landmark detection models, such feature detection is not always
combined with the face detection model. The Google ML Kit can also provide facial
features. It calls them “landmarks” and “contours”, respectively, and they are only
provided if requested. So, the algorithm runs slower when more information is
requested about each face.

Other algorithms can use this additional data, such as some face recognition methods
and expression or emotion classification.

The Google ML Kit is also capable of providing eye and mouth classifications, which
means reporting that the face’s eyes are open or closed or that the mouth appears to
be forming a smile.

244 Hands-On Artificial Intelligence for Android

Another feature offered by the Google ML Kit is face tracking. Tracking means
assigning an identifier to each face and reporting their new positions as they move
around the frame. This is not face recognition because it relies on visual tracking
algorithms.

Finally, the Google ML Kit can provide face orientation toward the camera. This
orientation can be expressed in terms of three angles: roll, pitch, and yaw.

All the preceding features can be toggled when configuring the Google ML Kit
library in the application’s code.

Including Google ML Kit in our Android
application
Like with CameraX, including the Google ML Kit in an Android application is a
matter of declaring the appropriate dependencies in the project and adding any
desired configuration settings.

The starting point is an application already configured to use the CameraX library
because this is the library used to capture images for analysis.

Enabling view binding
Although this step is not required to work with the Google ML Kit, it replaces the
kotlin-android-extensions Gradle plugin to generate properties for accessing
views in activities and fragments, eliminating the need to call findViewById().

Applications built in the previous chapters used that plugin. This is a new way of
doing it and is used in this project so that you can become familiar with both ways.

Activate this feature by modifying the android section in the module’s Gradle file,
as follows:

1. android {

2. // other configurations

3. buildFeatures {

4. viewBinding = true

5. }

6. }

Detecting Faces with the Google ML Kit 245

Configuring the project’s dependencies
We must choose the correct dependency to add the Google ML Kit libraries to the
application. The choice depends on how the application accesses the model.

As mentioned in a previous section, the face detection model can be bundled with
the application’s package or downloaded at the time of installation with the help of
Google Play Services.

Choose the following dependency to use Google Play Services to download the
model at the time of installation:

1. dependencies {

2.

3. // (other dependencies)

4.

5. // Google ML Kit

6. // Download the model dynamically through Google Play Services.

7. implementation 'com.google.android.gms:play-services-mlkit-face-
detection:16.1.7'

8. }

Alternatively, choose the following dependency to include the model in the
application’s package. Do not include both.

1. dependencies {

2.

3. // (other dependencies)

4.

5. // Google ML Kit

6. // Bundle the model with the application.

7. implementation 'com.google.mlkit:face-detection:16.1.1'

8. }

Any additional dependencies, such as the CameraX library, still need to be included.
However, the applications developed in the previous chapters can be used as starting
points.

246 Hands-On Artificial Intelligence for Android

Adding metadata for the Google Play Services
We must add some metadata to the application using the Google Play Services to
download the model.

Add a meta-data element to the application element in the Android Manifest
XML file, as demonstrated in the following code excerpt:

1. <application>

2.

3. <meta-data

4. android:name="com.google.mlkit.vision.DEPENDENCIES"

5. android:value="face" />

6.

7. <!-- activities here -->

8.

9. </application>

Even with a recently created application, the application element already contains
attributes and other elements that should not be removed.

Preparing the user interface
This application aims to demonstrate how to work with the Google ML Kit for face
detection and verify that the face detected in the source image can be extracted.

So, the sample application uses an interface that highlights the detected face and
allows the user to find a good angle using a real-time camera preview.

The user interface’s layout is shown in figure 9.1. Its XML definition is available in
the accompanying code.

Detecting Faces with the Google ML Kit 247

Figure 9.1: The sample face detection application’s user interface

The camera’s preview is placed in the top-left corner, which allows us to use most of
the screen to display the first face detected in the camera stream. An ImageView is
used for this purpose.

As the application uses the view binding feature, its activity creation is slightly
different from those built before. The binding code is generated automatically, but
it needs to be connected to the activity’s layout. This connection is made using the
binding class to inflate the layout, which produces an instance of the binding class
that can be used later to access the layout views.

248 Hands-On Artificial Intelligence for Android

The following code excerpt demonstrates the binding class’s configuration:

1. class MainActivity : AppCompatActivity() {

2.

3. private lateinit var binding: ActivityMainBinding

4.

5. override fun onCreate(savedInstanceState: Bundle?) {

6. super.onCreate(savedInstanceState)

7. binding = ActivityMainBinding.inflate(layoutInflater)

8. setContentView(binding.root)

9. }

10.

11. }

Now, it is time to set up the CameraX use cases.

Configuring the CameraX use cases
Almost all of the CameraX use case configuration is the same as mentioned in the
previous chapter, except for the target resolution and the image analysis class.

Creating the image analysis class
A new image analysis class is created to support the Google ML Kit face detection
process. There is one requirement—the application must display the detected face.

This requirement is fulfilled by providing the image analysis class with a function
to be called when the face detection results are available, as shown in the following
code excerpt:

1. class RealtimeFaceDetector(

2. context: Context,

3. private val receiver: (Bitmap?) -> Unit

4.): ImageAnalysis.Analyzer {

5.

6. override fun analyze(proxy: ImageProxy) {

7. proxy.close()

8. }

Detecting Faces with the Google ML Kit 249

9.

10. }

Line 3 in the preceding code fragment declares such a callback function. Note that
the function’s argument is a nullable bitmap. This choice is justified by the desire to
indicate that no face has been detected in the camera pictures, which is achieved by
passing a null bitmap to the callback function.

The callback function is implemented in the main activity, as illustrated in the
following code excerpt. When a valid bitmap is received, it is shown in the ImageView
dedicated to displaying the face detected. Otherwise, the standard Android help
icon is used as a placeholder to indicate that no face was detected.

1. private fun onFaceDetected(face: Bitmap?) {

2. if (null != face)

3. binding.faceView.setImageBitmap(face)

4. else

5. binding.faceView.setImageResource(

6. android.R.drawable.ic_menu_help)

7. }

Any other placeholder can also be used; this Android resource was chosen for
simplicity.

1. class MainActivity : AppCompatActivity() {

2. // (other properties)

3.

4. private lateinit var cameraExecutor: ExecutorService

5. private lateinit var imageAnalyser: RealtimeFaceDetector

6.

7. private val mainThreadHandler: Handler =

8. HandlerCompat.createAsync(Looper.getMainLooper())

9.

10. override fun onCreate(savedInstanceState: Bundle?) {

11. // (activity creation)

12.

13. cameraExecutor = Executors.newSingleThreadExecutor()

14. imageAnalyser = RealtimeFaceDetector(this) { face ->

250 Hands-On Artificial Intelligence for Android

15. mainThreadHandler.post {

16. onFaceDetected(face)

17. }

18. }

19.

20. binding.previewView.post {

21. if (cameraPermissionsGranted()) {

22. configureCamera()

23. } else {

24. requestPermissions(

25. CAMERA_PERMISSIONS_REQUESTED,

26. PERMISSION_REQUEST_CODE)

27. }

28. }

29. }

30.

31. override fun onDestroy() {

32. super.onDestroy()

33. cameraExecutor.shutdown()

34. }

35.

36. // (face detection callback)

37. }

The preceding code excerpt shows the same activity creation and destruction logic
as in the previous chapter, adjusted to use view binding and the new image analysis
class.

The logic for handling camera permissions remains the same and is not shown here
again, but the use case configuration is slightly different.

The following code excerpt shows the CameraX use case configuration used in this
Google ML Kit face detection application:

1. private fun configureCameraUseCase(

2. cameraProvider: ProcessCameraProvider

Detecting Faces with the Google ML Kit 251

3.) {

4. val preview = Preview.Builder()

5. .build().apply {

6. setSurfaceProvider(binding.previewView.surfaceProvider)

7. }

8.

9. val imageAnalysis = ImageAnalysis.Builder()

10. .setBackpressureStrategy(ImageAnalysis.STRATEGY_KEEP_ONLY_
LATEST)

11. .setTargetResolution(Size(480, 360))

12. .build().also {

13. it.setAnalyzer(

14. cameraExecutor,

15. imageAnalyser

16.)

17. }

18.

19. val cameraSelector = CameraSelector.Builder()

20. .requireLensFacing(CameraSelector.LENS_FACING_FRONT)

21. .build()

22.

23. val useCaseGroup = UseCaseGroup.Builder()

24. .addUseCase(preview)

25. .addUseCase(imageAnalysis)

26. binding.previewView.viewPort?.let {

27. useCaseGroup.setViewPort(it)

28. }

29.

30. cameraProvider.unbindAll()

31.

32. cameraProvider.bindToLifecycle(this, cameraSelector,

33. useCaseGroup.build())

34. }

252 Hands-On Artificial Intelligence for Android

It is identical to the one used in the previous chapter, with two differences:

•	 Line 11 specifies a target resolution. This target resolution is chosen according
to the Google ML Kit’s minimum resolution requirements, which are
discussed in the next section. It does not mean that CameraX provides this
exact resolution but that it attempts to choose a resolution that is a good fit.

•	 Line 20 requests a front-facing camera. This request aims to make it easier to
test with the user’s face, but the back camera can also be used.

Scanning images for faces in real-time
The Google ML Kit library can be brought into the application now that CameraX is
set up as the necessary image capture infrastructure.

Configuring the minimum image resolution
One important detail about the Google ML Kit face detection library is that it has
a requirement about the size of the image to be analyzed. It must not be smaller
than 480×360 pixels. On the other hand, bigger resolution images may mean better
accuracy, but they also mean longer processing times.

So, the recommendation is to run the detection on images with resolutions close to
this minimum size when processing time needs to be kept as short as possible.

This reason is why our face detection application tells CameraX that its target
resolution is 480×360. Of course, the library then attempts to choose the best possible
resolution available.

The next step is to configure and create the face detector object. It’s called to analyze
each image captured by the camera, so its usage is restricted to our application’s
image analyzer class—the RealtimeFaceDetector class.

Creating the face detector object
The face detector object is easy to create. Just use the getClient() factory function
from the FaceDetector class:

1. private val detector: FaceDetector = FaceDetection.getClient(op-
tions)

As usual, the devil lies in the details. Note that the getClient() function takes an
argument aptly named options.

The Google ML Kit face detector provides several features that can be enabled
and configured at the time of creation. These features have been mentioned at the

Detecting Faces with the Google ML Kit 253

beginning of this chapter and are detailed as follows. Table 9.1 contains a summary
of the settings used to configure them on the Google ML Kit face detector.

Performance mode
The face detector can work in a mode that favors speed over detection accuracy or
the other way around.

Landmark detection
The landmark detection feature allows the application to detect facial features and
receive their corresponding positions as part of the face detection process.

At the time of writing, the following facial features are supported by the Google ML
Kit face detector:

•	 Eyes

•	 Ears

•	 Mouth

•	 Nose base

•	 Cheeks

Most of these features are subdivided as left, right, top, or bottom; for example, the
left eye, the bottom mouth section, the right cheek, and so on.

Naturally, only the facial features visible in the image can be detected. So, the angle
at which the camera faces the person’s head determines the number of landmarks
detected and available in the face detector’s results.

Contour detection
The contour detection feature is closely related to landmark detection because it
provides the application with a set of points describing the contour of each landmark.

The face detector can provide the following contours, at the time of writing:

•	 Face

•	 Eyebrows

•	 Eyes

•	 Cheeks

•	 Lips

•	 Nose bridge and bottom

Like the landmark detection feature, only the visible landmark contours may be
detected.

254 Hands-On Artificial Intelligence for Android

Classification
The Google ML Kit face detector currently supports two classifications:

•	 Eyes open

•	 Smiling

These classifications are provided as a percentage value representing the level of
confidence in their presence. In other words, it represents how confident the model
is that the face detected is smiling or has its eyes opened.

Minimum face size
We can define the minimum face size acceptable, expressed as a percentage of the
face’s width in relation to the image width. The default value is 0.1, which means
that faces must be as wide as approximately 10% of the image, for example, at
least 72 pixels wide in a 720 pixels wide image. These values are to be regarded
as approximations because the detector can return results for slightly smaller faces
than the requested size.

Changing the minimum face size may impact the detection speed. Requesting bigger
faces means that smaller ones are ignored, so detection runs faster. On the other
hand, lowering the threshold may mean that detection runs slower in comparison.

Face tracking
This feature assigns an identifier to each face detected so that the application can
keep track of changes in the face’s position in successive images.

Note that this is not real face recognition. Instead, the Google ML Kit uses motion
detection algorithms and position comparison to provide this tracking feature.

Feature Setting Description
Performance
mode

PERFORMANCE_MODE_FAST Favor speed over accuracy
PERFORMANCE_MODE_ACCURATE Favor accuracy over speed

Landmark
detection

LANDMARK_MODE_NONE Landmark detection is
disabled

LANDMARK_MODE_ALL Landmark detection is
enabled

Contour
detection

CONTOUR_MODE_NONE Contour detection is disabled
CONTOUR_MODE_ALL Contour detection is enabled

Classification
mode

CLASSIFICATION_MODE_NONE Classification is disabled
CLASSIFICATION_MODE_ALL Classification is enabled

Detecting Faces with the Google ML Kit 255

Feature Setting Description
Minimum face
size

A floating-point value between 0.0 and
1.0

Represents a percentage of
the image’s width

Face tracking A call to the enableTracking()
function

Enable face tracking

Table 9.1: The different face detection features

The configuration of all these features is accomplished by using an instance of the
FaceDetectorOptions class. It is recommended to configure as many as possible
even if the default settings are repeated, because then there can be no questions
about the expected results.

The following code excerpt shows how the face detector options are defined in this
chapter’s application:

1. private val options: FaceDetectorOptions=FaceDetectorOptions.
Builder()

2. .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_FAST)

3. .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_NONE)

4. .setContourMode(FaceDetectorOptions.CONTOUR_MODE_NONE)

5. .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_
 NONE)

6. .setMinFaceSize(0.1f)

7. .build()

All of these settings correspond to the Google ML Kit’s default values.

Analyzing an image
Once the face detector object is created with the desired options, image analysis is
triggered by calling its process() function.

The process() function accepts one argument of InputImage type that can be
created using one of the several factory methods this type provides.

The application receives images captured by CameraX as an instance of ImageProxy.
In turn, this proxy object provides an instance of Image containing the captured
image in YUV format. Thankfully, Google ML Kit can process YUV images directly
and efficiently.

So, it is recommended to use the fromMediaImage() factory method from
InputImage to create the necessary parameter for the process() function.

256 Hands-On Artificial Intelligence for Android

The first approach to writing the contents of the image analyzer’s analyze()
function could be the following code excerpt:

1. override fun analyze(proxy: ImageProxy) {

2. val originalImage = proxy.image

3. if (originalImage == null) {

4. proxy.close()

5. return

6. }

7. detector.process(InputImage.fromMediaImage(

8. originalImage, proxy.imageInfo.rotationDegrees))

9. .addOnCompleteListener {

10. proxy.close()

11. }

12. }

Note that the process() function also needs to know the input image’s rotation
regarding the final orientation desired. This information is necessary to use the
Google ML Kit face detection model correctly and translate the output data into the
expected orientation. It is retrieved from the CameraX image proxy.

Remember that CameraX’s image proxy must be released before the analyze()
function can be called again with a new image. Plus, image processing runs as an
asynchronous task, so control is removed from the analyze() function before the
processing results are ready.

Therefore, it is essential to add a listener method to free the image proxy after the
image processing completes. This code is shown in lines 9 to 11 of the preceding
excerpt.

Lines 2 to 6 are added to increase the application’s robustness: ImageProxy declares
that the result of the getImage() function (or its Kotlin property version) may be a
null reference. We prevent null pointer exceptions by validating the reference before
using it.

Using the face detection results
The image processor produces a list with information about any faces found in the
image once the image processing is complete.

As explained earlier, image processing happens asynchronously, so it is likely not
ready when the analyze() function returns. This problem can be solved by adding

Detecting Faces with the Google ML Kit 257

another callback that is called when the analysis completes successfully. This callback
then goes through the list of faces detected and uses their information as needed.

The following code excerpt shows how the new callback is added to the asynchronous
task returned by the process() function.

Note how the first operation handles the possibility that the list of faces is empty in
line 4. An empty list means that no faces were detected in the original image. In this
case, a null face bitmap is given to the receiver() function.

1. detector.process(InputImage.fromMediaImage(

2. originalImage, proxy.imageInfo.rotationDegrees))

3. .addOnSuccessListener { faces ->

4. val faceBitmap = faces.firstOrNull()?.let { face ->

5. val faceBounds = cancelRotation(face.boundingBox, proxy)

6. if (faceBounds.setIntersect(proxy.cropRect, faceBounds)) {

7. proxy.toBitmap(rs, script, faceBounds)

8. } else {

9. null

10. }

11. }

12. receiver(faceBitmap)

13. }

14. .addOnCompleteListener {

15. proxy.close()

16. }

The second operation seems strange—a function called cancelRotation() is used
to transform the bounding box reported by the face detector. Remember that the
results are in the desired orientation’s coordinate space, which can differ from the
original image orientation. So, this function is necessary for two reasons.

The image conversion to bitmap in line 7 uses a function identical to the one in the
previous chapter, except that the desired bounds are provided as an argument. The
creation of the final bitmap uses an Android function that crops the bitmap before
rotating it. This sequence means the bounding box’s coordinates must be in the same
coordinate space as the original image.

We must ensure that the bounding box falls within the image’s dimensions,
preventing problems caused by rounding errors. This verification is done in line 6
and also needs to be in the original image’s coordinate space.

258 Hands-On Artificial Intelligence for Android

An alternative is to convert the original image to a bitmap and then work on the
converted bitmap to extract a second bitmap containing only the face detected. This
is, however, less efficient than transforming the coordinates.

The cancelRotation() function is shown in the following code excerpt:
1. private fun cancelRotation(bounds: Rect, proxy: ImageProxy): Rect

{

2. val translatedRect = RectF(bounds)

3. val matrix = Matrix()

4. matrix.setRotate(

5. proxy.imageInfo.rotationDegrees.toFloat(),

6. proxy.cropRect.centerX().toFloat(),

7. proxy.cropRect.centerY().toFloat())

8. matrix.mapRect(translatedRect)

9. return Rect(translatedRect.left.toInt(), translatedRect.top.
 toInt(),

10. translatedRect.right.toInt(), translatedRect.bottom.toInt())

11. }

Its main job is to rotate the input rectangle around the center of the image proxy’s
cropping rectangle in the opposite direction of the image proxy’s rotation angle.

Image processing may fail for some reason. The application should also be aware of
any errors that occur during processing, and this can be accomplished by adding the
third and final callback—the failure callback function.

The failure callback’s job is to inform the receiver that no face could be extracted
from the image.

The final image analysis function is then shown as follows:

1. override fun analyze(proxy: ImageProxy) {

2. val originalImage = proxy.image

3. if (originalImage == null) {

4. proxy.close()

5. return

6. }

7. detector.process(InputImage.fromMediaImage(

8. originalImage, proxy.imageInfo.rotationDegrees))

Detecting Faces with the Google ML Kit 259

9. .addOnSuccessListener { faces ->

10. val faceBitmap = faces.firstOrNull()?.let { face ->

11. val faceBounds = cancelRotation(face.boundingBox, proxy)

12. if (faceBounds.setIntersect(proxy.cropRect, faceBounds)) {

13. proxy.toBitmap(rs, script, faceBounds)

14. } else {

15. null

16. }

17. }

18. receiver(faceBitmap)

19. }

20. .addOnFailureListener {

21. receiver(null)

22. }

23. .addOnCompleteListener {

24. proxy.close()

25. }

26. }

Figure 9.2 illustrates the face detection application running on the author’s device.
Upon pointing the camera at a newspaper photograph, the Google ML Kit face
detector detects a person’s face. The previous image analysis function then extracts
the detected face from the original image and sends it to the receiver. The latter
displays the received face in the user interface’s image view.

260 Hands-On Artificial Intelligence for Android

Figure 9.2: Detecting a face from a newspaper clipping

Note that the face is blurry because it is pretty small in the original image. This
configuration was chosen on purpose to protect the person’s privacy.

Conclusion
The Google ML Kit libraries contain a face detection model that is easy to use
combined with the CameraX framework and produces accurate results. Its additional
features can be used to fine-tune its behavior and provide hints about the image that
may be useful for some application purposes.

For example, a portrait application might want to know if the user is smiling to
trigger image capture. On the other hand, an application that needs the user’s image
for face recognition may refuse to accept images where they are not facing the camera
directly or have their eyes closed.

