

Exploring GPT-3

An unofficial first look at the general-purpose
language processing API from OpenAI

Steve Tingiris

BIRMINGHAM—MUMBAI

Exploring GPT-3
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Kunal Parikh

Publishing Product Manager: Sunith Shetty

Senior Editor: David Sugarman

Content Development Editor: Nathanya Dias

Technical Editor: Devanshi Ayare

Copy Editor: Safis Editing

Project Coordinator: Aparna Ravikumar Nair

Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Alishon Mendonca

First published: July 2021

Production reference: 1100621

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80056-319-3

www.packt.com

http://www.packt.com

To my wife, Brigid, for putting up with my constant dabbling for all these years. To my son,
Alex, for motivating me to push a little harder. There is no way I would have finished this

book without you guys. Thank you!

 – Steve

Foreword
What's all the fuss about? Maybe it's the demos. But that would be missing the
point. GPT-3 burst into public consciousness in July 2020 not too long after OpenAI first
introduced the technical breakthrough in a soberly presented blog post. Introduced in
the middle of a global pandemic, rising social unrest, and a US presidential campaign, the
message could have been lost entirely. The demos started trickling out in earnest a month
later. They ensured that GPT-3 wouldn't be overlooked.

Technology Review claimed the GPT-3 was shockingly good. Many long-time AI researchers
expressed both enthusiasm and surprise at its capabilities. But it was the demos that
really captured everyone's attention. With a few lines of sample content and a request, the
technology was generating poetry, website programming code, analogies, and answers to
math questions, to name just a few examples. No one had ever seen a computer create and
respond creatively to such a wide range of queries.

GPT-3 seemed to possess magical abilities. In many ways, GPT-3 is very simple. It
predicts what words are the most likely to follow in a sequence. However, it is also the
finest current example of the potential of Generative Adversarial Networks (GANs).
And, it has shown that transformers can be applied to language models at an extremely
large scale. GPT-3 provides an intriguing new technical capability while simultaneously
resetting expectations about what is possible. As just one example, maybe chatbots don't
have to choose between a set number of deterministic responses.

Natural Language Processing (NLP) has improved quickly in recent years. That has
led to the more accurate recognition and understanding of speech. At the same time,
synthetic speech engines have improved immensely and sound more humanlike each year.
What has changed very little is how the systems respond to requests. They are all picking
from a predetermined set of responses. GPT-3 offers a capability that enables developers
to rethink that approach. But that requires developers to understand the new technology
and how to use it.

Steve Tingiris is the first to take that task on with this book. With clear and precise
presentation, Tingiris expertly walks new users through the journey from idea through
production of a GPT-3 application. He lays out the principles and steps so developers can
turn their ideas into (a new) reality. I look forward to seeing what you build.

Bret Kinsella

Founder and CEO of Voicebot.ai

Contributors

About the author
Steve Tingiris is the founder and managing director of Dabble Lab, a technology research
and services company that helps businesses accelerate learning and adoption of natural
language processing, conversational AI, and other emerging technologies. He has been
designing and building automation solutions for over 20 years and has consulted on
conversational AI projects for companies including Amazon, Google, and Twilio. He also
publishes technical tutorials on Dabble Lab's YouTube channel— one of the most popular
educational resources for conversational AI developers—and manages several open-
source projects, including the Autopilot CLI, Twilio's recommended tool for building
Autopilot bots. To connect with Steve, you can find him on GitHub @tingiris, via
email to steve@dabblelab.com, or on Twitter @tingiris.

Acknowledgments
This book is the result of contributions from friends, colleagues, and many members of
the OpenAI community. There are far too many people to mention everyone by name
but for those who contributed directly or reviewed early drafts, I want to extend a special
thank you.

First, thank you to the entire Packt team. If Sunith had not reached out with the idea
of creating a book on GPT-3, this project would never have started. If David, Gebin,
Nathanya, Aishwarya, Roshan, and Devanshi weren't involved – the book might never
have gotten finished. Thanks to each of you and everyone else on the Packt team who
made this possible.

Thanks to Russell, Bakz, Ryan, and Bram for agreeing to be technical reviewers. You guys
were so helpful to me in the OpenAI Slack channel when I first got started with GPT-3, I
feel so fortunate to have had the opportunity to collaborate together on this book. Again,
thank you!

Next, thank you to my work family at Dabble Lab. Kirk Owen for providing early feedback
that helped refine the direction, and Mohamad Khalid, Manuel Fernandez, Mark
Hovsepyan, Sohini Pattanayak, Shubham Prakash, and Daniela Ramirez, for picking up
the slack while I spent much more time than I'd anticipated working on the book.

Finally, I'd like to thank the OpenAI team and the OpenAI community for all of the
support and feedback throughout the project, including: Ashley Pilipiszyn, Mark
Clintsman, Minal Chhatbar, Rene Diaz, Dan Shaw, Chris Fong, Dariusz Gross, Cristi
Vlad, Jonathon Sauceda, Marc-Andre Schenk, Steven Kuo, Narendran Thillaisthanam,
Matthew Benites, Manav Goel, Shubham Amraotkar, Mystici Mentis, Fred Zimmerman,
Dmitry Kearo, CL Kim, Sudip Lingthep, Joakim Flink, Shubham Saboo, Pedro Ribeiro,
Richard Klein, Steve Hoyt, Nicolas Garrel, Sebastian Derewicki, Vikram Pandya, Geoff
Davis, Nelson Pereira, Heng Gu, Joey Bertschler, Surendra Reddy, James Morgan, Jon
Oakes, Jeetendra K Sharma, Jim Taylor, Rebecca Johnson, Travis Barton, Herber Scrap,
Pablo del Ser, Devin Bean, Nik K, Jason Boog, Mohak Agarwal, Sebastian Elliott, and
Bjarne Carstensen.

About the reviewers
Russell Foltz-Smith has 20+ years of experience in tech as a developer, business
development leader, executive, and researcher. He maintains a focus on search engines,
scientific computing, and media platforms. Russ advises tech start-ups, mentors
entrepreneurs, and is CTO of Maslo.ai, an empathetic computing platform. Russ is a visual
artist and educator. He co-founded a k-12 school with his wife in 2012 in Venice, CA,
where they live with their daughters and endless stacks of books.

Bakz Awan is an IT consultant and YouTube host of the channel Bakz T. Future. on
YouTube. Bakz shares new concepts and ideas possible through GPT-3, while also
providing tips and advice to beginners.

Preface

Section 1: Understanding GPT-3 and
the OpenAI API

1
Introducing GPT-3 and the OpenAI API

Technical requirements 4
Introduction to GPT-3 4
Simplifying NLP 4
What exactly is GPT-3? 5

Democratizing NLP 6
Understanding prompts,
completions, and tokens 6
Prompts 6
Completions 12
Tokens 12

Introducing Davinci, Babbage,
Curie, and Ada 15

Davinci 16
Curie 16
Babbage 16
Ada 16
Content filtering model 16
Instruct models 16
A snapshot in time 17

Understanding GPT-3 risks 17
Inappropriate or offensive results 17
Potential for malicious use 17

Summary 18

2
GPT-3 Applications and Use Cases

Technical requirements 20
Understanding general GPT-3
use cases 20
Introducing the Playground 20

Getting started with the Playground 20

Handling text generation and
classification tasks 22

Table of Contents

ii Table of Contents

Text generation 22
Text classification 32

Understanding semantic search 37

The Semantic Search tool 38

Summary 40

Section 2: Getting Started with GPT-3

3
Working with the OpenAI Playground

Technical requirements 43
Exploring the OpenAI developer
console 44
Developer documentation 44
Developer resources 46
Accounts and organizations 46
Pricing and billing 48
Usage reporting 49
Member management 50

Diving deeper into the
Playground 50
Choosing the right engine 51

Response length 53
Temperature and Top P 54
Frequency and presence penalty 59
Best of 60
Stop sequence 61
Inject Start Text and Inject Restart Text 61
Show Probabilities 63

Working with presets 64
Grammatical Standard English 65
Text to command 67
Parse unstructured data 68

Summary 68

4
Working with the OpenAI API

Technical requirements 70
Understanding APIs 70
Getting familiar with HTTP 71
Uniform resource identifiers 72
HTTP methods 72
The HTTP body 72
HTTP headers 73
HTTP response status codes 73

Reviewing the OpenAI API
endpoints 73
List Engines 74
Retrieve Engine 74
Create Completions 75
Semantic Search 75

Introducing CURL and Postman 75

Table of Contents iii

Understanding API
authentication 80
Keeping API keys private 82

Making an authenticated
request to the OpenAI API 83
Working with multiple organizations 86

Introducing JSON 89
Using the Completions endpoint 90
Using the Semantic Search
endpoint 94
Summary 98

5
Calling the OpenAI API in Code

Technical requirements 100
Choosing your programming
language 100
Introducing replit 100
Creating a repl 102
Setting your OpenAI API key as an
environment variable 104
Understanding and creating the .replit
file 106

Using the OpenAI API with
Node.js/JavaScript 107

Calling the engines endpoint 107
Calling the Completions endpoint 110
Calling the search endpoint 113

Using the OpenAI API in Python 115
Calling the completions endpoint 118
Calling the search endpoint 120

Using other programming
languages 122
Summary 123

Section 3: Using the OpenAI API

6
Content Filtering

Technical requirements 127
Preventing inappropriate and
offensive results 128
Understanding content filtering 129
Testing the content filtering
process 133

Filtering content with JavaScript 136
Flagging unsafe words with Node.js/
JavaScript 140

Filtering content with Python 142
Flagging unsafe words with Python 146

Summary 148

iv Table of Contents

7
Generating and Transforming Text

Technical requirements 150
Using the examples 150
Generating content and lists 150
Dumb joke generator 150
Mars facts (in most cases) 154
Webinar description generator 157
Book suggestions 160
Children's book generator 163

Translating and transforming
text 166
Acronym translator 166
English to Spanish 169

JavaScript to Python 172
Fifth-grade summary 175
Grammar correction 180

Extracting text 183
Extracting keywords 183
HTML parsing 187
Extracting a postal address 190
Extracting an email address 194

Creating chatbots 197
A simple chatbot 197

Summary 200

8
Classifying and Categorizing Text

Technical requirements 202
Understanding text
classification 202
Using the completions endpoint for
text classification 202
Content filtering is a text classification
task 202

Introducing the classifications
endpoint 203

Uploading files 203

Implementing sentiment
analysis 204
Assigning an ESRB rating to text 208
Classifying text by language 212
Classifying text from keywords 217
Summary 221

9
Building a GPT-3-Powered Question-Answering App

Technical requirements 224
Introducing GPT Answers 224
GPT Answers technical overview 225
Hosting the app 225

Introducing the Answers
endpoint 225
Setting up and testing Express 227
Creating the API endpoint for

Table of Contents v

GPT Answers 229
Creating the API endpoint 230
Testing our API with Postman 232

Creating the GPT Answers user
interface 233
Integrating the Answers

endpoint 238
Generating relevant and factual
answers 242
Using files with the Answers
endpoint 243
Summary 249

10
Going Live with OpenAI-Powered Apps

Technical requirements 252
Going live 252
Understanding use case
guidelines 252
Addressing potential approval
issues 253
Content filtering 254
Input and output lengths 255
Request rate limiting 257

Completing the pre-launch
review request 258
High-level use case questions 259
Security and risk mitigation questions 260
Growth plan questions 261
Wrapping-up questions 263

Summary 264
Why subscribe? 265

Other Books You May Enjoy
Index

Preface
What if this book was written by artificial intelligence? Would you read it? I hope so
because parts of it were. Yes, GPT-3 was used to create parts of this book. It's a bit meta
I know, a book about GPT-3 written by GPT-3. But creating content is one of the many
great uses for GPT-3. So why not? Also, for me, content generation was the use case that
most piqued my interest. I wondered if GPT-3 could be used in a product I was working
on to automate the generation of technical learning material.

You probably also have a specific reason why you're interested in GPT-3. Perhaps it's
intellectual curiosity. Or maybe you have an idea that you think GPT-3 can enable. You've
likely seen online demos of GPT-3 generating content, writing code, penning poetry, or
something else, and you're wondering if GPT-3 could be used for an idea you have. If so,
this book was written specifically for you.

My goal for this book is to provide a practical resource to help you get started with GPT-3,
as quickly as possible, without any required technical background. That said, as I write
this, GPT-3 is still in private beta. So, everyone is learning as they go. But the one thing
I've learned for sure is that the possible applications for GPT-3 are vast and there is no
way to know all of what's possible, let alone get it into a book. So, I hope this book makes
getting started easy, but I also hope it's just the beginning of your journey Exploring GPT-3

Who this book is for
This book was written for anyone with an interest in NLP or learning GPT-3 – with or
without a technical background. Developers, product managers, entrepreneurs, and
hobbyists who want to learn about NLP, AI, and GPT-3 will find this book useful. Basic
computer skills are all you need to get the most out of the book. While experience with a
modern programming language is helpful, it's not required. The code examples provided
are beginner friendly and easy to follow, even if you're brand new to writing code.

viii Preface

What this book covers
Chapter 1, Introducing GPT-3 and the OpenAI API, is a high-level introduction to GPT-3
and the OpenAI API.

Chapter 2, GPT-3 Applications and Use Cases, is an overview of core GPT-3 use cases: text
generation, classification, and semantic search.

Chapter 3, Working with the OpenAI Playground, is a semi-deep dive into the OpenAI
Playground and the developer portal.

Chapter 4, Working with the OpenAI API, is an introduction to calling the OpenAI API
using Postman.

Chapter 5, Calling the OpenAI API in Code, is an introduction to using the OpenAI API
with both Node.js/JavaScript and Python.

Chapter 6, Content Filtering, explains how to implement content filtering.

Chapter 7, Generating and Transforming Text, contains code and prompt examples for
generating and transforming text.

Chapter 8, Classifying and Categorizing Text, takes a closer look at text classification and
the OpenAI API Classification endpoint.

Chapter 9, Building a GPT-3 Powered Question-Answering App, explains how to build a
functional GPT-3 powered web knowledge base.

Chapter 10, Going Live with OpenAI-Powered Apps, explains the OpenAI application
review and approval process and discusses getting ready for a review.

To get the most out of this book
All of the code examples in this book were written using a web-based Integrated
Development Environment (IDE) from replit.com. A free replit.com account is
sufficient to follow the examples. To use replit.com, all that is required is a modern web
browser and a replit.com account. The code has also been tested on macOS using Visual
Studio Code, although it should work with any code editor and properly configured
operating system. Code examples are provided in both Node.js/JavaScript and Python. For
Node.js, version 12.16.1 is used and for Python, version 3.8.2 is used.

http://replit.com

Preface ix

All of the code examples will require an OpenAI API Key and access to the OpenAI API.
You can request access to the OpenAI API by visiting https://openai.com/api.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800563193_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "However, suppose you don't want the completion to generate
the human side of the conversation and you want to use the label AI: rather than
Assistant:?"

A block of code is set as follows:

English: I do not speak Spanish
Spanish:

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Each subsequent time the Submit button is clicked."

Tips or important notes
Appear like this.

https://openai.com/api
https://static.packt-cdn.com/downloads/9781800563193_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800563193_ColorImages.pdf

x Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1:
Understanding

GPT-3 and the
OpenAI API

The objective of this section is to provide you with a high-level introduction to GPT-3 and
the OpenAI API and to show how easy it is to get started with. The goal is to engage you
with fun examples that are quick and simple to implement.

This section comprises the following chapters:

• Chapter 1, Introducing GPT-3 and the OpenAI API

• Chapter 2, GPT-3 Applications and Use Cases

1
Introducing GPT-3

and the OpenAI API
The buzz about Generative Pre-trained Transformer Version 3 (GPT-3) started with
a blog post from a leading Artificial Intelligence (AI) research lab, OpenAI, on June 11,
2020. The post began as follows:

We're releasing an API for accessing new AI models developed by OpenAI.
Unlike most AI systems which are designed for one use-case, the API today
provides a general-purpose "text in, text out" interface, allowing users to try

it on virtually any English language task.
Online demos from early beta testers soon followed—some seemed too good to be
true. GPT-3 was writing articles, penning poetry, answering questions, chatting with
lifelike responses, translating text from one language to another, summarizing complex
documents, and even writing code. The demos were incredibly impressive—things we
hadn't seen a general-purpose AI system do before—but equally impressive was that many
of the demos were created by people with a limited or no formal background in AI and
Machine Learning (ML). GPT-3 had raised the bar, not just in terms of the technology,
but also in terms of AI accessibility.

4 Introducing GPT-3 and the OpenAI API

GPT-3 is a general-purpose language processing AI model that practically anybody can
understand and start using in a matter of minutes. You don't need a Doctor of Philosophy
(PhD) in computer science—you don't even need to know how to write code. In fact,
everything you'll need to get started is right here in this book. We'll begin in this chapter
with the following topics:

• Introduction to GPT-3

• Democratizing NLP

• Understanding prompts, completions, and tokens

• Introducing Davinci, Babbage, Curie, and Ada

• Understanding GPT-3 risks

Technical requirements
This chapter requires you to have access to the OpenAI Application Programming
Interface (API). You can register for API access by visiting https://openapi.com.

Introduction to GPT-3
In short, GPT-3 is a language model: a statistical model that calculates the probability
distribution over a sequence of words. In other words, GPT-3 is a system for guessing
which text comes next when text is given as an input.

Now, before we delve further into what GPT-3 is, let's cover a brief introduction
(or refresher) on Natural Language Processing (NLP).

Simplifying NLP
NLP is a branch of AI that focuses on the use of natural human language for various
computing applications. NLP is a broad category that encompasses many different types
of language processing tasks, including sentiment analysis, speech recognition, machine
translation, text generation, and text summarization, to name but a few.

In NLP, language models are used to calculate the probability distribution over a sequence
of words. Language models are essential because of the extremely complex and nuanced
nature of human languages. For example, pay in full and painful or tee time and teatime
sound alike but have very different meanings. A phrase such as she's on fire could be literal
or figurative, and words such as big and large can be used interchangeably in some cases
but not in others—for example, using the word big to refer to an older sibling wouldn't
have the same meaning as using the word large. Thus, language models are used to deal
with this complexity, but that's easier said than done.

https://openapi.com

Introduction to GPT-3 5

While understanding things such as word meanings and their appropriate usage seems
trivial to humans, NLP tasks can be challenging for machines. This is especially true for
more complex language processing tasks such as recognizing irony or sarcasm—tasks that
even challenge humans at times.

Today, the best technical approach to a given NLP task depends on the task. So, most of
the best-performing, state-of-the-art (SOTA) NLP systems are specialized systems that
have been fine-tuned for a single purpose or a narrow range of tasks. Ideally, however,
a single system could successfully handle any NLP task. That's the goal of GPT-3: to
provide a general-purpose AI system for NLP. So, even though the best-performing
NLP systems today tend to be specialized, purpose-built systems, GPT-3 achieves SOTA
performance on a number of common NLP tasks, showing the potential for a future
general-purpose NLP system that could provide SOTA performance for any NLP task.

What exactly is GPT-3?
Although GPT-3 is a general-purpose NLP system, it really just does one thing: it predicts
what comes next based on the text that is provided as input. But it turns out that, with the
right architecture and enough data, this one thing can handle a stunning array of language
processing tasks.

GPT-3 is the third version of the GPT language model from OpenAI. So, although it
started to become popular in the summer of 2020, the first version of GPT was announced
2 years earlier, and the following version, GPT-2, was announced in February 2019. But
even though GPT-3 is the third version, the general system design and architecture hasn't
changed much from GPT-2. There is one big difference, however, and that's the size of the
dataset that was used for training.

GPT-3 was trained with a massive dataset comprised of text from the internet, books, and
other sources, containing roughly 57 billion words and 175 billion parameters. That's 10
times larger than GPT-2 and the next-largest language model. To put the model size into
perspective, the average human might read, write, speak, and hear upward of a billion
words in an entire lifetime. So, GPT-3 has been trained on an estimated 57 times the
number of words most humans will ever process.

The GPT-3 language model is massive, so it isn't something you'll be downloading and
dabbling with on your laptop. But even if you could (which you can't because it's not
available to download), it would cost millions of dollars in computing resources each
time you wanted to build the model. This would put GPT-3 out of reach for most small
companies and virtually all individuals if you had to rely on your own computer resource
to use it. Thankfully, you don't. OpenAI makes GPT-3 available through an API that is
both affordable and easy to use. So, anyone can use some of the most advanced AI ever
created!

6 Introducing GPT-3 and the OpenAI API

Democratizing NLP
Anyone can use GPT-3 with access to the OpenAI API. The API is a general-purpose text
in, text out interface that could be used for virtually any language task. To use the API,
you simply pass in text and get a text response back. The task might be to do sentiment
analysis, write an article, answer a question, or summarize a document. It doesn't matter,
as far as the API is concerned—it's all done the same way, which makes using the API easy
enough for just about anyone to use, even non-programmers.

The text you pass in is referred to as a prompt, and the returned text is called
a completion. A prompt is used by GPT-3 to determine how best to complete the task.
In the simplest case, a prompt can provide a few words to get started with. For example,
if the prompt was If today is Monday, tomorrow is, GPT-3 would likely respond with
Tuesday, along with some additional text such as If today is Tuesday, tomorrow is
Wednesday, and so on. This means that what you get out of GPT-3 depends on what
you send to it.

As you might guess, the quality of a completion depends heavily on the prompt. GPT-3
uses all of the text in a prompt to help generate the most relevant completion. Each and
every word, along with how the prompt is structured, helps improve the language model
prediction results. So, understanding how to write and test prompts is the key to unlocking
GPT-3's true potential.

Understanding prompts, completions, and
tokens
Literally any text can be used as a prompt—send some text in and get some text back.
However, as entertaining as it can be to see what GPT-3 does with random strings, the real
power comes from understanding how to write effective prompts.

Prompts
Prompts are how you get GPT-3 to do what you want. It's like programming, but with
plain English. So, you have to know what you're trying to accomplish, but rather than
writing code, you use words and plain text.

Understanding prompts, completions, and tokens 7

When you're writing prompts, the main thing to keep in mind is that GPT-3 is trying
to figure out which text should come next, so including things such as instructions and
examples provides context that helps the model figure out the best possible completion.
Also, quality matters— for example, spelling, unclear text, and the number of examples
provided will have an effect on the quality of the completion.

Another key consideration is the prompt size. While a prompt can be any text, the prompt
and the resulting completion must add up to fewer than 2,048 tokens. We'll discuss tokens
a bit later in this chapter, but that's roughly 1,500 words.

So, a prompt can be any text, and there aren't hard and fast rules that must be followed
like there are when you're writing code. However, there are some guidelines for
structuring your prompt text that can be helpful in getting the best results.

Different kinds of prompts
We'll dive deep into prompt writing throughout this book, but let's start with the different
prompt types. These are outlined as follows:

• Zero-shot prompts

• One-shot prompts

• Few-shot prompts

Zero-shot prompts
A zero-shot prompt is the simplest type of prompt. It only provides a description of
a task, or some text for GPT-3 to get started with. Again, it could literally be anything:
a question, the start of a story, instructions—anything, but the clearer your prompt text is,
the easier it will be for GPT-3 to understand what should come next. Here is an example
of a zero-shot prompt for generating an email message. The completion will pick up where
the prompt ends—in this case, after Subject::

Write an email to my friend Jay from me Steve thanking him for
covering my shift this past Friday. Tell him to let me know if
I can ever return the favor.

Subject:

8 Introducing GPT-3 and the OpenAI API

The following screenshot is taken from a web-based testing tool called the Playground.
We'll discuss the Playground more in Chapter 2, GPT-3 Applications and Use Cases, and
Chapter 3, Working with the OpenAI Playground, but for now we'll just use it to show the
completion generated by GPT-3 as a result of the preceding prompt. Note that the original
prompt text is bold, and the completion shows as regular text:

Figure 1.1 – Zero-shot prompt example

So, a zero-shot prompt is just a few words or a short description of a task without any
examples. Sometimes this is all GPT-3 needs to complete the task. Other times, you may
need to include one or more examples. A prompt that provides a single example is referred
to as a one-shot prompt.

One-shot prompts
A one-shot prompt provides one example that GPT-3 can use to learn how to best
complete a task. Here is an example of a one-shot prompt that provides a task description
(the first line) and a single example (the second line):

A list of actors in the movie Star Wars

1. Mark Hamill: Luke Skywalker

From just the description and the one example, GPT-3 learns what the task is and that
it should be completed. In this example, the task is to create a list of actors from the movie
Star Wars. The following screenshot shows the completion generated from this prompt:

Understanding prompts, completions, and tokens 9

Figure 1.2 – One-shot prompt example

The one-shot prompt works great for lists and commonly understood patterns. But
sometimes you'll need more than one example. When that's the case you'll use a few-shot
prompt.

Few-shot prompts
A few-shot prompt provides multiple examples—typically, 10 to 100. Multiple examples
can be useful for showing a pattern that GPT-3 should continue. Few-shot prompts and
more examples will likely increase the quality of the completion because the prompt
provides more for GPT-3 to learn from.