The next chapter takes the code base shown here and goes one step further, adding
face recognition capabilities.

Verifying Faces in Android with TensorFlow Lite 261

Chapter 10
Verifying Faces in

Android with
TensorFlow Lite

Introduction
This chapter takes you through the process of using a TensorFlow Lite model in
an Android application to recognize the most prominent face in images previously
captured by the CameraX library and analyzed by the Google ML Kit library.

Structure
We cover the following topics in this chapter:

•	 Understanding face recognition

•	 Understanding normalization

•	 Looking at the FaceNet model

•	 Working with the MobileFaceNets model

•	 Using the Euclidean distance to identify a face

•	 Incorporating the MobileFaceNets model in an Android application

262 Hands-On Artificial Intelligence for Android

Objectives
After completing this chapter, you have a simple Android application with complete
face verification. Face recognition is added to the base Android application using
CameraX and the Google ML Kit for live face detection in images. You have
understood the fundamental mode of operation of most face recognition algorithms,
and the method chosen for working with the results of the face recognition model
is clear.

Understanding face recognition
As mentioned in the previous chapter, there is a significant but subtle difference
between face detection and face recognition algorithms.

A face detection algorithm only aims to understand if a (human) face is present in
a picture and provide its coordinates, very much like an object detection algorithm
specialized to work with faces.

A face detection algorithm does not need to detect faces in a way that allows it
to identify a face later on, possibly in a different setting, as being the same face it
detected earlier. That is the job of the face recognition algorithm.

Humans possess a potent face detection and recognition mechanism that works
effortlessly and produces accurate results, even when looking at a small part of a
face. Humans can typically recognize a face by looking only at the triangle formed
by the eyes and nose. However, only the eyes and eyebrows are often enough for
accurate identification.

Besides face detection, one can say that there are two categories of tasks: face
verification and face identification.

Face verification is the process of comparing one face to another or verifying whether
a newly processed face matches pre-stored information about a specific face. It is a
one-to-one matching process.

On the other hand, face identification (also called recognition) intends to find the
identity of a newly processed face in a set of pre-stored information about several
faces, for example, searching for a person’s face in a database. It is a one-to-many
matching process.

Note: As confusing as it may be, some sources use the term face identification to
refer to face verification.

Researchers understood long ago that computer programs could not compare
images of faces—or anything else for that matter—based on their pixel data only.

Verifying Faces in Android with TensorFlow Lite 263

This sort of comparison does not produce reliable results because slight changes in
lighting or position produce images with very different pixel data.

Logically, more targeted and detailed information is necessary, so the focus of
research moved toward the representation of facial topology instead.

Intuitively, facial recognition algorithms work mostly by extracting information
about points of interest in images of faces. These points of interest are called features.

The following figure illustrates how an imaginary algorithm might generate
information about the facial features it finds:

Figure 10.1: Possible features extracted by an algorithm

The green lines in figure 10.1 illustrate a few possible sets of points representing
the position and boundaries of the most common facial features used by these
algorithms. These include:

•	 Eye size and position

•	 Face or head format

•	 Nose format and position

•	 Mouth format and position

Note: An interesting detail is that such features may be extracted explicitly, like
the Google ML Kit facial detection algorithm allows, or implicitly within the
algorithm.

Early algorithms used techniques like image partitioning, histograms, and statistical
analysis to extract helpful information in the form of features while simultaneously
discarding irrelevant or redundant information.

264 Hands-On Artificial Intelligence for Android

Face recognition algorithms were carefully built, and the feature set was manually
fine-tuned until the evolution of machine learning (ML) made Convolutional Neural
Networks (CNNs) accessible.

CNNs are good feature extractors because, as it is understood today, they effectively
extract low-level image features (for example, edges and circles) in their first layers,
leaving the deeper layers with the task of partitioning the feature space and learning
about image features. Today, the forefront of research relies on CNNs to perform
feature extraction for face recognition and verification applications.

Features extracted by a CNN are not necessarily structured, that is, they are not
necessarily presented as a vector with fixed positions for eyes, nose, or any other
feature learned by the network because their internal structure depends on the
CNN’s configuration.

Nowadays, facial landmarks are often used explicitly to perform face image
alignment before feeding the face image to the recognition model.

The approach used in this chapter uses the MobileFaceNets CNN, and it is
independent of the structure of the CNN’s output vector. The MobileFaceNets CNN
was explicitly developed for face verification on mobile devices. Other state-of-the-
art models, such as the FaceNet model, are computationally heavy or oversized to
be used effectively on mobile devices.

Understanding normalization
This chapter uses terms like normalization, distance, Euclidian distance, and
Euclidian normalization. It is essential to build some understanding of their
meanings before we refer to them.

Normalization is a process whereby variable values are reduced to a standardized
form so that they become comparable, that is, they can be compared to each other.
One way of understanding the need for such an operation is unit conversion, for
example, to compare temperatures measured in degrees Fahrenheit to temperatures
measured in degrees Celsius, a conversion is required from one to the other.

There are many other forms of normalization, depending on the application. For
example, the intensity of each pixel in the input images was scaled from [0, 255] to
[0, 1] in Chapter 6, Training a Model for Image Recognition with TensorFlow. This scaling
is also a form of normalization.

Normalizing a ratio scale
Some ML models produce outputs that describe an object instead of classifying it.
For example, the models trained in Chapter 6, Training a Model for Image Recognition

Verifying Faces in Android with TensorFlow Lite 265

with TensorFlow, were classification models that assigned a class to an object with
a certain degree of confidence. On the other hand, the models used for object
identification often describe them. For example, face identification models produce
outputs that describe the face’s features, so we must ensure that these outputs are
somehow comparable among themselves.

If we visualize a fixed number of points placed over an object that describe the
object’s structure and then imagine that the object moves around the space, the
object remains the same while the relative position of the points in relation to the
observer changes. So, we can say that their scale changes, which is especially visible
if the object moves nearer or farther.

In a ratio scale, measurements are unique up to a congruence or proportionality
transformation. For example, if we take the points describing the object mentioned
in the previous paragraph, they are closer together when the object is far away and
further apart when the object is close. However, they describe the same object. It is
necessary to reduce these sets of points to the same scale to compare them, in other
words, to apply some ratio.

Going back to TensorFlow, we can draw a comparison between these imaginary
points and the output of a ML model. Both represent a description of an object, and
both assume different representations as the object moves in space.

We also know that TensorFlow ML models output a tensor and that a tensor is a
generalization of a vector. So, we can say that these models’ output is a vector.

The normalization of a ratio scale is accomplished by applying a transformation that
creates a normalized version of the vector with length 1. Saying that a vector’s length
is 1 is equivalent to saying that its Euclidean norm equals 1. The Euclidian norm is a
function that calculates the length of a vector from the origin in the Euclidian space.

Note: There is nothing special about the Euclidian space. It is the classical
geometry space that we all studied since our introduction to geometry in school.

The outcome of the normalization process becomes apparent once we look closely at
figure 10.2. Its top half represents one set of vectors, and the bottom half represents
the same set of vectors after Euclidean (or L2) normalization.

When we compare both sets, it is clear that all vectors maintain their orientation in
the normalized version. However, their lengths have been normalized and are now
equal to 1. Note that all the points lie on a circle after normalization.

Once all the vectors produced by the model have the same length, they can be
compared.

266 Hands-On Artificial Intelligence for Android

Note: In mathematics, a norm is a function from a vector space to the set of non-
negative real numbers. In other words, it produces a single value bigger than or
equal to zero when given a vector.

Figure 10.2: A random set of vectors before (top) and after normalization (below)

If two different sets of vectors point at the same location after normalization, we can
say that they represent or measure the same object.

Using the Euclidean norm for normalization
In formal terms, the Euclidean norm of a vector is defined by the following formula:

This formula is also known as the square root of the sum of all squares.

A vector can be normalized by dividing each of its elements by its Euclidian norm,
as shown here:

Verifying Faces in Android with TensorFlow Lite 267

Note: Do not panic at the sight of mathematical formulas. These formulas are
shown only for reference and help make sense of the Kotlin code used in the
application.

One possible Kotlin implementation of the Euclidean normalization, also known as
the L2 normalization, is shown in the following code excerpt:

1. fun euclideanNormalisation(vector: FloatArray): FloatArray {

2. var norm = 0.0f

3. for (idx in vector.indices) {

4. norm += vector[idx].pow(2)

5. }

6. norm = sqrt(norm)

7. return FloatArray(vector.size) { vector[it] / norm }

8. }

In Python, one can normalize a vector using the norm() function provided by the
NumPy library. This function can be used as follows:

1. import numpy as np

2. #...

3. vector = vector / np.linalg.norm(vector)

Now that we understand normalization in general and Euclidian normalization in
particular, let’s move on to face recognition models.

Looking at the FaceNet model
In 2015, Florian Schroff et al. published their paper FaceNet: A Unified Embedding for
Face Recognition and Clustering.

The FaceNet model became a reference in face recognition, verification, and clustering
due to its enhanced accuracy as compared to the top-performing models at the time.

It is also particularly interesting because its output is a 128-point measurement in the
Euclidean space of the face image. This output vector is relatively compact, considering
that the predominant models at the time worked with huge representations with
thousands of dimensions.

The model’s input is an image of a face whose exact specifications depend on the
model implementation. The original paper’s NN1 architecture, for example, used a
220x220 3-channel image as input for its first convolutional layer.

268 Hands-On Artificial Intelligence for Android

Apart from its efficiency, the fact that the face representation is placed in the
Euclidean space means that standard techniques can be used to compare different
representations. Calculating the Euclidean distance between representations is the
simplest, and it is described in the Using the Euclidian distance to identify a face section
later in the chapter.

The FaceNet model uses a deep convolutional network, followed by an L2
normalization layer that produces the final embeddings vector in the Euclidean
space. Training of the FaceNet model, however, involved an innovation that the
authors called triplet loss. Figure 10.3 provides an overview of FaceNet’s model
structure:

Figure 10.3: The FaceNet model structure

Triplet loss is a method that aims to minimize the distance between all faces of the
same identity and maximize the distance between two faces of different identities
within a margin. It involves an anchor face and positive and negative samples. The
distance between the anchor and the positive sample should decrease with training,
whereas the distance between the anchor and the negative sample should increase.
Ideally, faces of the same identity produce embeddings vectors that are clustered
together in Euclidean space.

Figure 10.4 illustrates the goal of the Triplet Loss calculation:

Figure 10.4: The Triplet Loss method used in FaceNet

Tip: Readers interested in the research behind the FaceNet model are encouraged
to look up the paper mentioned earlier. It is available for free in scientific
archives, for example, at https://arxiv.org/abs/1503.03832. Their authors kindly
provided figures 10.3 and 10.4.

Verifying Faces in Android with TensorFlow Lite 269

So, this model is a good choice for experimenting with face verification or
identification in an application.

However, the team researching FaceNet used training sets with 100-200 million
face images from about 8 million identities and trained their models in a cluster
for 1,000-2,000 hours. This kind of training is outside the capacity of most domestic
systems, so it’s best to look for an existing implementation with a pre-trained model
whenever possible.

Note: When using existing implementations, datasets, and pre-trained models
for any purpose other than personal use, training, or academic research, always
confirm that the terms of their license allow their use for the application intended.

This book focuses on TensorFlow and TensorFlow Lite, so we searched for FaceNet
implementations in TensorFlow that could be easily converted to TensorFlow Lite.

One implementation of FaceNet in TensorFlow was created by David Sandberg
(https://github.com/davidsandberg/facenet). Pre-trained models are available, but
unfortunately, they are not easy to convert to TensorFlow Lite for the following
reasons:

•	 The models do not use the Keras format

•	 The models support further training, which means they need to be converted
into an inference-only model and frozen

•	 The models were created with TensorFlow version 1, which means that the
code to perform the conversion needs to be written using an older API

There is another implementation of FaceNet available, created by Hiroki Taniai
(https://github.com/nyoki-mtl/keras-facenet). This implementation was also
created with TensorFlow version 1, but the pre-trained model is provided in the
Keras format, which eases its conversion to the TensorFlow Lite format.

Converting Hiroki Taniai’s implementation of
FaceNet to TensorFlow Lite
We must begin by downloading the pre-trained model from the project’s GitHub
repository location.

The conversion of its Keras model to TensorFlow Lite is straightforward. It only
requires the following lines of Python code:

1. import tensorflow as tf

2.

3. converter = tf.compat.v1.lite.TFLiteConverter.from_keras_model_

270 Hands-On Artificial Intelligence for Android

file(

4. 'facenet_keras.h5')

5. tflite_model = converter.convert()

6.

7. with open('facenet.tflite', 'wb') as file:

8. file.write(tflite_model)

The code in the preceding excerpt produces one TensorFlow Lite file that is
approximately 91MB big. This file is too big for a mobile application.

Fortunately, there is a method to reduce the model’s file size. This method is known
as post-training quantization and consists of converting the model’s parameters or
activations from the original 32-bit floating-point format into formats with lower
precision, like 16-bit floating-point or integers. This conversion happens in such a
way that there are no significant losses in model accuracy.

The simplest form of post-training quantization for TensorFlow Lite models is called
dynamic range quantization. This method converts the model’s weights to 8-bit
integers, but computations are done using floating-point values. Dynamic range
quantization results in a model about four times smaller than the original, and it is
compatible with CPUs.

Other forms of quantization bring smaller gains in model size or require reference
data, that is, a subset of the training or validation data, to calculate quantized values.
We chose dynamic range quantization due to its simplicity.

To save the model with dynamic range quantization, one needs to enable the
corresponding option in the converter. So, the conversion code now becomes similar
to the following code snippet:

1. import tensorflow as tf

2.

3. converter = tf.compat.v1.lite.TFLiteConverter.from_keras_model_
file('facenet_keras.h5')

4.

5. converter.optimizations = [tf.lite.Optimize.DEFAULT]

6. tflite_model = converter.convert()

7.

8. with open('facenet.tflite', 'wb') as file:

9. file.write(tflite_model)

Verifying Faces in Android with TensorFlow Lite 271

Note how the converter receives optimization options in line 5 of the preceding code
snippet.

Now that we have a TensorFlow Lite model file, it is time to verify its correct
operation. We use some random data to do this. This operation aims to verify that
the output vector’s format and its normalization match what is expected.

The following code snippet loads the model, generates some random data, and runs
an inference step based on it. Then, it outputs the shape and norm of the embeddings
vector the model has produced.

1. import numpy as np

2. import tensorflow as tf

3.

4. interpreter = tf.lite.Interpreter(

5. model_path="facenet.tflite")

6. interpreter.allocate_tensors()

7.

8. input_details = interpreter.get_input_details()

9. output_details = interpreter.get_output_details()

10.

11. # Generate a random input "image" and preprocess it

12. # before setting it as the model's input.

13. input_shape = input_details[0]['shape']

14. img = np.array(np.random.random_sample(input_shape),

15. dtype=np.float32)

16. img = (np.float32(img) - 127.5) / 128

17. interpreter.set_tensor(input_details[0]['index'], img)

18.

19. # Obtain the embeddings from said random image.

20. interpreter.invoke()

21. embeddings = interpreter.get_tensor(output_details[0]['index'])

22.

23. print("Embeddings shape:", embeddings.shape,

24. "norm", np.linalg.norm(embeddings))

272 Hands-On Artificial Intelligence for Android

Running this script on the newly created TensorFlow Lite mode should produce an
output similar to the following:

1. Embeddings shape: (1, 128) norm 3.8391087

The shape of the embeddings vector is the expected one—a 128-dimensional vector.
However, its Euclidean norm is not 1, which means it is not normalized.

An additional L2 normalization step, as described in the Using the Euclidean norm
for normalization section, is required if one wants to use it in an application. The
following code excerpt shows how this additional step can be implemented in Kotlin
to be used directly with a TensorFlow Lite post-processor:

1. class L2NormalizationOp: TensorOperator {

2.

3. override fun apply(input: TensorBuffer): TensorBuffer {

4. val shape: IntArray = input.shape

5. SupportPreconditions.checkArgument(

6. shape.size != 0 && shape[0] == 1,

7. "Only single batches are supported."

8.)

9. val values: FloatArray = input.floatArray

10.

11. var factor = 0.0f

12. for (idx in values.indices) {

13. factor += values[idx] * values[idx]

14. }

15. factor = sqrt(factor)

16.

17. val normalized = FloatArray(values.size) { values[it] / factor
}

18.

19. return if (input.isDynamic)

20. TensorBufferFloat.createDynamic(DataType.FLOAT32)

21. else

22. TensorBuffer.createFixedSize(shape, DataType.FLOAT32)

Verifying Faces in Android with TensorFlow Lite 273

23. .apply { loadArray(normalized) }

24. }

25.

26. }

The quantized model file is still approximately 23MB. Although acceptable
nowadays, it is still somewhat large for a mobile application.

Working with the MobileFaceNets model
Having realized the need for face verification models that could run efficiently on
mobile devices, Sheng Chen et al. dedicated themselves to this matter and eventually
published their paper MobileFaceNets: Efficient CNNs for Accurate Real-Time Face
Verification on Mobile Devices.

In this paper, they describe an efficient CNN model optimized for fast and accurate
face verification in mobile devices. It uses approximately one million parameters,
whereas FaceNet, for example, uses approximately 7.5 million parameters in its
NN2 Inception model. Its name notwithstanding, MobileFaceNets has a different
model and was trained differently than FaceNet.

Not only did they design this new CNN model to be efficient on mobile devices,
but they also used a global depth-wise convolution layer after the last layer of the
face feature embedding CNN instead of the commonly used global average pooling
layer. They demonstrated that this change brought significant advantages.

Tip: The MobileFaceNet paper detailing the theory and the research results
is also freely available in scientific archives, for example, at https://arxiv.org/
abs/1804.07573.

An implementation of MobileFaceNet for TensorFlow, with a pre-trained model, has
been created by the sirius-ai GitHub user and is available at https://github.com/
sirius-ai/MobileFaceNet_TF.

The pre-trained model is also available through this repository, but it is not easy to
convert it to TensorFlow Lite.

Unfortunately, no suitable alternative open-source implementations could be found.
The documentation in the project’s GitHub issue tracker is most helpful and is
available at https://github.com/sirius-ai/MobileFaceNet_TF/issues/46. The code
is extensive and is not reproduced here because its licensing is not clear, but the
accompanying repository for this book contains the converted model as a derived
work of the original model.

274 Hands-On Artificial Intelligence for Android

The converted model’s file size is approximately 5MB, which is a remarkable
improvement from our converted FaceNet model.

The TensorFlow Lite version of this MobileFaceNet implementation was evaluated
just like the converted FaceNet model. The evaluation results are similar to the
following:

1. Embeddings shape: (1, 192) norm 1.0000001

We see that the output vector is slightly different from FaceNet’s but still relatively
compact and normalized in the Euclidean space. So, no additional normalization
operations are required.

Just like with FaceNet, face embeddings can be compared using their Euclidean
distances.

Using the Euclidean distance to identify a
face
Considering that the FaceNet and MobileFaceNets models output embeddings
vectors, one can state that if a model produces the same vector when presented with
different face images, those images belong to the same person (identity).

However, it is improbable that two identical embeddings vectors are produced in
any two faces with the same identity. For example, slight variations in lighting and
position cause different outputs.

So, the question that must be asked is not “Are these vectors equal?” but rather “Are
these vectors sufficiently close?”. The embeddings vectors are normalized, so there
must be a way to compare them.

In the section Using the Euclidean norm for normalization, we described how to calculate
a vector’s length or, in other words, a vector’s distance from the origin. What about
a vector’s distance from another vector?

If we consider that an n-dimensional vector represents one point in an n-dimensional
Euclidean space, we can calculate the distance between them. The distance is a real
number that can be used to determine if two embeddings vectors are close enough
to be considered the same identity.

The following formula is used to calculate the Euclidean distance between two
points p = (p1, p2 ,…, pn) and q = (q1, q2 ,…, qn) in Rn:

Verifying Faces in Android with TensorFlow Lite 275

The L2-normalized Euclidean distance gives the same ordering of the cosine distance
(the cosine similarity’s complement) while avoiding expensive trigonometric
calculations.

Finally, one needs to determine the threshold after which the distance becomes too
large for the embeddings to belong to the same identity.

Such a threshold is defined depending on the metrics at use; for example, it may be
chosen to minimize the rate of false positives and false negatives. Another metric
can be the recognition rate, which is the rate of the number of correctly identified test
images to the total number of test images. There are several other metrics, like the
verification rate or the equal error rate, but we do not go over metrics in this book.

The FaceNet researchers have determined that a threshold of 1.24 was the optimal
value for their dataset, so this value can be used as a starting point for comparing
FaceNet embeddings vectors.

The MobileFaceNets model produces different vectors, but we still use 1.20 as a
working threshold in this chapter’s application. This threshold was chosen based
on empirical tests with the application, so it is only appropriate for demonstration
purposes.

Incorporating the MobileFaceNets model
in an Android application
The application developed in Chapter 9, Detecting Faces with the Google ML Kit, can be
used as a starting point. This new version of the application aims to incorporate a
face detection model and evaluate its performance.

Adjusting the user interface
Its user interface needs to be modified slightly, and it seems appropriate to display
the distance to some hardcoded embeddings vector.

The necessary code changes are related only to adjusting the position of the elements
on the screen and incorporating a new text view used to display the calculated
distance. This new view is defined as shown in the following code excerpt:

1. <TextView

2. android:id="@+id/txtDistance"

3. android:layout_width="wrap_content"

4. android:layout_height="wrap_content"

5. android:text="@string/distance_from_target"

276 Hands-On Artificial Intelligence for Android

6. app:layout_constraintBottom_toTopOf="@+id/horizontalGuideline"

7. app:layout_constraintEnd_toEndOf="parent"

8. app:layout_constraintStart_toStartOf="@+id/verticalGuideline"

9. app:layout_constraintTop_toTopOf="parent" />

The adjustments to the positions of the other elements are present in the
accompanying code and are not shown here for brevity.

Figure 10.5 illustrates the new user interface design:

Figure 10.5: Application layout for displaying the distances calculated

The image processing logic also needs to be adjusted to incorporate the face detection
model.

Verifying Faces in Android with TensorFlow Lite 277

Extracting embeddings from face images
Once the face image is obtained, it can be processed by the MobileFaceNet model.

The mobilefacenet.tflite file is placed inside the application module’s main assets
folder, as described in Chapter 8, Using the Image Recognition Model in an Android
Application.

This TensorFlow Lite model does not contain metadata, so we chose to use the
Interpreter class directly. A new class is created to manage the TensorFlow Lite
model. The following code excerpt shows its initialization:

1. class FaceNetEmbeddingsExtractor(context: Context): AutoCloseable
{

2.

3. private val interpreter: Interpreter

4. private val modelFile: ByteBuffer

5.

6. private val inputTensor: Tensor

7. private val imageProcessor: ImageProcessor

8. private val outputBuffer: TensorBuffer

9.

10. init {

11. modelFile = FileUtil.loadMappedFile(

12. context, "mobilefacenet.tflite")

13. interpreter = Interpreter(modelFile)

14.

15. inputTensor = interpreter.getInputTensor(0)

16. val inputShape = inputTensor.shape()

17. val imageWidth = inputShape[1]

18. val imageHeight = inputShape[2]

19. imageProcessor = ImageProcessor.Builder()

20. .add(

21. ResizeOp(imageWidth, imageHeight,

22. ResizeOp.ResizeMethod.BILINEAR)

23.)

278 Hands-On Artificial Intelligence for Android

24. .add(

25. NormalizeOp(127.5f , 128f)

26.)

27. .build()

28.

29. outputBuffer =

30. interpreter.getOutputTensor(0).let {

31. TensorBuffer.createFixedSize(

32. it.shape(), it.dataType())

33. }

34. }

35.

36. override fun close() {

37. interpreter.close()

38. }

39.

40. // (embeddings vector extraction)

41.

42. }

The initialization procedure is similar to the one used in Chapter 8, Using the Image
Recognition Model in an Android Application.

Running inference to extract the embeddings vector is also simple. The following
code excerpt shows its implementation in the FaceNetEmbeddingsExtractor class:

1. class FaceNetEmbeddingsExtractor(context: Context): AutoCloseable
{

2.

3. // (initialisation)

4.

5. fun embeddings(bitmap: Bitmap): FloatArray {

6. val ticks = System.currentTimeMillis()

7. interpreter.run(

8. loadImage(bitmap),

Verifying Faces in Android with TensorFlow Lite 279

9. outputBuffer.buffer.rewind()

10.)

11. Log.i(TAG, "Extraction time: ${System.currentTimeMillis()-ticks}
ms")

12. return outputBuffer.floatArray

13. }

14.

15. private fun loadImage(bitmap: Bitmap)

16. : ByteBuffer {

17. val tensorImage = TensorImage(inputTensor.dataType())

18. tensorImage.load(bitmap)

19. return imageProcessor

20. .process(tensorImage)

21. .buffer

22. }

23.

24. companion object {

25. const val TAG = "FaceNet"

26. }

27. }

Nothing in this usage of a TensorFlow Lite model is new. A log entry has been added
in line 11 of the preceding excerpt, so we can have an effortless indication of inference
speed on the specific device running the application. Inference on a single face on
the author’s device takes approximately 120ms.

Writing a new image analyzer for face
verification
The new image analyzer for face verification builds upon the same pattern used
before:

•	 Uses the Google ML Kit to detect faces in the incoming images

•	 Allows the release of resources used by the detector and the model in a
thread-safe manner

•	 Sends the results of the model to a processing function

280 Hands-On Artificial Intelligence for Android

The following code excerpt shows the initialization and cleanup parts of the face
verification analyzer:

1. class RealtimeFaceEmbeddingsExtractor(

2. context: Context,

3. private val receiver: (FloatArray, Bitmap) -> Unit)

4. : ImageAnalysis.Analyzer, AutoCloseable {

5.

6. private val extractor: FaceNetEmbeddingsExtractor =

7. FaceNetEmbeddingsExtractor(context)

8. private val detector: FaceDetector =

9. FaceDetectorBuilder.build()

10. private val conversion: ImageProxyYuvConversion =

11. ImageProxyYuvConversion(context)

12.

13. private val closureLock: Lock = ReentrantLock()

14. private var closed: Boolean = false

15.

16. override fun analyze(proxy: ImageProxy) {

17. try {

18. closureLock.lock()

19. if (!closed) {

20. process(proxy)

21. }

22. } finally {

23. closureLock.unlock()

24. }

25. }

26.

27. override fun close() {

28. try {

29. closureLock.lock()

30. closed = true

Verifying Faces in Android with TensorFlow Lite 281

31. extractor.close()

32. detector.close()

33. } finally {

34. closureLock.unlock()

35. }

36. }

37.

38. // (image processing)

39.

40. }

The new RealtimeFaceEmbeddingsExtractor sends the results to a processing
function, which is declared in line 3 of the preceding excerpt.

Lines 6 to 11 declare the necessary supporting objects, including FaceNetEmbeddings
Extractor. Utility classes create the other objects to keep the analyzer implementation
simple. These utility classes only aggregate the same behavior seen before and are
supplied as part of the accompanying code.

The image processing part is shown in the following code excerpt:

1. class RealtimeFaceEmbeddingsExtractor(

2. context: Context,

3. private val receiver: (FloatArray, Bitmap) -> Unit)

4. : ImageAnalysis.Analyzer, AutoCloseable {

5.

6. // (initialisation)

7.

8. private fun process(proxy: ImageProxy) {

9. val originalImage = proxy.image

10. if (originalImage == null) {

11. proxy.close()

12. return

13. }

14. detector.process(InputImage.fromMediaImage(

15. originalImage, proxy.imageInfo.rotationDegrees))

282 Hands-On Artificial Intelligence for Android

16. .addOnSuccessListener { faces ->

17. if (faces.isEmpty()) {

18. receiver(EMPTY_EMBEDDINGS, EMPTY_BITMAP)

19. } else {

20. faces.first().let { face ->

21. val faceBounds = cancelRotation(face.boundingBox, proxy)

22. if (faceBounds.setIntersect(proxy.cropRect, faceBounds))
{

23. val faceBitmap = conversion.toBitmap(proxy, faceBounds)

24. val embeddings = extractor.embeddings(faceBitmap)

25. receiver(embeddings, faceBitmap)

26. } else {

27. receiver(EMPTY_EMBEDDINGS, EMPTY_BITMAP)

28. }

29. }

30. }

31. }

32. .addOnFailureListener {

33. receiver(EMPTY_EMBEDDINGS, EMPTY_BITMAP)

34. }

35. .addOnCompleteListener {

36. proxy.close()

37. }

38. }

39.

40. private fun cancelRotation(bounds: Rect, proxy: ImageProxy): Rect
{

41. // (existing implementation)

42. }

43.

44. companion object {

45. val EMPTY_EMBEDDINGS: FloatArray = floatArrayOf()

Verifying Faces in Android with TensorFlow Lite 283

46. val EMPTY_BITMAP: Bitmap = createBitmap(1, 1, ARGB_8888)

47. }

48. }

The same pattern is used in the preceding processing:

•	 Use success and failure callbacks to process the face detection result

•	 Ensure that the face image is in the correct orientation before sending it to
the model

•	 Ensure that the face bounding rectangle is within the original image

•	 Run inference and send the results to the processing function

•	 Send empty results to the processing function if there is an error or no faces
are detected

Note that the cancelRotation() function’s implementation is not shown here for
brevity; it is the same as in Chapter 9, Detecting Faces with the Google ML Kit.

Displaying the distance between two face
embeddings vectors
The implementation of the MainActivity class remains almost identical to the one
used in Chapter 9, Detecting Faces with the Google ML Kit, except that:

•	 The function receiving the result now has a different signature

•	 It is now necessary to show the distance to the reference face embeddings

So, the new function that receives the results is implemented as shown in the
following code excerpt:

1. private fun onFaceDetected(embeddings: FloatArray, faceBitmap:
Bitmap) {

2. if (embeddings.isEmpty()) {

3. binding.faceView.setImageResource(android.R.drawable.ic_menu_
 help)

4. binding.txtDistance.setText(R.string.distance_from_target)

5. } else {

6. val distance = euclidianDistance(

7. testing,

8. embeddings

284 Hands-On Artificial Intelligence for Android

9.)

10.

11. Log.i("Verification", "Distance: $distance")

12.

13. binding.txtDistance.text = distance.toString()

14. binding.faceView.setImageBitmap(faceBitmap)

15. }

16. }

The function mainly aims to ensure that the different user interface elements show
accurate information. The actual Euclidean distance calculation, depicted in lines 6
to 8 of the preceding excerpt, is implemented in a utility function.

This utility function implements the formula for the Euclidean distance in Kotlin as
per the following code excerpt:

1. fun euclidianDistance(a: FloatArray, b: FloatArray): Float {

2. var sum = 0.0f

3. for (i in a.indices) {

4. sum += (a[i] - b[i]).pow(2)

5. }

6. return sqrt(sum)

7. }

The onFaceDetected() function uses the euclidianDistance() function to
calculate the distance between the newly generated face embeddings and a face
embeddings vector previously calculated and hardcoded in the application.

Obtaining face embeddings for testing
We must verify the correct operation of the application before moving forward, but
we need a way to generate a face embeddings vector to use as a comparison.

The easiest way is to write an instrumented Android test that uses most of the utility
classes and functions described previously to clip a face from some photograph and
run it through inference.

The following code snippet shows a possible implementation of such a test:

1. @Test

2. fun embeddings() {

3. val instrumentation = InstrumentationRegistry.getInstrumentation()

Verifying Faces in Android with TensorFlow Lite 285

4. val appContext = instrumentation.targetContext

5.

6. val bitmap = extractFace(instrumentation, "identity_1_a.jpg")

7.

8. val embeddings = FaceNetEmbeddingsExtractor(appContext)

9. .embeddings(bitmap)

10.

11. assertThat(embeddings, `is`(notNullValue()))

12. assertThat(embeddings.size, `is`(greaterThan(0)))

13.

14. Log.i(TAG, embeddings.joinToString(",") { "${it}f" })

15. }

This test validates that the model produces a non-empty vector, and it also logs the
embeddings vector’s contents. This log entry is produced in a format that makes it
easy to copy the MainActivity’s code for reference purposes.

Figure 10.6 shows this application running on the author’s device. The application
showed a distance of 0.81 to a hardcoded embeddings vector obtained through the
instrumented test method.

Figure 10.6: Identifying a face based on a previously generated embeddings vector

286 Hands-On Artificial Intelligence for Android

This distance is below 1.20, so we can state with a high degree of confidence that
the face image captured belongs to the same identity as the face image used in the
instrumented test.

Conclusion
Face recognition and verification are different from face detection because they
allow the association of an identity to different images representing the same face.
In contrast, face detection merely knows where a face is present in an image.

When ML models output vectors describing their targets, we must ensure that they
are normalized to be compared. The L2 or Euclidean normalization is frequently
used. When vectors are L2-normalized, they can be compared by calculating their
Euclidean distance, as long as the model was trained to cluster similar vectors
together.

Both FaceNet and MobileFaceNets models can be used in an Android application for
face recognition. The latter has the advantage of being smaller than the former, thus
becoming more appropriate for mobile applications.

It is easy to alter a simple face detection application to incorporate face verification
once all techniques described in this book are applied.

The next chapter further extends the application to include face registration, bringing
it closer to a complete application by making use of face biometrics.

Registering Faces in the Application 287

Chapter 11
Registering Faces

in the
Application

Introduction
This chapter shows how we can build an Android application for face recognition
capable of extending its set of recognizable faces at runtime. It integrates the concept
of adding a face persistently to the application so that it is recognizable between
application runs.

Structure
We cover the following topics in this chapter:

•	 Building the identity store

•	 Implementing a view model to interface with the identity store

•	 Processing multiple faces from camera images

•	 Designing the user interface

•	 Adding new faces to the application

•	 Recognizing faces

288 Hands-On Artificial Intelligence for Android

Objectives
By the end of this chapter, you have built a fully functional Android application that
runs face recognition on one or more new faces. The technique used to persist face
embeddings locally is also understood.

Building the identity store
This chapter uses the term identity to refer to a tuple containing a name and a face
embeddings vector. This interpretation is rather strict because identity is an abstract
concept with many ramifications. Still, in this context, it solely represents a name
that can be associated with any face whose embeddings are sufficiently close to the
originals.

Whenever an application needs to store tuple-based data in a persistent manner
that survives application runs, the first component that should be developed is an
application database. We reuse the database management concepts described in
Chapter 3, Building Our Application with Kotlin and SQLite, to build such a database
using the Room library.

The tuple previously described contains a name and a face embeddings vector. Only
one set of embeddings is sufficient, as long as the processed image has sufficient
quality. However, we want to allow the user to add different embeddings with the
same name for testing purposes.

So, the database entity for this demonstration application was defined as shown in
the following code excerpt:

1. @Entity

2. data class Identity(

3. @PrimaryKey(autoGenerate = true) veal id: Int,

4. val name: String,

5. val embeddings: FloatArray

6.) {

7. override fun equals(other: Any?): Boolean {

8. // implementation

9. }

10.

11. override fun hashCode(): Int {

12. // implementation

Registering Faces in the Application 289

13. }

14. }

Note that the database entity data class has had its equals() and hashCode() methods
redefined, although their full implementation is trivial and not shown for brevity.
This was done so that equals() and hashCode() could use the contentEquals()
and contentHashCode() methods, respectively, from the embeddings array because
the default implementations do not take array contents into consideration.

The Room library, however, does not support storing FloatArray objects directly.
These objects need to be converted into a format that the Room library supports. We
have chosen to store the array as a JSON-encoded string and built the converter class
as shown in the following code excerpt:

1. class FloatArrayConverters {

2. private val floatStrategy = FloatArraySerializer()

3.

4. @TypeConverter

5. fun fromFloatArray(value : FloatArray): String =

6. Json.encodeToString(floatStrategy, value)

7.

8. @TypeConverter

9. fun toFloatArray(value: String): FloatArray =

10. Json.decodeFromString(floatStrategy, value)

11. }

The Kotlin serialization library provides the FloatArraySerializer and Json
classes.

Now that the entity and the necessary data converter are defined, we can move
forward and declare the Data Access Object (DAO). Our application has simple
needs, as illustrated in the following code snippet:

1. @Dao

2. interface IdentityDao {

3.

4. @Insert

5. fun insert(identity: Identity)

6.

7. @Query("SELECT * FROM Identity")

290 Hands-On Artificial Intelligence for Android

8. fun findAll(): List<Identity>

9.

10. }

It only needs to insert new identities and list them to find the correct one during the
recognition process.

The database class is also straightforward to declare. Its structure is shown in the
following code snippet, except for the companion object that creates the database
instance:

1. @Database(entities = [Identity::class], version = 1)

2. @TypeConverters(FloatArrayConverters::class)

3. abstract class ApplicationDatabase: RoomDatabase() {

4.

5. abstract fun identityDao(): IdentityDao

6.

7. // companion object to create the database instance

8.

9. }

This companion object is created exactly like in Chapter 3, Building Our Application
with Kotlin and SQLite, so its code is omitted for brevity.

Projects created by Android Studio do not include the Room library and the Kotlin
serialization library, so we need to change the application module’s build.gradle
file to include them, as follows:

1. plugins {

2. // (other plugins)

3. id 'org.jetbrains.kotlin.plugin.serialization' version '1.5.20'

4. }

5. // (...)

6. dependencies {

7. // (other dependencies)

8.

9. // Kotlin serialization

10. implementation 'org.jetbrains.kotlinx:kotlinx-serialization-
 json:1.2.1'

Registering Faces in the Application 291

11.

12. // Room library

13. implementation 'androidx.room:room-runtime:2.3.0'

14. implementation 'androidx.legacy:legacy-support-v4:1.0.0'

15. kapt 'androidx.room:room-compiler:2.3.0'

16. implementation 'androidx.room:room-ktx:2.3.0'

17. androidTestImplementation 'androidx.room:room-testing:2.3.0'

18. }

The preceding code excerpt shows the dependencies and plugins necessary to use
the Kotlin serialization and Room libraries fully.

The demonstration application now has an implementation of a database it can use to
store the identities. However, this database must be accessible from the application’s
views. The currently recommended way to do this is using an Android View Model.

Implementing a view model to interface
with the identity store
The advantage of using the Android View Model pattern instead of handling the
database directly within the activity or the fragment is that the view model has
a separate lifecycle. For example, the view model is not destroyed if an attached
activity is recreated because of a configuration change.

A view model also forces a separation of concerns, keeping data separate from the
user interface logic. Furthermore, different fragments connected to the same activity
can reuse the same view model transparently. This subject was also demonstrated in
Chapter 3, Building Our Application with Kotlin and SQLite.

Due to the separation of concerns, our view model becomes responsible for the
following tasks:

•	 Manage the database lifecycle

•	 Add identities to the database

•	 Obtain an identity based on a face embeddings vector

A few details need attention while implementing these tasks, so the construction of
the view model is described in stages. The initial stage is the declaration of a class,
as shown:

1. class IdentityViewModel(application: Application)

2. : AndroidViewModel(application) {

292 Hands-On Artificial Intelligence for Android

3.

4. }

Thanks to the view model’s characteristics, managing the database lifecycle is
simple. The following code excerpt shows how the database instance is created and
closed once the view model is destroyed:

1. private val database = ApplicationDatabase.getDatabase(

2. getApplication<Application>().applicationContext)

3.

4. override fun onCleared() {

5. super.onCleared()

6. database.close()

7. }

Adding an identity record to the database is a little bit more involved because the
database operation cannot be executed in the main application thread. So, we must
ensure that it always runs in some other thread.

We use the view model’s support for Kotlin coroutines to accomplish this separation.
The view model ensures that any active coroutines are canceled when it is destroyed.
The Kotlin coroutines allow us to define their execution context without further
concerns.

The following code excerpt shows how this integration can be implemented:

1. private val coroutineContext =

2. viewModelScope.coroutineContext + Dispatchers.IO

3.

4. suspend fun addIdentity(name: String, embeddings: FloatArray) {

5. checkArgument(name.isNotBlank())

6. checkArgument(embeddings.isNotEmpty())

7. withContext(coroutineContext) {

8. database.identityDao()

9. .insert(Identity(0, name, embeddings))

10. }

11. }

Registering Faces in the Application 293

Lines 1 and 2 in the preceding excerpt declare a coroutines context that combines
the context managed by the view model with an I/O dispatcher. The former ensures
cancellation on destruction, and the latter ensures that the coroutine does not run
in the main thread. The addIdentity() function is then declared as a coroutine
whose database operation runs within this context.

The final responsibility of this view model is to match a face embeddings vector
matching an existing identity. Considering that this application is unlikely to store
many identities, a simple full table lookup algorithm calculates the Euclidean
distances and selects the smaller distance below an identification threshold.