Here is an example of a few-shot prompt to generate a simulated conversation. Notice
that the examples provide a back-and-forth dialog, with things that might be said in
a conversation:

This is a conversation between Steve, the author of the book
Exploring GPT-3 and someone who is reading the book.

Reader: Why did you decide to write the book?

Steve: Because I'm super fascinated by GPT-3 and emerging
technology in general.

Reader: What will I learn from this book?

Steve: The book provides an introduction to GPT-3 from OpenAI.
You'll learn what GPT-3 is and how to get started using it.

Reader: Do I need to be a coder to follow along?

10 Introducing GPT-3 and the OpenAI API

Steve: No. Even if you've never written a line of code before,
you'll be able to follow along just fine.

Reader:

In the following screenshot, you can see that GPT-3 continues the simulated conversation
that was started in the examples provided in the prompt:

Figure 1.3 – Few-shot prompt example

Now that you understand the different prompt types, let's take a look at some prompt
examples.

Prompt examples
The OpenAI API can handle a variety of tasks. The possibilities range from generating
original stories to performing complex text analysis, and everything in between. To
get familiar with the kinds of tasks GPT-3 can perform, OpenAI provides a number of
prompt examples. You can find example prompts in the Playground and in the OpenAI
documentation.

In the Playground, the examples are referred to as presets. Again, we'll cover the
Playground in detail in Chapter 3, Working with the OpenAI Playground, but the following
screenshot shows some of the presets that are available:

Understanding prompts, completions, and tokens 11

Figure 1.4 – Presets

Example prompts are also available in the OpenAI documentation. The OpenAI
documentation is excellent and includes a number of great prompt examples, with links
to open and test them in the Playground. The following screenshot shows an example
prompt from the OpenAI documentation. Notice the Open this example in Playground
link below the prompt example. You can use that link to open the prompt in the
Playground:

Figure 1.5 – OpenAI documentation provides prompt examples

12 Introducing GPT-3 and the OpenAI API

Now that you have an understanding of prompts, let's talk about how GPT-3 uses them to
generate a completion.

Completions
Again, a completion refers to the text that is generated and returned as a result of the
provided prompt/input. You'll also recall that GPT-3 was not specifically trained to
perform any one type of NLP task—it's a general-purpose language processing system.
However, GPT-3 can be shown how to complete a given task using a prompt. This is called
meta-learning.

Meta-learning
With most NLP systems, the data used to teach the system how to complete a task is
provided when the underlying ML model is trained. So, to improve results for a given task,
the underlying training must be updated, and a new version of the model must be built.
GPT-3 works differently, as it isn't trained for any specific task. Rather, it was designed
to recognize patterns in the prompt text and to continue the pattern(s) by using the
underlying general-purpose model. This approach is referred to as meta-learning because
the prompt is used to teach GPT-3 how to generate the best possible completion, without
the need for retraining. So, in effect, the different prompt types (zero-shot, one-shot, and
few-shot) can be used to program GPT-3 for different types of tasks, and you can provide
a lot of instructions in the prompt—up to 2,048 tokens. Alright—now is a good time to
talk about tokens.

Tokens
When a prompt is sent to GPT-3, it's broken down into tokens. Tokens are numeric
representations of words or—more often—parts of words. Numbers are used for tokens
rather than words or sentences because they can be processed more efficiently. This
enables GPT-3 to work with relatively large amounts of text. That said, as you've learned,
there is still a limit of 2,048 tokens (approximately ~1,500 words) for the combined
prompt and the resulting generated completion.

Understanding prompts, completions, and tokens 13

You can stay under the token limit by estimating the number of tokens that will be used
in your prompt and resulting completion. On average, for English words, every four
characters represent one token. So, just add the number of characters in your prompt to
the response length and divide the sum by four. This will give you a general idea of the
tokens required. This is helpful if you're trying to get an idea of how many tokens are
required for a number of tasks.

Another way to get the token count is with the token count indicator in the Playground.
This is located just under the large text input, on the bottom right. The magnified area
in the following screenshot shows the token count. If you hover your mouse over the
number, you'll also see the total count with the completion. For our example, the prompt
Do or do not. There is no try.—the wise words from Master Yoda—uses 10 tokens and 74
tokens with the completion:

Figure 1.6 – Token count

14 Introducing GPT-3 and the OpenAI API

While understanding tokens is important for staying under the 2,048 token limit, they are
also important to understand because tokens are what OpenAI uses as the basis for usage
fees. Overall token usage reporting is available for your account at https://beta.
openai.com/account/usage. The following screenshot shows an example usage
report. We'll discuss this more in Chapter 3, Working with the OpenAI Playground:

Figure 1.7 – Usage statistics

In addition to token usage, the other thing that affects the costs associated with using
GPT-3 is the engine you choose to process your prompts. The engine refers to the
language model that will be used. The main difference between the engines is the size
of the associated model. Larger models can complete more complex tasks, but smaller
models are more efficient. So, depending on the task complexity, you can significantly
reduce costs by using a smaller model. The following screenshot shows the model pricing
at the time of publishing. As you can see, the cost differences can be significant:

https://beta.openai.com/account/usage
https://beta.openai.com/account/usage

Introducing Davinci, Babbage, Curie, and Ada 15

Figure 1.8 – Model pricing

So, the engines or models each has a different cost but the one you'll need depends on the
task you're performing. Let's look at the different engine options next.

Introducing Davinci, Babbage, Curie, and Ada
The massive dataset that is used for training GPT-3 is the primary reason why it's so
powerful. However, bigger is only better when it's necessary—and more power comes at
a cost. For those reasons, OpenAI provides multiple models to choose from. Today there
are four primary models available, along with a model for content filtering and instruct
models.

The available models or engines (as they're also referred to) are named Davinci,
Babbage, Curie, and Ada. Of the four, Davinci is the largest and most capable.
Davinci can perform any tasks that any other engine can perform. Babbage is the next
most capable engine, which can do anything that Curie or Ada can do. Ada is the least
capable engine, but the best-performing and lowest-cost engine.

When you're getting started and for initially testing new prompts, you'll usually want
to begin with Davinci , then try, Ada, Babbage, or Curie to see if one of them can
complete the task faster or more cost-effectively. The following is an overview of each
engine and the types of tasks that might be best suited for each. However, keep in mind
that you'll want to test. Even though the smaller engines might not be trained with as
much data, they are all still general-purpose models.

16 Introducing GPT-3 and the OpenAI API

Davinci
Davinci is the most capable model and can do anything that any other model can do,
and much more—often with fewer instructions. Davinci is able to solve logic problems,
determine cause and effect, understand the intent of text, produce creative content,
explain character motives, and handle complex summarization tasks.

Curie
Curie tries to balance power and speed. It can do anything that Ada or Babbage can do
but it's also capable of handling more complex classification tasks and more nuanced tasks
like summarization, sentiment analysis, chatbot applications, and Question and Answers.

Babbage
Babbage is a bit more capable than Ada but not quite as performant. It can perform all
the same tasks as Ada, but it can also handle a bit more involved classification tasks, and
it's well suited for semantic search tasks that rank how well documents match a search
query.

Ada
Ada is usually the fastest model and least costly. It's best for less nuanced tasks—for
example, parsing text, reformatting text, and simpler classification tasks. The more context
you provide Ada, the better it will likely perform.

Content filtering model
To help prevent inappropriate completions, OpenAI provides a content filtering model
that is fine-tuned to recognize potentially offensive or hurtful language.

Instruct models
These are models that are built on top of the Davinci and Curie models. Instruct
models are tuned to make it easier to tell the API what you want it to do. Clear
instructions can often produce better results than the associated core model.

Understanding GPT-3 risks 17

A snapshot in time
A final note to keep in mind about all of the engines is that they are all a snapshot in time,
meaning the data used to train them cuts off on the date the model was built. So, GPT-3
is not working with up-to-the-minute or even up-to-the-day data—it's likely weeks or
months old. OpenAI is planning to add more continuous training in the future, but today
this is a consideration to keep in mind.

All of the GPT-3 models are extremely powerful and capable of generating text that is
indistinguishable from human-written text. This holds tremendous potential for all kinds
of potential applications. In most cases, that's a good thing. However, not all potential use
cases are good.

Understanding GPT-3 risks
GPT-3 is a fantastic technology, with numerous practical and valuable potential
applications. But as is often the case with powerful technologies, with its potential comes
risk. In GPT-3's case, some of those risks include inappropriate results and potentially
malicious use cases.

Inappropriate or offensive results
GPT-3 generates text so well that it can seem as though it is aware of what it is saying.
It's not. It's an AI system with an excellent language model—it is not conscious in any
way, so it will never willfully say something hurtful or inappropriate because it has no will.
That said, it can certainly generate inappropriate, hateful, or malicious results—it's just not
intentional.

Nevertheless, understanding that GPT-3 can and will likely generate offensive text at
times needs to be understood and considered when using GPT or making GPT-3 results
available to others. This is especially true for results that might be seen by children.
We'll discuss this more and look at how to deal with it in Chapter 6, Content Filtering.

Potential for malicious use
It's not hard to imagine potentially malicious or harmful uses for GPT-3. OpenAI
even describes how GPT-3 could be weaponized for misinformation campaigns or for
creating fake product reviews. But OpenAI's declared mission is to ensure that artificial
general intelligence benefits all of humanity. Hence, pursuing that mission includes taking
responsible steps to prevent their AI from being used for the wrong purposes. So, OpenAI
has implemented an application approval process for all applications that will use GPT-3
or the OpenAI API.

18 Introducing GPT-3 and the OpenAI API

But as application developers, this is something we also need to consider. When we build
an application that uses GPT-3, we need to consider if and how the application could be
used for the wrong purposes and take the necessary steps to prevent it. We'll talk more
about this in Chapter 10, Going Live with OpenAI-Powered Apps.

Summary
In this chapter, you learned that GPT-3 is a general-purpose language model for
processing virtually any language processing task. You learned how GPT-3 works at
a high level, along with key terms and concepts. We introduced the available models and
discussed how all GPT-3 applications must go through an approval process to prevent
potentially inappropriate or harmful results.

In the next chapter, we'll discuss different ways to use GPT-3 and look at specific GPT-3
use case examples.

2
GPT-3 Applications

and Use Cases
GPT-3 was designed to be a general-purpose language processing model, meaning
it wasn't explicitly trained for any one type of language processing task. So, possible use
cases include virtually any natural language processing task you can imagine and others
that probably haven't been imagined yet. New use cases for GPT-3 are constantly being
discovered and that is a big part of the allure for many users. Sure, it does better with some
tasks than others, but still, there are hundreds of possible uses. In this chapter, we'll break
down some general use cases, and see how you can get started testing prompts of your own.

Our topics for this chapter are as follows:

• Understanding general GPT-3 use cases

• Introducing the Playground

• Handling text generation and classification tasks

• Understanding semantic search

20 GPT-3 Applications and Use Cases

Technical requirements
This chapter requires you to have access to the OpenAI API. You can register for API
access by visiting https://openapi.com.

Understanding general GPT-3 use cases
In the last chapter, you learned that the OpenAI API is a text in, text out interface. So,
it always returns a text response (called a completion) to a text input (called a prompt).
The completion might be generating new text, classifying text, or providing results for
a semantic search. The general-purpose nature of GPT-3 means it could be used for
almost any language processing task. To keep us focused, we're going to look at the
following general use cases: text generation, classification, and semantic search:

• Text generation: Text generation tasks are tasks for creating new, original text
content. Examples include article writing and chatbots.

• Classification: Classification tasks tag or classify text. Examples of classification
tasks include things such as sentiment analysis and content filtering.

• Semantic search: Semantic search tasks match a query with documents that are
semantically related. For example, the query might be a question that gets matched
to one or more documents that provide answers.

To illustrate different use cases, we'll be using the OpenAI Playground. So, before we dive
into different example use cases, let's get acquainted with the Playground.

Introducing the Playground
To get started with GPT-3, OpenAI provides the Playground. The Playground is
a web-based tool that makes it easy to test prompts and get familiar with how the API
works. Just about everything you could do by calling the API (which we'll discuss in more
detail later), you can also do in the Playground. Best of all, with the Playground, you can
start using GPT-3 without writing a single line of code – you just provide a text input (the
prompt) in plain English.

Getting started with the Playground
To access the Playground, you log in at https://openai.com. After you've
authenticated, you'll be able to navigate to the Playground from the main menu.

https://openapi.com
https://openai.com

Introducing the Playground 21

The Playground is super simple to use. Mostly, it's made up of a large text input. You can
start testing GPT-3 by simply entering text into the large text input box and then clicking
the Submit button.

After clicking the Submit button, you'll see additional text added just after the text you
originally entered – this is the completion text generated by GPT-3.

Each subsequent time the Submit button is clicked, GPT-3 will append an additional
completion to the text input box. The additional completion uses your original text, along
with the previous completion, as the prompt for the next completion.

The following screenshot shows the Playground with the initial prompt text: If today is
Monday, tomorrow is. You'll notice that the original prompt text is displayed in bold, and
the completion is displayed as normal text. In this example, the Submit button was clicked
multiple times to illustrate how each completion is building on the last:

Figure 2.1 – Playground window

In addition to the large text input for the prompt and completion text, the Playground
also lets you specify various API settings that provide some control over how GPT-3 will
process the prompt. We'll discuss the settings in more detail later, but if you look at the
screenshot in Figure 2.1, you'll see a Response Length setting. This is the length of the
response that will be returned. So, each time you click the Submit button, a new response
of that length will be added to the textbox.

Again, we'll get into all of the settings in more detail later. For now, here is a quick
introduction to what each setting does:

• Engine: The language model that will be used

• Response Length: How much text will be included in the completion

22 GPT-3 Applications and Use Cases

• Temperature: Controls the randomness of the result

• Top P: An alternative to Temperature for controlling randomness

• Frequency Penalty: Decreases the model's likelihood of repeating the same
line verbatim

• Presence Penalty: Increases the model's likelihood of talking about new topics

• Best Of: Setting to only return the best of n completions

• Stop Sequence: A sequence of characters to end a completion

• Inject Start Text: Text that will be included before the prompt

• Inject Restart Text: Text that will be included after the completion

• Show Probabilities: Shows the weight for each word/token in the completion

Getting familiar with the Playground is all you need to get started with GPT-3. From
there, you can start experimenting with how you can use prompts to program GPT-3
to handle different types of language processing tasks, such as text generation and
classification tasks.

Now that we've seen how to start using the Playground, let's learn a bit more about text
generation and classification tasks.

Handling text generation and classification
tasks
Text generation and text classification are two common categories of natural language
processing tasks. Each of these categories covers a number of possible use cases that
GPT-3 can handle quite well. Let's look at some of them, starting with text generation
use cases.

Text generation
Of all the things GPT-3 can do, text generation is its superpower. There are a lot of
potential use cases for generating text, so we'll break text generation down further into
three sub-topics: generating text, summarizing text, and transforming text.

Handling text generation and classification tasks 23

Generating text
GPT-3 can generate original text content that is usually indistinguishable from human-
written text. This could be used for a variety of applications, from creating web content
to brainstorming, conversational applications, poetry, songwriting, writing code, and
creating data lists. Let's take a look at some examples.

Content creation
Content creation is one of the coolest things GPT-3 can do. With the right prompt, GPT-3
can create articles, blog posts, or content for social media. The following screenshot shows
the results of a prompt that directs GPT-3 to create a list of tips for first-time home buyers.
However, this general approach could be used to create content for just about any topic:

Figure 2.2 – Text generation example – tips for first-time home buyers

Again, you can use GPT-3 to create a list on just about any topic, so there are tons of
possibilities. Another great example use case is idea generation.

Idea generation
GPT-3 can also be a great tool for brainstorming. The following prompt and subsequent
screenshot show GPT-3 being used to generate 3D printing project ideas for a maker day
event. Of course, this could have been a list of ideas for just about anything:

Maker day 3D printer project ideas

1. GoPro Mount A mount for a GoPro camera that mounts the
camera on a mountain bike

2.

24 GPT-3 Applications and Use Cases

The result is shown in the following screenshot:

Figure 2.3 – Text generation example – 3D print project ideas

The bold text in Figure 2.3 is the prompt that was provided, and the regular text was
generated by GPT-3. Pretty cool, right? Here is another cool example – conversational
applications.

Conversational applications
Conversational applications are also a potential use case for GPT-3, for example, in
chatbots, IVRs, and voice assistants. The following text can be used to prompt GPT-3 to
simulate a dialog between an AI support assistant and a customer:

The following is a conversation with a customer support AI
assistant. The assistant is helpful, creative, clever, and very
friendly.

Customer: Hello, can you help me?

AI: I can sure try. I'm an AI support assistant and I'm here to
help!

Customer:

The results from the preceding prompt are shown in the following screenshot. In this case,
GPT-3 is generating both sides of the conversation, but in a real-world application, the
user side of the conversation would come from an actual customer:

Handling text generation and classification tasks 25

Figure 2.4 – Text generation example – customer support AI assistant

There are a number of techniques you can use to help direct GPT-3 on how to respond.
For example, in Figure 2.4 you'll notice the prompt includes The assistant is
helpful creative, clever, and very friendly. - this guides GPT-3 on the
overall style and tone of the response. We'll get into this in more detail throughout the
following chapters but for now, let's move on and look at using GPT-3 for list generation.

List generation
The following screenshot shows GPT-3 being used to create a list of companies and the
category they fall into. You can see from the prompt that it's continuing the pattern that
was started. So, you can generate just about any list this way:

The following is a list of companies and the categories they
fall into

Cisco – Technology, Networking, Enterprise Software

AT&T – Telecom, Technology, Conglomerate

United Airlines – Aviation, Transportation

Nvidia – Technology, Computing, Semiconductors

26 GPT-3 Applications and Use Cases

The result for the previous prompt is shown in the following screenshot:

Figure 2.5 – Text generation example – list generation

In Figure 2.5, you'll notice that not only are more companies added to the list, GPT-3
is also able to accurately classify the companies by industry. Keep it mind, GPT-3 isn't
pulling this information from a database – it's generating it! But as impressive that that
is, GPT-3 can complete a lot more complex generation tasks. For instance, in the next
example we'll look at using GPT-3 to generate a quiz.

Quiz generation
GPT-3 can generate quizzes, too. For example, the following prompt could be used to
compile questions and possible answers for a quiz that tests a student's ability to identify
words that rhyme:

words that rhyme have similar sounding endings

q: what rhymes with "cat"

a: bat, hat, mat

q: what rhymes with "small"

a: tall, wall, call

q: what rhymes with "pig"

a: big, dig, fig

q:

The following screenshot shows the completion that GT-3 generated from the
previous prompt:

Handling text generation and classification tasks 27

Figure 2.6 – Text generation example – quiz generation

Content creation, idea generation, conversational applications, creating lists, and
generating quizzes are just a few of the possible text generation use cases. But text
generation isn't just about creating new content; it can also be used for other use cases
such as summarizing existing content.

Summarizing text
In addition to creating new original text, you can also use GPT-3 to create summaries
of documents. There are multiple ways you can go about summarizing text. You can
use basic summaries, one-sentence summaries, grade-level adjusted summaries,
or summarize by extracting key points from a document. Let's take a quick look at each
of these approaches.

Basic summary
The easiest way to create a summary is to just add tl;dr: after the text you want to
summarize. This will prompt GPT-3 to summarize the preceding text. It's not a reliable
way to summarize in every case, but it works quite well for many cases. For instance,
the following prompt provides text about quantum mechanics, which was copied from
https://en.wikipedia.org/wiki/Quantum_mechanics:
Quantum mechanics is a fundamental theory in physics that
provides a description of the physical properties of nature at
the scale of atoms and subatomic particles.[2]:1.1 It is the
foundation of all quantum physics including quantum chemistry,
quantum field theory, quantum technology, and quantum
information science.

https://en.wikipedia.org/wiki/Quantum_mechanics

28 GPT-3 Applications and Use Cases

Classical physics, the description of physics that existed
before the theory of relativity and quantum mechanics,
describes many aspects of nature at an ordinary (macroscopic)
scale, while quantum mechanics explains the aspects of nature
at small (atomic and subatomic) scales, for which classical
mechanics is insufficient. Most theories in classical physics
can be derived from quantum mechanics as an approximation valid
at large (macroscopic) scale.[3]

tl;dr:

The result from the previous prompt is shown in Figure 2.7:

Figure 2.7 – Text generation example – tl;dr: summary

You will notice that the original text consisted of three paragraphs, but the resulting
summary is just a few sentences. You can also direct GPT-3 to summarize the text in
a single sentence.

One-sentence summary
Another way to summarize text is to add one-sentence summary: after the text you'd
like to summarize. This, along with setting the Stop Sequence to a period, results in
a single sentence summary of the provided text.

The following prompt will create a single-sentence summary of a paragraph from the
OpenAI Terms of Use page located at https://beta.openai.com/terms-of-use:

(b) Ownership. As between you and OpenAI, we and our affiliates
own all rights, title, and interest in and to the APIs,
Content, and Developer Documentation and all associated
elements, components, and executables. Subject to the

Handling text generation and classification tasks 29

foregoing, you own all rights, title, and interest in and to
your Application. You have no right to distribute or allow
access to the stand-alone APIs. Except as expressly provided
in these Terms, neither party grants, nor shall the other party
acquire, any right, title or interest (including any implied
license) in or to any property of the first party or its
affiliates under these Terms. All rights not expressly granted
in these Terms are withheld.

one-sentence summary:

The following screenshot shows the results of the preceding one-sentence summary
prompt:

Figure 2.8 – Text generation example – one-sentence summary

Depending on the text you want to summarize, a single sentence can be very helpful in
simplifying content for you. Another way to simplify content is to rewrite it with simpler
text. This can be done with grade-level summaries.

Grade-level summary
To summarize text using language that would be appropriate for someone of a certain age,
you can use grade-level summaries. This can be done by following the text you want to
summarize with something like the last sentence in the following example prompt. In this
example, we're using text that was copied from https://en.wikipedia.org/wiki/
Milky_Way:

The Milky Way[a] is the galaxy that contains our Solar System,
with the name describing the galaxy's appearance from Earth:
a hazy band of light seen in the night sky formed from stars

https://en.wikipedia.org/wiki/Milky_Way
https://en.wikipedia.org/wiki/Milky_Way

30 GPT-3 Applications and Use Cases

that cannot be individually distinguished by the naked eye.
The term Milky Way is a translation of the Latin via lactea,
from the Greek γαλακτικός κύκλοςγαλακτικός κύκλος (galaktikos kýklos, "milky
circle").[19][20][21] From Earth, the Milky Way appears as
a band because its disk-shaped structure is viewed from
within. Galileo Galilei first resolved the band of light into
individual stars with his telescope in 1610. Until the early
1920s, most astronomers thought that the Milky Way contained
all the stars in the Universe.[22] Following the 1920 Great
Debate between the astronomers Harlow Shapley and Heber
Curtis,[23] observations by Edwin Hubble showed that the Milky
Way is just one of many galaxies. The Milky Way is a barred
spiral galaxy with an estimated visible diameter of 150-200,000
light-years,[9][24][25] an increase from traditional estimates
of 100,000 light-years. Recent simulations suggest that a dark
matter disk, also containing some visible stars, may extend up
to a diameter of almost 2 million light-years.[11][12]

I rephrased this in plain language that a third grader could
understand.

In the following screenshot, you can see the results of the previous prompt:

Figure 2.9 – Text generation example – grade-level summarization

Note that the summary shown in Figure 2.9 is written in a way that would likely be
understood by a third grader. In this case, GPT-3 is translating the text (in a way) for
a younger reader. But you can also use GPT-3 to translate text into different languages.

Handling text generation and classification tasks 31

Transforming text
You can also use GPT-3 to transform text, for example, from one language to another,
or from English to something else, such as emojis or software code. Let's take a look at
a language translation example first.

Translation
In the following screenshot, GPT-3 is being used to translate English to French. This
is a preset that is provided in the Playground; we'll talk more about presets in the next
chapter:

Figure 2.10 – Text generation example – translation from English to French

You can see in Figure 2.10 that a few translation examples were used in the prompt. This
is helpful for some language translation tasks, but for many simple translations, you don't
even need examples. For example, the following prompt would likely be completed with
the correct translation:

English: I do not speak Spanish

Spanish:

Language translations are impressive for sure. But what if you want to translate between
English and something other than another natural language? For instance, what about
converting English to emoji text?

32 GPT-3 Applications and Use Cases

Conversion
This is another example that is provided by OpenAI. In this example, the prompt is used
to convert the name of a movie into an emoji form. This works because emojis are just
text characters, so they are part of the underlying GPT-3 training data. Notice that some
of the emoji versions don't just use the words in the title. For example, Transformers
has a car and a robot emoji, which makes sense if you've seen the movie but not if you're
just looking at the word transformers. So, what's going on? GPT-3 isn't just using what's
provided in the prompt; it's also using information from its massive model, which
contains additional details about each of the movies:

Figure 2.11 – Text generation example – conversion from text to emoji

So, there are a lot of possibilities for text generation use cases but remember, GPT-3 is
a general-purpose language processing system. So, generating text is just the beginning.
Another common NLP use case is text classification.

Text classification
Text classification involves evaluating some provided text and assigning it a label, score,
or some other attribute that classifies the text. Sentiment analysis is a common text
classification use case, but that's just one of many text classifications tasks GPT-3 could be
used for.

There are multiple ways to go about getting GPT-3 to classify text. In the simplest cases,
you don't even need to provide examples; this is referred to as zero-shot classification and
it is an easy way to do basic classifications, such as sentiment analysis.

Handling text generation and classification tasks 33

Zero-shot classification
Recall from the last chapter that a zero-shot prompt doesn't provide any examples.
Similarly, a zero-shot classification is a classification task with no examples.

Here is an example of a zero-shot classification prompt. In this example, the goal is to
perform sentiment analysis to determine whether a Twitter post is positive, neutral, or
negative:

Twitter post: "I think I nailed my interview today!"

Sentiment (positive, neutral, negative):

You can see from the following screenshot the sentiment classification result from the
zero-shot classification example:

Figure 2.12 – Text generation example – zero-shot classification

Here is another zero-shot classification example. This example shows that GPT-3 can
even comprehend text for a classification task. Notice the prompt provides a question and
GPT-3 classifies the travel type:

Comprehension Question: "What is the best way to travel from
New York to London?"

Travel Type (swim, drive, fly):

34 GPT-3 Applications and Use Cases

The following is a screenshot that shows the results:

Figure 2.13 – Text generation example – zero-shot classification

Zero-shot classification is about as simple as it gets and can be very useful for a variety
of classification tasks. But sometimes classification tasks are a bit more complex and will
require examples. For those cases, you'll use few-shot classifications.

Few-shot classification
Another way to do classifications is with examples; this is referred to as few-shot
classification. When you provide examples of how to classify text, the model can learn
how to label the text based on the samples you provide. If the model is not able to classify
your text correctly, providing examples will likely improve the results. This could be used
for situations where you're using different terminology – for example, emotion instead of
sentiment.

The following prompt and subsequent screenshot show an example of a few-shot
classification for classifying animal lovers:

Q:"I like Dalmatians"

A:Dog Lover

Q:"I like Tigers"

A:Cat Lover

Q:"I like Wolves"

A:Dog Lover

Handling text generation and classification tasks 35

The results from the previous prompt are shown in the following screenshot:

Figure 2.14 – Text generation example – few-shot classification

Notice in Figure 2.14 how just a few examples are enough for GPT-3 to understand how to
classify any animal type. In that example, the classifications are being done one at a time,
but GPT-3 can also do batch classifications.

Batch classification
If you're able to successfully classify text using few-shot classification prompts, you
can also show the model how to classify a list of items. This is referred to as batch
classification.

The following prompt shows an example of a prompt for doing batch classification. Notice
that both classification examples and a batch classification example are provided in the
prompt:

Tweet: "I loved the new Batman movie!"

Sentiment: Positive

Tweet: "I hate it when my phone battery dies"

Sentiment: Negative

36 GPT-3 Applications and Use Cases

Tweet: "My day has been great!"

Sentiment: Positive

Tweet: "This is the link to the article"

Sentiment: Neutral

Tweet text

1. "I loved the new Batman movie!"

2. "I hate it when my phone battery dies"

3. "My day has been great!"

4. "This is the link to the article"

5. "This new music video blew my mind"

Tweet sentiment ratings:

1. Positive

2. Negative

3. Positive

4. Neutral

5. Positive

Tweet text

1. "I can't stand homework"

2. "This sucks. I'm bored "

3. "I can't wait for Halloween!!!"

4. "My cat is adorable"

5. "I hate chocolate"

Tweet sentiment ratings:

1.

Now that we've seen what GPT-3 can do for text generation and classification, let's look at
how GPT-3 can be used for semantic search.

Understanding semantic search 37

Understanding semantic search
A semantic search matches a search term or query words with semantically similar
documents containing any amount of text. A simple keyword search might just look for
words in the query that match words in the documents. However, a semantic search goes
way beyond that. It looks at the meaning of words and ranks the documents with the
highest-ranking document representing the document that is most semantically similar
to the query. For example, suppose we have the query an animal with wings and five
one-word documents: dog, cat, snake, rabbit, eagle. A semantic search would rank each
of the five documents and assign the highest rank to the document containing the word
eagle because it is most semantically similar to the query.

Every time you query Google, you're using semantic search and like Google, GPT 3
can also search over documents. However, rather than searching documents on the
web, the documents are provided as part of the request to the OpenAI API or in a
pre-uploaded file.

The search query might be a question, a statement, or just a few words. The query gets
evaluated against the provided documents and a score is provided in the results for each
document. The score is usually between 0 and 300 but can sometimes go higher. A higher
score, above 200, usually means the document is semantically similar to the query.

When documents are provided with the API request, up to 200 documents can be
included. However, you can go beyond the 200 document limit by uploading a documents
file or sending multiple requests with the same query but different documents. We'll look
at how that works in more detail in Chapter 4, Working with the OpenAI API.

Another consideration when using GPT 3 for semantic search is the engine you select.
Recall from the last chapter that while davinci is the largest and most capable engine in
terms of the tasks it can handle, other engines often perform better and cost less to use
for certain tasks. When it comes to semantic search, the trade-off in terms of accuracy is
often minimal. So, it makes sense to test the faster and more efficient engines like ada or
babbage, which you can do using the Semantic Search tool.

38 GPT-3 Applications and Use Cases

The Semantic Search tool
The Playground is used for testing prompts and completions. However, the Semantic
Search tool can be used to test search queries. You can access the Semantic Search tool
by visiting https://gpttools.com/semanticsearch. It's a simple web-based
application (like the Playground) that lets you test semantic searches using the different
engines. The following screenshot shows the Semantic Search tool:

Figure 2.15 – The Semantic Search tool

You'll notice that the Semantic Search tool requires an OpenAI API key. You can get your
API key from the OpenAI API Keys page located at https://beta.openai.com/
account/api-keys.You will need to be logged in to access the API Keys page. We will
talk more about API keys in Chapter 4, Working with the OpenAI API, but for now, the
most important thing to know is that you should keep your API key private and never
share it with others.

The following screenshot shows the API Keys page (with the API key intentionally blurred
out) where you can copy your API key for the Semantic Search tool:

https://gpttools.com/semanticsearch
https://beta.openai.com/account/api-keys
https://beta.openai.com/account/api-keys

Understanding semantic search 39

Figure 2.16 – The OpenAI API Keys page

The Semantic Search tool also provides presets, which are templates to help you get
familiar with different semantic search examples. The following screenshot shows the
Semantic Search tool with the results of a search using the Directors and Movies preset:

Figure 2.17 – Text generation example – Semantic Search tool

40 GPT-3 Applications and Use Cases

As you can hopefully see at this point, the possible use-cases for GPT 3 are pretty broad.
We haven't even scratched the surface of what's possible or discussed how GPT 3 might
be used in production applications. We will dive deeper into more specific examples and
use-cases throughout the book. But in addition, there is a rapidly growing number of GPT
3 powered applications and examples online that you should check out for additional
use-cases and inspiration. The range of online applications is impressive to say the least.
You can start by Googling the term list of apps using GPT-3. You'll find a growing number
of curated lists and videos that highlighting a wide variety of GPT-3 powered apps and
prompt examples. GPT-3 Demo located at https://gpt3demo.com/ is one worth
checking out. There is also a blog post from OpenAI located at https://openai.com/
blog/gpt-3-apps/ that lists applications and industry use-cases and a number of
usage and prompt example at https://beta.openai.com/examples.

Summary
In this chapter, we looked at different potential use cases for GPT-3. We discussed using
GPT-3 for text generation, classification, and semantic search, and looked at examples of
each. We introduced the Playground web-based testing tool and covered how to access
it and get started using it. We looked at different ways to write prompts for text generation
and text classification and how GPT-3 supports semantic search.

In the next chapter, we will dive deeper into the Playground and look at how different
engines and API settings influence completion results.

https://gpt3demo.com/
https://openai.com/blog/gpt-3-apps/
https://openai.com/blog/gpt-3-apps/
https://beta.openai.com/examples

Section 2:
Getting Started

with GPT-3

This section provides an introduction to using GPT-3 through the OpenAI Playground
and through the OpenAI API.

This section comprises the following chapters:

• Chapter 3, Working with the OpenAI Playground

• Chapter 4, Working with the OpenAI API

• Chapter 5, Calling the OpenAI API in Code

3
Working with the

OpenAI Playground
In the last chapter, we briefly introduced the Playground. Chances are, you'll be spending
a lot of time in the Playground because it's a great tool, both for learning and for rapidly
prototyping and testing prompts and settings. So, in this chapter, we're going to take
a closer look at the Playground with an emphasis on the Playground settings. We'll also
look at other OpenAI developer tools and resources that you'll want to be aware of.

The topics we will be covering in this chapter are as follows:

• Exploring the OpenAI developer console

• Diving deeper into the Playground

• Working with presets

Technical requirements
This chapter requires you to have access to the OpenAI API. You can request access by
visiting https://openapi.com.

https://openapi.com

44 Working with the OpenAI Playground

Exploring the OpenAI developer console
The Playground is part of the OpenAI developer console. The developer console is a
private web-based portal that provides developer resources and tools – the Playground
being one of them. To access the developer console, you'll need a valid OpenAI developer
account. While this chapter will largely focus on the Playground and, more specifically,
the Playground settings, it's worth taking a minute to review some of the other resources
available in the OpenAI developer console, starting with the developer documentation.

Developer documentation
When you're working with new technologies, good documentation is very often not
available. Fortunately, that's not the case with GPT-3. The OpenAI documentation is
extremely well done. It's complete, easy to follow, and provides a number of very useful
examples. We looked at one of those examples – a classification prompt example – in
Chapter 1, Introducing GPT 3 and the OpenAI API. But let's take a look at another great
example from the documentation, the Factual responses example.

Factual responses example
The following prompt example is from the OpenAI developer documentation. It is located
at https://beta.openai.com/docs/introduction/prompt-design-101.
It provides an example QA prompt that shows the model that a question mark should
be returned for questions it likely doesn't have the correct answer to. This directs the
model to not make up an answer, which it would likely do by default. This is an important
example because although GPT-3 responses are almost always grammatically correct,
they are very often not factual. So, even though they might sound good, they could be
completely fabricated.

The key thing to note in the following prompt is that the examples provided show GPT-3
how to deal with questions that don't have a factual answer, or that GPT-3 doesn't know
how to answer. There are also some settings used to help ensure a factual response, but
we'll talk about the settings a bit later in this chapter:

Q: Who is Batman?

A: Batman is a fictional comic book character.

###

Q: What is torsalplexity?

A: ?

###

Q: What is Devz9?

https://beta.openai.com/docs/introduction/prompt-design-101

Exploring the OpenAI developer console 45

A: ?

###

Q: Who is George Lucas?

A: George Lucas is American film director and producer famous
for creating Star Wars.

###

Q: What is the capital of California?

A: Sacramento.

###

Q: What orbits the Earth?

A: The Moon.

###

Q: Who is Fred Rickerson?

A: ?

###

Q: What is an atom?

A: An atom is a tiny particle that makes up everything.

###

Q: Who is Alvan Muntz?

A: ?

###

Q: What is Kozar-09?

A: ?

###

Q: How many moons does Mars have?

A: Two, Phobos and Deimos.

###

Q:

The point of highlighting the OpenAI documentation, as you can hopefully see, is because
it can be an extremely valuable resource. But it's just one of many.

46 Working with the OpenAI Playground

Developer resources
The documentation is just one of the available resources in the developer portal. Other
resources are available, including the following:

• FAQs

• Pricing Details

• Video Tutorials

• Community Examples

• Interactive Tools

• Guidelines and Legal Documents

• Logo Assets

As you become familiar with GPT-3 and the OpenAI API, you'll want to spend time
reviewing all of the available developer resources. We will dive deeper into a few of them,
but they are all valuable and worth reviewing.

Accounts and organizations
Another important area to point out in the developer console is the account profile
section. This is where you edit your developer account and organization details.

Developer accounts are used to authenticate and identify individual developers. By
default, when a developer account is created, an organization named Personal is also
created. An organization is used for billing purposes and grouping users, meaning
that users can create, or be associated with, multiple organizations that each get billed
separately.

Each organization has a title (name) that you can specify and an organization ID that
is automatically generated. The organization ID is a unique identifier used to associate
usage with the proper organization for billing purposes. So, when you're logged in to
the developer console, any usage will be associated with the organization you're working
under. We'll discuss the organization ID again in Chapter 4, Working with the OpenAI
API, where we'll look at associating API calls with a specific organization, but you can also
associate usage with an organization in the developer console.

The following screenshot shows how to see the organizations your account is associated
with and how to switch between organizations in the developer console:

Exploring the OpenAI developer console 47

Figure 3.1 – Switching between organizations

As mentioned, organizations are used for billing purposes, and an organization named
Personal is created along with your user account. You can change the organization title to
something other than Personal if you prefer. The following screenshot shows where you
can change the name of your personal organization:

Figure 3.2 – Personal organization

Of course, you're the owner of your personal organization and this is the organization you
would set up billing for if you're using the API for your own individual use.

48 Working with the OpenAI Playground

Pricing and billing
Before we get into pricing, it's important to note that pricing could change at any time,
so you'll want to visit https://beta.openai.com/pricing for the most current
pricing details. With that disclaimer out of the way, let's continue.

For starters, the OpenAI API is priced on a per-usage basis. So, you only pay for the
resources that you use. There are no setup fees or recurring charges. The usage fees
are based on tokens used. The cost per token depends on the engine you're using. We
discussed tokens and introduced the available engines in Chapter 1, Introducing GPT-3
and the OpenAI API.

Davinci is the largest model and the most capable engine, hence, it is also the most
expensive engine to use. At the other end of the price spectrum is ada. This is the smallest
model, which limits its capabilities. However, ada is the most efficient engine, and
therefore the least expensive one to use.

The following screenshot shows the pricing per engine at the time this book was
published. Again, the pricing could change at any time, so be sure to verify the current
pricing as it may very well have changed:

Figure 3.3 – Pricing

Exploring the OpenAI developer console 49

Pay-per-usage pricing is nice because if you're not doing anything, it's not costing you
anything. That said, it can also be a bit scary not knowing what your bill might be.
Thankfully, however, you can set a hard limit or a soft limit to manage your spending.
This is done in your billing settings. The hard limit prevents the API from using more
tokens once the limit is met. Of course, this will render the API unusable, which could be
a problem in production apps. So, there is also the option of setting a soft limit. This will
send an email alert when usage limits are hit.

Usage reporting
In addition to setting hard or soft limits to manage your costs, you also have access to
usage reporting. You'll find usage reporting in the organization settings under the Usage
menu. The following screenshot shows an example usage report:

Figure 3.4 – Usage reporting

The main chart in usage reporting defaults to show the total tokens used per day for the
current month. Each bar also shows the tokens used for prompts and completions. From
this chart, you can also view usage by a dollar amount and display the cumulative total
rather than daily totals. In addition, below the main chart, you can view the total usage
along with detailed usage per day by engine.

50 Working with the OpenAI Playground

Member management
As mentioned, when you get a developer account, an organization is set up for your
personal use. But you might also want to have an organization for a team of users. To
do that, you can request an organization account for multiple users by sending an email
to support@openai.com. When a new organization is created, you'll be able to
invite other users to the organization. This is done under the Members menu within
the organization. The following screenshot shows the member management page for an
organization. From this page, you can invite new members, remove members, or change
member permissions:

Figure 3.5 – Member management

Outside of the Playground, that should cover the essential things you'll need to know
about the developer console. So, let's get back to the Playground and take a closer look.

Diving deeper into the Playground
At this point, you should understand the basics of using the Playground. But we're going
to cover the Playground in more depth now and discuss all of the available options and
settings. Chapter 2, GPT 3 Applications and Use Cases, provided a quick overview of the
available settings, but let's take a closer look at each of them.

Diving deeper into the Playground 51

The following screenshot shows the settings in the Playground. They are located just to the
right of the large text input box:

Figure 3.6 – Playground settings

The first setting is the Engine setting, so we'll start there.

Choosing the right engine
Generally, we refer to the OpenAI language model as just GPT-3. But, as you'll recall from
Chapter 1, Introducing GPT-3 and the OpenAI API, there are multiple models/engines.

When you first open the Playground, the davinci engine is selected by default. This will
usually be the engine you'll want to start testing prompts with. The reason you'll want
to start with davinci is that it's the largest model and therefore the most capable engine.
The davinci engine can do anything that any of the other engines can do. However, other
engines might be able to perform the specific tasks faster or more cost-effectively. So, an
alternative approach could be to start with the least expensive engine first and then test
the next most expensive engine when a less expensive engine is unable to complete
the task.

52 Working with the OpenAI Playground

So, start with davinci. Then, when you're getting the results you want from davinci, test
your prompt with the other engines to see whether you're also able to get acceptable
results. Or start with ada, the least expensive engine, and then progress up if you fail to
obtain acceptable results. Let's look at an example using a simple classification task.

The following is a prompt classifying items as a tool, food, clothing, or something else:

The following is a list of items classified as a tool, food,
clothing, or something else

Cake: Food

Pants: Clothing

Car: Other

Pliers: Tool

The following screenshot shows the results when davinci is used as the engine. Note that
the new items added to the list (Shirt, Hammer, Apple, and Airplane) are all categorized
correctly:

Figure 3.7 – Classification example with the davinci engine

Now, let's look at the results when the engine is changed from davinci to ada. You'll
notice in the following screenshot that the new items added to the list (Socks, Pliers,
Hamburger, and House) are also correctly classified by ada:

Diving deeper into the Playground 53

Figure 3.8 – Classification example with the ada engine

So, as you can see from the previous example, there will be tasks that don't require davinci
to get acceptable results. If that's the case, choosing another engine will reduce your usage
costs and often also improve response times. Of course, if costs and performance aren't
a concern, you can always stick with davinci. But again, depending on the task, davinci
might not be the only option.

The following list provides an idea of what each engine does generally well. These aren't
hard and fast rules, merely a guideline. So, you'll always want to test to determine the best
fit based on the results:

• Davinci: Complex intent, cause and effect, summarization for age.

• Curie: Language translation, complex classification, text sentiment, summarization.

• Babbage: Moderate classification, semantic search classification.

• Ada: Text parsing, simple classification, address correction, keywords.

Response length
The response length setting is fairly self-explanatory. It controls the length of the
completion that will be generated. The main thing to keep in mind with the response
length is that the value relates to a number of tokens to be returned. Recall from Chapter
1, Introducing GPT-3 and the OpenAI API, that tokens can represent words or parts of
words. So, don't mistake the response length for a word count or character count.

54 Working with the OpenAI Playground

The other thing to keep in mind is that you get billed for tokens used – including tokens
that are used for completions, meaning the larger your response length, the more tokens
you'll use. So, if you're trying to optimize costs, set the response length as short as possible
for the given task. For example, if the task is to provide sentiment analysis on a block of
text, the response length only needs to be long enough to display the sentiment result.

Temperature and Top P
The next two settings are Temperature and Top P. These are two of the most important
settings, but they can also be the most confusing ones to understand. At a high level, they
both influence the randomness or diversity of the response that is generated. But knowing
how and when to use one or the other can be tricky.

To make sense of the temperature and Top P settings, it's helpful to know that machine
learning systems could process the same input differently. This means that the output
can vary even when the input provided hasn't changed. This is because machine learning
systems such as GPT-3 use heuristics (educated guesses) rather than concrete logic to
generate results. So, instead of trying to find the perfect solution, machine learning
systems try to identify the best possible options based on the data it was trained with.

In the case of GPT-3, the dataset it was trained on is extremely large and diverse.
Therefore, most inputs (prompts) will result in a variety of possible completions. Again,
this could be a benefit or a challenge depending on the task. For example, if you're using
GPT-3 to generate ideas for a book title, you want a lot of different options to choose
from. However, if you want GPT-3 to accurately answer history questions, you want
responses that are consistent and factual. This is where the temperature and Top P settings
come in. The temperature and Top P settings can be used to help control the variability
and number of options that are used to generate a completion.

Temperature
The temperature setting influences how deterministic the model will be when generating
a result. So, the temperature provides some control over how likely the results are to vary.
A lower value will direct the model to be more deterministic (less variable), while a higher
value will cause the model to be less deterministic, or more variable. The range can be
between 0 and 1. To see the effects of the temperature setting let's look at some examples.

We'll start with an example that uses the default Playground temperature of 0.7. In this
example, we'll look at the default stochastic (random) nature of most completions. We'll
start with a prompt that contains the words Once upon a time and nothing else, like the
prompt shown in the following screenshot:

Diving deeper into the Playground 55

Figure 3.9 – Temperature example 1

As you might guess, there are a lot of possible completions for this prompt. So, when we
submit the prompt three times, we get the following three completions, and each one is
different.

• Once upon a time, a little princess was born.

• Once upon a time, there were three little pigs.

• Once upon a time, there was a girl who saw a boy run past her house every day.

This example is a simple one and the results aren't surprising. But understanding why the
same prompt resulted in three different completions is important. So, let's talk a bit more
about our first example.

There are actually three reasons why we got different responses in our previous example.
The first reason is that the underlying model can come up with a lot of different ways to
complete this prompt. That's because there are a lot of stories that start with Once upon a
time and the data used to train the model contains plenty of examples of those stories.

The second reason is that the default temperature setting is relatively high (0.7 out of
1). So, the model is being directed to take more risks and to be more random when
generating the response.

The last reason has to do with the Top P setting, but we'll talk about that a little later.

56 Working with the OpenAI Playground

Now, let's consider the same example again, but this time we'll change the temperature
setting to 0. Again, we'll submit the prompt three times, but this time, the results are as
follows – the same each time:

• Once upon a time, there was a little girl who was very sad.

• Once upon a time, there was a little girl who was very sad.

• Once upon a time, there was a little girl who was very sad.

So, what's happening? The lower temperature value is telling GPT-3 to be less variable
in how it processes the prompt, so the completion is staying consistent. Because we're
using zero for the temperature (the lowest value), the result will likely always be the same.
However, you can use a value between zero and one (for example 0.2) to gain more control
over the randomness of the result. However, changing the temperature won't always affect
the completion because again, the completion also depends on the examples in the data
the model was trained on. To illustrate this, let's look at another example.

For this example, we'll use a prompt that just includes the words A robot may not injure
with the default temperature setting of 0.7, as we have in the following screenshot:

 Figure 3.10 – Temperature example 2

Diving deeper into the Playground 57

This time, when we submit the prompt in the previous screenshot three times, we get the
following results – the same completion each time:

• A robot may not injure a human being or, through inaction, allow a human being to
come to harm.

• A robot may not injure a human being or, through inaction, allow a human being to
come to harm.

• A robot may not injure a human being or, through inaction, allow a human being to
come to harm.

So, now you might be wondering what's going on. Shouldn't the completion have varied
because of the higher temperature setting? Again, the completion also depends on the
data the model was trained on. In this case, the reason the completion isn't changing
(and probably wouldn't irrespective of what the temperature setting was) is because the
five words (or five tokens), A robot may not injure, are most often seen as part of Isaac
Asimov's laws of robotics. So, because of the training, regardless of the temperature,
the best possible result is almost always the same. So, keep in mind that the temperature
setting will only have a noticeable effect when there are a variety of different ways in
which a prompt could be completed.

Top P
While the temperature controls the randomness of results generated based on the
model, the Top P setting controls how many of those results (or tokens) are considered
for completion. The value can be between 0-1, where a higher value considers a higher
number of tokens. For example, a value of 1 would consider all of the likely options,
whereas a value of 0.5 would limit the options by half.

58 Working with the OpenAI Playground

Like temperature, Top P can be used to increase or limit the seeming randomness of a
completion. However, unlike the temperature, it's influencing the randomness by limiting
the scope of the possible results that should be considered. To illustrate the point, imagine
that 100 potential token options could be selected as the next token in a completion. A
Top P value of 0.1 could be used to limit the options to 10, thereby reducing the number
of tokens that could be selected. But this is still dependent on the number of possible
token options derived from the model. So, if there were only 10 potential options, a 0.5
Top P setting would limit that to five options – reducing the variability. Furthermore,
a Top P value of 0 will always reduce the options to the top token, meaning that even if
there are a lot of possible options and the temperature setting was 1 (which will generate
the most options), if the Top P setting is 0, only the best option will be selected, which will
have the same effect as setting the temperature to 0 – you'll most likely always get the same
result. To illustrate this, let's look at our Once upon a time prompt again. This time, we'll
set the temperature to 1 and the Top P value to 0, as we have in the following screenshot:

Figure 3.11 – Top P example

If we submit the prompt with the settings in the previous screenshot three times, we get
the following results (the same completion), even though the temperature is set to 1. This
is because Top P is limiting the options:

• Once upon a time, there was a little girl who was very sad.

• Once upon a time, there was a little girl who was very sad.

• Once upon a time, there was a little girl who was very sad.