The following code excerpt shows such an implementation:

1. suspend fun recogniseOrNull(embeddings: FloatArray)

2. : IdentityDistance? =

3. withContext(coroutineContext) {

4. calculateDistancesFrom(embeddings)

5. .filter { it.distance < IDENTIFICATION_THRESHOLD }

6. .minByOrNull { it.distance }

7. }

8.

9. private fun calculateDistancesFrom(embeddings: FloatArray)

10. : List<IdentityDistance> =

11. database.identityDao().findAll()

12. .map {

13. IdentityDistance(

14. it.id, it.name,

15. euclidianDistance(it.embeddings, embeddings)

16.)

17. }

18.

19. companion object {

20. private const val IDENTIFICATION_THRESHOLD = 1.20f

21. }

294 Hands-On Artificial Intelligence for Android

The calculateDistancesFrom() function returns a list of the Euclidean distances
between the face embeddings vector provided as an argument and each of the face
embeddings vectors stored in the database.

Then, the recogniseOrNull() function selects the ones that may be a positive
match and picks the one with the lowest Euclidean distance value.

A threshold of 1.20 was selected based on the discussion from the previous chapter.
This value can be adjusted based on the desired sensitivity. A lower value produces
fewer false positives, whereas a higher value produces more false negatives.

Processing multiple faces from camera
images
All examples presented so far only process one face from the Google ML Kit face
detector’s results. However, this face detector is capable of detecting the presence of
multiple faces in the same image. So, why not attempt to recognize them all?

The RealtimeFaceEmbeddingsExtractor class from previous examples was
refactored to process several faces and transfer all face embeddings vectors to its
caller.

A new data structure was defined to carry information about each face to the user
code, as shown in the following code excerpt:

1. data class FaceEmbeddings(

2. val face: Bitmap,

3. val embeddings: FloatArray

4.)

The class’s constructor has changed accordingly. The user code now needs to provide
a callback function that can receive a list of FaceEmbeddings objects. This change is
shown in the following code snippet:

1. class RealtimeFaceEmbeddingsExtractor(

2. context: Context,

3. private val receiver: (List<FaceEmbeddings>) -> Unit)

4. : ImageAnalysis.Analyzer, AutoCloseable {

5.

6. }

Registering Faces in the Application 295

The already familiar housekeeping and composition patterns can be found in the
RealtimeFaceEmbeddingsExtractor class.

The YUV image conversion functions, the Google ML Kit face detector class, and the
MobileFaceNet embeddings extractor class are included by composition, as shown
in the following code excerpt. Their implementation is identical to those presented
in the previous chapters and is not shown here for brevity.

1. private val extractor: FaceNetEmbeddingsExtractor =

2. FaceNetEmbeddingsExtractor(context)

3. private val detector: FaceDetector =

4. FaceDetectorBuilder.build()

5. private val conversion: ImageProxyYuvConversion =

6. ImageProxyYuvConversion(context)

A synchronized closure function is used, along with a property holding the
corresponding state, to ensure that any allocated resources are freed when the class
is no longer necessary.

The synchronization is used to introduce a memory barrier, ensuring that any new
value assigned to the property is visible in any thread and preventing the processing
of any new images while resources are being freed.

This housekeeping pattern is shown in the following code snippet. Note how the
implementation of the analyze() and the close() functions is interlinked through
a ReentrantLock; the reentrant lock does not allow process() to be called while
close() is freeing resources, and vice-versa.

1. private val closureLock: Lock = ReentrantLock()

2. @Volatile private var closed: Boolean = false

3.

4. override fun analyze(proxy: ImageProxy) {

5. try {

6. closureLock.lock()

7. if (!closed) {

8. process(proxy)

9. }

10. } finally {

11. closureLock.unlock()

12. }

296 Hands-On Artificial Intelligence for Android

13. }

14.

15. override fun close() {

16. try {

17. closureLock.lock()

18. closed = true

19. extractor.close()

20. detector.close()

21. } finally {

22. closureLock.unlock()

23. }

24. }

The process() function shown in the following code excerpt uses the face
embeddings extractor to process all faces detected by the face detector. The callback
function is called with the results or with an empty list if there are none.

1. private fun process(proxy: ImageProxy) {

2. val originalImage = proxy.image

3. if (originalImage == null) {

4. proxy.close()

5. return

6. }

7. detector.process(InputImage.fromMediaImage(

8. originalImage, proxy.imageInfo.rotationDegrees))

9. .addOnSuccessListener {

10. if (it.isNotEmpty()) {

11. facesDetected(proxy, it)

12. } else {

13. receiver(emptyList())

14. }

15. }

16. .addOnFailureListener {

17. receiver(emptyList())

Registering Faces in the Application 297

18. }

19. .addOnCompleteListener {

20. proxy.close()

21. }

22. }

Such implementation is still similar to the one presented earlier. The main difference
is that the processing of the incoming image, including cropping the detected
face images, was moved to a separate function. This new function is shown in the
following code excerpt:

1. private fun facesDetected(proxy: ImageProxy, faces: List<Face>) {

2. if (closed) {

3. return

4. }

5. val imageBounds = Rect(0, 0, proxy.width, proxy.height)

6. val imageBitmap = conversion.toBitmap(proxy, imageBounds)

7. receiver(

8. faces.filter {

9. it.boundingBox.setIntersect(imageBounds, it.boundingBox)

10. }.map {

11. val faceBitmap = Bitmap.createBitmap(imageBitmap,

12. it.boundingBox.left, it.boundingBox.top,

13. it.boundingBox.width(), it.boundingBox.height())

14. FaceEmbeddings(

15. faceBitmap,

16. extractor.embeddings(faceBitmap)

17.)

18. }

19.)

20. }

The first thing that this function does is to check if the underlying resources are still
valid. Such verification is necessary because this function is called on the successful
outcome of the face detector, which runs asynchronously.

298 Hands-On Artificial Intelligence for Android

Instead of converting each face independently, it is more efficient to first convert
the entire image from the camera into a Bitmap and crop each detected face. The
implementation becomes simpler this way, and this method also ensures that the
camera image’s underlying memory buffer is only consumed once.

Line 9 in the preceding code excerpt ensures that the detected face bounding box is
valid. Lines 11 to 13 create a separate bitmap with the face’s image, and lines 14 to
17 create the data transfer object containing the bitmap and the embeddings vector.
This procedure is repeated for each face detected, and the resulting list is passed to
the callback.

Using the face embeddings vectors is now the responsibility of the user code
implementing the callback. The callback is implemented in a fragment that delegates
recognition to its view model. Such implementation is described in the Recognizing
faces section later in this chapter.

Designing the user interface
This demonstration application has two responsibilities: recognizing faces and
adding faces to be recognized later. Therefore, it is logical to divide the user interface
into at least two distinct sections, one for each task.

Such division is accomplished by implementing one fragment for face recognition
and another to register new faces in the application.

Navigation between these fragments is accomplished through the Android
Navigation component and its matching Safe Args library, as described in Chapter 7,
Android Camera Image Capture with CameraX.

Adding new faces to the application
Adding a new face to the application to be recognized later consists of storing the
new face’s embeddings vector along with a user-friendly name, as discussed in the
previous section, Building the identity store.

So, there is only one business rule—store only complete identities, that is, identities
with a name and a face embeddings vector.

The user interface needs to implement the following controls before storing a new
identity:

•	 The name must not be empty
•	 A face embeddings vector must be present

From the user’s point of view, they see a camera preview, one text field to type
a name in, and a button to store the information. Figure 11.1 illustrates the layout
chosen:

Registering Faces in the Application 299

Figure 11.1: User interface layout for adding a new face to the application

The AddNewFaceFragment’s implementation begins by defining its runtime
properties. The following code excerpt shows that it uses the same image analysis
classes as the upcoming face recognition user interface:

1. class AddNewFaceFragment : Fragment() {

2.

3. private lateinit var binding: FragmentAddNewFaceBinding

4.

5. private lateinit var cameraExecutor: ExecutorService

6. private lateinit var imageAnalyser: RealtimeFaceEmbeddingsExtractor

7.

8. }

300 Hands-On Artificial Intelligence for Android

The purpose behind such reuse is to simplify the development of the application.
However, more complicated user interfaces might need specialized code.

This class does not store the identity automatically once some face embeddings are
present, so it needs some logic to store the name and the face embeddings until the
user decides to store them. The IdentityData class shown in the following code
excerpt serves this purpose:

1. private data class IdentityData(

2. var name: String = "",

3. var embeddings: FloatArray = EMPTY_EMBEDDINGS) {

4. val isComplete: Boolean

5. get() = name.isNotBlank() && embeddings.isNotEmpty()

6. }

The IdentityData class also includes the isComplete property, which lets the
fragment know when all data is present and a record can be created.

The following code excerpt shows how the IdentityViewModel and IdentityData
classes are declared because they serve different purposes. The former contains the
view model for the entire application, whereas the latter is a temporary model used
only while the AddNewFaceFragment is active.

1. private val viewModel: IdentityViewModel by activityViewModels()

2. private val currentIdentityData = IdentityData()

The implementation of the functions handling the AddNewFaceFragment’s creation
and destruction is already known from previous examples and is shown in the
following code excerpt. They manage the camera executor’s lifecycle and set up the
automatically generated code for binding to the fragment’s child views.

1. override fun onCreate(savedInstanceState: Bundle?) {

2. super.onCreate(savedInstanceState)

3. cameraExecutor = Executors.newSingleThreadExecutor()

4. }

5.

6. override fun onDestroy() {

7. super.onDestroy()

8. cameraExecutor.shutdown()

9. }

10.

Registering Faces in the Application 301

11. override fun onCreateView(

12. inflater: LayoutInflater, container: ViewGroup?,

13. savedInstanceState: Bundle?

14.): View {

15. binding = FragmentAddNewFaceBinding.inflate(

16. inflater, container, false)

17. return binding.root

18. }

The heavy lifting required to initialize the camera and the image analyzer is done in
the onStart() function.

This function needs to accomplish the following tasks:

•	 Build and configure the image analyzer, including the callback function
invoked when new face embeddings vectors are ready

•	 Attach a listener to the Add this identity button, invoked when the user
wants to store the last face embeddings received

•	 Configure the camera use cases with preview and image analysis

The following code excerpt illustrates the implementation of the onStart()
function. It uses a utility method to configure the camera use cases with an
identical implementation to previous usages. It is not shown here for brevity. The
full implementation, including all utility methods and classes, is available in the
accompanying code bundle.

1. override fun onStart() {

2. super.onStart()

3.

4. imageAnalyser = RealtimeFaceEmbeddingsExtractor(requireContext(),

5. this::onFacesDetected)

6.

7. binding.btnAddThisIdentity.isEnabled = false

8. binding.btnAddThisIdentity.setOnClickListener {

9. onAddIdentityClicked()

10. }

11.

12. binding.editPersonName.text.clear()

302 Hands-On Artificial Intelligence for Android

13. binding.editPersonName.
 addTextChangedListener(PersonNameWatcher())

14.

15. binding.previewView.post {

16. configureCamera(this,

17. cameraExecutor, binding.previewView,

18. imageAnalyser, CameraSelector.LENS_FACING_FRONT)

19. }

20. }

Note that a different listener is added to the view where the user writes the identity’s
name. This listener aims to ensure that a name is present before the user can store
the new identity.

Such a listener is implemented in a class extending the Android’s FaceWatcher
interface and is shown in the following code excerpt:

1. private inner class PersonNameWatcher: TextWatcher {

2. override fun beforeTextChanged(

3. s: CharSequence?, start: Int, count: Int, after: Int) {

4. }

5.

6. override fun onTextChanged(

7. s: CharSequence?, start: Int, before: Int, count: Int) {

8. }

9.

10. override fun afterTextChanged(s: Editable?) {

11. currentIdentityData.name = s.toString()

12. binding.btnAddThisIdentity.isEnabled =

13. currentIdentityData.isComplete

14. }

15. }

Our application is only interested in the view’s state after the text has changed, so the
only function with a body in the PersonNameWatcher class is afterTextChanged().

Its responsibility is to store the text in the fragment’s private model class and manage
the Add this identity button’s state based on the availability of a complete data

Registering Faces in the Application 303

set. In other words, the button is enabled only when both the name and the face
embeddings are present.

Any resources used by the image analyzer need to be released when the fragment
is no longer in use, so a simple onStop() function is also implemented, as shown in
the following code excerpt:

1. override fun onStop() {

2. super.onStop()

3. imageAnalyser.close()

4. }

The onFacesDetected() function is called with a list of all face embeddings found
in the camera’s image every time a face is successfully detected and processed by
the image analyzer.

This function is responsible for storing the detected embeddings in the fragment’s
private model and updating the Add this identity button’s state. This way, the
button’s state is always correct, regardless of whether the name arrives first or the
face embeddings. Its implementation is shown in the following code excerpt:

1. private fun onFacesDetected(faces: List<FaceEmbeddings>) {

2. lifecycleScope.launch(Dispatchers.Main) {

3. currentIdentityData.embeddings = if (faces.isEmpty()) {

4. EMPTY_EMBEDDINGS

5. } else {

6. faces.first().embeddings

7. }

8. binding.btnAddThisIdentity.isEnabled =

9. currentIdentityData.isComplete

10. }

11. }

Note that line 2 of the preceding code snippet runs the function’s code with the help
of the launch() function of the lifecycleScope’s object. It is taking advantage of
the support for Kotlin coroutines to ensure that any changes made to the button’s
state and the private model run in the main thread.

It is not allowed to make any changes to an Android application’s user interface
state outside of the main thread. We take advantage of this limitation to update
the private model in the main thread, thus avoiding any issues related to multi-
threading.

304 Hands-On Artificial Intelligence for Android

Once the private model is complete, that is, a name and a face embeddings vector are
set, the user can click the Add this identity button to store them.

The onAddIdentityClicked() function set as a listener in the fragment’s onStart()
function is called when they click on the button. Its implementation is shown in the
following code excerpt:

1. private fun onAddIdentityClicked() {

2. lifecycleScope.launch(Dispatchers.Main) {

3. viewModel.addIdentity(

4. currentIdentityData.name,

5. currentIdentityData.embeddings

6.)

7.

8. Toast.makeText(requireContext(),

9. resources.getString(R.string.identity_added,

10. currentIdentityData.name),

11. Toast.LENGTH_SHORT).show()

12.

13. requireView().findNavController().navigate(

14. AddNewFaceFragmentDirections

15. .actionAddNewFaceFragmentToFaceRecognitionFragment()

16.)

17. }

18. }

Once again, the launch() function from the lifecycleScope object is used to start
a coroutine scope, ensuring that all operations run in the main thread. This time
it is not because the onAddIdentityClicked() function may be called in another
thread, but because the view model’s addIdentity() function is a coroutine, and
coroutines can only be called from within a coroutine scope.

The remaining implementation of the onAddIdentityClicked() function is trivial:

•	 The view model is called to store the new identity in the database

•	 The user is quickly informed that the identity was stored

•	 The FaceRecognitionFragment is activated

Registering Faces in the Application 305

Figure 11.2 shows the AddNewFaceFragment in action, ready to add the author’s
very relaxed identity to this Android face recognition demonstration application.

Now that the application contains some recognizable identities, it is up to the
FaceRecognitionFragment to attempt matching new face embeddings to the
stored identities.

Figure 11.2: Ready to add the author’s identity to the application

Recognizing faces
In this face recognition demonstration application, the FaceRecognitionFragment
is the application’s entry point because it displays all the latest face recognition
results. In addition to displaying the face recognition results, it must allow the user
to add new faces to the application by presenting a button with this purpose.

306 Hands-On Artificial Intelligence for Android

Figure 11.3 shows the user interface layout chosen for this demonstration:

Figure 11.3: The face recognition fragment’s user interface layout

The camera preview view on top is followed by a list of all faces detected and maybe
recognized, finishing with a button that navigates to AddNewFaceFragment.

Listing the face detection results
A ListView supports the list of all faces detected with their recognition results. This
ListView’s layout is defined with a custom GridLayout, so the face thumbnail is
drawn on the left side and the recognition results on the right side. Figure 11.4 shows
this layout:

Registering Faces in the Application 307

Figure 11.4: The face recognition results’ list layout

Since the ListView uses a customized layout, it also requires a customized adapter.
An adapter for a ListView is responsible for inflating each row’s layout and
populating it with data. As such, it needs a data model to work.

The adapter’s data class Identity is the glue joining the face bitmap from the face
detector with the name and Euclidean distance from the view model. The following
code excerpt shows its definition:

1. data class Identity(

2. val face: Bitmap,

3. private val identityDistance: IdentityDistance?

4.) {

5. val name = identityDistance?.name ?: ""

6. val distance = identityDistance?.distance?.toString() ?: ""

7. }

The adapter’s implementation is trivial. It manages a list of Identity objects and
copies their data to each row’s views, as shown in the following code excerpt:

1. class IdentitiesListAdapter(context: Context) :

2. BaseAdapter() {

3.

4. var identities: List<Identity> = emptyList()

5. set(value) {

6. field = value

7. notifyDataSetChanged()

8. }

9.

10. private val inflater = LayoutInflater.from(context);

11.

308 Hands-On Artificial Intelligence for Android

12. override fun getCount(): Int = identities.size

13. override fun getItem(position: Int): Any = identities[position]

14. override fun getItemId(position: Int): Long = position.toLong()

15.

16. override fun getView(position: Int, convertView: View?,

17. parent: ViewGroup): View {

18. val binding = if (convertView != null) {

19. IdentityRowItemBinding.bind(convertView)

20. } else {

21. IdentityRowItemBinding.inflate(inflater, parent, false)

22. }

23. binding.imgIdentityFace.setImageBitmap(identities[position].
 face)

24. binding.txtIdentityName.text = identities[position].name

25. binding.txtIdentityDistance.text = identities[position].
 distance

26. return binding.root

27. }

28. }

Putting everything together
Now that all supporting pieces are in place, it is time to put the puzzle together.

The FaceRecognitionFragment’s implementation follows our typical resource
management pattern on creation and destruction, as shown in the following code
excerpt:

1. class FaceRecognitionFragment : Fragment() {

2.

3. private lateinit var binding: FragmentFaceRecognitionBinding

4.

5. private lateinit var cameraExecutor: ExecutorService

6. private lateinit var imageAnalyser: RealtimeFaceEmbeddingsExtractor

7. private lateinit var identitiesListAdapter: IdentitiesListAdapter

8.

Registering Faces in the Application 309

9. private val viewModel: IdentityViewModel by activityViewModels()

10.

11. override fun onCreate(savedInstanceState: Bundle?) {

12. super.onCreate(savedInstanceState)

13. cameraExecutor = Executors.newSingleThreadExecutor()

14. }

15.

16. override fun onDestroy() {

17. super.onDestroy()

18. cameraExecutor.shutdown()

19. }

20.

21. override fun onCreateView(

22. inflater: LayoutInflater, container: ViewGroup?,

23. savedInstanceState: Bundle?

24.): View {

25. identitiesListAdapter = IdentitiesListAdapter(requireContext())

26. binding = FragmentFaceRecognitionBinding.inflate(

27. inflater, container, false)

28. binding.listIdentities.adapter = identitiesListAdapter

29. return binding.root

30. }

31.

32. }

Line 9 of the preceding code excerpt initializes the shared view model, and lines 25
and 28 create the ListView’s adapter and attach it to the ListView instance. Camera
images are analyzed in a single-threaded executor. It is created and shut down in
lines 13 and 18 in the onCreate() and onDestroy() functions.

The onStart() function takes care of initializing the image analyzer and camera use
cases. It also prompts the user for the necessary camera permissions. The onStop()
function shuts the image analyzer down. These functions’ implementation is shown
in the following code snippet:

310 Hands-On Artificial Intelligence for Android

1. override fun onStart() {

2. super.onStart()

3.

4. imageAnalyser = RealtimeFaceEmbeddingsExtractor(requireContext(),

5. this::onFacesDetected)

6.

7. binding.previewView.post {

8. if (cameraPermissionsGranted()) {

9. setUpCamera()

10. } else {

11. requestPermissions(

12. CAMERA_PERMISSIONS_REQUESTED,

13. PERMISSION_REQUEST_CODE

14.)

15. }

16. }

17.

18. }

19.