Diving deeper into the Playground 59

So, although the temperature and Top P settings both influence the seeming randomness
of a completion, they are interrelated, and each can affect the other. This is what makes
them a bit confusing if you're not clear on how they work. Because of this, you're usually
best off using each setting separately. So, if you want to influence the randomness with
the temperature, make the Top P setting 1 and only vary the temperature. If you want to
influence the randomness with the Top P value, set the temperature to 1.

Frequency and presence penalty
The Frequency and Presence Penalty settings can also be a bit confusing because they
can seem similar to temperature or Top P in that they are settings to control variability.
However, rather than considering the model, the frequency and presence penalty settings
consider the prompt text and previous completion text to influence the tokens that are
selected for the next completion. So, these two settings can provide some control over
what new text is generated based on existing text.

The frequency and presence penalty settings can be useful for preventing the same
completion text from being repeated across multiple requests. The two settings are very
similar to one another, with the only difference being that the frequency penalty is applied
if the text exists multiple times, whereas the presence penalty is applied if the text exists at
all. Let's take a look at another example.

The following screenshot shows the results of the Once upon a time example with a
temperature setting of 1, a Top P setting of 0, and no frequency or presence penalty. The
submit button was clicked 5 times and each completion generated a new sentence. While no
sentences are repeated verbatim, there are a number of repeated token sequences – notice
that each completion sentence begins with the words She was sad because she had no:

Figure 3.12 – Frequency and presence example 1

60 Working with the OpenAI Playground

For the previous example, we could have added the presence or frequency penalty to limit
the likelihood that each completion would be so similar.

The next screenshot shows the results after adding a presence penalty and clicking Submit
five times (like we did for the last example). This time, you can see that the completion
sentences are not as similar:

Figure 3.13 – Frequency and presence example 2

The frequency penalty penalizes new tokens based on how often the token already exists
in the text. The presence penalty, on the other hand, penalizes tokens if they exist in the
text at all. In both cases, the value can be between 0 and 1, and a higher value increases the
penalty, thereby reducing the likelihood of duplications.

Best of
The best of setting will cause the model to generate multiple completions on the server
side and return the best of x completions (where x is the best of value). This can be used
to help get the best quality results without having to make multiple requests to the API.
However, the thing to consider when using best of is that you get charged for the tokens
used for each of the completions generated. For example, if your response length was 50
and you set the best of value to 10, the response would consume 500 tokens. So, if you're
providing a best of value, make sure to set the response length value as low as possible to
minimize the number of tokens used. You can also use the stop sequence setting to help
limit unnecessary tokens being used.

Diving deeper into the Playground 61

Stop sequence
A stop sequence is a text sequence that will cause a completion to end when the sequence
is encountered in the completion. You can provide up to four sequences. For example, if
you wanted to limit a completion to text that came before a period followed by a carriage
return, you would provide a period and a return as stop sequences.

In the Playground, you enter a stop sequence by typing the stop sequences followed by the
tab button to complete your entry. The following screenshot shows a carriage return as a
stop sequence. For this example, the return button was entered followed by the tab key:

Figure 3.14 – Stop sequence

Let's move on to the next section!

Inject Start Text and Inject Restart Text
The Inject Start Text and Inject Restart Text inputs insert text at the beginning or end
of a completion, respectively. These settings can be used to help ensure that the desired
pattern is continued as part of a completion. Often, these settings are most helpful when
they are used in conjunction with a stop sequence. Let's take a look at an example. For
example, let's start with the following prompt:

The following is a conversation with an AI assistant. The
assistant is helpful, creative, clever, and very friendly.

Human: I'm feeling sad. Can you cheer me up?

62 Working with the OpenAI Playground

With the default Playground settings, the completions might look something like the
completion in the following screenshot:

Figure 3.15 – Default settings

In the previous screenshot, you can see that the engine did a good job figuring out that
this was a conversation and continued with a dialog. However, suppose you don't want the
completion to generate the human side of the conversation and you want to use the label
AI: rather than Assistant:? If that was the case, you could use a stop sequence to end
the completion before the human side of the conversation is generated. Then you could
use an inject restart text value to prompt for the human input. Finally, the inject start text
value could be set to a carriage return followed by AI: to begin the assistant's response.
The following screenshot shows what a completion might look like with those settings:

Figure 3.16 – Using Stop Sequences, Inject Start Text, and Inject Restart Text together

Diving deeper into the Playground 63

With the settings used in the previous screenshot, you can see that the completion ends
before the human side of the conversation is generated. Then, the restart text, Human:, is
appended to the completion, prompting human input.

Show Probabilities
In the playground, the Show Probabilities option toggles on text highlighting, showing
how likely a token was to be generated. This lets you examine the options that could have
been used in the completion, which can be helpful when you're trying to troubleshoot
a completion. It can also help see alternative options that you might want to use. To use
show probabilities, you toggle it on by selecting one of the following settings:

• Most Likely

• Least Likely

• Full Spectrum

The most likely value will show the most likely tokens to be selected, least likely will
show the least likely tokens that could have been selected, and full spectrum will show the
range of tokens that could have been selected. The following screenshot shows an example.
In this example, the input prompt was just Hi,. The settings used were the defaults, except
the response length, which was set to 1, and the show probabilities were set to Most
Likely. You can see that the completion was the word my, but some other likely options
were considered:

Figure 3.17 – Show Probabilities – most likely tokens

64 Working with the OpenAI Playground

The settings provide a lot of control over how a completion is generated, but selecting
the right setting can take a bit of trial and error. Thankfully, the Playground includes
presets to help you understand how to best select the right combination of settings for
a given task.

Working with presets
In Chapter 2, GPT 3 Applications and Use Cases, we briefly introduced presets in the
Playground. Specifically, we looked at the English to French preset, but that's just one
of many. Presets are like templates that provide an example prompt, along with the
Playground settings. They are a great starting point for creating new prompts or as a tool
for getting familiar with prompt design and setting usage.

There are a number of presets available, including the following:

• Chat

• Q&A

• Grammatical Standard English

• Summarize for a 2nd grader

• Text to command

• English to French

• Parse unstructured data

• Classification

You'll find a drop-down list of the presets in the Playground just above the large input box.
The following screenshot shows the location:

Working with presets 65

Figure 3.18 – Presets

We won't review all of the presets, but let's take a look at a few to see how settings are used
to help get the best possible completion from a prompt. The first one we'll review is the
Grammatical Standard English preset.

Grammatical Standard English
The Grammatical Standard English preset demonstrates a use case where non-standard
US English text is transformed into standard US English text. The following is the preset's
prompt text:

Non-standard English: Please provide me with a short brief of
the design you're looking for and that'd be nice if you could
share some examples or project you did before.

Standard American English: Please provide me with a short brief
of the design you're looking for and some examples or previous
projects you've done would be helpful.

Non-standard English: If I'm stressed out about something, I
tend to have problem to fall asleep.

Standard American English: If I'm stressed out about something,
I tend to have a problem falling asleep.

Non-standard English: There is plenty of fun things to do in
the summer when your able to go outside.

Standard American English: There are plenty of fun things to do
in the summer when you are able to go outside.

Non-standard English: She no went to the market.

Standard American English: She didn't go to the market.

66 Working with the OpenAI Playground

As mentioned, presets also include settings. So, after selecting the Grammatical Standard
English preset, you'll notice that some of the default Playground settings have changed.

The default Playground settings are as follows:

• Engine: davinci

• Response Length: 64

• Temperature: 0.7

• Top P: 1

• Frequency Penalty: 0

• Presence Penalty: 0

• Best Of: 1

• Stop Sequences: empty

• Inject Start Text: empty

• Inject Restart Text: empty

• Show Probabilities: Off

But when you select a preset, some of the defaults will be updated. For the Grammatical
Standard English preset, the following settings are used:

• Response Length: 120

• Temperature: 1

• Top P: 0.7

• Stop Sequences:

• Inject Start Text: Standard American English:

• Inject Restart Text: Non-standard English:

Note that the temperature is set to 1 and Top P is used to limit the results considered to
70% of the possible options. Also notice that the stop sequence is used along with the
inject start text and inject restart text to keep the completion short while continuing the
prompt pattern for the next phrase to standardize.

Working with presets 67

Text to command
The Text to command preset provides an example that shows how an English command
could be converted to a machine command to send a message. The following is the
prompt text for the Text to command preset:

Q: Ask Constance if we need some bread

A: send-msg `find constance` Do we need some bread?

Q: Send a message to Greg to figure out if things are ready for
Wednesday.

A: send-msg `find greg` Is everything ready for Wednesday?

Q: Ask Ilya if we're still having our meeting this evening

A: send-msg `find ilya` Are we still having a meeting this
evening?

Q: Contact the ski store and figure out if I can get my skis
fixed before I leave on Thursday

A: send-msg `find ski store` Would it be possible to get my
skis fixed before I leave on Thursday?

Q: Thank Nicolas for lunch

A: send-msg `find nicolas` Thank you for lunch!

Q: Tell Constance that I won't be home before 19:30 tonight —
unmovable meeting.

A: send-msg `find constance` I won't be home before 19:30
tonight. I have a meeting I can't move.

Q:

The updated settings are as follows:

• Response Length: 100

• Temperature: 0.5

• Top P: 1

• Frequency Penalty: 0.2

• Stop Sequences:

• Inject Start Text: A:

• Inject Restart Text: Q:

In this preset, notice that the temperature is set to 0.5 and a slight frequency penalty of 0.2
is used.

68 Working with the OpenAI Playground

Parse unstructured data
The Parse unstructured data preset provides an example that shows how to extract values
from unstructured text. The prompt provides a block of text, instructions, and a couple
of examples:

There are many fruits that were found on the recently
discovered planet Goocrux. There are neoskizzles that grow
there, which are purple and taste like candy. There are also
loheckles, which are a grayish blue fruit and are very tart, a
little bit like a lemon. Pounits are a bright green color and
are more savory than sweet. There are also plenty of loopnovas
which are a neon pink flavor and taste like cotton candy.
Finally, there are fruits called glowls, which have a very sour
and bitter taste which is acidic and caustic, and a pale orange
tinge to them.

Please make a table summarizing the fruits from Goocrux

| Fruit | Color | Flavor |

| Neoskizzles | Purple | Sweet |

| Loheckles | Grayish blue | Tart |

The settings used for the Parse unstructured data preset are as follows:

• Response Length: 100

• Temperature: 0

• Top P: 1

• Stop Sequences:

The settings worth noting in this preset are the temperature and Top P settings.

Summary
In this chapter, we provided an overview of the tools and resources available in the
OpenAI developer console. We also took a closer look at the Playground and reviewed the
Playground settings in more depth. We learned how to select the right engine, and also
learned about using temperature and Top P, as well as frequency and presence penalties,
along with other options. Finally, we looked at some of the presets to further understand
how the settings can be used.

In the next chapter, we will move beyond the Playground and start looking at using the
OpenAI API.

4
Working with the

OpenAI API
Up to this point, everything we've done with GPT-3 has been through the Playground.
While the Playground is a great place for learning and testing, when you're building
applications that incorporate GPT-3, you'll also need to understand how to use the
OpenAI API directly. So, in this chapter, we'll look at using the OpenAI API directly by
making HTTP requests. We'll start with a general introduction to APIs and the HTTP
protocol. Then we'll look at a couple of developer tools for working with API requests and
the JSON data-interchange format.

The topics we'll cover are as follows:

• Understanding APIs

• Getting familiar with HTTP

• Reviewing the OpenAI API endpoints

• Introducing CURL and Postman

• Understanding API authentication

• Making an authenticated request to the OpenAI API

• Introducing JSON

70 Working with the OpenAI API

• Using the Completions endpoint

• Using the Semantic Search endpoint

Technical requirements
This chapter requires that you have access to the OpenAI API. You can request access by
visiting https://openapi.com.

Understanding APIs
The acronym API stands for Application Programming Interface. APIs allow software to
communicate between systems and interchange data – to share computer system resources
and software functionality. Because functionality can be shared, they also enable code
reuse. This generally improves the quality of systems while also reducing development
efforts.

Web-based APIs are exposed over the internet using HTTP, the same protocol you use
when you visit a URL in a web browser. So, using a web-based API is very much like
using a website. For example, when you use an API, you make requests to a Uniform
Resource Locator (URL), just like you do when you access a website. The URL provides
the reference for a resource, data, or functionality provided by the API.

Like a website, each API is a collection of one or more URLs, which are also referred to
as endpoints. Each endpoint provides access to a specific resource or functionality. Some
endpoints might take input data and perform a task, while others might simply return
data. The format of the input and the output data depends on the API. But most APIs use
common data interchange formats, such as JavaScript Object Notation (JSON), or just
plain text. We'll talk about the JSON data-interchange format later because that's what the
OpenAI API uses.

Since web-based APIs are accessible using HTTP and work with common data formats,
they don't depend on any specific programming language, meaning just about any
programing language or development tool that can make an HTTP request can interact
with an HTTP API. In fact, you can even use a web browser to interact with some
web-based APIs. For example, if you open http://api.open-notify.org/
astros.json in your web browser, you'll see a response that provides data about the
number of humans that are currently in space. The results aren't formatted nicely because
they're intended for machine use, not human consumption, but we can see the results
in a browser because it's using the same web protocol that websites use, as seen in the
following screenshot:

https://openapi.com
http://api.open-notify.org/astros.json
http://api.open-notify.org/astros.json

Getting familiar with HTTP 71

Figure 4.1 – Open-Notify API – JSON response

But even though HTTP APIs aren't language-specific programming, many API publishers
provide a Software Developer Kit (SDK) or a software library to make using the API
simpler to work with in a specific language. For example, OpenAI provides Python
bindings (libraries) that simplify use of the OpenAI API in the Python programming
language. These tools are essentially wrappers for the API that reduce the code you might
need to write if you are using the API without the library. We'll talk more about some of
the available libraries for the OpenAI API later, in Chapter 5, Calling the OpenAI API in
Code. For now, the important thing to note is that it doesn't matter what programming
language you choose as long as it's one that can make HTTP requests. Also, SDKs or
libraries can be helpful, but they are not essential for using the API. However, what is
essential is a basic understanding of the HTTP protocol. So, we'll talk about that next.

Getting familiar with HTTP
Because APIs are designed to be used in code, in order to work with them, you do need to
know a bit more about the HTTP protocol than you do for just accessing websites. So, in
this section, you'll learn some HTTP basics.

For starters, HTTP is a request-response protocol. So, a client (the requesting system)
makes a request to a server (the receiving system), which then responds to the client. The
client references the server and the resource being requested using a Uniform Resource
Identifier (URI).

72 Working with the OpenAI API

Uniform resource identifiers
An HTTP URI provides the details needed to make an HTTP request to a specific server
for a specific resource. To illustrate, let's break down the http://api.open-notify.
org/astros.json endpoint that we looked at previously in the Understanding APIs
section. The endpoint begins with a reference to the protocol used. In our example, this
is http://. For web-based APIs, this will always either be HTTP or HTTPS. When
HTTPS is used, this is an indicator that requests and responses between the client and
server will be encrypted. The second part of the URI (api.open-notify.org in this
example), is a reference to the server where the resource is located. Following the server
name is a reference to the resource location on the server. Some URIs will also include
parameters and values. These can be used to provide additional details or variable data
that can be used by the server to process the request.

In addition to the URI, the HTTP protocol also supports different request types, called
HTTP methods, which provide additional information about the request being made.

HTTP methods
HTTP methods let the server perform different operations using the same URL. There are
six different HTTP methods, but not all URL endpoints support all of the methods. The
two most common HTTP methods are GET and POST. The GET method tells the server
that the client wants to retrieve (or get) information, and a POST method tells the server
that the client is sending data. So, if an endpoint is used for retrieving data, the GET
method would normally be used. However, if the endpoint expects a data input, the POST
method might be used.

The HTTP body
The body of an HTTP request or response contains the main data payload. In the case
of a request, the body contains the data that will be sent to the server. In the case of the
response, the body contains the data being sent back from the server. The data sent in
the HTTP body could be any text-based payload. Commonly used formats are JSON,
XML, and plain text. So, you'll also need to know the format of the data you'll be sending
and receiving from the API you're working with. This is typically found in the API
documentation.

http://api.open-notify.org/astros.json
http://api.open-notify.org/astros.json
http://api.open-notify.org

Reviewing the OpenAI API endpoints 73

HTTP headers
The HTTP body isn't the only way to send/receive data. You can also include data as part
of the URL, or as an HTTP header. HTTP headers are key/value pairs that can be used to
send/receive values between the client and server. While HTTP headers can be used for
a variety of reasons, they usually define metadata, or data that provides details about the
request. For example, an HTTP header named Content-Type is used to tell the server
what type of data is being passed in the body, and an Authorization header can be used to
send authentication details, such as a username and password.

HTTP response status codes
When a client makes a valid request to a valid server, the server will always include
an HTTP response status code with the response. The status code is a numeric value
that provides a high-level outcome status of the response. For example, 200 indicates
a successful response, while 500 indicates an internal server error. For a full list of the
different status codes, you can visit https://developer.mozilla.org/en-US/
docs/Web/HTTP/Status. While it's not important to memorize the different status
codes, it's good to be familiar with them and to know where to look up what a code
means. This is especially true when you're having issues calling an API endpoint because
the status codes are very helpful for debugging problems.

This section just provided a very high-level overview of HTTP, but a high-level
understanding is all you need for working with the OpenAI API and most other
web-based APIs for that matter.

Reviewing the OpenAI API endpoints
Everything that we've looked at doing through the Playground can also be done via the
OpenAI API – and then some. In fact, the Playground is just a web interface that calls the
OpenAI API. It is simply exposing functionality that the API provides using a graphical
interface. So, in this section, we'll review the OpenAI functionality that's available through
the API endpoints. You'll be familiar with the functionality because you've used it through
the Playground, but after this section, you'll know how to access specific functionality
in code.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

74 Working with the OpenAI API

Using the OpenAI API, you can do the following through the available endpoints:

• Create completions

• List available engines

• Get engine details

• Perform semantic searches

All of the OpenAI API endpoints require authentication. So, they can't just be called with
a browser, like the Open-Notify API that we looked at earlier. But we'll hold off on talking
about authentication just yet and review each of the available endpoints.

List Engines
The List Engines endpoint is a metadata API, meaning it provides data about the system
itself. Specifically, a list of the available engines along with some basic information about
each engine. OpenAI is actively working on new engines and updating existing ones, so
the List Engines endpoint will provide a list of currently available engines.

The List Engines endpoint uses the HTTP GET method and doesn't require any request
parameters. The following is the HTTP method (GET) and URI for the List Engines
endpoint:

GET https://api.openai.com/v1/engines

Next is the Retrieve Engine endpoint!

Retrieve Engine
The Retrieve Engine endpoint is also a metadata API. It returns details about a specific
engine. Like the List Engines endpoint, the Retrieve Engine endpoint also uses the HTTP
GET method and requires that an engine ID is included as part of the URI path. The
possible engine ID values can be retrieved from the List Engines endpoint.

The Retrieve Engine endpoint uses the HTTP GET method and the following URI with
one parameter, the engine ID:

GET https://api.openai.com/v1/engines/{engine_id}

Next is the Create Completions endpoint – the one you'll likely be using the most.

Introducing CURL and Postman 75

Create Completions
The Create Completions endpoint is the endpoint you'll be using most of the time. This is
the endpoint that takes in a prompt and returns the completion results. This endpoint uses
the HTTP POST method and requires an engine ID as part of the URI path. The Create
Completions endpoint also accepts a number of additional parameters as part of the
HTTP body. We'll discuss those parameters later in this chapter.

The Completions endpoint also uses the POST method and requires an engine ID as
a URI parameter:

POST https://api.openai.com/v1/engines/{engine_id}/completions

It's also worth noting that there is an experimental Create Completions endpoint for
streaming results to a browser. It is called using the HTTP GET method and parameters
are passed in the URI. You can learn more about this endpoint by visiting https://
beta.openai.com/docs/api-reference/create-completion-via-get.

Semantic Search
The Semantic Search endpoint can be used to perform a semantic search over a list of
documents. A semantic search compares a search term to the contents of a document
to identify documents that are semantically similar. The documents to be searched
are passed to the endpoint as part of the HTTP body and up to 200 documents can be
included. This endpoint uses the HTTP POST method and requires an engine ID to be
passed as part of the endpoint URI.

The Semantic Search endpoint uses the POST method and requires an engine ID as a URI
parameter:

POST https://api.openai.com/v1/engines/{engine_id}/search

As web-based APIs go, the OpenAI API is relatively simple to work with, but before we
give it a go, let's discuss a couple of development tools we can use to start testing the API.

Introducing CURL and Postman
In this section, we'll look at a couple of developer tools for working with APIs. As
we've discussed, APIs are designed to be used in code. However, during the development
process, you'll often want to call an API endpoint without writing code to get familiar with
the functionality or for testing. To do that, there are a number of developer tools available.
Two of the most popular developer tools for working with APIs are CURL and Postman.

https://beta.openai.com/docs/api-reference/create-completion-via-get
https://beta.openai.com/docs/api-reference/create-completion-via-get

76 Working with the OpenAI API

CURL
CURL is a popular command-line tool for making HTTP requests. It's been around
since 1998, so it's very mature and widely used. Many API publishers, including OpenAI,
provide API examples, using CURL syntax in their documentation. The following
screenshot shows an example of the CURL syntax used in the OpenAI API docs. So, even
if CURL isn't the tool you decide to use in the long run, it's helpful to be familiar with it.

The following screenshot shows CURL syntax in the OpenAI API documentation:

Figure 4.2 – Curl command in the OpenAI API docs

Curl is available for Linux, Mac, and Windows and comes installed by default on most
Linux and Mac machines as well as on Windows computers (running Windows 10 Build
1707 or later).

Important note
To check your version of Windows, press Windows+R on your keyboard to
open the Run dialog box. Then, type in winver (without the quotes) and
click OK.

You can verify whether CURL is installed from the command line. On Linux and Mac,
the command line is accessible using the terminal application. On Windows, open the
command prompt to access the command line. At the command line, you can enter the
curl --help command to confirm that CURL is installed. If CURL is installed, you
should see something like what's shown in the following screenshot:

Introducing CURL and Postman 77

Figure 4.3 – Curl Help command

If you don't have CURL installed, you can download it from the official CURL site at
https://curl.se/download.html.

There are entire books on using CURL, so we're only going to scratch the surface of its
functionality here. We'll be talking about CURL for working with API calls, but it's not
just for working with APIs – it can be used to make any HTTP request. For example, if
you entered curl https://dabblelab.com at the command prompt and hit the
Return key, CURL would fetch the dabblelab.com home page. However, CURL is not
a browser, so what you'll see is raw HTML code rather than a nicely formatted web page as
you'd see if you were using your browser.

https://curl.se/download.html
https://dabblelab.com
http://dabblelab.com

78 Working with the OpenAI API

As we take a closer look at the OpenAI API, we'll look at making different API calls with
CURL. But before we do that, let's take a look at Postman, an alternative to using CURL.

Postman
Postman is another developer tool for working with APIs. Unlike CURL, Postman has
a graphical user interface. So, if the command line isn't your thing, you'll probably prefer
Postman. You can use Postman from your browser, or you can download a version for
Linux, Mac, or Windows. For our examples, we'll be using the web version because
there is no software to install; you just need to sign up for a free account at https://
postman.com.

The following screenshot shows the Postman home page. You just need to complete the
signup process to start using Postman:

Figure 4.4 – Postman home page

After signing up, you'll be presented with a short onboarding process. Complete the
onboarding process and when you're done, you should see a screen similar to the
following screenshot:

https://postman.com
https://postman.com

Introducing CURL and Postman 79

Figure 4.5 – Postman welcome screen

Like CURL, there is a lot to Postman and we're only going to look at a small subset of what
Postman does. But at its core, Postman is a tool for calling API endpoints and inspecting
the results the API endpoint returns. We will start with a quick walk-through that will
show you how to make your first API request using Postman.

Making a request with Postman
To get started with Postman, let's make a request to the Open-Notify API endpoint that
we looked at previously in our browser. To do that, complete the following steps:

1. After logging in to Postman.com, click the Create New link. If you're prompted to
download the Desktop agent, click the Skip for now button. This will bring you to
your workspace, which will look something like the following screenshot:

Figure 4.6 – My Workspace

http://Postman.com

80 Working with the OpenAI API

Note that the right side of the workspace is a tab interface that, by default, will have
the Overview tab open. Just to the right, you'll see a plus sign that can be used to
open a new tab.

2. Click the plus sign to open a new tab, enter the request URL (http://api.
open-notify.org/astros.json), and then click the Send button. You should
see results similar to the following screenshot:

Figure 4.7 – Postman request results

Notice how the JSON results in Figure 4.7 are formatted in a way that's easy to read. This is
just one of many helpful things Postman does for us. As we delve further into the OpenAI
API, we'll also cover more Postman features. But let's keep moving and discuss how to call
the OpenAI API since it requires authentication.

Understanding API authentication
Some websites are public, while others require you to log in before you can access content
or functionality. The same is true for APIs. The Open-Notify API that we looked at in
the Understanding APIs section is open to the public and doesn't require any kind of
authentication. The OpenAI API, on the other hand, is private and therefore requires
authentication to use it.

http://api.open-notify.org/astros.json
http://api.open-notify.org/astros.json

Understanding API authentication 81

An API authentication process does the same thing as a website login, but in a way that
is practical for applications rather than humans. There are many different ways in which
APIs can authenticate application requests, but we're going to focus on one of the most
common methods, basic authentication, because that's what the OpenAI API uses.

Basic authentication is an authentication method that is native to HTTP. It allows
a username and password to be included in an HTTP header. To keep credentials secure,
requests and responses to the API should be encrypted. So, an API endpoint URL that
uses basic authentication should always use Secure Socket Layer (SSL), which you can
identify by a URL that begins with HTTPS as opposed to just HTTP.

In the case of the OpenAI API, rather than sending your username and password, you
use an API key. An API key is like a username and password rolled into one string. The
benefit of using an API key is that it can be easily changed or renewed without having to
change your OpenAI password.

We looked at where you can find your API key in Chapter 3, Working with the OpenAI
Playground, but to review, you can access your OpenAI API key under your user settings.
From the same location, you can also expire and generate a new API key with the Rotate
Key button.

The following screenshot shows the API Keys screen under the account settings:

Figure 4.8 – API Keys

With your API key, you have everything you need to make a request to the OpenAI API.
But before we do that, let's talk for a minute about the importance of keeping API keys
private.

82 Working with the OpenAI API

Keeping API keys private
Even though API keys can be easily changed, they should be kept private, just like
a username and password, because they also provide access to your account. So, take
precautions to ensure that your API keys don't get compromised accidentally. This can
be easy to do by mistake if you're not careful. For example, the OpenAI documentation
includes your API key to make trying code samples simple. But if you take a screenshot
of documentation for a blog post or something like that, you'll expose your API key to
anyone who sees the image if you don't blur it out. The following screenshot shows an
example of a documentation page that includes an API key. In the example, the key has
been blurred out, but you can see how it would be exposed if that wasn't the case:

Figure 4.9 – API key in documentation

Another common way to mistakenly expose API keys is when they are included with
source code that is shared. We'll look at how to avoid that in Chapter 5, Calling the OpenAI
API in Code, but the main point here is that you need to be cautious because your API key,
like your username and password, provides access to your account.

Now that you know how to find your API key and keep it safe, let's look at using it to
make our first call to the OpenAI API.

Making an authenticated request to the OpenAI API 83

Making an authenticated request to the
OpenAI API
It's time to make our first request directly to the OpenAI API. To do that, we'll need
to include our API key as part of an HTTP header. The header name we'll be using is
authorization and the value will be the word Bearer, followed by a space and then your
API key. When an API key is used like this, it's often also referred to as a bearer token.
This is a standard defined by an authorization protocol called OAuth 2.0. You can learn
more about OAuth 2.0 by visiting https://oauth.net/2/.

Postman makes it really easy to use bearer tokens. But before we make an authenticated
request, let's look at what happens if we try to make a request without our API key. The
following screenshot shows a request to the List Engines endpoint URL, https://
api.openai.com/v1/engines, without any authorization header. You can see an
error message was returned. You'll also notice that the HTTP response status code is 401
UNAUTHORIZED:

Figure 4.10 – API request without the API key

To resolve the error, we need to include our API key as the bearer token. Since we'll be
using the API key for every request, we'll set up a Postman variable for the API key.

https://oauth.net/2/

84 Working with the OpenAI API

Setting up Postman variables
Variables in Postman allow you to store and reuse values rather than having to enter them
over and over. Variables can also be grouped into a Postman environment. So, we're going
to set up an environment named openai-dev and add a variable named OPENAI_API_
KEY to store our API key.

To set up a Postman environment and a variable for your API key, use the following steps:

1. Click the eyeball icon in the upper-right corner of the request.

2. Click the Add link to add a new environment.

3. Name the environment openai-dev.

4. Add a variable named OPENAI_API_KEY.

5. Enter your API key in the INITIAL VALUE input box.

6. Click the Save icon to save the environment and variable.

7. Close the openai-dev environment tab.

8. Choose the new environment from the environment option list in the upper-right
corner. By default, it should say No Environment, and you'll want to select
openai-dev, as shown in the following screenshot:

Figure 4.11 – Postman with the environment set

Making an authenticated request to the OpenAI API 85

With the environment and the OPENAI_API_KEY variable in place, you can use your
API key by just including {{OPENAI_API_KEY}} in place of the actual key value. Now,
let's try it out by using it to set an authorization header for our request to the Engines
endpoint.

Setting the authorization header
Now that your OpenAI API key is set as a Postman variable, perform the following steps
to test it out:

1. Click on the Authorization tab just below the request URL input box.

2. Choose the Bearer Token option from the Type drop-down list.

3. Enter {{OPENAI_API_KEY}} in the Token input box.

4. Click the Send button.

You should see a successful response (HTTP status 200), as demonstrated in the following
screenshot:

Figure 4.12 – API request using the API key as a bearer token

86 Working with the OpenAI API

As mentioned earlier, the bearer token is sent as an HTTP header. To see the header in
Postman, click on the Headers tab and then unhide the hidden headers, and you'll see the
Authorization header with your API key as the bearer token value, as demonstrated in
the following screenshot:

Figure 4.13 – Authorization header with the API key as a bearer token

While we're talking about authorization and HTTP headers, it's also important to note
that if your user account is associated with multiple organizations, you'll also need to
provide an organization ID to associate your API requests with the organization you'd like
the requests to be billed to.

Working with multiple organizations
To associate API requests with a specific organization, you'll include an
OpenAI-Organization HTTP header with the organization ID for the organization you
want to associate your requests with. This is only required when your user account is
associated with multiple organizations.

To add the OpenAI-Organization header in Postman, scroll to the bottom of the list of
existing headers and add a new one with the name OpenAI-Organization and make
the value an organization ID that your account is associated with. Better yet, add a new
environment in Postman named OPENAI_ORGANIZATION_ID and add {{OPENAI_
ORGANIZATION_ID}} as the value. As a reminder, you can find your organization ID
on the account settings page in the OpenAI developer console, as seen in the following
screenshot:

Making an authenticated request to the OpenAI API 87

Figure 4.14 – Finding your organization ID

When you've added your organization ID value to the OpenAI-Organization header in
Postman, you'll see it in the headers list, as seen in the following screenshot:

Figure 4.15 – Using the OpenAI-Organization HTTP header

Throughout the rest of this book, we'll be using Postman to illustrate and test API calls.
But before we move on, let's take a look at making an authenticated API call with CURL.

88 Working with the OpenAI API

Recall that CURL is a command-line tool. So, it doesn't have a graphical user interface
like Postman. With CURL, HTTP headers are passed as command-line parameters. The
following is an example of a CURL command for calling the List Engines endpoint:

curl https://api.openai.com/v1/engines \

 -H 'Authorization: Bearer {your-api-key}' \

 -H 'OpenAI-Organization: {your-orgainzation-id}'

After replacing the {your-api-key} placeholder and the {your-
organization-id} placeholder, this command will return something like the results
shown in the following screenshot:

Figure 4.16 – Using CURL to call the List Engines endpoint

Now that you know how to make authenticated calls to the OpenAI API, let's take
a minute to talk about JSON, the data-interchange format that the OpenAI API uses.

Introducing JSON 89

Introducing JSON
In this section, we'll do a quick introduction to JSON. JSON is a popular data-interchange
format that is lightweight, easy for machines to parse, and easy for humans to read.

The JSON syntax is based on a subset of the JavaScript programming language and
it defines two data structures:

• A collection of name/value pairs

• An ordered list of values

These two data structures are supported in one way or another by virtually all modern
programming languages. So, although the JSON syntax is based on a subset of JavaScript,
it can be easily used with other languages as well.

The two data structures in JSON are defined as either an object or an array. An object
begins with a left brace and ends with a right brace. An empty object would look like the
following example:

{}

An object can contain a set of name/value pairs, referred to as elements. Elements in an
object don't need to be in any particular order and the value can be a string (enclosed in
double quotes), a number, true or false, null, another object, or an array. Element names
and values are separated by a colon, and elements themselves are separated by a comma.
The following code block is an example of a JSON object from an OpenAI API response.
You'll notice that it starts and ends with braces and contains different elements with names
and values. Notice that the value of the "choices" element contains a value that begins
with a left bracket and ends with a right bracket – that is an array:

{

 "id": "cmpl-2T0IrOkctsOm8uVFvDDEmc1712U9R",

 "object": "text_completion",

 "created": 1613265353,

 "model": "davinci:2020-05-03",

 "choices": [

 {

 "text": ", there was a dog",

 "index": 0,

 "logprobs": null,

 "finish_reason": "length"

 }

90 Working with the OpenAI API

]

}

An array is an ordered collection of values. The values could be a collection of strings,
numbers, true or false values, null values, objects, or other arrays. An array always begins
with a left bracket and ends with a right bracket and the values are separated by a comma.

In the previous example object, the value for the "choices" element is an array with one
object in it. That object contains elements (text, index, logprobs, finish_reason)
with values. So, objects and arrays can be nested.

The last thing to note about JSON is that the formatting of the text, things such as spaces,
tabs, and line returns, is done for human readability but is not required by machines. So,
as long as the syntax is valid, it's useable in code.

For example, the following two JSON objects are the same and both are valid:

Example 1:

{"question":"Is this correct? ","answer":"Yes"}

Example 2:

{

 "question" : "Is this correct?",

 "answer" : "Yes"

}

As mentioned previously in this section, the OpenAI API uses JSON to send and receive
data between the client and server. The introduction in this section should be enough to
begin working with the OpenAI API, but to learn more about JSON, you can also visit
https://www.json.org/.

At this point, you've learned everything you need to begin using the main OpenAI API
endpoint – the Completions endpoint. So, let's dive into that next.

Using the Completions endpoint
When you're working with the OpenAI API, most of what you'll be doing will probably
involve using the Completions endpoint. This is the endpoint you send prompts to. In
addition to submitting your prompt, you can also include values to influence how the
completion is generated, like the setting in the Playground.

https://www.json.org/

Using the Completions endpoint 91

Using the Completions endpoint is a little more involved than using the List Engines
endpoint that we looked at in the last section, Introducing JSON. This is because the
Completions endpoint uses the HTTP POST method and requires a JSON object as the
body. Technically, the JSON body could just be an empty object (just a left and right curly
brace, like {}), but minimally, you'll want to include at least the prompt element with
the value set to your prompt string, something like the following JSON example:

{"prompt": "Once upon a time"}

The preceding example is a simple one but here's how we'd submit it using Postman.
Assuming the authorization was set up as discussed in the previous section, there are five
steps to completing to call the Completions endpoint from Postman. These steps are as
follows:

1. Set the request type to POST.

2. Enter https://api.openai.com/v1/engines/davinci/completions
for the endpoint.

3. Set the body to raw.

4. Select JSON as the body content type.

5. Enter {"prompt": "Once upon a time"} as the JSON body text.

The labels on the following screenshot show where each of the steps is completed:

Figure 4.17 – Postman settings for the Completions endpoint

92 Working with the OpenAI API

After clicking the Send button, we get a response from the Completions endpoint, as
shown in the following screenshot:

Figure 4.18 – Postman response from the Completions endpoint

By default, Postman will display the JSON response using the Pretty setting, which makes
it friendly for human viewing. But if you toggle on the Raw setting, you'll see how the
response is actually sent, as the following screenshot shows:

Figure 4.19 – Postman response from the Completions endpoint – Raw

Using the Completions endpoint 93

The previous example was a simple one with just one request parameter – the prompt.
However, the endpoint accepts a number of additional parameters that are similar to
the settings in the Playground. To include additional parameters with the request, the
parameters are included as elements in the JSON body object. For example, to send the
prompt and limit the number of tokens returned (like the response length setting does in
the Playground), we can include the max_tokens parameter, as shown in the following
screenshot:

Figure 4.20 – Postman response from the Completions endpoint with max_tokens

Notice that in order to include the max_tokens parameter and value, a new max_
tokens element is added to the JSON body object and separated from the "prompt"
element by a comma. Additional parameters would be added the same way.

A list of all the available parameters can be found at https://beta.openai.com/
docs/api-reference/create-completion and we won't cover them all here.
However, most of them have an equivalent setting in the Playground that we covered in
Chapter 3, Working with the OpenAI Playground, so they'll be familiar to you.

But before we move on, let's take a look at another example, one that you can't do from the
Playground. In this example, we're going to submit multiple prompts simultaneously and
get back a completion for each. We'll use the following JSON:

{

 "prompt": ["The capital of California is:", "Once upon a
time"],

 "max_tokens":7,

 "temperature": 0,

 "stop": "\n"

}

https://beta.openai.com/docs/api-reference/create-completion
https://beta.openai.com/docs/api-reference/create-completion

94 Working with the OpenAI API

Notice that the value for the "prompt" element is a JSON array with two values, "The
capital of California is:", and "Once upon a time". By sending an array
of prompts, the Completions endpoint will send back completions for each prompt, as the
following screenshot shows:

Figure 4.21 – Sending multiple prompts

The main takeaway from this example is that there are things you can do with the API
that you can't do in the Playground. So, understanding how to work with the OpenAI API
enables you to go beyond what you can do in the Playground.

Another example of something you can do from the API but not the Playground is
semantic searching. Let's look at that next.

Using the Semantic Search endpoint
In Chapter 2, GPT-3 Applications and Use Cases, we discussed semantic search. By way
of a review, semantic search lets you perform a Google-like search over a list of provided
documents. A query (a word, phrase, question, or statement) is compared to the contents
of documents to determine whether semantic similarities exist. The result is a ranking,
or score, for each document. The score is usually between 0 and 300 but can sometimes go
higher. A higher score, above 200, typically means the document is semantically similar to
the query.

Using the Semantic Search endpoint 95

To perform a semantic search using the API, you'll make a POST request to the Semantic
Search endpoint. Like the Create Completions endpoint, you'll also include a JSON
object in the request body. The JSON body object has two elements – the documents
element and the query element. The documents element is an array of documents to be
searched, and each item in the array is a string that represents a document. Alternatively,
a document can be provided in a pre-uploaded file that can be referenced in the request.
In Chapter 9, Building a GPT-3 Powered Question-Answering App, we'll look at using files
in detail. For now, however, we'll focus on providing documents as an array with the
endpoint request.

A document could be a single word, sentence, paragraph, or longer text. The value of
the query element is a string containing the search word or phrase that will be searched
against the documents. This might be something like a question or a statement.

Again, a semantic search ranks a query based on how semantically similar it is to one
or more documents. So, it's not necessarily a search for similar words. For example, the
following JSON object provides a list of vehicles (plane, boat, spaceship, or car) as the
documents and the query "A vehicle with wheels":

{

 "documents": [

 "plane",

 "boat",

 "spaceship",

 "car"

],

 "query": "A vehicle with wheels"

}

Let's take a look at what the results would look like from the previous JSON. We'll use
Postman. Remember that all of the OpenAI API endpoints require authorization, so, in
Postman, we first make sure that the proper authorization settings are in place. From
there, the steps are the same as making a request to the Completions endpoint:

1. Set the request type to POST.

2. Enter the URI endpoint.

3. Set the body to raw.

4. Select JSON as the body content type.

5. Enter the JSON body.

96 Working with the OpenAI API

The Semantic Search endpoint URI is https://api.openai.com/v1/engines/
{engine_id}/search, where {engine_id} is replaced by a valid engine ID (such as
davinci or ada). After setting up and submitting the API call in Postman, you should
see results like those in the following screenshot:

Figure 4.22 – Semantic Search results

The JSON object returned by the Semantic Search endpoint contains three elements: an
object, data, and an engine. The value of the data element is a JSON array of results – one
item for each document. Recall from our earlier introduction to JSON that items in an
array are ordered, meaning that each item can be referenced by a number, the first one
starting with zero. So, in our example, the following values would apply:

• 0 = plane

• 1 = boat

• 2 = spaceship

• 3 = car

Using the Semantic Search endpoint 97

Knowing that each document is associated with a numeric value, when you look at the
following results returned from the search API, you can see that document 3 (car) got the
highest score and therefore represents the document that is most semantically similar:

{

 "object": "list",

 "data": [

 {

 "object": "search_result",

 "document": 0,

 "score": 56.118

 },

 {

 "object": "search_result",

 "document": 1,

 "score": 46.883

 },

 {

 "object": "search_result",

 "document": 2,

 "score": 94.42

 },

 {

 "object": "search_result",

 "document": 3,

 "score": 178.947

 }

],

 "model": "davinci:2020-05-03"

}

The document number rather than the document itself is included in the data array
because the document itself might be a long string of text and using the document
number is more efficient. So, you will need to match the results returned to the documents
sent. But that's relatively straightforward when you're working with code – and that's
exactly what we'll get started on in the next chapter.

98 Working with the OpenAI API

Summary
In this chapter, we looked at working with the OpenAI API. We started with an
introduction/review of what an API is and then we became familiar with the basics of
the HTTP protocol. We reviewed the OpenAI API endpoints and covered how to access
the API using basic authentication with an OpenAI API key and how to authenticate
for an account with access to multiple organizations. From there, we learned about the
JSON data-interchange format before learning how to make API calls to the Completions
endpoint, the Engines endpoint, and the Semantic Search endpoint using Postman.

In the next chapter, we'll put the knowledge acquired in this chapter to work and dive into
using code to call the API.

5
Calling the OpenAI

API in Code
In the previous chapter, we looked at calling the OpenAI API using Postman. In this
chapter, you'll learn how to start using the API in code. Since the OpenAI API can be
used with virtually any programming language, we'll take a look at two popular languages,
JavaScript and Python. If you're not a programmer, no problem. We'll be using an online
environment that makes getting started with code super simple. Plus, easy-to-follow code
examples are provided in both JavaScript and Python so you can choose the language that
is most comfortable for you. Also, for clarity, the examples are purposely written with as
little code as possible. So, the examples may not always follow coding best practices, but
the goal is to make following along easy!

The topics we'll cover in this chapter are as follows:

• Choosing your programming language

• Introducing replit.com

• Using the OpenAI API with Node.js/JavaScript

• Using the OpenAI API with Python

• Using other programming languages

100 Calling the OpenAI API in Code

Technical requirements
This chapter requires that you have access to the OpenAI API. You can request access by
visiting the following URL: https://openai.com.

Choosing your programming language
The OpenAI API is a standards-based API that can be used with virtually any modern
programming language. In this chapter, we'll walk through examples in JavaScript and
Python. But these are just two of the many languages that could be used. JavaScript and
Python were selected because they are both extremely popular and easy to get started with.
If you're proficient with another modern programming language, that's probably the best
option for you. However, if you're new to programming, your coding skills are rusty, or
you're interested in dabbling in a new language, then JavaScript and Python are both great
languages. But the examples for each language will all be the same – just the programming
language is different. So, you can skip to the section that covers the language you prefer. Or,
if you're feeling adventurous, of course, you're free to try them both!

Introducing replit
In this chapter and the following chapters, we're going to be writing code. So, we'll need a
code editor of some sort. As with programming languages, when it comes to code editors,
there are many to choose from. The right one is a matter of personal preference and
opinion. For our examples, we'll be using an online code editor from replit.com.

While all of the examples we'll be working through could be done in any code editor,
replit lets us skip the installation and software setup process because we can do everything
in our web browser.

Plus, with a code editor, some setup on your local computer would be required. For example,
for both JavaScript and Python a runtime environment needs to be installed. We're going to
skip all that so we can focus more time on learning GPT-3 and the OpenAI API.

So, what is replit.com? It's an in-browser code editor and Integrated Development
Environment (IDE) that lets you start coding in over 50 programming languages without
spending any time setting up a local development environment. So, for our examples,
you can jump right into the code even if you don't have your local computer set up to run
Node.js or Python.

https://openai.com
http://replit.com

Introducing replit 101

The following screenshot shows the replit home page, which is where you'll go to set up a
free replit account if you don't have one:

Figure 5.1 – The replit home page

Creating an account is just a matter of clicking the signup button and completing the
signup process. For the examples in this book, a free account is all you need.

After you've signed up, you'll be logged in to the default home screen as Figure 5.2 shows:

Figure 5.2 – Replit default home screen

From here, we'll create two code projects, which are referred to as repls in replit.

102 Calling the OpenAI API in Code

Creating a repl
We'll be looking at code examples in JavaScript and Python. So, we'll need to set up a
repl for each. For JavaScript, we'll be using Node.js (or just Node), which is a runtime
environment for JavaScript. We'll talk more about Node in the Using the OpenAI API with
Node.js/JavaScript section. We will start by creating a repl for Python. Then, we'll create a
repl for Node.js/JavaScript.

Creating a repl for Python
Lets' start by creating a new repl for Python. If you'd prefer to just follow along using just
Node.js/JavaScript, you can skip to Creating a repl for Node.js.

From the home screen, click on the + New Repl button:

1. Choose Python from the repl type dropdown.

2. Name the repl exploring-gpt3-python.

3. Click the Create repl button.

Next, we'll create a repl for Node.js. If you'll only be using Python, you can skip the
next section.

Creating a repl for Node.js
If you're following along with Node.js, you'll need a Node repl. To create a Node repl, use
the following steps. From the home screen, click on the + New Repl button:

1. Choose Node.js from the repl type dropdown.

2. Name the repl exploring-gpt3-node.

3. Click the Create repl button.

The following screenshot shows a new repl being created for Python. Again, for JavaScript,
you'd select Node.js rather than Python and then name the repl exploring-gpt3-node:

Introducing replit 103

Figure 5.3 – Setting up a repl for Python

After a repl is created, you're automatically redirected to the replit editor with your new
repl loaded. The editor is broken down into three panes: the Navigation pane, the Code
editor pane, and the Output pane. New repls include a default file that is opened in the
code editor (the middle pane) when you first access the repl.

In the case of a Python project, the default file is named main.py; for a Node.js project,
the default file is named index.js. The following screenshot shows the replit editor with
the exlploring-gpt3-python repl loaded and main.py open in the editor pane. A Node.
js repl would look the same but the default file would be named index.js rather than
main.py:

Figure 5.4 – The Replit editor with a default Python repl

104 Calling the OpenAI API in Code

The default file is the code file that gets run by default when the Run button is clicked. The
run button is located in the middle of the top navigation bar located just above the three
editor panes. The results or output from the code is then shown in the replit console – the
output pane on the right.

Important note
The default files are empty when a repl is first created, so clicking the Run
button won't do anything until you write some code.

Above the three editor panes, on the left side of the top navigation bar is a hamburger
menu (the icon that looks like stacked lines). If you click that icon, the main navigation
options will be displayed. You can use this menu to navigate between repls by selecting the
My repls menu and choosing the repl you want to open.

The following screenshot shows the main menu with the My repls option selected:

Figure 5.5 – Accessing the main navigation menu

After creating a repl for the language you want to work with (or both languages), y, you'll
want to store your OpenAI API key as an environment variable.

Setting your OpenAI API key as an environment
variable
Environment variables are named values that can be accessed in code but don't get shared
with others. You typically use environment variables to set parameter values that are
private or specific to a user, for example, your OpenAI API key.

Introducing replit 105

In replit, you can save environment variables by clicking on the padlock icon (Secrets)
in the navigation pane and adding a name and value pair. You'll need to do this for each
repl you're working with – so, one in your exploring-gpt3-node repl and/or in your
exploring-gpt3-python repl. To add your OpenAI API Key as an environment variable,
do the following:

1. Open your repl.

2. Click the padlock icon (Secrets) in the middle of the navigation pane like the
following screenshot shows:

Figure 5.6 – Adding a new secret/environment variable in Replit

3. In the Key input textbox, add OPENAI_API_KEY.

4. In the Value input text area, paste in your OpenAI API.

5. Click the Add new secret button.

Again, you'll need to add the OPENAI_API_KEY secret/environment variable to each
repl. So, you'll complete the preceding steps twice if you're following along with both
Node.js and Python.

106 Calling the OpenAI API in Code

Important note
If you're using a free version of replit.com your code will be public by default.
However, secrets/environment variables don't get shared
publicly but can be seen by collaborators who you explicitly invite to the repl.
This is important because you don't want to share or accidentally expose your
OpenAI API key. To read more about using secrets and environment variables
in replit, visit https://docs.replit.com/repls/secret-keys.

Before we start coding, there is one more special file we need to create, the .replit file.

Understanding and creating the .replit file
In replit, by default, when you click the Run button the main.py file will be run for
Python repls and the index.js file will be run for Node.js repls. However, you can create
a file named .replit and change the code file that will be executed by the Run button.
As we work through different examples, we'll be creating and testing code in multiple files.
So, we're going to need a .replit file. To create a .replit file, do the following:

1. Open your repl.

2. Click the add file icon on the top-right side of the navigation pane.

3. Name the file .replit.

4. Add the following text to the first line of the .replit file:

For Python repls:
run = "python main.py"

For Node.js repls:
run = "node index.js"

You might have noticed that we've just added instructions to run the file that would be
run by default. That's okay for now, we'll come back and edit the run statement in our
.replit file later.