20. override fun onStop() {

21. super.onStop()

22. imageAnalyser.close()

23. }

The button that takes the user to the screen for adding new identities to the application
is not bound until after the camera use cases are configured. This delay prevents the
user from navigating away if the camera is not available or if the permissions were
not granted. The function responsible for this sequence is shown in the following
code excerpt:

1. private fun setUpCamera() {

2. configureCamera(this, cameraExecutor,

3. binding.previewView, imageAnalyser,

4. CameraSelector.LENS_FACING_BACK) {

Registering Faces in the Application 311

5. binding.btnAddIdentity.setOnClickListener(

6. this::onAddIdentityButtonClicked)

7. }

8. }

The Navigation component and the Safe Args library are used to switch to the
AddNewFaceFragment, as shown in the following code snippet:

1. private fun onAddIdentityButtonClicked(view: View) {

2. requireView().findNavController().navigate(

3. FaceRecognitionFragmentDirections

4. .actionFaceRecognitionFragmentToAddNewFaceFragment()

5.)

6. }

The code for requesting the permissions necessary to use the camera and the
corresponding entries in the application’s manifest file are not shown here for brevity.
They are identical to the ones covered earlier and are included in the accompanying
code.

All application components are implemented separately:

•	 The refactored camera image analyzer detects more than one face and
extracts their face embeddings vectors using the MobileFaceNet model

•	 The view model interfaces with the identity store and can search it for the
best match for a given face embeddings vector

•	 A list on the user interface displays each face and its identity data

So, building the face recognition callback logic is only a matter of calling them in the
correct sequence. The FaceRecognitionFragment’s onFacesDetected() function
does this and is shown in the following code excerpt:

1. private fun onFacesDetected(faces: List<FaceEmbeddings>) {

2. lifecycleScope.launch(Dispatchers.Main) {

3. val info = faces.map {

4. Identity(

5. it.face,

6. viewModel.recogniseOrNull(it.embeddings)

7.)

8. }

312 Hands-On Artificial Intelligence for Android

9. identitiesListAdapter.identities = info

10. }

11. }

The view model’s interface uses coroutines to ensure that any database operations
run outside the main thread, so a new coroutine scope needs to be created. It also
needs to ensure that interactions with the list view run on the main thread. These
concerns are handled in line 2 of the preceding code snippet.

Lines 3 to 8 in the same code snippet take the list of FaceEmbeddings objects received
from RealtimeFaceEmbeddingsExtractor and convert them into Identity objects
for IdentityListAdapter. The database search necessary is done in line 6 for each
face embeddings vector. Line 9 updates the list adapter, which causes the search
results to be displayed in the list view.

Running the Android face recognition
application
Figure 11.5 shows the application recognizing the author’s face, added as shown in
figure 11.2 from a lower quality photograph.

You may try, with different persons, settings, and ages, to find a recognition threshold
that works well for your specific application. The generic threshold of 1.20 works
well for a first approach.

Figure 11.5: Recognizing the author’s face from an older photo

Registering Faces in the Application 313

The face recognition demonstration application cannot recognize identities that
were never added.

Figure 11.6 shows that although it did detect the presence of two faces in a poster for
a workshop the author has given in cooperation with a colleague, only one of the
two faces was registered in the application’s identity store.

Figure 11.6: The application cannot recognize identities it does not know

Conclusion
The Android application presented in this chapter puts together all the techniques,
frameworks, and libraries worked on in all previous chapters. It can be used, for
example, as the starting point for an application featuring user login via facial
recognition.

The next chapter, Image Processing with Generative Adversarial Networks, shows another
possible use of machine learning models, this time applied to image transformation.

314 Hands-On Artificial Intelligence for Android

Image Processing with Generative Adversarial Networks 315

Chapter 12
Image

Processing with
Generative

Adversarial Networks
Introduction
This chapter demonstrates the possible usages of Generative Adversarial Network
(GAN). We show how GANs can be used to generate realistic images automatically.
GANs can also be used to process authentic images; these are presented as a GAN
that applies a specific transformation effect to photographs.

Structure
We cover the following topics in this chapter:

•	 Understanding Generative Adversarial Networks
•	 Training a simple GAN
•	 Applying a special effect to photographs
•	 Taking anime-styled pictures in Android

Objectives
By the end of this chapter, you have understood the intuitive background behind
GANs and developed an Android application that uses a GAN to apply an anime-
like effect to images captured by the device’s camera.

316 Hands-On Artificial Intelligence for Android

Understanding Generative Adversarial
Networks
A Generative Adversarial Network (GAN) is a form of machine learning based
on neural networks. As the name implies, a generative model aims to generate
something, whereas the models we saw in the previous chapters are discriminative
models. The former models generate new data instances and estimate such output’s
likelihood; the latter can discriminate between different data instances by applying
a label and estimating the likelihood of correctly applying the label.

Note: GANs are only one type of generative model. There are also other types of
generative models, just like there are different types of discriminative models.

Like other neural network models, a GAN is trained with a dataset that represents
some distribution. The idea is that it learns to generate estimations of that distribution.
Generally speaking, the initial input of a GAN is a set of random data.

In other words, a GAN may be trained with a set of pictures of dogs to generate new
images of dogs. Alternatively, it may be trained with the MNIST dataset to generate
images of handwritten digits, as we describe in the following section, Training a
simple GAN.

GANs can be helpful in several applications, for example:
•	 Restoring missing data: An excellent example of this application is to

upscale low-resolution images using GANs to generate the missing pixels
in the resulting high-resolution image employing pixel value interpolation.

•	 To provide inputs to other models or applications, such as the training of
agents in a simulated environment: A software agent that controls a robot
might be fed fictional scenarios in a simulation by a GAN, enabling all kinds
of tests without the risk of damaging equipment or hurting persons.

•	 To transform or translate images: Creating topological maps from satellite
images or applying effects to photographs are examples of such an
application.

Generative Adversarial Networks were first proposed by Ian Goodfellow et al. in
their 2014 paper, Generative Adversarial Networks. They described GANs as being
the result of a competition between two deep learning models: a generator and a
discriminator.

The discriminator’s role is to determine whether a data sample is real or fake; in
other words, it needs to determine the probability that the sample comes from the
training data set or a generator model. The generator learns to create plausible
samples, aiming to produce samples good enough to fool the discriminator into

Image Processing with Generative Adversarial Networks 317

reporting that the generated samples are real. These networks are competing against
each other, hence the network’s adversarial nature. Figure 12.1 shows an overview
of this competition:

Figure 12.1: Overall GAN structure

Given this competing nature, the behavior of a GAN differs from a deep learning
network. Simply put, training a deep learning network is often a matter of minimizing
its loss function’s outcome. However, the ideal end state is an equilibrium as the
generator and the discriminator in a GAN compete against each other in a zero-
sum game. This equilibrium is known as the Nash equilibrium, named after the
mathematician John Nash.

The Nash equilibrium is a game state where there is nothing to be gained by each
player if they change their strategy, assuming that the other player also does not
change theirs. In this state, the generator creates realistic images, and the discriminator
is forced to guess (it guesses real half of the time, and fake the other half).

The problem is that it is difficult to detect this point of equilibrium, and there is
no guarantee that it is ever reached. The most well-known problem preventing the
equilibrium is mode collapse, which means the generator’s outputs lose diversity.

Mode collapse can be described quite simply. Imagine a GAN being trained to generate
handwritten digits. If the generator generates many good 2s, the discriminator may
see so many 2s that it becomes less apt at discriminating other digits. The generator
then continues to improve its 2s and eventually, generates mainly 2s. When the
discriminator finally distinguishes the fake 2s from the real ones, the generator
moves on to another digit, repeating the process. When this happens, the GAN is
very good at faking a subset of the training data distribution at any given moment
but very poor with the rest.

Since a GAN comprises two deep learning neural networks competing against each
other, it follows that these networks need to be trained. They are trained together
during each epoch, but they are updated separately between batches.

318 Hands-On Artificial Intelligence for Android

The discriminator needs to be updated first so that it can make helpful comparisons.
It is trained using a method identical to the flow depicted in figure 12.1—samples
classified as real are submitted along with samples classified as fake, making it better
at distinguishing between them.

The generator is updated next. It produces a set of fake samples misrepresented as
real ones because its goal is to deceive the discriminator. The discriminator’s output
represents its confidence that the input is real and is used to fine-tune the generator’s
parameters via backpropagation. Figure 12.2 shows this setup:

Figure 12.2: Training the generator

Note that the discriminator model is not being updated while updating the generator,
and vice-versa.

The generator can be used independently to produce the simulated samples once
the GAN has reached a satisfactory state.

Training a simple GAN
We demonstrate the training process of a GAN through a model designed to generate
handwritten digits based on the MNIST dataset. This model is part of the official
TensorFlow documentation, and its training method has been modified to follow the
convention used throughout this book.

The following code excerpt shows the beginning of the Python program, including
dataset loading and preparation:

1. import tensorflow as tf

2. import matplotlib.pyplot as plt

3. from tensorflow.keras import losses

4. from tensorflow.keras import layers

5. from tensorflow.keras import datasets

6. import time

7.

8. BUFFER_SIZE = 60000

9. BATCH_SIZE = 256

Image Processing with Generative Adversarial Networks 319

10. GENERATOR_INPUT_SIZE = 100

11. NUMBER_OF_EXAMPLES = 16

12.

13. (train_images, train_labels), (_, _) = datasets.mnist.load_data()

14.

15. train_images = train_images.reshape(

16. train_images.shape[0], 28, 28, 1).astype('float32')

17. train_images = (train_images - 127.5) / 127.5

18. train_dataset = tf.data.Dataset.from_tensor_slices(

19. train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

Lines 8 to 11 in the preceding code excerpt define some parameters used during
training. The buffer size in line 8 represents the number of entries in the shuffled data
set. The data set is divided into batches, with a fixed number of elements defined in
line 9. As mentioned earlier, the generator takes some random data as input; the size
of such data is defined in line 10. Finally, this code generates and periodically saves
some example images for the user to visually evaluate the model’s evolution; line 11
defines the number of example images generated each time.

Lines 13 to 16 in the preceding code excerpt load the dataset and add the channel
dimension to the images. Line 17 normalizes the pixel values into the [-1, 1] interval,
and lines 18 to 19 slice the dataset into random slices with 256 elements each.

It is time to build the models once the dataset is prepared. The following code excerpt
shows the model used for the generator:

1. def make_generator_model():

2. model = tf.keras.Sequential([

3. layers.Dense(7*7*256, use_bias=False,

4. input_shape=(GENERATOR_INPUT_SIZE,)),

5. layers.BatchNormalization(),

6. layers.LeakyReLU(),

7.

8. layers.Reshape((7, 7, 256)),

9.

10. layers.Conv2DTranspose(128, (5, 5), strides=(1, 1),

11. padding='same', use_bias=False),

320 Hands-On Artificial Intelligence for Android

12. layers.BatchNormalization(),

13. layers.LeakyReLU(),

14.

15. layers.Conv2DTranspose(64, (5, 5), strides=(2, 2),

16. padding='same', use_bias=False),

17. layers.BatchNormalization(),

18. layers.LeakyReLU(),

19.

20. layers.Conv2DTranspose(1, (5, 5), strides=(2, 2),

21. padding='same', use_bias=False, activation='tanh')

22.])

23. return model

The first layer of the generator model takes a tensor with 100 elements as its input.
The following layers reshape this input into a square matrix and keep changing its
shape until it matches the shape of the images in the MNIST dataset.

Such shape changes are accomplished by the Conv2DTranspose layers, which
implement an operation known as a transposed convolution. Simply speaking, these
transposed convolution layers work backward, that is, from a tensor that could be
the product of a convolution toward a tensor shaped like some original data.

The desired result is that the 100 initial elements of noise are transformed into an
image of a handwritten digit similar to those in the MNIST dataset.

The following summary of the generator model helps visualize this transformation.
In particular, note how the output shape of each layer progresses toward the final
shape:

1. ___

2. Layer (type) Output Shape Param #

3. ===

4. dense (Dense) (None, 12544) 1254400

5. ___

6. batch_normalization (BatchNo (None, 12544) 50176

7. ___

8. leaky_re_lu (LeakyReLU) (None, 12544) 0

9. ___

Image Processing with Generative Adversarial Networks 321

10. reshape (Reshape) (None, 7, 7, 256) 0

11. ___

12. conv2d_transpose (Conv2DTran (None, 7, 7, 128) 819200

13. ___

14. batch_normalization_1 (Batch (None, 7, 7, 128) 512

15. ___

16. leaky_re_lu_1 (LeakyReLU) (None, 7, 7, 128) 0

17. ___

18. conv2d_transpose_1 (Conv2DTr (None, 14, 14, 64) 204800

19. ___

20. batch_normalization_2 (Batch (None, 14, 14, 64) 256

21. ___

22. leaky_re_lu_2 (LeakyReLU) (None, 14, 14, 64) 0

23. ___

24. conv2d_transpose_2 (Conv2DTr (None, 28, 28, 1) 1600

25. ===

26. Total params: 2,330,944

27. Trainable params: 2,305,472

28. Non-trainable params: 25,472

29. ___

The discriminator model does the opposite—it takes a tensor with the same shape
as the MNIST images and reduces it to one value. This output value represents
the confidence that the input image is real. The following code excerpt shows the
definition of the discriminator model:

1. def make_discriminator_model():

2. model = tf.keras.Sequential([

3. layers.Conv2D(64, (5, 5), strides=(2, 2),

4. padding='same', input_shape=[28, 28, 1]),

5. layers.LeakyReLU(),

6. layers.Dropout(0.3),

7. layers.Conv2D(128, (5, 5), strides=(2, 2),

8. padding='same'),

322 Hands-On Artificial Intelligence for Android

9. layers.LeakyReLU(),

10. layers.Dropout(0.3),

11. layers.Flatten(),

12. layers.Dense(1)

13.])

14. model.compile(

15. loss=losses.BinaryCrossentropy(from_logits=True),

16. optimizer=tf.keras.optimizers.Adam(1e-4))

17. return model

Note that the discriminator model is compiled as soon as it is defined, whereas the
generator model is not. We do this because these models are trained under different
configurations—the discriminator is updated individually, but the generator is
updated using the discriminator’s output. It is necessary to use two optimizers to
alternate the generator and discriminator updates between batches.

The following summary of the discriminator model helps visualize the transformation
of the 28x28 image into one prediction:

1. __

2. Layer (type) Output Shape Param #

3. ==

4. conv2d (Conv2D) (None, 14, 14, 64) 1664

5. __

6. leaky_re_lu_3 (LeakyReLU) (None, 14, 14, 64) 0

7. __

8. dropout (Dropout) (None, 14, 14, 64) 0

9. __

10. conv2d_1 (Conv2D) (None, 7, 7, 128) 204928

11. __

12. leaky_re_lu_4 (LeakyReLU) (None, 7, 7, 128) 0

13. __

14. dropout_1 (Dropout) (None, 7, 7, 128) 0

15. __

16. flatten (Flatten) (None, 6272) 0

Image Processing with Generative Adversarial Networks 323

17. ___

18. dense_1 (Dense) (None, 1) 6273

19. ==

20. Total params: 212,865

21. Trainable params: 212,865

22. Non-trainable params: 0

23. __

Finally, the GAN used to train the generator is defined. Looking back at figure 12.2,
we see that the generator model is used to provide the discriminator’s input. The
following code excerpt shows the GAN’s configuration:

1. def make_gan(generator, discriminator):

2. discriminator.trainable = False

3. model = tf.keras.Sequential()

4. model.add(generator)

5. model.add(discriminator)

6. model.compile(

7. loss=losses.BinaryCrossentropy(from_logits=True),

8. optimizer=tf.keras.optimizers.Adam(1e-4))

9. return model

Remember that this GAN construction is meant to update only the generator, so the
discriminator is placed in the GAN with training disabled.

All the models can now be created as per the following code excerpt:

1. generator = make_generator_model()

2. discriminator = make_discriminator_model()

3. gan = make_gan(generator, discriminator)

The training loop needs to be defined manually because of the GAN model’s
differentiated training requirements.

Each training step needs to perform the following tasks:

•	 Use the current state of the generator model to produce fake images

•	 Train the discriminator with the newly generated fake images and a set of
images from the training set

324 Hands-On Artificial Intelligence for Android

•	 Train the generator using the updated discriminator state

The following code excerpt shows one way of implementing each training step:

1. def train_step(real_images):

2. batch_size = real_images.shape[0]

3. noise = tf.random.normal(

4. [batch_size, GENERATOR_INPUT_SIZE])

5. generated_images = generator(noise, training=False)

6. discriminator.trainable = True

7. discriminator.train_on_batch(

8. tf.concat([

9. real_images,

10. generated_images], axis=0),

11. tf.concat([

12. tf.ones((batch_size, 1)),

13. tf.zeros((batch_size, 1))], axis=0)

14.)

15. discriminator.trainable = False

16. gan.train_on_batch(

17. noise,

18. tf.ones((batch_size, 1))

19.)

Note how the models are used with training enabled or disabled depending on their
role in the GAN training cycle.

The complete training consists of repeating this training step until the network
produces acceptable results (each repetition of the training step is called an epoch).
The following code snippet shows the training loop:

1. def train(dataset, epochs):

2. for epoch in range(epochs):

3. start = time.time()

4. for image_batch in dataset:

5. train_step(image_batch)

Image Processing with Generative Adversarial Networks 325

6. print('Time for epoch {} is {} sec'.format(

7. epoch + 1, time.time()-start))

Remember that the generator’s input is a vector of random values, that is, noise.
Every training session proceeds differently due to its random nature, so your results
are different every time you train the model.

The following figures show samples of the generator’s output after training sessions
of different lengths. They are all different because of the random nature of the
training, but they show the GAN progressing toward better quality output.

Figure 12.3 shows some outputs of the generator after 50 epochs. We can already
recognize MNIST’s handwritten digits’ general shape and even a couple of numbers.

Figure 12.3: The handwritten digit generator after 50 epochs

Figure 12.4 illustrates one set of the generator’s output after a training session that
ran for 100 epochs. We can already recognize more digits, and their overall shape is
better defined.

Figure 12.4: The handwritten digit generator after 100 epochs

326 Hands-On Artificial Intelligence for Android

Finally, figure 12.5 depicts one last set of output after training the GAN for 500 epochs.
We can recognize even more digits, and their shape continues to improve.

Figure 12.5: The handwritten digit generator after 500 epochs

Fake images created by simple Generative Adversarial Networks such as this are
seldom perfect, but some samples can be excellent. This demonstration GAN may or
may not continue to improve after longer training sessions. Either way, it is a good
example of the potential in GANs—it draws digits out of noise, after all!

Applying a special effect to photographs
Image transformation is another interesting class of GAN applications. Among the
most popular are the special effects applied to photographs, which are common in
social media and photography applications. Of course, we do not mean that all such
effects are implemented with GANs, but surely a few involve machine learning.

Transforming images into anime-style pictures
Jie Chen, Gang Liu, and Xin Chen published a paper AnimeGAN: A Novel Lightweight
GAN for Photo Animation in 2020. Their goal was to find a way to transform real-
world photos into anime-style images.

Note: Anime is a Japanese term (アニメ) that refers to all animated works. In
English, many people use it to refer to animation produced in Japan or employing
a style similar to Japanese animation.

They examined the existing work in the fields of Neural Style Transfer and Image-to-
Image translation. The former technique aims to create a new image by combining
the content of one image with the style of another. The latter is typically used to map
an image into a different domain, for example, grayscale to color or low-resolution
to high-resolution.

Image Processing with Generative Adversarial Networks 327

Jie Chen et al. noticed that the existing networks either did not transfer the specific
style of anime drawings with the desired quality or required many computational
resources. So, they designed a generative adversarial network named AnimeGAN
to tackle the specific problem of mapping images to the anime drawing style using
minimal resources.

The AnimeGAN’s generator is similar to a symmetrical encoder-decoder network,
and the discriminator is a convolutional network employing spectral normalization.

An encoder-decoder network contains two components: the first is an encoder that
takes a sequence with a variable length as an input and outputs some internal state
with a fixed shape, and the second is a decoder that takes this state and maps it into a
different variable-length sequence. So, a network of this type aims to map one input
to an output where their corresponding lengths are different. Machine translation is
a possible application of these models.

Besides the reduction in computational cost, Jie Chen et al.’s innovations were
focused on the loss functions. Separate loss functions were employed for calculating
grayscale, content, and color loss values carrying different weights, carefully chosen
to produce a balanced result.

Note: The full version of the original AnimeGAN paper is available in the project’s
GitHub repository at https://github.com/TachibanaYoshino/AnimeGAN.

An improved version of the network, called AnimeGANv2, has been developed. We
use this version for our demonstrations.

The AnimeGANv2 project repository in GitHub (https://github.com/
TachibanaYoshino/AnimeGANv2) contains its TensorFlow implementation and
instructions to use the datasets to train the network. The programs provided are
only compatible with TensorFlow version 1 and tested with TensorFlow 1.8 and 1.15.