After you've created a repl for Node.js and/or a repl for Python with your OpenAI API
key added as an environment variable, and a .replit file, you're ready to start coding.
So, in the next section, we'll look at examples using Node.js/JavaScript. But, if you're just
following along with Python, you can skip ahead to Using the OpenAI API in Python.

https://docs.replit.com/repls/secret-keys

Using the OpenAI API with Node.js/JavaScript 107

Using the OpenAI API with Node.js/JavaScript
JavaScript is the first programming language we're going to look at. JavaScript was
originally created for scripting functionality on web pages. However, today, JavaScript can
be used for just about any type of application development, from building websites and
mobile apps to creating command-line tools, chatbots, and voice assistants – all thanks to
Node. As mentioned previously, Node is a runtime environment for JavaScript. It lets us
use JavaScript outside the web browser.

JavaScript and Node.js are both free to use and can be run on Linux, macOS, and
Windows operating systems. But we won't be installing Node.js or running anything
locally because all of our code will be run on replit. However, none of the code we'll be
writing is in any way dependent on replit. So, everything we'll be doing could be done in
any environment that was properly configured for Node development.

Alright, let's get to coding. To use the OpenAI API in Node, we essentially just need to
do what we did in Chapter 4, Working with the OpenAI API – make authenticated HTTP
requests to the OpenAI API endpoints. But rather than using Postman, we'll be making
HTTP requests with JavaScript. We'll start with the simplest example – calling the engines
endpoint.

Calling the engines endpoint
We'll start by setting up a new folder for the code we'll be working on in this chapter. Then
we'll add a file for our first example and update the .replit file so the replit Run button
executes our new file. Here are the steps to follow:

1. Open your exploring-gpt3-node repl.

2. Click the Add folder icon in the top right of the navigation pane.

3. Name the folder chapter05.

4. Select the chapter05 folder and then click the Add file option and add a new file
named engines.js.

5. Edit the .replit file so the Run button executes chapter05/engines.js
using the following text:

run = "node chapter05/engines.js"

108 Calling the OpenAI API in Code

6. Now, open the chapter05/engines.js file in your replit editor by clicking on
the filename in the navigation pane. Your replit editor should look something like
the following screenshot:

Figure 5.7 – Editing engines.js in the Replit editor

7. So, now we're going to write some code to call https://api.openai.com/v1/
engines. There are a number of ways to make an HTTP request with Node and
JavaScript. We won't get into all of the different options or the pros and cons of one
approach over another. We're just going to use a popular code library (referred to as
a module in Node) called axios.

Important note
Packaged and shared code libraries are common across most modern
programming languages. In Node.js, packages (or modules) are most
commonly shared using a package manager called npm. To learn more about
Npm, you can visit https://npmjs.com. replit automatically manages
package dependencies for Node.js projects. However, in a local development
environment, the Npm command-line tool would most commonly be used to
manage packages used in code.

8. In short, the axios module minimizes the code we need to write to make HTTP
requests using JavaScript. So, we'll include a reference to the axios module on the
first line of our engines.js file with the following code:

const axios = require('axios);

https://npmjs.com

Using the OpenAI API with Node.js/JavaScript 109

9. You'll recall from Chapter 4, Working with the OpenAI API, that all of the OpenAI
API endpoints require authorization. So, on the next line, we'll add a variable to
hold our OpenAI API key. But rather than hardcoding the value, we will pull it from
the environment variable we set up:

const apiKey = process.env.OPENAI_API_KEY;

10. Next, we'll create an in-code HTTP client to make the requests. The axios module
makes this super simple. To create the HTTP client instance, we'll add the following
code:

const client = axios.create({

 headers: { 'Authorization': 'Bearer ' + apiKey }

});

Note in the preceding code that we've added an HTTP Authorization header
that uses our OpenAI API key as the bearer token. This lets the axios client make
authenticated requests to the API endpoints. All that remains is code to actually
make the request. Here is what that code looks like:

client.get('https://api.openai.com/v1/engines')

 .then(result => {

 console.log(result.data);

}).catch(err => {

 console.log(err.message);

});

In the preceding code, we're using the axios client instance to make a GET request
to the https://api.openai.com/v1/engines endpoint. Then, we're logging
the results returned from the endpoint to the console. Or, in the case of an error,
we're logging the error message to the console.

110 Calling the OpenAI API in Code

11. At this point, you should be able to click the Run button in replit and see the results
in the replit console, where there'll be an output like what's shown in the following
screenshot:

Figure 5.8 – Results from running the engines.js code

So, with 12 lines of code (really 11 since one line is blank), we've made our first API
request using JavaScript and Node.

Now let's take a look at calling the Completions endpoint. This one is a bit more involved
because we need to send data to the endpoint. But still, the code is pretty simple.

Calling the Completions endpoint
Now we'll look at calling the Completions endpoint. We'll start by creating a new file
named completions.js in the chapter05 folder and we'll edit our .replit file so
the Run button will execute our new file. To do that, follow these steps:

1. Open your exploring-gpt3-node repl.

2. Select the chapter05 folder in the navigation pane.

3. Click the Add file option and add a new file named completions.js.

Using the OpenAI API with Node.js/JavaScript 111

4. Edit the .replit file so the Run button executes chapter05/completions.
js using the following text:

run = "node chapter05/completions.js"

5. Next, copy the first five lines of code from chapter05/engines.js into
chapter05/completions.js so your completions.js file starts with the
following code:

const axios = require('axios');

const apiKey = process.env.OPENAI_API_KEY;

const client = axios.create({

 headers: { 'Authorization': 'Bearer ' + apiKey }

});

For the Completions endpoint, we'll be sending parameters. So, the next thing
we'll do is add what will become the JSON object that is sent in the HTTP body.
Recall from Chapter 4, Working with the OpenAI API, that there are a number of
parameters the Completions endpoint accepts. But for this example, we're just going
to be sending the prompt parameter and the max_tokens parameter. Here is
what the code for that looks like:

const completionParams = {

 "prompt": "Once upon a time",

 "max_tokens": 10

}

All that's left is to actually make the request. This time we'll be making an HTTP
POST and passing our parameters. So, the code is slightly different from the last
example but here is what it looks like:

client.post('https://api.openai.com/v1/engines/davinci/
completions', completionParams)

 .then(result => {

 console.log(result.data);

}).catch(err => {

 console.log(err);

});

112 Calling the OpenAI API in Code

That's it. Now when you click the Run button in replit, you should get a result back
from the Completions endpoint that looks something like the following screenshot:

Figure 5.9 – Output from Completions.js

As we discussed in Chapter 4, Working with the OpenAI API, the responses returned from
the endpoints are in JSON format. But if you wanted to format the output, you could
extract just what you wanted to display from the JSON. For example, you could update
console.log(result.data) with the following code to display the original prompt
text Once upon a time and the completion text returned by the API:

console.log(completionParams.prompt + result.data.choices[0].
text);

If you make that change and run the code again, the output will look something like the
output in the following screenshot:

Figure 5.10 – Formatted results from completions.js

Using the OpenAI API with Node.js/JavaScript 113

With just two examples, we've covered the basic code you need to work with all of the
OpenAI endpoints. But before we move on, let's look at one more example using the
search endpoint.

Calling the search endpoint
For our search example, we'll create a new file named search.js in the chapter05
folder and we'll edit our .replit file so the Run button will execute chapter05/
search.js. To do that, follow these steps:

1. Open your exploring-gpt3-node repl.

2. Select the chapter05 folder in the navigation pane.

3. Click the Add file option and add a new file named search.js.

4. Edit the .replit file so the Run button executes chapter05/search.js using
the following run command:

run = "node chapter05/completions.js"

5. Next, copy the first five lines of code from chapter05/engines.js into
chapter05/search.js so your search.js file starts with the following code:

const axios = require('axios');
const apiKey = process.env.OPENAI_API_KEY;
const client = axios.create({
 headers: { 'Authorization': 'Bearer ' + apiKey }
});

6. For the search endpoint, we'll be sending parameters. So, the next thing we'll do is
add what will become the JSON object that is sent in the HTTP body. In Chapter 4,
Working with the OpenAI API, we covered the parameters for the search endpoint,
but here is the code we'll use for this example:

const data = {

 "documents": ["plane", "boat", "spaceship", "car"],

 "query": "A vehicle with wheels"

}

114 Calling the OpenAI API in Code

7. All that's left is to actually make the request. Like with the completions example,
we'll be making an HTTP POST and passing our parameters:

client.post('https://api.openai.com/v1/engines/davinci/
search', data)

 .then(result => {

 console.log(result.data);

 }).catch(err => {

 console.log(err);

 });

8. That's it. Now when you click the Run button in replit, you should get a result back
from the search endpoint that looks something like the following screenshot:

Figure 5.11 – Results from search.js

All of the JavaScript examples we covered in this section were pretty simple. However,
they should give you a general idea of how to get started calling the OpenAI API with
JavaScript and Node.js, which was the goal. In the following chapters, we'll dive deeper,
but for now we're going to move on to our next language – Python.

Using the OpenAI API in Python 115

Using the OpenAI API in Python
Python is another popular programming language, and it is especially popular among the
machine learning community. It's a robust language but it's also very beginner-friendly. If
you are coding for the first time, Python will probably be one of the easier languages to get
started with. Like with JavaScript/Node, Python is open source and can be used on Linux,
macOS, or Windows. It is also included with many operating systems, including macOS
and most Linux distributions. But since we'll be working in replit, we don't need to worry
about Python being installed on our local machine. That said, nothing in the code we'll be
writing depends on anything that is specific to replit. So, everything we'll be doing could
be done on any computer that is properly configured for doing Python development.
For our first example, we'll look at using Python to call the OpenAI Engines endpoint.

Calling the engines endpoint
We'll start by setting up a new folder for the Python code we'll be working on in this
chapter. Then, we'll add a file for our first example and update the .replit file so the
replit Run button executes our new file. Here are the steps to follow:

1. Open your exploring-gpt3-python repl.
2. Click the Add folder icon in the top right of the navigation pane.
3. Name the folder chapter05.
4. Select the chapter05 folder, then click the Add file option and add a new file

named engines.py.
5. Edit the .replit file so the Run button executes chapter05/engines.py

using the following text:

run = "python chapter05/engines.py"

116 Calling the OpenAI API in Code

6. Now, open the chapter05/engines.py file in your replit editor by clicking on
the filename in the navigation pane. Your replit editor should look something like
the following screenshot:

Figure 5.12 – Editing engines.py in the Replit editor

7. So, now we're going to write some Python code to make an HTTP request to the
https://api.openai.com/v1/engines endpoint. There are a number of
ways to make an HTTP request with Python. We won't get into all of the different
options or the pros and cons of one approach over another. We're just going to use
the popular requests library.

Important note
Packaged and shared code libraries are common across most modern
programming languages. In Python, packages (or libraries) are most commonly
shared using a package manager called PIP. To learn more about PIP, you
can visit https://pypi.org/project/pip/. replit automatically
manages package dependencies for Python projects. However, in a local
development environment, the PIP command-line tool would most commonly
be used to manage Python packages.

8. In short, the requests library minimizes the code we need to write to make
HTTP requests using Python. So, we'll include a reference to the requests library
on the first line of our engines.py file with the following code:

import requests

https://pypi.org/project/pip/

Using the OpenAI API in Python 117

9. You'll recall from Chapter 4, Working with the OpenAI API, that all of the OpenAI
API endpoints require authorization. So, next we'll add some code to get the API
key that we set up in the .env file and save it to a variable. We'll do that with the
following lines:

import os

apiKey = os.environ.get("OPENAI_API_KEY")

10. Next, we'll create a variable named headers to hold our authorization
information, which will be required to make the HTTP request:

headers = {

 'Authorization':'Bearer ' + apiKey

 }

11. All we need to do now is make the request. We'll do that with the following code
that saves the response to a variable named result:

result = requests.get('https://api.openai.com/v1/engines'

,headers=headers)

12. To display the JSON results in the console, we'll add the last line as follows:

print(result.json())

13. At this point, you should be able to click the Run button in replit, see the results in
the replit console, and see an output like what's shown in the following screenshot:

Figure 5.13 – Results from running the engines.py code

118 Calling the OpenAI API in Code

So, with 12 lines of code (really 9 since three lines are blank), we've made our first API
request using Python. Now let's take a look at calling the Completions endpoint. This one
requires a bit more code because we need to send data to the endpoint. But as you'll see,
it's still pretty simple.

Calling the completions endpoint
We'll start by creating a new file named completions.py in the chapter05
folder. Then we'll edit our .replit file so the Run button will execute chapter05/
completions.py. To do that, follow these steps:

1. Open your exploring-gpt3-python repl.

2. Select the chapter05 folder in the navigation pane.

3. Click the Add file option and add a new file named completions.py.

4. Edit the .replit file so the Run button executes chapter05/completions.
py using the following text:

run = "python chapter05/completions.py"

5. Next, we'll add the following code. It very similar to the starting code in
chapter05/engines.py but we need to add the json library and the
Content-Type header. So, your completions.py file should start with the
following code:

import requests

import os

import json

apiKey = os.environ.get("OPENAI_API_KEY")

headers = {

 'Content-Type': 'application/json',

 'Authorization':'Bearer ' + apiKey

 }

Using the OpenAI API in Python 119

6. For the completions endpoint, we'll be sending parameters. So, the next thing
we'll do is add what will become the JSON object that is sent in the HTTP body.
Recall from Chapter 4, Working with the OpenAI API, that there are a number of
parameters the completions endpoint accepts. But for this example, we're just going
to be sending the prompt parameter and the max_tokens parameter. Here is
what the code for that looks like:

data = json.dumps({

 "prompt":"Once upon a time",

 "max_tokens":15

 })

To make the code a bit more readable, we'll also create a variable for the endpoint
URL with the following code:

url = 'https://api.openai.com/v1/engines/davinci/
completions'

7. All that's left is to actually make the request and print out the results. This time,
we'll be making an HTTP POST and passing our parameters. So, the code is slightly
different from the last example but here is what it looks like:

result = requests.post(url,headers=headers,data=data)

print(result.json())

8. That's it. Now when you click the Run button in replit, you should get a result back
from the completions endpoint that looks something like the following screenshot:

Figure 5.14 – Output from the completions.js

120 Calling the OpenAI API in Code

9. As we discussed in Chapter 4, Working with the OpenAI API, the responses returned
from the endpoints are in JSON format. But if you wanted to format the output,
you could extract just what you wanted to display from the JSON. For example, you
could update console.log(result.data) with the following code to display
the original prompt text Once upon a time and the completion text returned
by the API:

console.log(completionParams.prompt + result.data.
choices[0].text);

10. If you make that change and run the code again, the console output should look
something like the output in the following screenshot:

Figure 5.15 – Formatted results from completions.py

Alright, let's look at one more example. This time we'll use Python to call the search
endpoint.

Calling the search endpoint
For our search example, we'll create a new file named search.py in the chapter05
folder and we'll edit our .replit file so the Run button will execute chapter05/
search.py. To do that, follow these steps:

1. Open your exploring-gpt3-python repl.
2. Select the chapter05 folder in the navigation pane.
3. Click the Add file option and add a new file named search.py.
4. Edit the .replit file so the run button executes chapter05/search.py using

the following run command:

run = "python chapter05/search.py"

Using the OpenAI API in Python 121

5. Next, copy the first nine lines of code from chapter05/completions.py into
chapter05/search.py so your search.py file starts with the following code:

import requests

import os

import json

apiKey = os.environ.get("OPENAI_API_KEY")

headers = {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + apiKey

}

6. For the search endpoint, we'll be sending parameters as we did in chapter05/
completions.py. So, the next thing we'll do is add what will become the JSON
object that is sent in the HTTP body. In Chapter 4, Working with the OpenAI API,
we covered the parameters for the search endpoint, and we'll use the same example
– here is the code we'll use:

data = json.dumps({

 "documents": ["plane", "boat", "spaceship", "car"],

 "query": "A vehicle with wheels"

})

7. We'll add a variable for the endpoint URL just to keep the code a bit easier to read:

url = 'https://api.openai.com/v1/engines/davinci/search'

8. Finally, we'll add code to make the request and print out the results:

result = requests.post(url, headers=headers, data=data)

print(result.json())

9. That's it. Now when you click the Run button in replit, you should get a result back
from the completions endpoint that looks something like the following screenshot:

Figure 5.16 – Results from search.py

The goal of this section was to provide a few simple Python examples that call the OpenAI
API. At this point, we've covered the basics, but we'll look at more in-depth examples in
the following chapters.

Using other programming languages
In this chapter, we just looked at code examples using JavaScript and Python. But again,
virtually any modern programming language could have been used. The OpenAI API is a
standards-based HTTP API, so all you need is a language that can make HTTP requests
and work with JSON, which, again, is virtually all modern programming languages.

Also, for the examples in this chapter, we called the API directly using general HTTP
libraries. We could have also used a library specifically built for the OpenAI API. Multiple
libraries exist for both JavaScript, Python, and a number of other languages, including
C#/.NET, Go, Java, and Unity, to name a few. You can find a list of community-maintained
libraries at https://beta.openai.com/docs/developer-quickstart/
community-libraries.

Libraries can simplify working with the OpenAI API. However, it's helpful to understand
how to call the endpoints directly, and the API is quite simple to use. For those reasons,
we'll be working directly with the API for all of the examples we'll be doing in this book.

https://beta.openai.com/docs/developer-quickstart/community-libraries
https://beta.openai.com/docs/developer-quickstart/community-libraries

Summary
In this chapter, we looked at using the OpenAI API in code. We got started with an
introduction to the in-browser IDE replit. Then, we looked at code examples for calling
the engines endpoint, the completions endpoint, and the search endpoint using both
Node.js/JavaScript and Python. Finally, we discussed other languages that could be used
and libraries that can simplify working with the OpenAI API.

In the next chapter, we will discuss content filtering and look at code examples for
implementing content filtering using both JavaScript and Python.

Section 3:
Using the

OpenAI API

This section provides hands-on examples for using the OpenAI API with Node.js/
JavaScript and Python. Then, it concludes by walking you through building a fully
functional GPT-3-powered web app.

This section comprises the following chapters:

• Chapter 6, Content Filtering

• Chapter 7, Generating and Transforming Text

• Chapter 8, Classifying and Categorizing Text

• Chapter 9, Building a GPT-3 Powered Question-Answering App

• Chapter 10, Going Live with OpenAI-Powered Apps

6
Content Filtering

In Chapter 1, Introducing GPT-3 and the OpenAI API, we briefly mentioned that
a content filtering model is available to recognize potentially offensive or harmful
language. We also discussed the fact that GPT-3 will, at times, generate completions that
some may find inappropriate or hurtful. In this chapter, you will learn how to implement
content filtering to prevent users of your application from seeing offensive or potentially
harmful completions.

The topics we will be covering in this chapter are as follows:

• Preventing inappropriate and offensive results

• Understanding content filtering

• Testing the content filtering process

• Filtering content with JavaScript

• Filtering content with Python

Technical requirements
This chapter requires that you have access to the OpenAI API. You can request access by
visiting https://openapi.com.

https://openapi.com

128 Content Filtering

Preventing inappropriate and offensive
results
GPT-3 will, at times, generate text that could be considered inappropriate to some users.
This could be profanity, text with inappropriate racial, religious, or political language,
or sexually inappropriate/explicit content, or text that is dark or violent in nature.
This is not because GPT-3 is trying to be mean or hurtful – it's just a language model
that generates text based on a statistical probability – it has no concept of mean or
inappropriate. But GPT-3 was trained using data from the internet, which unfortunately
contains plenty of offensive content. So, as a result, there will be times that the model
generates inappropriate content in a completion. Thankfully, as developers, there are
things we can do to prevent users from seeing potentially inappropriate responses
from GPT-3.

The simplest way to avoid inappropriate content is to use your prompt text to steer the
model away from generating potentially offensive results. Generally, GPT-3 will mirror the
structure and content of the prompt. So, you can steer the model away from potentially
offensive results by telling the model that the completion should be friendly, or polite,
for example. But you'll need to test regardless. Words such as "friendly" can also result in
sexual content. So, use the prompt to guide the model and refine the wording based on the
results you're seeing.

To illustrate, here are two example prompts and associated completions for a hypothetical
customer service question. In the example, #$%@! is used in place of the expletives (swear
words) that were used in the original prompts and completions:

• Example 1:

Prompt:
Customer: Where the #$%@! is my order! I placed the order
more than three days ago. How long can it take to package
and ship a #$%@! tee-shirt?

Response:

Completion:
I don't know. This is my first #$%@! day on the job. If
you want, I can call you a #$%@! taxi so you can come
pick up your #$%@! Order.

Understanding content filtering 129

• Example 2:

Prompt:
Customer: Where the #$%@! is my order! I placed the order
more than three days ago. How long can it take to package
and ship a #$%@! tee-shirt?

Polite Response:

Completion:
It can take up to 5 business days for in stock t-shirts
to be processed. You ordered three t-shirts and each
shirt takes a different amount of production time to be
produced. There were some complications with your order
but as of today your t-shirts should be fully prepared
for shipping.

The only difference between the two prompts is that the second example contains Polite
Response: at the end rather than just Response:. This is enough to guide the model to
generate a response with more appropriate language. To guide the model further, you
could also provide one or more samples with polite responses to examples of aggressive
or impolite customer questions.

The main point here is that the prompt is the first, and easiest, way to minimize
inappropriate responses.

Another way to prevent inappropriate completions is to limit what can be returned for
a completion. For example, if you're classifying or summarizing text, the model will be
limited in terms of what could be included in the results.

In cases where completions aren't constrained, for example, if you're generating a response
for a chatbot, you'll want to use content filtering, which we'll discuss next. Also, Zero-Shot
prompts, without examples, are more likely to result in unpredictable completions.

Understanding content filtering
Content filtering is about blocking or hiding content that may be deemed offensive,
inappropriate, or even dangerous. In our case, we're talking about content that GPT-3
generates that we don't want users of our application to see.

To filter potentially offensive or unsafe text, we'll need to write a little bit of code to
evaluate text that GPT-3 generates and classify it as safe, sensitive, or unsafe. The cool part
is that we can use GPT-3 to do the classifications. So, it's kind of like self-policing but with
a bit of help from our code.

130 Content Filtering

At a high level, here is how we make it work:

1. GPT-3 generates a completion to a prompt.

2. The completion text is submitted back to a GPT-3 filter engine.

3. The filter engine returns a classification (safe, sensitive, unsafe).

4. The original completion text is blocked or sent back to the user based on the
classification.

5. Optionally, if the completion text is sensitive, or unsafe, a new safe completion
could be generated and sent without the user knowing that some content was
blocked.

Content filtering is done using the completions endpoint. However, a specialized content
filter engine is used along with some specific settings, and a specially formatted prompt.

As this is being written, the available content filtering engine is content-filter-alpha-c4.
So, the URL we'd use for the completions endpoint with that engine would be https://
api.openai.com/v1/engines/content-filter-alpha-c4/completions.

Again, there are some specific requirements for parameters that need to be included with
the API request. Specifically, we need to include the following parameters and associated
values:

• max_tokens with a value of 1

• temperature with a value of 0.0

• top_p with a value of 0

Finally, the prompt for content filtering must be formatted in a specific way. The prompt
format is "<|endoftext|>[prompt]\n--\nLabel:". The [prompt] part would
just be replaced with the text we want the content filter to evaluate.

Important note
Content filtering is in beta at the time of publishing. There is a good chance
that the engine ID may have changed by the time you're reading this. For
that reason, be sure to review the OpenAI content filter documents located
at https://beta.openai.com/docs/engines/content-
filter.

https://api.openai.com/v1/engines/content-filter-alpha-c4/completions
https://api.openai.com/v1/engines/content-filter-alpha-c4/completions
https://beta.openai.com/docs/engines/content-filter
https://beta.openai.com/docs/engines/content-filter

Understanding content filtering 131

So, here is an example of the JSON we'd post to the completions endpoint. In this
example, the text we're evaluating is Once upon a time:

{

 "prompt": "<|endoftext|>Once upon a time\n--\nLabel:",

 "max_tokens": 1,

 "temperature": 0.0,

 "top_p": 0

}

It's pretty safe to assume that Once upon a time would be considered safe. So, if that
was the text we were applying the filter to, we could expect a response that would look
something like the following example, showing the text is 0 – safe:

{

 "id": "cmpl-2auhZQYDGJNpeyzYNwMEm5YsAAUEK",

 "object": "text_completion",

 "created": 1615150445,

 "model": "toxicity-double-18",

 "choices": [

 {

 "text": "0",

 "index": 0,

 "logprobs": null,

 "finish_reason": "length"

 }

]

}

Note that in the JSON response object, there is an element named choices. This element
contains a JSON array of objects. Each object contains a text property that will represent
the content filter classification for one completion. The value will always be one of the
following:

• 0 – Safe: Nothing about the text seems potentially offensive or unsafe.

• 1 – Sensitive: Sensitive topics may include text with political, religious, racial,
or nationality-related content.

132 Content Filtering

• 2 – Unsafe: The text contains language that some would consider mean, hurtful,
explicit, offensive, profane, prejudiced, or hateful, or language that most would
consider Not Safe for Work (NSFW), or language that might portray certain
groups/people in a harmful manner.

An array is sent back for the choices element because it's possible to send multiple
prompts with one request. For example, if you wanted to see whether any individual
words in a sentence were unsafe, you might split the sentence into an array of words and
send each word as a prompt. Here is an example of a request that sends Oh hi as two
prompts – one word for each:

{

 "prompt": [

"<|endoftext|>Oh\n--\nLabel:",

"<|endoftext|>hi\n--\nLabel:"

],

 "max_tokens": 1,

 "temperature": 0.0,

 "top_p": 0

}

Given the previous example with an array of prompts, you'll see a response that looks
something like the following. Note now that there are multiple objects in the choices array
– one for each word/prompt:

{

 "id": "cmpl-2bDTUPEzoCrtNBa2gbkpNVc1BcVh9",

 "object": "text_completion",

 "created": 1615222608,

 "model": "toxicity-double-18",

 "choices": [

 {

 "text": "0",

 "index": 0,

 "logprobs": null,

 "finish_reason": "length"

 },

 {

 "text": "0",

Testing the content filtering process 133

 "index": 1,

 "logprobs": null,

 "finish_reason": "length"

]

}

The choices array has a zero-based index value that corresponds to the index of the
item in the prompt array that was passed in, meaning that the choices object for the first
prompt/word (which was "Oh" in our example) has an index value of 0. In this example,
we just sent two words ("Oh" and "hi"), and both got classified as a 0 (safe). However, if
you were to change one of the words to your favorite (or least favorite) swear word, you'd
see the classification change to 2 (unsafe) for the item with the index that corresponds to
the word you changed (assuming you use a swear word that most English-speaking people
would find offensive).

Something else to keep in mind is that the filter engine is not 100% accurate and will
err on the side of caution. So, you'll likely see false positives – words being classified as
sensitive or unsafe that are actually safe. This is something you might have already seen
in the Playground. Even topics that mention politics or religion, for example, usually get
flagged. It's always better to be safe than sorry, but you'll want to consider how this might
potentially impact your application.

So, to recap, you can use the OpenAI API completions endpoint to classify potentially
sensitive or unsafe text. You just need to do the following:

1. Use a content filter engine.

2. Set max_tokens to 1, temperature to 0.0, and top_p to 0.

3. Format your prompt as "<|endoftext|>your text here\n--\nLabel:".

Alright, let's use Postman to get familiar with how content filtering works.

Testing the content filtering process
Later in this chapter, we're going to create a simple content filter in code. But before we do,
let's use Postman to test the general content filtering approach:

1. Log in to Postman.com.

2. Open the Exploring GPT-3 workspace that we created in Chapter 4, Working with
the OpenAI API.

3. Create a new Postman collection named Chapter 06.

http://Postman.com

134 Content Filtering

4. Create a new request named Content Filter - Example 1.

5. Set the request type to POST, and the request URL to https://api.openai.
com/v1/engines/content-filter-alpha-c4/completions, as shown
in the following screenshot:

Figure 6.1 – Setting the filter endpoint in Postman

6. Set the request body to raw and the body type to JSON, as in the following
screenshot:

Figure 6.2 – Filter parameters in Postman

https://api.openai.com/v1/engines/content-filter-alpha-c4/completions
https://api.openai.com/v1/engines/content-filter-alpha-c4/completions

Testing the content filtering process 135

7. Add the following JSON object to the request body:

{

 "prompt" : "<|endoftext|>Are you religious?\n--\
nLabel:",

 "max_tokens" : 1,

 "temperature" : 0.0,

 "top_p" : 0

}

8. Click the send button and review the JSON response. The response will look
something like the following screenshot:

Figure 6.3 – Postman filter results

In the response, you should notice that the text value is 1 (sensitive) for the choices item
with an index of 0. As you might guess, that's likely because the text Are you religious?
could be considered a sensitive topic.

Before moving on, try changing the prompt text to something that you suspect might be
considered sensitive or unsafe and see how it gets classified. After getting familiar with the
content filtering process, move on to the next section to try it out in JavaScript.

136 Content Filtering

Filtering content with JavaScript
In this section, we'll look at a simple content filtering code example using JavaScript.
We could write all the code ourselves, but there is a cool feature in Postman that generates
code snippets for the requests we create. So, let's give that a try:

1. To see Postman-generated code snippets, click on the code button on the right-side
menu. The arrow in the following screenshot is pointing to the </> icon, which is
the button to click:

Figure 6.4 – Code button to open the code pane

2. After clicking the code button, a code snippet pane will open in Postman. Change
the code snippet type to NodeJs – Axios by selecting it from the drop-down list.
Then, click the copy button shown in the following screenshot. This will copy the
code snippet to your clipboard:

Figure 6.5 – Postman code snippet for Node.js – Axios

Filtering content with JavaScript 137

3. After copying the code snippet to the clipboard, perform the following steps:

a) Log in to replit.com and open your exploring-gpt3-node repl.

b) Create a new folder named chapter06.

c) Create a file in the chapter06 folder named filter.js.

d) Paste the code snippet from Postman into the filter.js file.

4. The resulting code should look like the following screenshot. However, there is one
small change we need to make before we can run the file:

Figure 6.6 – Code copied from the Postman snippet to the replit.com file
The change we need to make is on the line that contains Authorization – line
number 8 in the screenshot shown in Figure 6.6. We need to change it to pick up
our environment variable in repl.it. To do that, we will replace the text 'Bearer
{{OPENAI_API_KEY}}' from the code snippet with `Bearer ${process.
env.OPENAI_API_KEY}`. Note that backticks are used rather than single quotes.
This is because we're using a JavaScript template string as the value. This lets us
merge in the OPENAI_API_KEY environment variable we set up in replit.com in
Chapter 5, Using the OpenAI API in Code.

http://replit.com

138 Content Filtering

Important note
In JavaScript, template literals (aka, template strings) are strings that allow you
to embed other expressions. In our case, we're using a template that contains
${process.env.OPENAI_API_KEY}, which will be replaced with
the value of the OPENAI_API_KEY environment variable. For details about
template literals/strings, visit the following link:

https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Template_literals.

5. So, after updating the authorization line, the final code should be the following:
var axios = require('axios');

var data = JSON.stringify({

 "prompt": "<|endoftext|>What religion are you?\n--\
nLabel:",

 "max_tokens": 1,

 "temperature": 0,

 "top_p": 0

});

var config = {

 method: 'post',

 url: 'https://api.openai.com/v1/engines/content-filter-
alpha-c4/completions',

 headers: {

 'Authorization': `Bearer ${process.env.OPENAI_API_
KEY}`,

 'Content-Type': 'application/json'

 },

 data : data

};

axios(config)

.then(function (response) {

 console.log(JSON.stringify(response.data));

})

.catch(function (error) {

 console.log(error);

});

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Filtering content with JavaScript 139

6. The following screenshot shows the preceding code in replit.com:

Figure 6.7 – Postman code snippet modified for replit.com

At this point, the code is very similar to the code we wrote in Chapter 5, Using the OpenAI
API in Code, when we discussed calling the completions endpoint. We just need to edit
the run command in the .replit file to run the code in our chapter06/filter.js
file. Then we can carry out a test:

1. So, update the .replit file to the following:

Run "node chapter06/filter.js"

2. After updating the .replit file, click the green Run button and you should see
results in the console window that are similar to the following screenshot:

Figure 6.8 – Results from running chapter06/filter.js

http://replit.com

140 Content Filtering

This is a simple example that classifies all of the text in a single prompt. Let's take a look
at another example that classifies each word in a string and classifies each word as safe,
sensitive, or unsafe.

Flagging unsafe words with Node.js/JavaScript
For this example, we'll start by creating a new file named chapter06/flag.js and
copying in the code from chapter06/filter.js as a starting point. From there,
we're going to modify the code in chapter06/flag.js to list each word with
a classification value (0 = safe, 1 = sensitive, 2 = unsafe). To begin, perform the following
steps to create our starting point:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a file in the chapter06 folder named flag.js.

3. Copy and paste the entire contents of chapter06/filter.js into
chapter06/flag.js.

4. Edit the .replit file to run chapter06/flag.js by using the following
command:

Run = "node chapter06/flag.js"

5. We'll start by adding a variable to hold the text we want to filter. We'll add this code
just under the first line. So, the first two lines will be as follows:

var axios = require('axios');

const textInput = "This is some text that will be
filtered";

6. Next, we'll add a variable to hold an array of prompts and set the initial value
to an empty array. This will get populated with a prompt for each word from our
text input:

const prompts = [];

7. Now, we'll split our textInput into an array of words and populate the prompts
array with a prompt for each word. Since we're sending the prompts to the filter
engine, we'll also need to format each prompt item properly. So, we'll add the
following code after our prompts variable. This code splits the text input into
individual words, loops through each word to create a prompt item, and then adds
the prompt item to the prompts array:

const wordArray = textInput.split(' ');

for (i = 0, len = wordArray.length, text = ""; i < len;

http://replit.com

Filtering content with JavaScript 141

i++) {

 text = `<|endoftext|>${wordArray[i]}\n--\nLabel:`;

 prompts.push(text);

}

8. Now we will update the data variable that was created by Postman. We'll use our
prompts array as the prompt value rather than the hardcoded value from Postman.
So, we'll change the data variable to the following:

var data = JSON.stringify({"prompt": prompts,"max_
tokens":1,"temperature":0,"top_p":0});

9. Finally, we'll modify the output with code that loops through the word array and
classifies each word using the results from the filter. To do that, replace the line that
contains console.log(JSON.stringify(response.data)); with the
following code:

 response.data.choices.forEach(item => {

 console.log(`${wordArray[item.index]} : ${item.
text}`);

After making that last code edit, we can run the code again and this time we'll see
a response like the following:

Figure 6.9 – Content filter results for each word in a text input

142 Content Filtering

You'll notice now that the word (religion) has a text value of 1 (sensitive). If you
change the textInput value with text that contains the more offensive word, you can
run the code again to see how each word is classified. In a real-world implementation,
you might replace or redact words that are sensitive or unsafe, which could now easily be
done with the results from the API using a similar approach. We'll look at doing that in
Chapter 7, Generating and Transforming Text, but for now, let's look at content filtering
with Python.

Filtering content with Python
Now let's see how to implement content filtering with Python. Unless you skipped over
Filtering content with JavaScript, you can probably guess how we're going to get started
with a Python content filtering example – we're going to use a code snippet generated by
Postman:

1. So, start by opening the code snippet pane in Postman. Then, click the code button
in the right-hand menu. The code button is where the arrow in the following
screenshot is pointing:

Figure 6.10 – Code button to open the code pane

Filtering content with Python 143

2. After clicking the code button, the code snippet pane will open. Change the code
snippet type to Python – Requests by selecting it from the drop-down list. Then,
click the copy button shown in the following screenshot. This will copy the code
snippet to your clipboard:

Figure 6.11 – Postman code snippet for Python – requests

3. After copying the code snippet to the clipboard, perform the following steps:

a) Log in to replit.com and open your exploring-gpt3-python repl.

b) Create a new folder named chapter06.

c) Create a file in the chapter06 folder named filter.py.

d) Paste the snippet from Postman into the filter.py file.

http://replit.com

144 Content Filtering

4. The resulting code should look like the following screenshot. But you will see that
your API key is hardcoded – it is blurred in the screenshot. The hardcoded API key
is the first thing we will change:

Figure 6.12 – Code copied from the Postman snippet to the repl.it file

5. To remove the hardcoded API key from our code file, we will import the Python os
library first so we can read the OPENAI_API_KEY environment variable that we
set in the .env file in Chapter 5, Using the OpenAI API in Code. So, we'll add the
following code to the first line of our filter.py file:

import os

6. After importing the Python os library, we can get the API key value for the
authorization header from our environment variable. In the preceding Figure 6.12,
you would be editing line 7 to the following:

'Authorization':'Bearer ' + os.environ.get("OPENAI_API_
KEY")

7. After updating the authorization line, the final code should be the following:

import os

import requests

import json

url = "https://api.openai.com/v1/engines/content-filter-
alpha-c4/completions"

payload = json.dumps({

 "prompt": "<|endoftext|>What religion are you?\n--\
nLabel:",

Filtering content with Python 145

 "max_tokens": 1,

 "temperature": 0,

 "top_p": 0

})

headers = {

 'Authorization':'Bearer ' + os.environ.get("OPENAI_API_
KEY"),

 'Content-Type': 'application/json'

}

response = requests.request("POST", url, headers=headers,
data=payload)

print(response.text)

8. The following screenshot shows the preceding code in replit.com:

Figure 6.13 – Postman Python code snippet modified for replit.com

9. At this point, the code is very similar to the code we wrote in Chapter 5, Using the
OpenAI API in Code, when we discussed calling the completions endpoint using
Python. We just need to edit the run command in the .replit file to run the code
in our chapter06/filter.py file. Then we can carry out a test. So, update the
.replit file to the following:

Run "python chapter06/filter.py"

http://replit.com

146 Content Filtering

10. After updating the .replit file, click the green Run button and you should see
results in the console window that are similar to the following screenshot:

Figure 6.14 – Results from running chapter06/filter.py

This is a simple example that classifies all of the text in a single prompt. Let's now take
a look at another example that classifies each word in a string and replaces unsafe words.

Flagging unsafe words with Python
For this example, we'll start by creating a new file named chapter06/flag.py and
copying in the code from chapter06/filter.py as a starting point. From there,
we're going to modify the code in chapter06/flag.py to list each word with
a classification value (0 = safe, 1 = sensitive, 2 = unsafe). To begin, perform the following
steps to create our starting point:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a file in the chapter06 folder named flag.py.

3. Copy and paste the entire contents of chapter06/filter.py into
chapter06/flag.py.

4. Edit the .replit file to run chapter06/flag.py using the following
command:

Run = "python chapter06/flag.py"

Filtering content with Python 147

5. In the chapter06/flag.py file, we'll add a variable to hold the text we want to
filter. We'll add the following code just under the third line (after the last line that
starts with import):

textInput = "What religion are you?"

6. Next, we'll add a variable to hold an array of prompts and set the initial value to
an empty array. This will get populated with a prompt for each word from our text
input:

prompts = []

7. Now, we'll split our textInput into an array of words and populate the prompts
array with a prompt for each word. Since we're sending the prompts to the filter
engine, we'll also need to format each prompt item properly. So, we'll add the
following code after our prompts variable. This code splits the text input into
individual words, loops through each word to create a prompt item, and adds the
prompt item to the prompts array:

wordArray = textInput.split()

for word in wordArray:

 prompts.append("<|endoftext|>" + word + "\n--\nLabel:")

8. Now we will update the payload variable that was created by Postman to a Python
object rather than a string. This makes it a little more readable and easier to include
our prompts array. So, replace the payload variable with the following code:

payload = json.dumps({

 "prompt" : prompts,

 "max_tokens" : 1,

 "temperature" : 0.0,

 "top_p" : 0

 })

9. Finally, we'll replace the last line of code, print(response.text), with the
following code that loops through the results and adds a classification (0 = safe, 1 =
sensitive, 2 = unsafe) for each word:

for word in response.json()['choices']:

 print(wordArray[word['index']] + ' : ' + word['text'])

148 Content Filtering

10. After making that final code edit, we can click the Run button and this time we'll see
a response like the following:

Figure 6.15 – Content filter results for each word in a text input using Python

You'll notice in the console that the word (religion) has a text value of 1 (sensitive).
In a real-world application, you'd use a similar approach to redact or replace unsafe and
sensitive words. But keep in mind that no content filtering process is perfect. Language is
constantly evolving, and the context of words can change meanings, which might cause
the content filter to miss or falsely flag content. So, it's important to consider this in the
design of your filtering approach.

Summary
In this chapter, we discussed how GPT-3 might, at times, generate inappropriate content.
We also discussed what we can do to prevent and detect inappropriate content. You
learned how prompts can be used to prevent the likelihood that inappropriate content is
generated, and how content filtering can be used to classify content as safe, sensitive,
or unsafe.

We reviewed how the completions endpoint can be used for content filtering and how to
implement content filtering using both JavaScript and Python.

In the next chapter, we will take what we learned in this chapter, along with what
we learned in Chapter 5, Calling the OpenAI API in Code, and use that knowledge to build
a GPT-3 powered chatbot.

7
Generating and

Transforming Text
While we've looked at some text generation and transformation examples in earlier
chapters, in this chapter, we're going to look at a whole lot more. There are tons of
possible uses for text generation and transformation, including article writing, correcting
grammar, generating lists, translating text from one language to another, extracting
keywords, and summarizing text – to name a few. While we won't even come close to
covering all of the different ways you can use GPT-3 to generate and transform text, we'll
take a look at 15 fun examples to get your wheels turning.

The topics we'll cover are the following:

• Using the examples

• Generating content and lists

• Translating and transforming text

• Extracting text

• Creating chatbots

150 Generating and Transforming Text

Technical requirements
Let's look at the requirements we need in this chapter:

• Access to the OpenAI API

• An account on replit.com

Using the examples
In this chapter, we'll be looking at a lot of examples – 15 to be exact. We'll be using the
completions endpoint for all of the examples in this chapter – so most of the code for the
examples is similar. The main difference will be the prompt text and the values for the
endpoint parameters. So, to save space, we'll look at the complete JavaScript and Python
code for the first example. After that, we'll just duplicate the first example and edit the
endpoint and parameters.

To get things started, we'll look at generating original content and lists.

Generating content and lists
Let's start with a few examples for creating original content and generating lists. Of all
the things GPT-3 can do, the possibilities with content and list generation are probably
the most impressive – and the most fun. GPT-3 can write original stories, create product
descriptions, produce study notes, help you brainstorm ideas, or create recipes – and that's
only the beginning.

Dumb joke generator
We'll start with an example to lighten the mood – a dumb joke generator. Spoiler alert: not
all of the jokes might be that funny, but whose are? Alright, here is the prompt we'll use:

Dumb Joke: I'm not a vegetarian because I love animals. I'm a
vegetarian because I hate plants.

###

Two-Sentence Joke: Parallel lines have so much in common. It's
a shame they'll never meet.

###

Dumb Joke: Someone stole my mood ring. I don't know how I feel
about that.

###

Dumb Joke:

http://replit.com

Generating content and lists 151

We'll start with an example using Node.js/JavaScript. Remember, for this first example,
we'll walk through creating all of the code. For the following examples, we'll just be
modifying a copy of this first example.

Node.js/JavaScript example
To create this example in your exploring-gpt3-node repl on replit.com, complete the
following steps:

1. Log in to https://replit.com and open your exploring-gpt3-node repl.

2. Create a new folder named chapter07 in the project root.

3. Create a new file named dumb-joke-generator.js.

4. Add the following code to the dumb-joke-generator.js file:

//chapter07/dumb-joke-generator.js

const axios = require('axios');

const apiKey = process.env.OPENAI_API_KEY;

const client = axios.create({

 headers: { 'Authorization': 'Bearer ' + apiKey }

});

const endpoint = "https://api.openai.com/v1/engines/
davinci/completions";

const params = {

 prompt: "Dumb Joke: I'm not a vegetarian because I love
animals. I'm a vegetarian because I hate plants.\n###\
nDumb Joke: Parallel lines have so much in common. It's a
shame they'll never meet.\n###\nDumb Joke: Someone stole
my mood ring. I don't know how I feel about that.\n###\
nDumb Joke:",

 temperature: 0.5,

 max_tokens: 100,

 top_p: 1,

 frequency_penalty: 0.5,

 presence_penalty: 0.5,

 stop: ["###"]

}

http://replit.com
https://replit.com

152 Generating and Transforming Text

client.post(endpoint, params)

 .then(result => {

 console.log(params.prompt + result.data.choices[0].
text);

 // console.log(result.data);

 }).catch(err => {

 console.log(err);

 });

5. Update the .replit file in the root folder with the following code:

run = "node chapter07/dumb-joke-generator.js"

6. Click the Run button in the replit.com editor and review the results.

After running chapter07/dumb-joke-generator.js, you should see a result
that is similar to the following screenshot. How funny is that? Right?

Figure 7.1 – Example output from chapter07/dumb-joke-generator.js

Now let's look at the same example using Python.

http://replit.com

Generating content and lists 153

Python example
To create the dumb joke generator in Python, complete the following steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new folder named chapter07 in the project root.

3. Create a new file named dumb-joke-generator.py.

4. Add the following code to the dumb-joke-generator.py file:

import requests

import os

import json

apiKey = os.environ.get("OPENAI_API_KEY")

headers = {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + apiKey

}

endpoint = 'https://api.openai.com/v1/engines/davinci/
completions'

params = {

 "prompt": "Dumb Joke: I'm not a vegetarian because
I love animals. I'm a vegetarian because I hate
plants.\n###\nDumb Joke: Parallel lines have so much in
common. It's a shame they'll never meet.\n###\nDumb Joke:
Someone stole my mood ring. I don't know how I feel about
that.\n###\nDumb Joke:",

 "temperature": 0.5,

 "max_tokens": 100,

 "top_p": 1,

 "frequency_penalty": 0.5,

 "presence_penalty": 0.5,

 "stop": ["###"]

}

result = requests.post(endpoint, headers=headers,
data=json.dumps(params))

print(params["prompt"] + result.json()["choices"][0]
["text"])

http://replit.com

154 Generating and Transforming Text

5. Change the .replit file in your root folder to the following:

run = "python chapter07/dumb-joke-generator.py"

6. Click the Run button and review the results.

After running chapter07/dumb-joke-generator.py, you should see a result
similar to the console output in the following screenshot. Did you laugh?

Figure 7.2 – Example output from chapter07/dumb-joke-generator.py

Let's stop joking around and move on to a more serious example.

Mars facts (in most cases)
For our next example, we'll look at using GPT-3 to learn some things about the planet
Mars. In most cases, we'll get back facts, but recall from previous chapters that you can't
depend on them being true all of the time. We'll use the following prompt to generate a list
of 10 facts about Mars:

I'm studying the planets. List things I should know about Mars.

1. Mars is the nearest planet to Earth.

2. Mars has seasons, dry variety (not as damp as Earth's).

3. Mars' day is about the same length as Earth's (24.6 hours).

4.

Generating content and lists 155

Starting with this example, we won't walk through all the code. We'll just copy the code
from our dumb joke generator and modify it.

Node.js/JavaScript example
To create the Mars facts example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file named mars-facts-list.js in the chapter07 folder.

3. Copy the code from the dumb-joke-generator.js file into mars-facts-
list.js.

4. Replace the params variable in mars-facts-list.js with the following code:

const params = {

 prompt: "I'm studying the planets. List things I should
know about Mars.\n\n1. Mars is the nearest planet to
Earth.\n2. Mars has seasons, dry variety (not as damp
as Earth's).\n3. Mars' day is about the same length as
Earth's (24.6 hours).\n4.",

 temperature: 0,

 max_tokens: 100,

 top_p: 1.0,

 frequency_penalty: 0.5,

 presence_penalty: 0.5,

 stop: "11."

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/mars-facts-list.js"

6. Click the Run button and review the results.

http://replit.com

156 Generating and Transforming Text

After running chapter07/mars-facts-list.js, you should see a result
similar to the console output in the following screenshot. Did you know all of those
things about Mars?

Figure 7.3 – Example output from chapter07/mars-facts-list.js

Let's take a look at the Mars facts list example in Python.

Python example
To create the Mars facts example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file named mars-facts-list.py in the chapter07 folder.

3. Copy the code from the dumb-joke-generator.py file into mars-facts-
list.py.

4. Replace the params variable in mars-facts-list.py with the following code:

params = {

 "prompt": "I'm studying the planets. List things I
should know about Mars.\n\n1. Mars is the nearest planet
to Earth.\n2. Mars has seasons, dry variety (not as damp
as Earth's).\n3. Mars' day is about the same length as
Earth's (24.6 hours).\n4.",

 "temperature": 0,

 "max_tokens": 100,

 "top_p": 1,

 "frequency_penalty": 0.5,

 "presence_penalty": 0.5,

http://replit.com

Generating content and lists 157

 "stop": ["11."]

}

5. Change the .replit file in your root folder to the following:

run = "python chapter07/mars-facts-list.py"

6. Click the Run button and review the results.

After running chapter07/mars-facts-list.py, you should see a result
similar to the console output in the following screenshot. Some interesting facts,
aren't they?

Figure 7.4. – Example output from chapter07/mars-facts-list.py

We've looked at entertainment and education examples, now let's get some work done
with a business example – a webinar description generator.

Webinar description generator
In this example, we'll use GPT-3 to help write a description for an event. We'll be using the
following prompt to write a description for a mindfulness webinar:

Write a description for the following webinar:

Date: Monday, June 5, 2021

Time: 10 AM PT

Title: An introduction to mindfulness

Presenter: Gabi Calm

Event Description:

158 Generating and Transforming Text

Node.js/JavaScript example
To create the webinar description generator in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file named webinar-description-generator.js in the
chapter07 folder.