Fortunately, the authors included one pre-trained saved model in the repository; it
is located in the pb_model_Hayao-64 directory.

If you wish to reproduce their results and don’t want to compromise your TensorFlow
2 environment, you can use a TensorFlow 1 virtual environment as described in
Chapter 5, Introduction to TensorFlow.

Converting the GAN to the TensorFlow Lite
format
The model’s conversion to TensorFlow Lite is straightforward after downloading the
entire pb_model_Hayao-64 directory contents. The following code excerpt shows
how it can be done:

328 Hands-On Artificial Intelligence for Android

1. import tensorflow as tf

2.

3. converter = tf.compat.v1.lite.TFLiteConverter.from_saved_model(

4. 'pb_model_Hayao-64',

5. signature_key = 'custom_signature')

6.

7. tflite_model = converter.convert()

8.

9. with open('AnimeGANv2_Hayao-64.tflite', 'wb') as f:

10. f.write(tflite_model)

One difference compared with the conversion programs used previously is that we
must specify the name of the model’s signature key. A model’s signature is used to
identify its inputs and outputs and has a default name. However, we can change the
signature’s name when saving the model; the TensorFlow Lite converter needs to
know the new name when that happens.

Trying the GAN in the computer
The converted GAN model can be tested on the computer before building the Android
application. The following code excerpt shows how this test can be conducted:

1. import tensorflow as tf

2.

3. image = tf.keras.preprocessing.image.load_img(

4. 'busy-street.jpg',

5. target_size=(405, 540),

6. interpolation='bilinear')

7.

8. image_data = tf.keras.preprocessing.image.img_to_array(image)

9. image_data = image_data / 127.5 - 1.0

10. input = tf.expand_dims(image_data, axis=0)

11.

12. interpreter = tf.lite.Interpreter(

13. model_path='AnimeGANv2_Hayao-64.tflite')

14.

15. interpreter.resize_tensor_input(0, input.shape, strict=True)

16. interpreter.allocate_tensors()

Image Processing with Generative Adversarial Networks 329

17.

18. input_details = interpreter.get_input_details()

19. output_details = interpreter.get_output_details()

20.

21. interpreter.set_tensor(input_details[0]['index'], input)

22. interpreter.invoke()

23.

24. output_data = (interpreter.get_tensor(

25. output_details[0]['index'])[0] + 1.) / 2 * 255

26. output_data = tf.cast(tf.clip_by_value(output_data, 0, 255),

27. tf.uint8)

28.

29. tf.keras.preprocessing.image.save_img(

30. 'output-tflite.png', output_data)

Lines 3 to 6 in the preceding excerpt load the image from the disk. Note that it is being
resized to be manageable so that the operation does not take long. For comparison,
the AnimeGAN authors used 256x256 images in their experiments.

The image is then normalized, and lines 8 to 10 adjust its tensor. Lines 12 to 19 load
the TensorFlow Lite model, retrieve its input and output information, and allocate
the necessary memory. Finally, lines 21 and 22 invoke the model to run inference.

Image denormalization and pixel range adjustments are performed in lines 24 to 27
before the final image is saved to disk.

Figure 12.6 shows a photo of a street in Amsterdam used as input for a test of the
TensorFlow Lite version of AnimeGANv2:

Figure 12.6: A photo of a street

330 Hands-On Artificial Intelligence for Android

Figure 12.7 illustrates the image produced by the Generative Adversarial Network; it
was transformed into a cartoonish drawing:

Figure 12.7: An image of a street after being processed by AnimeGANv2

Having tested the TensorFlow Lite model, we are now ready to incorporate it into
an Android application.

Taking anime-styled pictures in Android
Building an Android application to take photos in an anime style is simple. We need
to adapt the image capture application developed in Chapter 7, Android Camera Image
Capture with CameraX, so that the captured image is transformed before being shown
to the user.

Repurposing the image capture application
The original image capture application was developed with the following
requirements in mind:

•	 Display a live camera preview
•	 Allow the user to capture a still image and save it in the device’s storage
•	 Display the captured image to the user

Now that the TensorFlow Lite version of the AnimeGANv2 model is ready, there is
only one additional requirement—to process the captured image before saving it.

Initially, the CameraX library was responsible for capturing and saving the image,
but now we need to intervene in the process. The new application needs to capture
and process the image according to the following steps:

Image Processing with Generative Adversarial Networks 331

1. Capture the image into memory instead of directly into storage.

2. Have AnimeGANv2 transform the image.

3. Save the transformed image in the device’s photo store.

The captured image can only be shown to the user after these steps are complete.

Capturing an image into memory
To use CameraX to capture an image into memory instead of directly to a file in the
device’s storage, all that is necessary is to use another version of the ImageCapture
class’ takePicture() function.

One overload receives an instance of OnImageCapturedCallback. This object has its
onCaptureSuccess() function called when the image is captured. With the default
settings, the single function’s argument is an instance of ImageProxy containing a
JPEG-encoded picture.

The overall CameraPreviewFragment’s implementation of takePicture() becomes
similar to the one shown in the following code excerpt:

1. private fun takePicture() {

2. imageCapture.takePicture(

3. ContextCompat.getMainExecutor(context),

4. object : ImageCapture.OnImageCapturedCallback() {

5. override fun onCaptureSuccess(image: ImageProxy) {

6. image.close()

7. }

8. override fun onError(exception: ImageCaptureException) {

9. Log.e(TAG, "Failed to capture the picture.", exception)

10. Toast.makeText(context, R.string.picture_not_captured,

11. Toast.LENGTH_SHORT).show()

12. }

13. }

14.)

15. }

332 Hands-On Artificial Intelligence for Android

The three previously mentioned steps need to take place within the scope of the
onCaptureSuccess() function.

Transforming the captured image
The AnimeGANv2 model has one characteristic that makes it very flexible and
restricts the optimization options available—its input dimensions are dynamic. Its
input tensor’s shape is [1, -1, -1, 3], meaning that the model accepts images of any
size as its input.

Unfortunately, it also means that hardware acceleration is impossible in Android
because the TensorFlow Lite’s delegates for GPU and the NNAPI do not currently
support models with dynamic inputs. The only optimization possible at the moment
is to enable multithreading.

Note: The adventurous readers may try their hand at modifying the model to
set a fixed input size. One way of doing this is to change the model creation and
training code. Additionally, we can try a technique that’s also used in the next
chapter, Describing Images with NLP, to skip the first model nodes.

Such limitation also means that the model runs slowly on most devices, so we
have decided to limit the maximum input image size to the same size used during
training, that is, 256x256 pixels.

You are encouraged to experiment with different dimensions on your device and see
the impact of small changes in the input dimensions on the processing time.

Having copied the AnimeGANv2 tflite model file to the Android application project’s
assets folder, we can build the class that applies the model to an image.

This class has the following responsibilities:
•	 Manage the TensorFlow Lite model

•	 Resize, rotate, and normalize the input image

•	 Run inference on the input image to obtain an anime-styled output image

•	 Deformalize the output into the standard image format

The base class structure shown in the following code excerpt takes care of the model
management tasks:

1. class AnimeGanModel(context: Context): AutoCloseable {

2.

3. private val inputDataType: DataType

4. private val interpreter: Interpreter

5. private val modelFile: ByteBuffer

Image Processing with Generative Adversarial Networks 333

6.

7. init {

8. val options = Interpreter.Options().apply {

9. setNumThreads(4)

10. }

11. modelFile = FileUtil.loadMappedFile(

12. context, "AnimeGANv2_Hayao-64.tflite")

13. interpreter = Interpreter(modelFile, options)

14. interpreter.resizeInput(0,

15. intArrayOf(1, IMAGE_WIDTH, IMAGE_HEIGHT, 3))

16.

17. inputDataType = interpreter.getInputTensor(0).dataType()

18. }

19.

20. override fun close() {

21. interpreter.close()

22. }

23.

24. }

Note that multithreading is enabled in the interpreter via the options object created
in lines 9 to 10 of the preceding excerpt. Additionally, we need to specify the
expected input size before running inference because the model’s input is dynamic.
The model’s input tensor is resized in lines 14 and 15.

Loading the image into the model’s input tensor employs a familiar pattern, as
shown in the following code snippet:

1. private fun loadImage(bitmap: Bitmap, rotationDegrees: Int)

2. : ByteBuffer {

3. val tensorImage = TensorImage(inputDataType)

4. tensorImage.load(bitmap)

5. return buildProcessor(rotationDegrees)

6. .process(tensorImage)

7. .buffer

8. }

334 Hands-On Artificial Intelligence for Android

Functions from the TensorFlow Lite library are used to build a tensor from an Android
Bitmap, and then an image processor is applied before the tensor is converted into
an array of bytes.

The image processor is responsible for resizing, rotating, and normalizing the input
image and is created dynamically because of the rotation operation, as demonstrated
in the following code excerpt:

1. private fun buildProcessor(rotationDegrees: Int) =

2. ImageProcessor.Builder()

3. .add(

4. ResizeOp(IMAGE_WIDTH, IMAGE_HEIGHT,

5. ResizeOp.ResizeMethod.BILINEAR)

6.)

7. .add(

8. Rot90Op(4 - rotationDegrees / 90)

9.)

10. .add(

11. NormalizeOp(127.5f , 127.5f)

12.)

13. .build()

Inference is performed by running the interpreter on the input tensor. Once again,
the pattern is familiar and is depicted in the following code excerpt:

1. fun process(bitmap: Bitmap, rotationDegrees: Int): Bitmap {

2. val outputBuffer = allocateOutputBuffer()

3. interpreter.run(

4. loadImage(bitmap, rotationDegrees),

5. outputBuffer.buffer.rewind()

6.)

7. return postprocess(outputBuffer.floatArray)

8. }

9.

10. private fun allocateOutputBuffer(): TensorBuffer =

11. interpreter.getOutputTensor(0).let {

12. TensorBuffer.createFixedSize(

Image Processing with Generative Adversarial Networks 335

13. intArrayOf(1, IMAGE_WIDTH, IMAGE_HEIGHT, 3),

14. it.dataType())

15. }

Just like the input vector’s format, the output vector is a normalized array of floating-
point values in the [-1, 1] range. Each tuple of three floating-point values represents
the intensities of each pixel’s (red, green, blue) – or RGB – color channels.

The final task is the denormalization of the output image and its conversion into
an Android Bitmap. The numbers need to be transformed back to the [0, 255]
interval and grouped in tuples of four byte-sized values. These tuples represent the
intensities of each pixel’s (Alpha, Red, Green, Blue) – or ARGB – transparency and
color channels.

One possible way to implement such a transformation is shown in the following
code snippet. This implementation may not be the most efficient, but it is easy to
understand:

1. private fun postprocess(data: FloatArray): Bitmap {

2. val pixelCount = (data.size / 3)

3. val pixels = IntArray(pixelCount)

4. var floatPos = 0

5. for (i in 0 until pixelCount) {

6. pixels[i] = Color.rgb(

7. ((data[floatPos++] + 1.0f) / 2.0f * 255.0f).toInt(),

8. ((data[floatPos++] + 1.0f) / 2.0f * 255.0f).toInt(),

9. ((data[floatPos++] + 1.0f) / 2.0f * 255.0f).toInt()

10.)

11. }

12. return Bitmap.createBitmap(pixels, IMAGE_WIDTH, IMAGE_HEIGHT,

13. Bitmap.Config.ARGB_8888)

14. }

Each element of the array declared in line 3 of the preceding code snippet contains
one pixel’s ARGB tuple. The original floating-point values are converted into a fully
opaque ARGB pixel in lines 6 to 10. The final Android bitmap is created in lines 12
and 13 in the ARGB format.

The constants defining the image size are placed in the class’ companion object, as
shown in the following code excerpt:

336 Hands-On Artificial Intelligence for Android

1. companion object {

2. const val IMAGE_WIDTH = 256

3. const val IMAGE_HEIGHT = 256

4. }

As mentioned earlier, the default configuration of the ImageCapture class results in
a JPEG-encoded image being provided to our callback function.

The AnimeGanModel class we just showed can process only images in an Android
bitmap format. We must convert that image into the Android bitmap format before
invoking the model class.

A second class called AnimeTransformation is created to handle this conversion.
We enforce the separation of concerns because it is not the model’s responsibility to
know how to handle whatever image format may be produced by its data source.

The AnimeTransformation class’s implementation is shown in the following code
excerpt:

1. class AnimeTransformation(context: Context) : AutoCloseable {

2.

3. private val model = AnimeGanModel(context)

4.

5. override fun close() {

6. model.close()

7. }

8.

9. suspend fun transform(proxy: ImageProxy): Bitmap =

10. withContext(Dispatchers.IO) {

11. val bitmap = bitmapFromJpeg(proxy)

12. return@withContext model.process(

13. bitmap, proxy.imageInfo.rotationDegrees)

14. }

15.

16. private fun bitmapFromJpeg(proxy: ImageProxy): Bitmap {

17. val jpegBuffer = proxy.planes[0].buffer

18. val jpegSize = jpegBuffer.remaining()

19. val data = ByteArray(jpegSize)

Image Processing with Generative Adversarial Networks 337

20. jpegBuffer.get(data)

21. return BitmapFactory.decodeByteArray(data, 0, data.size)

22. }

23.

24. }

As you can see in lines 9 and 10 of the preceding excerpt, this class has an additional
responsibility to run the image processing task as a coroutine. This way, the coroutine
execution can be sent to a separate pool without interfering with the main application
thread’s operation.

Saving the modified image in the device’s
gallery
Once the image has been processed, the next logical step is to save it in the device’s
photo gallery.

Saving the image in the device’s photo gallery is not difficult. All that is necessary is
to prepare the required columns for the media store’s database with the correct data
and transfer the image data into the store.

One possible implementation of these steps is shown in the following code excerpt:

1. spend fun saveImageToGallery(context: Context, bitmap: Bitmap)

2. : Uri? = withContext(Dispatchers.IO) {

3.

4. val name = "anime-" + SimpleDateFormat(

5. "yyyy-MM-dd-HH-mm-ss-SSS", Locale.US)

6. .format(System.currentTimeMillis());

7.

8. val contentValues = ContentValues().apply {

9. put(MediaStore.MediaColumns.DISPLAY_NAME, name)

10. put(MediaStore.MediaColumns.MIME_TYPE, "image/jpeg")

11. if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q) {

12. put(MediaStore.MediaColumns.RELATIVE_PATH,

13. Environment.DIRECTORY_PICTURES)

14. put(MediaStore.MediaColumns.IS_PENDING, 1)

15. }

338 Hands-On Artificial Intelligence for Android

16. }

17.

18. val resolver = context.contentResolver

19. val imageUri = resolver

20. .insert(MediaStore.Images.Media.EXTERNAL_CONTENT_URI,

21. contentValues)

22. imageUri?.let {

23. resolver.openOutputStream(it)

24. }?.use {

25. bitmap.compress(Bitmap.CompressFormat.JPEG, 90, it)

26. contentValues.clear()

27. if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q) {

28. contentValues.put(MediaStore.Video.Media.IS_PENDING, 0)

29. }

30. resolver.update(imageUri, contentValues, null, null)

31. }

32.

33. return@withContext imageUri

34. }

The media store database’s content tuple is prepared in lines 8 to 16. The Android
content resolver is then used to insert the new image’s row in the media store in lines
18 to 21. The result of such insertion is a URI that uniquely identifies the new entry.

Based on that URI, the image data is written to the store in lines 22 to 31. The Android’s
content resolver design abstracts the final storage medium away. However, we know
that an image file is being written in this specific case and appears in the device’s
gallery application.

Putting it all together
All the code necessary to apply an anime style to a JPEG image and save it to the
device’s media store is in place. We are now aware of the decision to limit this
demonstration application to images 256x256 pixels in size and that image processing
takes some time.

So, the preview view’s aspect ratio was adjusted to achieve a what you see is what
you get effect, so it is fixed at 1:1, that is, a square. An indefinite progress bar was

Image Processing with Generative Adversarial Networks 339

added so that the user can get visual feedback that the image was captured and is
being processed. Figure 12.8 illustrates these changes. The necessary changes in the
XML layout files are included in the accompanying code package.

Figure 12.8: The updated capture screen layout

Introducing a fixed aspect ratio means that the CameraX use case configuration
needs to be adjusted. The configuration of the ImageCapture use case and its
binding to the camera provider, made in the CameraPreviewFragment class’s
configureCameraUseCase() function, is shown in the following code excerpt. The
pattern should also be familiar.

1. imageCapture = ImageCapture.Builder()

2. .setCaptureMode(CAPTURE_MODE_MAXIMIZE_QUALITY)

3. .setTargetRotation(requireActivity().

4. windowManager.defaultDisplay.rotation)

340 Hands-On Artificial Intelligence for Android

5. .setTargetResolution(Size(

6. AnimeGanModel.IMAGE_WIDTH,

7. AnimeGanModel.IMAGE_HEIGHT))

8. .build()

9.

10. // ... camera selector ...

11.

12. val useCaseGroup = UseCaseGroup.Builder()

13. .addUseCase(preview)

14. .addUseCase(imageCapture)

15. previewView.viewPort?.let {

16. useCaseGroup.setViewPort(it)

17. }

18.

19. cameraProvider.unbindAll()

20.

21. cameraProvider.bindToLifecycle(this, cameraSelector,

22. useCaseGroup.build())

The image transformation classes can now be incorporated in the image capture
callback. Its onCaptureSuccess() function implementation can be similar to the
following code snippet:

1. override fun onCaptureSuccess(image: ImageProxy) {

2. lifecycleScope.launch(Dispatchers.Main) {

3. progressBar.visibility = View.VISIBLE

4. btnTakePicture.visibility = View.INVISIBLE

5. saveImageToGallery(

6. requireContext(),

7. transformation.transform(image)

8.)

9. ?.also {

10. val action = CameraPreviewFragmentDirections

11. .actionCameraPreviewFragmentToPictureFragment(

Image Processing with Generative Adversarial Networks 341

12. it.toString()

13.)

14. requireView().findNavController().navigate(action)

15. }

16. progressBar.visibility = View.INVISIBLE

17. btnTakePicture.visibility = View.VISIBLE

18.

19. image.close()

20. }

21. }

Line 2 in the preceding excerpt shows that the coroutine should always return to
the main application thread because it manipulates user interface elements in lines
3 and 4 and 9 to 17. Lines 5 to 7 are responsible for processing and saving the image,
and lines 10 to 14 switch to the fragment showing the processed image, sending it
the saved image’s URI.

The PictureFragment now needs to load the image from a URI instead of a file, so
its onViewCreated() implementation needs a slight adjustment to tell the Guice
library that the image source is a URI. Such adjustment is shown in line 4 of the
following code excerpt:

1. override fun onViewCreated(view: View, savedInstanceState: Bundle?)
{

2. super.onViewCreated(view, savedInstanceState)

3. Glide.with(this)

4. .load(Uri.parse(args.filePath))

5. .into(this.imageView)

6. }

Naturally, the application’s Gradle build files also need to receive entries with the
TensorFlow Lite library dependencies. These changes are similar to those made in
different locations throughout this book and are available in the accompanying code.

342 Hands-On Artificial Intelligence for Android

Figure 12.9 shows the final preview from the author’s device. Processing the image
shown here took approximately 7 seconds, but this time varies depending on the
device and its available resources.

Figure 12.9: The application just after processing a photo

Conclusion
Generative Adversarial Networks are a concept with plenty of potential for achieving
creative and transformational tasks more efficiently and, in some cases, with more
quality than before. Its training can be very challenging, although some significant
challenges have been identified. It is an active field of research whose goal is to make
GANs as efficient and easy to train as deep learning networks.

The next chapter shows yet another application of machine learning—a neural
network with a recurrent architecture that enables it to have some memory.

Describing Images with NLP 343

Chapter 13
Describing

Images with
NLP

Introduction
This chapter briefly touches the world of natural language processing, a task for
which recurrent neural networks are particularly well suited. We showcase the
Show and Tell model that attempts to describe the scenes depicted in images in plain
English. We also build a sample application to use this model to provide descriptions
of photographs.

Structure
We cover the following topics in this chapter:

•	 Understanding recurrent neural networks

•	 Evolving into long short-term memory networks

•	 Performing automatic image captioning

•	 Implementing automatic image captioning in Android

344 Hands-On Artificial Intelligence for Android

Objectives
By the end of this chapter, you have understood the intuition behind Recurrent
Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks. You also
know how to use the LSTM-based Show and Tell model to automatically generate
picture descriptions. An Android application is built to incorporate descriptions in
pictures captured by the device’s camera.

Understanding recurrent neural networks
All the neural networks described in this book so far are “forward-only” networks
because each neuron’s output is based only on its input. Nothing is left over after
some piece of information moves through it.

Conversely, an RNN is formed by neurons or cells that possess one additional input
and one additional output. These are used internally to propagate information
derived from its previous computation to the following computation. The result is
a neuron with a form of memory. Figure 13.1 is a possible representation of an RNN
neuron with its internal state feedback loop:

Figure 13.1: An RNN neuron with its state loop

The inner workings of one RNN neuron can be more apparent by adopting a
visualization technique called unrolling. The role of the network’s internal state
propagation mechanism as a form of memory becomes more explicit by unrolling
the flow of information across a neuron over time. This is shown in the following
figure:

Describing Images with NLP 345

Figure 13.2: Unrolling the operation of an RNN neuron over time

Figure 13.2 shows the unrolling of one RNN neuron’s operation as it processes three
inputs—x1, x2, and x3—in sequence. Each subsequent step receives the internal (or
hidden) state memorized by the previous step as input. That internal state is then
mutated and propagated to the following step.

RNNs are particularly suited to processing an input of variable length for tasks that
require maintaining context, known as sequence prediction problems. As the name
implies, such problems involve predicting an output that depends on the input
sequence. Translations, text generation, or speech recognition are some examples of
sequence prediction problems.

Evolving into long short-term memory
networks
A disadvantage of classical RNNs is that they have a short memory span. The internal
state is transformed at each step, so it quickly loses any relation to the earliest inputs.

Consequently, sequence prediction problems requiring more extended information
retention periods are not solved as effectively. For example, the language-related
tasks mentioned previously become less efficient as the amount of information
memorized declines.

As humans, it is easy for us to understand this limitation. Imagine that you are
translating this sentence into some other language. How difficult would it be if you
could remember the entire sentence as you translate it? What about if you could only
remember the previous five words, or three, or even two?

Long Short-Term Memory (LSTM) networks were developed as an evolution in
RNN research. Their fundamental characteristic is that each cell (neuron) has one

346 Hands-On Artificial Intelligence for Android

extra input and output. These are used to process and produce an additional set of
network states. Since these states are often propagated with little transformation,
the network’s memory span increases (although each cell’s state controls the actual
degree of transformation).

Figure 13.3: Unrolling an LSTM cell

Just like figure 13.2, figure 13.3 shows one possible unrolling of an LSTM cell at
work. Here, we can observe how the same internal state as before (h) is propagated
alongside the new long-term memory state (c). Unlike the hidden state, the long-
term memory state suffers little in the way of transformations. It helps determine the
amount of information that should be retained from the previous hidden state, so it
allows us to preserve inputs that were received farther away in time.

Tip: As with the other network models described, we stop at intuitive
understanding and do not dive into RNNs or LSTM network models. Stanford
University School of Engineering’s 2017 CS231n lectures, particularly lecture
number 10, is a good source of details. You can find these lectures at https://
youtu.be/vT1JzLTH4G4.

Performing automatic image captioning
The problem of generating text that describes the contents of an image is a challenge
for the field of artificial intelligence, building a path between computer vision and
natural language processing.

It is a challenging task, significantly more complicated than the object classification or
recognition tasks mentioned earlier in this book. However, it has many applications,
the most evident of which is helping the visually impaired navigate the visually
heavy world of digital media.

Describing Images with NLP 347

A challenge was raised in 2015, almost recognizing the difficulty of such an endeavor
and encouraging further research in this field. It became known as the COCO 2015
Image Captioning Task, and its purpose was to hold a competition between image
captioning algorithms.

Note: COCO or Common Objects in Context is a dataset developed for training
object detection, segmentation, and captioning algorithms, and new challenges
are proposed annually. The dataset and its underlying research paper are
available at https://cocodataset.org.

One of the two algorithms that won the challenge is the Show and Tell algorithm,
described in the 2016 paper Show and Tell: Lessons learned from the 2015 MSCOCO
Image Captioning Challenge by Oriol Vinyals et al.

This algorithm was chosen as this chapter’s basis for its quality and popularity and
because it was implemented in TensorFlow. An open-source implementation called
im2txt was made available by its original authors. The open-source community
contributed with derived projects, providing fully or partially trained models so that
implementers and researchers could study the model without spending a significant
amount of computation resources and several days training the model.

One such derived project was built by Wei-Lin Ku (Hugh Ku) and is available
at https://github.com/HughKu/Im2txt. We use it as the base for our work with
TensorFlow Lite in this chapter.

Understanding the Show and Tell model
The Show and Tell model generates text from an input image.

We used a Convolutional Neural Network (CNN) to produce an embedding
describing the image. This technique is similar to the one used for face recognition
in Chapter 10, Identifying Faces in Android with TensorFlow Lite, where the embeddings
produced by a CNN are used to identify human faces.

The embedding obtained by the CNN is then fed into an LSTM network for translation
into English language text. This process is similar to a generation process, except
that the source data is not random but an image.

348 Hands-On Artificial Intelligence for Android

Show and Tell is described as one model but can also be described as the composition
of two models, as its high-level overview illustrated in figure 13.4 suggests:

Figure 13.4: High-level overview of the Show and Tell model

The caption-generating LSTM network takes the image embedding as its input and
produces a probabilistic word classification as its output. Words are represented as
an embedding model.

Note: A word embedding model aims to represent words as fixed-length vectors,
with the advantage that the contextual relationship between them is directly
related to their distance from one another. The TensorFlow documentation at
https://www.tensorflow.org/text/guide/word_embeddings provides an excellent
introduction to this concept.

The process for translating an image into its English description using the Show and
Tell model has the following sequence:

1. Use the image processing CNN to extract an embedding describing the
source image. This embedding is used to create the LSTM network’s initial
state.

2. Feed the state to the LSTM network. It produces a vector encoding the
likelihood of each learned word occurring in the text at this point and a
vector containing the new LSTM network state.

3. Pick the most probable words to build sentences. These are then fed to the
network in the following iteration.

4. Repeat steps 2 and 3 using a suitable algorithm, like Beam Search, until one
or more proper sentences are found. Refer to the Implementing Beam Search
section later in the chapter for a description of Beam Search.

5. Choose the most probable sentence.

Given the probabilistic nature of this process, the results usually vary a bit between
otherwise identical runs.

Some descriptions may be quite amusing when evaluated from a human perspective,
but many are pretty accurate.

Describing Images with NLP 349

Converting the Show and Tell model to
TensorFlow Lite
The accompanying code contains our version of Wei-Lin Ku’s (Hugh) repository
with all the necessary adjustments to obtain a TensorFlow Lite version of the Show
and Tell model.

However, the TensorFlow checkpoint files containing the partially trained model are
pretty big, so they still need to be downloaded before continuing. The URL can be
found in the TFLITE.md or README.md file inside the im2txt directory.

You may also need to install additional libraries, like matplotlib or tensorboard, if
you have not done so before. Use Python’s pip tool if the programs report that any
dependencies are missing.

Important: The Show and Tell model was initially developed with TensorFlow
version 1. It is thus mandatory to use TensorFlow 1 to run inference and freeze
the graph, as described in the following paragraphs.

We can try out the model once the checkpoint files are downloaded and extracted into
the im2txt/model/Hugh/train directory. We use the im2txt/run_inference.py
program to apply the model to one or more input images. We added sensible testing
defaults to its command-line options, so it may be executed from its location, as
follows:

1. python run_inference.py

The inference results are shown when the analysis of Hugh’s test image is complete.
They should be quite similar to the following output:

1. Captions for image test.jpg:

2. 0) a young boy wearing a hat and tie . (p=0.000195)

3. 1) a young boy wearing a blue shirt and tie . (p=0.000100)

4. 2) a young boy wearing a blue shirt and a tie . (p=0.000045)

This output proves that all files are placed in the correct locations and that the model
is working correctly.

The next task that needs to be accomplished is freezing the graph. Graph freezing
means the model’s hyperparameters are saved as constants, and some additional
information necessary for training is removed. The model becomes suitable for
inference only.

We provided the freeze_model.py program to freeze the model. It also contains
default values for its parameters so that it can be run from its location, as follows:

1. python freeze_model.py

350 Hands-On Artificial Intelligence for Android

Some output identical to the following lines is displayed once the model is frozen:
1. INFO:tensorflow:Froze 382 variables.

2. I0810 18:48:03.408173 140326452109696 graph_util_impl.py:334]
Froze 382 variables.

3. INFO:tensorflow:Converted 382 variables to const ops.

4. I0810 18:48:03.551802 140326452109696 graph_util_impl.py:394]
Converted 382 variables to const ops.

The frozen model is now saved in the model/frozen_graph.pb file and used as the
source for the model’s conversion to TensorFlow Lite.

Visualising the model with tensorboard
Use the to_tensorboard.py program to generate a compatible log file if you wish
to visualize the Show and Tell model in the tensorboard application. This is shown
as follows:

1. python to_tensorboard.py

The program creates a log file in the model/Hugh/logs directory. The tensorboard
application can now be started with the following command:

1. tensorboard --logdir model/Hugh/logs

Once it is ready, the tensorboard program outputs one line with the URL to open its
user interface. For example:

1. TensorBoard 1.15.0 at http://tuga:6006/ (Press CTRL+C to quit)

The tensorboard application’s user interface is shown when the URL is opened on a
browser, allowing inspection of the model’s graph, as illustrated in figure 13.5:

Figure 13.5: The tensorboard application’s user interface

Describing Images with NLP 351

The import node shown in figure 13.5 is expandable, so double-clicking on it reveals
further graph details.

Figure 13.6 shows the contents of the import node as displayed in tensorboard. We
can recognize the main building blocks of the Show and Tell model:

•	 An InceptionV3 model used to extract embeddings from the input image
•	 The LSTM network used for translating the embeddings into English

sentences

By examining the remaining namespace nodes, we can see that the decode node
accepts an image in the JPEG format because it relies internally on the DecodeJpeg
operation. Unfortunately, this operation is not available in TensorFlow Lite, which
means the image_feed node cannot be used as the image input.

We feed the image directly to the InceptionV3 model in the interest of Python code
reuse. This choice means that ExpandDims_3 is our new image input tensor (we leave
the usage of the convert_image node’s input tensor as an exercise for the reader).

Apart from the image embeddings, the LSTM network has other inputs and outputs
than the input_feed and softmax nodes shown in figure 13.6. Hidden inside the lstm
node are its state_feed input tensor and its initial_state and state output tensors.

Figure 13.6: Overview of the Show and Tell model as shown on tensorboard

352 Hands-On Artificial Intelligence for Android

The initial_state output tensor, as the name implies, contains the LSTM network’s
initial state after it is fed the image embeddings calculated by the InceptionV3
network. It is used only once, at the beginning of the inference cycle.

The LSTM network state is fed to the state_feed input tensor at each inference step.
The input_feed tensor accepts the sequence of words predicted in every previous
inference step.

The new state for the following step is provided through the state output tensor,
and the inferred word probabilities are provided through the softmax output tensor.

Converting the frozen model to TensorFlow Lite
Now that the model has been frozen, we can use the provided Python program
tflite_convert.py to produce the TensorFlow Lite model files.

Important: It is mandatory to use TensorFlow 2 to convert the Show and Tell
model to TensorFlow Lite. The TensorFlow 1 converter does not read this frozen
model correctly.

The Show and Tell model can be seen as two separate models, so we produced two
TensorFlow Lite model files. One deals with extracting embeddings from the input
image to produce the LSTM network’s initial state, and the other runs the inference
steps necessary to generate an image description.

The conversion program can be executed from its location, as follows:

1. python tflite_convert.py

It stores the two TensorFlow Lite model files—imagenet.tflite and lstm.tflite—
inside the model/ directory. Although they are already quantized, they are still
pretty big: the former is about 49 MB, and the latter is about 14 MB.

The TensorFlow Lite ImageNet model is quantized down to 16-bit floating-point
weights because it becomes unstable with integer quantization. This problem does
not afflict the LSTM model, which benefits from the size reduction associated with
integer quantization.

Testing the TensorFlow Lite models
A Python implementation of inference using the TensorFlow Lite models is also
provided, so we can validate the correct operation of the converted models on the
computer. This inference program is called tflite_inference.py and can be run
from its location, as follows:

1. python tflite_inference.py

Once the inference is complete, it provides an output similar to the following:
1. Captions for image test.jpg:

Describing Images with NLP 353

2. 0) a young boy wearing a hat and tie . (p=0.000059)

3. 1) a man wearing a hat and a tie . (p=0.000050)

4. 2) a young boy wearing a hat and a tie . (p=0.000027)

The output is not the same as the original model, but it is close enough to verify that
the TensorFlow Lite model operates correctly.

Remember that the TensorFlow Lite model files are quantized, that is, the original
32-bit floating-point weights’ precision has been reduced to 16-bit floating-point
or integer precision, depending on the file. This precision reduction means some
differences are expected, but they are not large enough to compromise the overall
model accuracy.

Now that we confirmed that the converted models are working as expected, we are
ready to incorporate them into an Android application.

Implementing automatic image captioning
in Android
Taking inspiration from one of the possible applications for a machine learning
model such as this, our demonstration application creates automatic descriptions of
images captured by the device’s camera and saves them, embedded in the JPEG file
as metadata.

Repurposing the image capture application
This new application does not have many differences compared to the image capture
application or even the Anime application built in Chapter 12, Image Processing with
Generative Adversarial Networks.

Therefore, we have chosen to reuse the base of the Anime application from Chapter
12, Image Processing with Generative Adversarial Networks. An identical application can
be created from scratch, or the existing code can be copied and refactored as a new
application. Should you opt for the latter, all folders and Kotlin packages need to
be renamed, and the old model files must be removed alongside the corresponding
processing code. We called this new application Photo Caption.

Incorporating the TensorFlow Lite model
The following files need to be copied into the Android application’s assets directory:
imagenet.tflite, lstm.tflite. Once they are in place, we can start writing the
code to use them. It is implemented as the ShowAndTellModel class, which has the
familiar signature shown in the following code excerpt:

354 Hands-On Artificial Intelligence for Android

1. internal class ShowAndTellModel(context: Context): AutoCloseable {

2.

3. }

The models are loaded in the now usual way. Note that the TensorFlow Lite
interpreters are configured to use the Android Neural Network API (NNAPI) when
available. On the author’s device, the options shown in the following code snippet
represent 50% lower inference times as compared to the default values:

1. private val imageNet: Interpreter

2. private val ltsm: Interpreter

3. private val imageNetModelFile: ByteBuffer

4. private val ltsmModelFile: ByteBuffer

5.

6. init {

7. val options = Interpreter.Options().apply {

8. setNumThreads(4)

9. setUseNNAPI(true)

10. }

11. imageNetModelFile = FileUtil.loadMappedFile(

12. context, "imagenet.tflite")

13. imageNet = Interpreter(imageNetModelFile, options)

14. ltsmModelFile = FileUtil.loadMappedFile(

15. context, "ltsm.tflite")

16. ltsm = Interpreter(ltsmModelFile, options)

17. }

18.

19. override fun close() {

20. imageNet.close()

21. ltsm.close()

22. }

Of course, not all devices support the NNAPI, and some may even be incompatible
with these models. So, it is necessary to test it as extensively as possible before
releasing an application to the general public that uses any acceleration.

Describing Images with NLP 355

The following code snippet shows how the initial LSTM network state is obtained
from an input image:

1. fun feedImage(bitmap: Bitmap): FloatArray {

2. val outputBuffer = imageNet.allocateOutputBuffer(

3. LTSM_INITIAL_STATE_OUTPUT)

4. imageNet.runForMultipleInputsOutputs(

5. arrayOf(loadImage(bitmap)),

6. mapOf(imageNet.getOutputIndex(LTSM_INITIAL_STATE_OUTPUT)

7. to outputBuffer)

8.)

9. return outputBuffer.array()

10. }

The feedImage() function works just like the equivalent functions in other
models we have used throughout this book. The main difference is that it calls the
interpreter’s runForMultipleInputsOutputs() function, so the input and output
tensors are set explicitly in the call.

The loadImage() function is not shown for brevity. It is identical to the other image
loading functions, resizing the input image to 299 x 299 pixels and normalizing it
into the [-1, 1] interval.

The following section, Implementing beam search, shows that the process for generating
the image’s description is iterative and requires running inference multiple times
with the LSTM network. The following code excerpt demonstrates how the LSTM
network can be called to run one inference step:

1. fun inferenceStep(inputFeed: LongArray, stateFeed: Array<FloatArray>)

2. : InferenceResults {

3. ltsm.resizeInput(ltsm.getInputIndex(LTSM_INPUT_FEED),

4. intArrayOf(inputFeed.size))

5. ltsm.resizeInput(ltsm.getInputIndex(LTSM_STATE_FEED),

6. intArrayOf(stateFeed.size, stateFeed[0].size))

7. val softmaxBuffer = ltsm.allocateOutputBuffer(inputFeed.size,

8. LTSM_SOFTMAX_OUTPUT)

9. val stateBuffer = ltsm.allocateOutputBuffer(inputFeed.size,

10. LTSM_STATE_OUTPUT)

356 Hands-On Artificial Intelligence for Android

11. ltsm.runForMultipleInputsOutputs(

12. arrayOf(inputFeed, stateFeed),

13. mapOf(

14. ltsm.getOutputIndex(LTSM_SOFTMAX_OUTPUT) to softmaxBuffer,

15. ltsm.getOutputIndex(LTSM_STATE_OUTPUT) to stateBuffer

16.)

17.)

18. return InferenceResults(softmaxBuffer, stateBuffer)

19. }

Since each step processes sentences with different lengths and number of network
state buffers, the first task that the inferenceStep() function needs to accomplish
is resizing the interpreter’s input buffers to accommodate its input parameter’s data.
The remainder of the function is a regular call to the TensorFlow Lite interpreter
with multiple parameters.

The function returns an instance of the InferenceResults class containing the word
probabilities array and the new network state. This class is shown in the following
code snippet:

1. data class InferenceResults(val softmax: Array<FloatArray>,

2. val state: Array<FloatArray>)

Implementing beam search
The LSTM network predicts the probability of each word of its vocabulary following
the previously predicted word at each inference step. So, each step for an n-word
vocabulary yields n predictions. Each word prediction represents a new possible
sentence at each step.

For example, let’s say that the first inference step reports that the most probable
words are (“A”, “One”). The second step might report that (“person”, “man”) could
follow “A” and (“person”, “woman”) could follow “One.” We now have a solution
space of (“A person,” “A man,” “One person,” “One woman”). The following step
would predict more words, causing the solution space to grow exponentially. At the
same time, we can visualize this progression as a graph, where each word is a node
leading to several different words.

Beam Search is a search algorithm that explores a graph by traveling through the
most promising node in a limited set. It orders all partial solutions according to a
heuristic, keeping only the most promising ones. So, it is a good choice for searching
the solution space of the LSTM network and is the one used by the Show and Tell

Describing Images with NLP 357

model authors. The implementation orders sentences based on the sum of each
prediction probability’s natural logarithm.

Processing the vocabulary file
The word_counts.txt file needs to be copied into the Android application’s
assets directory. It is located in the im2txt/data/Hugh directory from the im2txt
repository and is used to translate the LSTM network’s output to English because
the LSTM network only works with word indices.

The following code excerpt contains the class responsible for loading the contents
of the word_counts.txt file. Note that it associates each word from the word_
counts.txt file with an index value corresponding to the word’s line number in the
file. Once this task is complete, it ensures that the special start, end, and unknown
word markers are part of the vocabulary map. The start word marker is important to
inform the LSTM network that a new sentence is being started. On the other hand,
the end marker informs our code that the network has completed a sentence.

1. class Vocabulary(context: Context) {

2.

3. val idToWord: Map<Int, String>

4. val startId : Int

5. val endId : Int

6.

7. init {

8. val words = loadSingleColumnTextFile(context,

9. "word_counts.txt", Charsets.UTF_8)

10. .map { it.split(" ")[0] }

11.

12. check(words.containsAll(listOf(START_WORD, END_WORD)))

13. { "Incomplete vocabulary" }

14.

15. val wordToId = HashMap<String, Int>(words.size)

16. idToWord = HashMap(words.size)

17.

18. var index = 0

19. for (word in words) {

20. wordToId[word] = index

358 Hands-On Artificial Intelligence for Android

21. idToWord[index] = word

22. index++

23. }

24.

25. if (!wordToId.containsKey(UNK_WORD)) {

26. wordToId[UNK_WORD] = index

27. idToWord[index] = UNK_WORD

28. }

29.

30. startId = wordToId[START_WORD]!!

31. endId = wordToId[END_WORD]!!

32. }

33.

34. companion object {

35. private const val START_WORD = "<S>"

36. private const val END_WORD = "</S>"

37. private const val UNK_WORD = "<UNK>"

38. }

39. }

Implementing the supporting data structures
We need to keep track of each sentence generated, so a data structure needs to be
defined to capture the current sentence state as it is built. The following code excerpt
shows the Caption class definition:

1. data class Caption(val sentence: List<Long>,

2. val state: FloatArray, val logprob: Double)

3. : Comparable<Caption> {

4.

5. override fun compareTo(other: Caption): Int =

6. when {

7. this.logprob == other.logprob -> 0

8. this.logprob < other.logprob -> -1

9. else -> 1

Describing Images with NLP 359

10. }

11.

12. }

The Caption class contains the words composing the sentence, the confidence
associated with the sentence, and the LSTM network state. This LSTM network state
needs to be fed back to the network to continue inference and predict the next word
in the sentence. It can, of course, be the network’s initial state as well.

It is necessary to select the best sentences, in other words, the sentences with the
highest confidence, so the Caption class is also comparable according to confidence.

Another supporting data structure is a priority queue that contains a limited
number of sentences. When the maximum number of sentences is reached, it drops
the sentence with the lowest confidence each time a new sentence needs to be stored.
This queue ensures that only the sentences the model is more confident about are
processed. The TopN class implements this queue and is depicted in the following
code snippet:

1. internal class TopN<T: Comparable<T>>(private val n: Int) {

2.

3. private val queue = PriorityQueue<T>(n)

4.

5. fun push(element: T) {

6. queue.offer(element)

7. if (queue.size == n) {

8. queue.poll()

9. }

10. }

11.

12. fun extract(sorted: Boolean = false) =

13. queue.toList()

14. .let { if (sorted) it.sorted() else it }

15. .also { queue.clear() }

16.

17. fun isEmpty() =

18. queue.size == 0

19. }

360 Hands-On Artificial Intelligence for Android

Running the beam search
The Captioning class implements the beam search algorithm. Only the actual search
is shown and described here for brevity. The full implementation is available in the
accompanying code.

The algorithm chooses the most probable words according to their confidence values.
Sentences are classified by their confidence scores, which are calculated by summing
the natural logarithms of each word’s confidence values.

As a general overview, the search algorithm comprises the following steps:

1. Obtain the LSTM network’s initial state by feeding it the image to be
described.

2. Maintain a list of partial captions (sentences) and a list of complete captions.
Complete captions are finalized sentences, whereas partial captions are parts
of the solution space.

3. Run an inference step to obtain the predictions for the current list of partial
captions.

4. Select the n most probable words for each partial caption, where n is the
algorithm’s beam size.

5. Append the predicted words to each caption, storing them in the correct list
(partial or complete).

6. Keep only the k better sentences.

7. Repeat steps 3 to 6 until the maximum caption length is reached or until
there are no more partial sentences.

The following code excerpt shows the implementation used in the Photo Caption
Android application:

1. val initialState = model.feedImage(image)

2.

3. partialCaptions.push(Caption(

4. listOf(vocabulary.startId.toLong()), initialState, 0.0

5.))

6.

7. for (l in 0 until MAX_CAPTION_LENGTH) {

8. val partialList = partialCaptions.extract()

9. val inferred = inference(partialList)

Describing Images with NLP 361

10. for ((partialIndex, partialCaption) in partialList.withIndex())
{

11. val wordProbabilities = findTopBeamValues(

12. inferred.softmax[partialIndex])

13. for (wordProbability in wordProbabilities) {

14. if (wordProbability.value < 1e-12) continue // avoid ln(0)

15. val caption = Caption(

16. partialCaption.sentence + wordProbability.index.toLong(),

17. inferred.state[partialIndex],

18. partialCaption.logprob + ln(wordProbability.value.
 toDouble())

19.)

20. captions { wordProbability.index == vocabulary.endId }

21. .push(caption)

22. }

23. }

24. if (partialCaptions.isEmpty()) break

25. }

26.

27. return captionsToStrings(

28. captions { !completeCaptions.isEmpty() }

29.)

Note that a sentence is considered complete if the code of its last word corresponds
to the end marker. The LSTM network produces this marker like any other word;
thus, it works like a period.

Saving metadata in JPEG image files
Our demonstration application saves the image description in the JPEG file. This
requirement makes it necessary to populate the JPEG file’s EXIF metadata structure
while saving the file to the device’s gallery.

As demonstrated in Chapter 12, Image Processing with Generative Adversarial Networks,
saving the file to the device’s gallery implies writing its contents to an OutputStream.
Unfortunately, there is no direct support in the Android SDK for this operation. So,

362 Hands-On Artificial Intelligence for Android

we use the Apache Commons Imaging library to save the JPEG-encoded image data
with EXIF metadata to the ContentResolver’s OutputStream.

The Apache Commons Imaging library can be added to our application simply by
including the following entry in the application’s module Gradle file:

1. implementation 'org.apache.commons:commons-imaging:1.0-alpha2'

The contents of the ImageProxy containing the captured image are already JPEG-
encoded, so the image can be saved simply by creating the metadata entries and
copying the ImageProxy buffer to the file. The following code excerpt shows how
this is implemented in the Photo Caption application:

1. private fun saveWithComment(image: ImageProxy, comment: String,

2. output: OutputStream) {

3. val outputSet = TiffOutputSet()

4. outputSet.orCreateExifDirectory.add(EXIF_TAG_USER_COMMENT,
 comment)

5. outputSet.rootDirectory.add(TIFF_TAG_ORIENTATION,
 orientation(image))

6. ExifRewriter().updateExifMetadataLossless(

7. image.jpegData,

8. output,

9. outputSet

10.)

11. }

12.

13. private fun orientation(image: ImageProxy) =

14. when (image.imageInfo.rotationDegrees) {

15. 90 -> ORIENTATION_VALUE_ROTATE_90_CW

16. 180 -> ORIENTATION_VALUE_ROTATE_180

17. 270 -> ORIENTATION_VALUE_ROTATE_270_CW

18. else -> ORIENTATION_VALUE_HORIZONTAL_NORMAL

19. }.toShort()

20.

21. val ImageProxy.jpegData: ByteArray

22. get() {

Describing Images with NLP 363

23. val jpegBuffer = planes[0].buffer

24. val jpegSize = jpegBuffer.rewind().remaining()

25. val data = ByteArray(jpegSize)

26. jpegBuffer.get(data)

27. return data

28. }

Note that the metadata created by the saveWithComment() function needs to include
the image orientation because the ImageProxy’s contents are stored as per the
device’s sensor orientation. This orientation did not necessarily match the device’s
orientation when the image was captured, so we must store the rotation value that
needs to be applied to the image to ensure that it appears upright when displayed.
Applications and libraries reading the JPEG file honor this value and automatically
apply the required transformation.

Note: Many Android gallery applications do not support displaying EXIF user
comments. Your device’s gallery application may not show the image description.

The Photo Caption application displays the captured image alongside its description
after processing and saving it to the device’s gallery. The PictureFragment class
received the ability to read JPEG file metadata, as shown in the following code
excerpt:

1. override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

2. super.onViewCreated(view, savedInstanceState)

3. val imageUri = Uri.parse(args.filePath)

4.

5. requireContext().contentResolver.openInputStream(imageUri)

6. .use {

7. val metadata =

8. getMetadata(it, "stream") as JpegImageMetadata

9. pictureCaption.text = metadata

10. .findEXIFValueWithExactMatch(EXIF_TAG_USER_
 COMMENT)

11. .stringValue

12. }

13.

14. Glide.with(this)

364 Hands-On Artificial Intelligence for Android

15. .load(imageUri)

16. .into(this.imageView)

17. }

The image represented by the filePath fragment argument is read twice. The
Apache Commons Imaging library’s getMetadata() function is first used to read
its metadata and retrieve the saved description. Then, the Glide library is used to
load it into the fragment’s ImageView to be displayed.

Putting it all together
The CameraPreviewFragment class is first updated to keep a reference to the
Captioning class, ensuring that the latter is released in its onDestroy() function.

Image processing and storage is performed in the takePicture() function’s
onCaptureSuccess() callback, like the Anime Camera application. This function’s
new version selects the most probable image description and saves it to the gallery.

Figure 13.7: The application describing the author’s kitchen

Describing Images with NLP 365

Once the image is saved to the gallery, the PictureFragment shows the image and
its description to the user. The following code excerpt shows how these new steps
were implemented:

1. val bestCaption = captioning.caption(image).first()

2.

3. saveImageToGallery(requireContext(),

4. image, bestCaption

5.)?.also { uri ->

6. requireView().findNavController()

7. .navigate(

8. CameraPreviewFragmentDirections

9. .actionCameraPreviewFragmentToPictureFragment(

10. uri.toString()

11.)

12.)

13. }

The first sentence is chosen as the best because the Captioning class’s caption()
function already returns a sorted list.

Figure 13.7 shows the Photo Caption application describing a picture of the author’s
kitchen. Note how the Show and Tell model produced an accurate, albeit not totally
correct, description—there is no microwave in the picture. The model was probably
confused by the black panel between the induction plate and the extractor hood.

You shall find that presenting different pictures to the model may yield surprisingly
accurate results. These results can be amusing or even baffling at times.

Conclusion
In this chapter, we saw that it is possible to build neural networks with some
memory, allowing previous inference results to influence the following inference
steps. Traditional recurrent neural networks possess only short-term memory,
whereas long short-term memory networks add some longer-lasting memory, as the
name suggests.

An Android application that produces a description of an input image in plain
English was implemented. This application has shown how to work with multiple
TensorFlow Lite models, particularly with models that require more than one input
tensor or offer more than one output tensor.

366 Hands-On Artificial Intelligence for Android

This book has offered an introduction to the world of artificial intelligence and
machine learning, described the most commonly used algorithms, and exemplified
how Android applications can be built to take advantage of such technologies.
Hopefully, you have the desire to delve deeper into your new machine learning
challenge. Good luck!

Index 367

Index

A
activity

adding, to application 48-52
activity layout modification

Android Studio layout editor,
using 39

component identifier, changing 45
component, placing 42, 43
ConstraintLayout 41, 42
performing 38
string resources, using in

components 44
XML version, of button 45, 46

adversarial attack 130
Android

cameras, working with 190
SQLite, implementing 87-92

Android activity lifecycle
create stage 17
destroy stage 19, 20
killed stage 20
launch stage 17
pause stage 19
restart stage 19
resume stage 19
running stage 19
shut down stage 20
start stage 17, 18
stop stage 19

Android application
creating 4, 5
intents 53
lifecycle 16, 17
running 9

368 Hands-On Artificial Intelligence for Android

running, on Android emulator 9-12
running, on real device 12
SQLite database, using 87

Android application manifest 26-29
Android permissions 29-31
required features, declaring 31, 32

Android application resources 20, 21
identifying, in application code 22, 23
localization 23, 24
other types of resources 25, 26
qualifiers 21, 22
string resources 24, 25

Android camera
image capture 201
intents 190
permissions, requesting 194-196
specialized camera APIs 190

Android emulator
application, running on 9-12

Android Neural Networks API
(NNAPI) 238

Android project structure 6-9
Android Studio

setting up 2, 3
simple Android application,

creating 4, 5
URL 2

Android Virtual Devices (AVD) 10
AnimeGANv2 project 327
anime-styled pictures, in Android

captured image, transforming 332-337
capturing 330-342
image capture application,

repurposing 330, 331

image capturing, into memory 331
modified image, saving in device

gallery 337, 338
artificial intelligence

depictions, in literature 114, 115
future 114
history 114-119
working with 119, 120

Artificial Neural Networks (ANN) 125
automatic image captioning

performing 346, 347
automatic image captioning, in Android

beam search, implementing 356
beam search, running 360, 361
image capture application,

repurposing 353
implementing 353
metadata, saving in JPEG

image files 361-364
supporting data structures,

implementing 358, 359
TensorFLow Lite model,

incorporating 353-356
vocabulary file, processing 357

B
black box models 129

C
Camera2 API 191
Camera API 190

considerations, while using 191
camera preview

setting up 196-200
CameraX API 192

using 192-194

Index 369

CameraX use cases
configuring 248
image analysis class, creating 248-252

central processing units (CPUs) 128
clustering 124, 125
code view 40
component identifier 45
ConstraintLayout 41
convolution 183
Convolutional Neural Network

(CNN) 126, 183, 264, 347

D
deep neural networks 126, 127

using, for regression 164-168
delete() function 91
design surface selector 40
design view 40
device

application, running on 12-16
Chrome OS, configuring 13
configuring 12, 13
connecting, to computer 14
macOS, configuring 13
Ubuntu Linux, configuring 13
Windows, configuring 13, 14

dtype parameter 143
dynamic range quantization 212, 270

E
encoder-decoder network 327
Euclidean distance

using, for face identification 274, 275
Euclidean norm

using, for normalization 266, 267

Explainable Artificial Intelligence
(XAI) 129

F
face detection algorithm 262
face detector object

creating 252
FaceNet model 267-269
face recognition algorithms 263
face recognition demonstration

application
face detection results, listing 306, 307
faces, recognizing 305, 306
implementing 308- 312
new faces, adding 298-305
running 312, 313
user interface, designing 298

Fashion-MNIST dataset
loading 179, 180
model, building 180-182
model, finding 182-185
preparing 179, 180

float-16 quantization 212
full integer quantization 212
fundamentals, Kotlin language

classes and objects 84-87
code organization 73
data types 73, 74
functions 77-79
Lambda expressions 79-81
nullability 82-84
packages 72
type inference 76, 77
variables and properties 74-76
visibility 73

370 Hands-On Artificial Intelligence for Android

G
gather() function 150
Generative Adversarial Network

(GAN) 316-318
converting, to TensorFLow Lite

format 327, 328
example 316
simple GAN, training 318-326
trying, in computer 328-330

Google driver package
reference link 13

Google ML Kit 242, 243
face detection 243, 244
including, in Android application 244
user interface, preparing 246-248

Google ML Kit face detector
classifications 254
contour detection 253
face tracking 254, 255
landmark detection 253
minimum face size 254
performance mode 253

Google ML Kit, in Android application
metadata, adding for Google Play

Services 246
project's dependencies, configuring

245
view binding, enabling 244

graphs, TensorFlow 152-154
best practices 154

H
handwritten digits

recognizing 170

Hiroki Taniai’s implementation, of
FaceNet

converting, to TensorFlow Lite 269-
273

I
identity store

building 288-291
view model, implementing 291-294

image analysis
captured images, cropping 217, 218
captured YUV images, converting

 to bitmaps 219-222
setting up, in Android application

214-217
image analysis class

creating 248-250
image capture

CameraX, configuring 201, 202
captured image, displaying 205, 206
saving, as JPEG file 202, 203
trigger button, adding 203-205

image scan, for faces in real-time
face detection results, using 256-260
face detector object, creating 252
image, analyzing 255, 256
minimum image resolution,

configuring 252
performing 252

image transformation
into anime-style pictures 326, 327
special effect, applying to photographs

326
improvement opportunities, machine

learning
bias, avoiding 129, 130

Index 371

explainability, working towards 129
performance and accuracy,

improving 127, 128
system security 130, 131

intents, Android application 53
activity, showing with 54, 55
another application, starting with

implicit intent 65-68
creating 54
explicit intent 53
implicit intent 53
intent filters 64
using 63
value, returning from target

activity 56-63
Internet of Things (IoT) 16

K
Kotlin language 70-72

fundamentals 72

L
language selector 40
layout constraints

visualizing 41
layout design section

code view 40
design surface selector 40
design view 40
language selector 40
orientation selector 40
preview API version selector 40
preview device selector 40
split view 40
theme selector 40
view options 40

layout editor
sections 39
using 39

linear regression algorithm 123, 124
linspace() function 144
locale 24
Long Short-Term Memory

(LSTM) networks 346
evolving into 345

M
machine learning

clustering methods 124, 125
defining 120-122
improvement opportunities 127
linear regression algorithm 123, 124
neural networks 125

machine learning algorithms
reinforcement learning 122
supervised learning 122
unsupervised learning 122

machine learning models
evaluating, with realistic image 186-

188
Matplotlib 155

URL 155
MNIST dataset

loading 171, 172
model, building 173-175
model, saving 176
preparing 170, 171
saved model, testing with image

loaded from disk 176-178

372 Hands-On Artificial Intelligence for Android

MobileFaceNets model
incorporating, in Android

application 275
working with 273, 274

MobileFaceNets model, in
Android application

distance between face embeddings,
displaying 283, 284

embeddings, extracting from face
images 277-279

face embeddings, obtaining for
testing 284-286

new image analyzer, writing for face
verification 279-283

user interface, adjusting 275, 276
Model-View-Controller (MVC) pattern

applying 32
dependencies 33
disadvantages 33

Model-View-Presenter (MVP) pattern
33

dependencies 34
disadvantages 34

Model-View-ViewModel (MVVM)
pattern 34, 35

disadvantages 35
Modified National Institute of Standards

and Technology (MNIST) 170
multiple faces

processing, from camera images 294-
298

N
Nash equilibrium 317
neural networks 125

Artificial Neural Networks (ANN) 125

Convolutional Neural Networks
(CNN) 126

deep neural networks 126, 127
Recurrent Neural Networks (RNN)

126
Simulated Neural Networks (SNN)

125
normalization 264

Euclidean norm, using for 266, 267
ratio scale, normalizing 264-266

Numpy 155
URL 155

O
Object-Relational Mapping (ORM) 93,

94
advantages 94

onCreate() function 89
onUpgrade() function 89
operations, with tensors 145

linear algebra operations 147
mathematical operations 146

Optical Character Recognition (OCR)
system 170

orientation selector 40

P
Pandas 155

URL 155
permissions

requesting, to use camera 194-196
preview API version selector 40
preview device selector 40
Python

alternative Mac OS installation 135,
136

Index 373

download link 135
installing, on Mac OS 135
installing, on Ubuntu Linux 136, 137
installing, on Windows 135
preparing 135

Python interpreter shell 140

Q
query() function 91

R
range() function 144
receive events

reacting to 47, 48
registering to 46, 47

Recurrent Neural Networks
(RNN) 126, 344, 345

reinforcement learning 122
resource identifier (ID) 22
Room-based databases

creating 101, 102
Data Access Objects (DAO),

creating 97-100
database migrations, using 106, 107
database views, using 103, 104
data entities, defining 96, 97
object references, converting to

database types 104-106
object references, not supported 104
queries, running outside of main

thread 108, 109
testing 109-112
working with 94-96

Room library 94

S
Seaborn 155

URL 155
Show and Tell model 347, 348

converting, to TensorFlow Lite 349,
350

frozen model, converting to
TensorFlow Lite 352

TensorFlow Lite models, testing 352,
353

visualising, with tensorboard 350-352
simple clothing items

recognizing 179
simple model training, TensorFlow 154,

155
dataset, loading 156-158
dataset, preparing 156-158
deep neural network, using for

regression 164-168
linear regression model, training with

all feature 163, 164
linear regression model, training with

one feature 158-162
Simulated Neural Networks (SNN) 125
split view 40
SQLite 87

consequences 93
implementing, in Android 87-92

SQLite-based databases
testing 92, 93

SQLite database
using, in Android application 87

SQLiteOpenHelper 88
supervised learning 122
synapses 125

374 Hands-On Artificial Intelligence for Android

T
TensorFlow 134

download link 138
eager execution 152
graphs 152-154
installing 134
simple model training 154, 155
variables 151, 152

TensorFlow 1.15
installing 138, 139

TensorFlow 2
installing 138
requirements 134

TensorFlow documentation
reference link 145

TensorFlow installation 134
in virtual environments 138
Python, preparing 135
version, verifying 139
virtual environments, creating 137

TensorFlow Lite 210
Android Neural Networks API

(NNAPI) 238
automatic code generation, for adding

model with metadata 235, 236
converted model, working with 224-

231
existing model, training 212, 213
fundamentals 210
Graphical Processing Units 236, 237
modules, creating for APIs 222-224
running, on dedicated hardware 236
TensorFlow models, converting

into 211, 212

trained existing model, working
with 231-235

URL 210
using, in application 222

tensor reshaping 149
tensor reversing 149
tensors 140-142

creating, with constant() function 142,
143

creating, with generated data 143-145
operations 145
transformation functions 148, 149

tensor slicing 148
theme selector 40

U
unsupervised learning 122
update() function 90
user events 38

V
variables, TensorFlow 151, 152
view options 40
virtual Python environment

creating, for TensorFlow 137
on Mac OS 138
on Ubuntu Linux 138
on Windows 138

	1
	2