3. Copy the code from the dumb-joke-generator.js file into webinar-
description-generator.js.

4. Replace the params variable in webinar-description-generator.js with
the following code:

const params = {

 prompt: "Write a description for the following
webinar:\n\nDate: Monday, June 5, 2021\nTime: 10 AM PT\
nTitle: An introduction to mindfulness\nPresenter: Gabi
Calm\n\nEvent Description:",

 temperature: 0.7,

 max_tokens: 100,

 top_p: 1.0,

 frequency_penalty: 0.5,

 presence_penalty: 0.0,

 stop: ".\n"

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/webinar-decription-generator.js"

6. Click the Run button and review the results.

After running chapter07/webinar-description-generator.js, you
should see a result similar to the console output in the following screenshot:

http://replit.com

Generating content and lists 159

Figure 7.5 – Example output from chapter07/webinar-description-generator.js

Now let's create the webinar description generator example in Python.

Python example
To create the webinar description generator example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file named webinar-description-generator.py in the
chapter07 folder.

3. Copy the code from the dumb-joke-generator.py file into webinar-
description-generator.py.

4. Replace the params variable in webinar-description-generator.py with
the following code:

params = {

 "prompt": "Write a description for the following
webinar:\n\nDate: Monday, June 5, 2021\nTime: 10 AM PT\
nTitle: An introduction to mindfulness\nPresenter: Gabi
Calm\n\nEvent Description:",

 "temperature": 0.7,

 "max_tokens": 100,

 "top_p": 1,

 "frequency_penalty": 0.5,

 "presence_penalty": 0,

 "stop": [".\n"]

}

http://replit.com

160 Generating and Transforming Text

5. Change the .replit file in your root folder to the following:

run = "python chapter07/webinar-description-generator.py"

6. Click the Run button and review the results.

After running chapter07/webinar-description-generator.py, you
should see a result similar to the console output in the following screenshot:

Figure 7.6 – Example output from chapter07/webinar-description-generator.py

Let's move on and get some suggestions from GPT-3 on books we might consider reading.

Book suggestions
How about a list of books that you should read? Let's give that a try. We'll use the
following prompt. This prompt will be completed with a numbered list of book
suggestions:

Suggest a list of books that everyone should try to read in
their lifetime.

Books:

1.

Now let's implement the book suggestions prompt in code.

Node.js/JavaScript example
To create the book suggestions list example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

http://replit.com

Generating content and lists 161

2. Create a new file: chapter07/book-suggestions-list.js.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
book-suggestions-list.js.

4. Replace the params variable in chapter07/book-suggestions-list.js
with the following code:

const params = {

 prompt: "Suggest a list of books that everyone should
try to read in their lifetime.\n\nBooks:\n1.",

 temperature: 0.7,

 max_tokens: 100,

 top_p: 1,

 frequency_penalty: 0.5,

 presence_penalty: 0,

 stop: [".\n"]

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/book-suggestions-list.js"

6. Click the Run button and review the results.

After running chapter07/book-suggestions-list.js, you should see a
result similar to the console output in the following screenshot:

Figure 7.7 – Example output from chapter07/book-suggestions-list.js

As you can see in Figure 7.7, the completion is a list of book suggestions. Now let's move
on and look at the same example using Python.

162 Generating and Transforming Text

Python example
To create the book suggestions list example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/book-suggestions-list.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
book-suggestions-list.py.

4. Replace the params variable in chapter07/book-suggestions-list.js
with the following code:

params = {

 "prompt": "Suggest a list of books that everyone
should try to read in their lifetime.\n\nBooks:\n1.",

 "temperature": 0.7,

 "max_tokens": 100,

 "top_p": 1,

 "frequency_penalty": 0.5,

 "presence_penalty": 0,

 "stop": [".\n"]

}

5. Change the .replit file in your root folder to the following:

run = "python chapter07/book-suggestions-list.py"

6. Click the Run button and review the results.

After running chapter07/book-suggestions-list.py, you should see a
result similar to the console output in the following screenshot:

http://replit.com

Generating content and lists 163

Figure 7.8 – Example output from chapter07/book-suggestions-list.py

Now let's take a look at another example.

Children's book generator
Now let's do something creative for the kids. How about a custom bedtime storybook?
Here is the prompt we'll use:

Write a short story for kids about a Dog named Bingo who
travels to space.

Page 1: Once upon a time there was a dog named Bingo.

Page 2: He was trained by NASA to go in space.

In our code example that follows, we'll just be implementing the prompt to generate the
book. However, in a real-world version, you'd want to also include content filtering as we
discussed in Chapter 6, Content Filtering.

Node.js/JavaScript example
To create the children's book generator example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file: chapter07/childrens-book-generator.js.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
childrens-book-generator.js.

http://replit.com

164 Generating and Transforming Text

4. Replace the params variable in chapter07/childrens-book-generator.
js with the following code:

const params = {

 prompt: "Write a short story for kids about a Dog named
Bingo who travels to space.\n---\n\nPage 1: Once upon a
time there was a dog named Bingo.\nPage 2: He was trained
by NASA to go in space.\nPage 3:",

 temperature: 0.9,

 max_tokens: 500,

 top_p: 1,

 frequency_penalty: 0.7,

 presence_penalty: 0,

 stop: ["Page 11:"]

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/childrens-book-generator.js"

6. Click the Run button and review the results.

After running chapter07/childrens-book-generator.js, you should see
a result similar to the console output in the following screenshot:

Figure 7.9 – Example output from chapter07/childrens-book-generator.js

Let's take a look at the Python version.

Generating content and lists 165

Python example
To create the children's book generator example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/childrens-book-generator.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
childrens-book-generator.py.

4. Replace the params variable in chapter07/childrens-book-generator.
py with the following code:

params = {

 "prompt": "Write a short story for kids about a Dog
named Bingo who travels to space.\n---\n\nPage 1: Once
upon a time there was a dog named Bingo.\nPage 2: He was
trained by NASA to go in space.\nPage 3:",

 "temperature": 0.9,

 "max_tokens": 500,

 "top_p": 1,

 "frequency_penalty": 0.7,

 "presence_penalty": 0,

 "stop": ["Page 11:"]

}

5. Change the .replit file in your root folder to the following:

run = "python chapter07/childrens-book-generator.py"

http://replit.com

166 Generating and Transforming Text

6. Click the Run button and review the results.

After running chapter07/childrens-book-generator.py, you should see
a result similar to the console output in the following screenshot:

Figure 7.10 – Example output from chapter07/childrens-book-generator.py

Now let's move on and look at some examples that translate and transform text. We'll look
at some examples you'd expect such as translating spoken language. We'll also look at
some translations with a twist.

Translating and transforming text
When you think about translating text, systems such as Google Translate might come to
mind. But with GPT-3, you can also translate – and not just between spoken languages.
You can translate between just about anything. Let's take a look.

Acronym translator
For our first translation example, we'll convert acronyms to their meanings. The following
is the prompt text we'll be using:

Provide the meaning for the following acronym.

acronym: LOL

meaning: Laugh out loud

acronym: BRB

meaning: Be right back

Translating and transforming text 167

acronym: L8R

meaning:

The prompt provides a few examples of acronyms and their meanings. Try it out with the
following Node.js/JavaScript code.

Node.js/JavaScript example
To create the acronym translator example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file: chapter07/acronym-translator.js.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
acronym-translator.js.

4. Replace the params variable in chapter07/acronym-translator.js with
the following code:

const params = {

 prompt: "Provide the meaning for the following
acronym.\n---\n\nacronym: LOL\nmeaning: Laugh out loud\
nacronym: BRB\nmeaning: Be right back\nacronym: L8R",

 temperature: 0.5,

 max_tokens: 15,

 top_p: 1,

 frequency_penalty: 0,

 presence_penalty: 0,

 stop: ["acronym:"]

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/acronym-translator.js"

http://replit.com

168 Generating and Transforming Text

6. Click the Run button and review the results.

After running chapter07/acronym-translator.js, you should see a result
similar to the console output in the following screenshot:

Figure 7.11 – Example output from chapter07/acronym-translator.js

Let's take a look at the Python example.

Python example
To create the acronym translator example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/acronym-translator.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
acronym-translator.py.

4. Replace the params variable in chapter07/acronym-translator.py with
the following code:

params = {

 "prompt": "Provide the meaning for the following
acronym.\n---\n\nacronym: LOL\nmeaning: Laugh out loud\
nacronym: BRB\nmeaning: Be right back\nacronym: L8R",

 "temperature": 0.5,

 "max_tokens": 15,

 "top_p": 1,

 "frequency_penalty": 0,

 "presence_penalty": 0,

Translating and transforming text 169

 "stop": ["acronym:"]

}

5. Change the .replit file in your root folder to the following:

run = "python chapter07/acronym-translator.py"

6. Click the Run button and review the results.

After running chapter07/acronym-translator.py, you should see a result
similar to the console output in the following screenshot:

Figure 7.12 – Example output from chapter07/acronym-translator.py

Let's take a look at another example.

English to Spanish
Now let's look at translating between spoken languages. In this example, we'll create a
simple translator that converts text from English to Spanish:

Translate from English to Spanish

English: Where is the bathroom?

Spanish:

GPT-3 is quite good at translating between languages. This is especially true when
translating between popular languages such as English and Spanish. So, even a simple
prompt like this one is usually enough to get an accurate completion.

170 Generating and Transforming Text

Node.js/JavaScript example
To create the English to Spanish translator example in Node.js/JavaScript, follow these
steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file: chapter07/english-spanish-translator.js.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
english-spanish-translator.js.

4. Replace the params variable in chapter07/english-spanish-
translator.js with the following code:

const params = {

 prompt: "Translate from English to Spanish\n---\n\
nEnglish: Where is the bathroom?\nSpanish:",

 temperature: 0.5,

 max_tokens: 15,

 top_p: 1,

 frequency_penalty: 0,

 presence_penalty: 0,

 stop: ["---"]

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/english-spanish-translator.js"

6. Click the Run button and review the results.

After running chapter07/english-spanish-translator.js, you should
see a result similar to the console output in the following screenshot:

http://replit.com

Translating and transforming text 171

Figure 7.13 – Example output from chapter07/english-spanish-translator.js

Let's take a look at the same example using Python to translate from English to Spanish.

Python example
To create the English to Spanish translator example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/english-spanish-translator.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
english-spanish-translator.py.

4. Replace the params variable in chapter07/english-spanish-
translator.py with the following code:

params = {

 "prompt": "Translate from English to Spanish\n---\n\
nEnglish: Where is the bathroom?\nSpanish:",

 "temperature": 0.5,

 "max_tokens": 15,

 "top_p": 1,

 "frequency_penalty": 0,

 "presence_penalty": 0,

 "stop": ["---"]

}

5. Change the .replit file in your root folder to the following:

run = "python chapter07/english-spanish-translator.py"

http://replit.com

172 Generating and Transforming Text

6. Click the Run button and review the results.

After running chapter07/english-spanish-translator.py, you should
see a result similar to the console output in the following screenshot:

Figure 7.14 – Example output from chapter07/english-spanish-translator.py

As you can see in Figure 7.14, GPT-3 translated the English text to Spanish. But what's
even more impressive is that GPT-3 can also translate between computer programming
languages. We'll look at that next with a prompt that translates code from JavaScript to
Python.

JavaScript to Python
Translating doesn't just need to be between human languages. Since GPT-3 was trained
using data from the internet, it can also translate between programming languages. The
following prompt provides an example that shows how to translate JavaScript code to
Python:

Translate from JavaScript to Python

JavaScript:

const request = require("requests");

request.get("https://example.com");

Python:

This is a fairly simple code translation example, but it does a good job of showing the
potential. More complex code translations might require a few-shot prompt with more
samples but let's give this one a try using Node.js/JavaScript.

Translating and transforming text 173

Node.js/JavaScript example
To create the JavaScript to Python translator example in Node.js/JavaScript, follow these
steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file: chapter07/javascript-python-translator.js.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
javascript-python-translator.js.

4. Replace the params variable in chapter07/javascript-python-
translator.js with the following code:

const params = {

 prompt: "Translate from JavaScript to Python\n---\n\
nJavaScript:\nconst request = require(\"requests\");\
nrequest.get(\"https://example.com\");\n\nPython:\n",

 temperature: 0.3,

 max_tokens: 15,

 top_p: 1,

 frequency_penalty: 0,

 presence_penalty: 0,

 stop: ["---"]

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/javascript-python-translator.js"

6. Click the Run button and review the results.

http://replit.com

174 Generating and Transforming Text

After running chapter07/javascript-python-translator.js, you
should see a result similar to the console output in the following screenshot:

Figure 7.15 – Example output from chapter07/javascript-python-translator.js

Let's take a look at the Python version.

Python example
To create the JavaScript to Python translator example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/javascript-python-translator.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
javascript-python-translator.py.

4. Replace the params variable in chapter07/javascript-python-
translator.py with the following code:

params = {

 "prompt": "Translate from JavaScript to Python\n--
-\n\nJavaScript:\nconst request = require(\"requests\");\
nrequest.get(\"https://example.com\");\n\nPython:\n",

 "temperature": 0.3,

 "max_tokens": 15,

 "top_p": 1,

 "frequency_penalty": 0,

 "presence_penalty": 0,

 "stop": ["---"]

}

http://replit.com

Translating and transforming text 175

5. Change the .replit file in your root folder to the following:

run = "python chapter07/javascript-python-translator.py"

6. Click the Run button and review the results.

After running chapter07/javascript-python-translator.py, you
should see a result similar to the console output in the following screenshot:

Figure 7.16 – Example output from chapter07/javascript-python-translator.py

In the next example, we'll look at summarizing text. We looked at summarizing text in
Chapter 7, Generating and Transforming Text, using TLDR, but that's not the only way to
summarize text. You can also provide text summaries for a provided reading level/grade.

Fifth-grade summary
GPT-3 can summarize text for a given grade or reading level. Although the grade levels are
not exactly precise and can be subjective, you'll notice the text gets simpler as the grade
level gets lower. The following prompt provides an example of how you can approach
doing that:

Summarize the following passage for me as if I was in fifth
grade:

"""

Quantum mechanics is a fundamental theory in physics that
provides a description of the physical properties of nature
at the scale of atoms and subatomic particles. It is the
foundation of all quantum physics including quantum chemistry,
quantum field theory, quantum technology, and quantum
information science.

176 Generating and Transforming Text

Classical physics, the description of physics that existed
before the theory of relativity and quantum mechanics,
describes many aspects of nature at an ordinary (macroscopic)
scale, while quantum mechanics explains the aspects of nature
at small (atomic and subatomic) scales, for which classical
mechanics is insufficient. Most theories in classical physics
can be derived from quantum mechanics as an approximation valid
at large (macroscopic) scale.

Quantum mechanics differs from classical physics in that
energy, momentum, angular momentum, and other quantities of a
bound system are restricted to discrete values (quantization),
objects have characteristics of both particles and waves (wave-
particle duality), and there are limits to how accurately the
value of a physical quantity can be predicted prior to its
measurement, given a complete set of initial conditions (the
uncertainty principle).

"""

Here is the fifth-grade version of this passage:

"""

Let's try this example in Node.js/JavaScript and review the results.

Node.js/JavaScript example
To create the fifth-grade summary example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file: chapter07/fith-grade-summary.js.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
fith-grade-summary.js.

4. Replace the params variable in chapter07/fith-grade-summary.js with
the following code:

const params = {

 prompt: "Summarize the following passage for me as if
I was in fifth grade:\n\"\"\"\nQuantum mechanics is a
fundamental theory in physics that provides a description
of the physical properties of nature at the scale of
atoms and subatomic particles. It is the foundation of
all quantum physics including quantum chemistry, quantum
field theory, quantum technology, and quantum information

http://replit.com

Translating and transforming text 177

science.\n\nClassical physics, the description of
physics that existed before the theory of relativity and
quantum mechanics, describes many aspects of nature at
an ordinary (macroscopic) scale, while quantum mechanics
explains the aspects of nature at small (atomic and
subatomic) scales, for which classical mechanics is
insufficient. Most theories in classical physics can
be derived from quantum mechanics as an approximation
valid at large (macroscopic) scale.\n\nQuantum mechanics
differs from classical physics in that energy, momentum,
angular momentum, and other quantities of a bound system
are restricted to discrete values (quantization), objects
have characteristics of both particles and waves (wave-
particle duality), and there are limits to how accurately
the value of a physical quantity can be predicted prior
to its measurement, given a complete set of initial
conditions (the uncertainty principle).\n\"\"\"\nHere is
the fifth-grade version of this passage:\n\"\"\"",

 temperature: 0,

 max_tokens: 100,

 top_p: 1,

 frequency_penalty: 0,

 presence_penalty: 0,

 stop: ["\"\"\""]

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/fith-grade-summary.js"

178 Generating and Transforming Text

6. Click the Run button and review the results.

After running chapter07/fith-grade-summary.js, you should see a result
similar to the console output in the following screenshot:

Figure 7.17 – Example output from chapter07/fith-grade-summary.js

Let's take a look at the Python code.

Python example
To create the fifth-grade summary example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/fith-grade-summary.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
fith-grade-summary.py.

4. Replace the params variable in chapter07/fith-grade-summary.py with
the following code:

params = {

 "prompt": "Summarize the following passage for me as
if I was in fifth grade:\n\"\"\"\nQuantum mechanics is a
fundamental theory in physics that provides a description
of the physical properties of nature at the scale of
atoms and subatomic particles. It is the foundation of
all quantum physics including quantum chemistry, quantum

http://replit.com

Translating and transforming text 179

field theory, quantum technology, and quantum information
science.\n\nClassical physics, the description of
physics that existed before the theory of relativity and
quantum mechanics, describes many aspects of nature at
an ordinary (macroscopic) scale, while quantum mechanics
explains the aspects of nature at small (atomic and
subatomic) scales, for which classical mechanics is
insufficient. Most theories in classical physics can
be derived from quantum mechanics as an approximation
valid at large (macroscopic) scale.\n\nQuantum mechanics
differs from classical physics in that energy, momentum,
angular momentum, and other quantities of a bound system
are restricted to discrete values (quantization), objects
have characteristics of both particles and waves (wave-
particle duality), and there are limits to how accurately
the value of a physical quantity can be predicted prior
to its measurement, given a complete set of initial
conditions (the uncertainty principle).\n\"\"\"\nHere is
the fifth-grade version of this passage:\n\"\"\"",

 "temperature": 0,

 "max_tokens": 100,

 "top_p": 1,

 "frequency_penalty": 0,

 "presence_penalty": 0,

 "stop": ["\"\"\""]

}

5. Change the .replit file in your root folder to the following:

run = "python chapter07/fith-grade-summary.py"

6. Click the Run button and review the results.

180 Generating and Transforming Text

After running chapter07/fith-grade-summary.py, you should see a result
similar to the console output in the following screenshot:

Figure 7.18 – Example output from chapter07/fith-grade-summary.py

Let's take a look at another example. This time we'll see how GPT-3 does with grammar
correction.

Grammar correction
English grammar correction can be accomplished with a very simple prompt such as the
following:

Original: You be mistaken

Standard American English:

Let's test out this grammar correction prompt using Node.js/JavaScript.

Node.js/JavaScript example
To create the grammar correction converter example in Node.js/JavaScript, follow these
steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file: chapter07/grammar-correction-converter.js.

http://replit.com

Translating and transforming text 181

3. Copy the code from the dumb-joke-generator.py file into chapter07/
grammar-correction-converter.js.

4. Replace the params variable in chapter07/grammar-correction-
converter.js with the following code:

const params = {

 prompt: "Original: You be mistaken\nStandard American
English:",

 temperature: 0,

 max_tokens: 60,

 top_p: 1,

 frequency_penalty: 0,

 presence_penalty: 0,

 stop: ["\n"]

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/grammar-correction-converter.js"

6. Click the Run button and review the results.

After running chapter07/grammar-correction-converter.js, you
should see a result similar to the console output in the following screenshot:

Figure 7.19 – Example output from chapter07/grammar-correction-converter.js

Let's take a look at the Python code.

182 Generating and Transforming Text

Python example
To create the grammar correction converter example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/grammar-correction-converter.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
grammar-correction-converter.py.

4. Replace the params variable in chapter07/grammar-correction-
converter.py with the following code:

params = {

 "prompt": "Original: You be mistaken\nStandard
American English:",

 "temperature": 0,

 "max_tokens": 60,

 "top_p": 1,

 "frequency_penalty": 0,

 "presence_penalty": 0,

 "stop": ["\n"]

}

5. Change the .replit file in your root folder to the following:

run = "python chapter07/grammar-correction-converter.py"

6. Click the Run button and review the results.

After running chapter07/gramar-correction-converter.py, you should
see a result similar to the console output in the following screenshot:

http://replit.com

Extracting text 183

Figure 7.20 – Example output from chapter07/grammar-correction-converter.py

Alright, we've covered a lot of examples in this chapter, but we're not done yet. Let's keep
moving and look at extracting information from text next.

Extracting text
You can also use GPT-3 to extract text values from a larger text. This is commonly referred
to as entity extraction where the entity is the item or pattern that you want to extract. Or
you might want to extract keywords. For that, you could use the following prompt.

Extracting keywords
The following prompt provides an example of how to extract keywords from text. In this
case, the text is from https://en.wikipedia.org/wiki/Quantum_mechanics,
but of course, this could be done with any text:

Quantum mechanics is a fundamental theory in physics that
provides a description of the physical properties of nature
at the scale of atoms and subatomic particles. It is the
foundation of all quantum physics including quantum chemistry,
quantum field theory, quantum technology, and quantum
information science.

Classical physics, the description of physics that existed
before the theory of relativity and quantum mechanics,
describes many aspects of nature at an ordinary (macroscopic)
scale, while quantum mechanics explains the aspects of nature
at small (atomic and subatomic) scales, for which classical
mechanics is insufficient. Most theories in classical physics
can be derived from quantum mechanics as an approximation valid
at large (macroscopic) scale.

https://en.wikipedia.org/wiki/Quantum_mechanics

184 Generating and Transforming Text

Quantum mechanics differs from classical physics in that
energy, momentum, angular momentum, and other quantities of a
bound system are restricted to discrete values (quantization),
objects have characteristics of both particles and waves (wave-
particle duality), and there are limits to how accurately the
value of a physical quantity can be predicted prior to its
measurement, given a complete set of initial conditions (the
uncertainty principle).

Keywords:

Now try extracting keywords using Node.js/JavaScript.

Node.js/JavaScript example
To create the keyword extractor example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file: chapter07/keyword-extractor.js.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
keyword-extractor.js.

4. Replace the params variable in chapter07/keyword-extractor.js with
the following code:

const params = {

 prompt: "Quantum mechanics is a fundamental theory
in physics that provides a description of the physical
properties of nature at the scale of atoms and subatomic
particles. It is the foundation of all quantum physics
including quantum chemistry, quantum field theory,
quantum technology, and quantum information science.\n\
nClassical physics, the description of physics that
existed before the theory of relativity and quantum
mechanics, describes many aspects of nature at an
ordinary (macroscopic) scale, while quantum mechanics
explains the aspects of nature at small (atomic and
subatomic) scales, for which classical mechanics is
insufficient. Most theories in classical physics can
be derived from quantum mechanics as an approximation
valid at large (macroscopic) scale.\n\nQuantum mechanics
differs from classical physics in that energy, momentum,

http://replit.com

Extracting text 185

angular momentum, and other quantities of a bound system
are restricted to discrete values (quantization), objects
have characteristics of both particles and waves (wave-
particle duality), and there are limits to how accurately
the value of a physical quantity can be predicted prior
to its measurement, given a complete set of initial
conditions (the uncertainty principle).\n\nKeywords:",

 temperature: 0.3,

 max_tokens: 60,

 top_p: 1,

 frequency_penalty: 0.8,

 presence_penalty: 0,

 stop: ["\n"]

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/keyword-extractor.js"

6. Click the Run button and review the results.

After running chapter07/keyword-extractor.js, you should see a result
similar to the console output in the following screenshot:

Figure 7.21 – Example output from chapter07/keyword-extractor.js

Now the Python example.

186 Generating and Transforming Text

Python example
To create the keyword extractor example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/keyword-extractor.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
keyword-extractor.py.

4. Replace the params variable in chapter07/keyword-extractor.py with
the following code:

params = {

 "prompt": "Quantum mechanics is a fundamental theory
in physics that provides a description of the physical
properties of nature at the scale of atoms and subatomic
particles. It is the foundation of all quantum physics
including quantum chemistry, quantum field theory,
quantum technology, and quantum information science.\n\
nClassical physics, the description of physics that
existed before the theory of relativity and quantum
mechanics, describes many aspects of nature at an
ordinary (macroscopic) scale, while quantum mechanics
explains the aspects of nature at small (atomic and
subatomic) scales, for which classical mechanics is
insufficient. Most theories in classical physics can
be derived from quantum mechanics as an approximation
valid at large (macroscopic) scale.\n\nQuantum mechanics
differs from classical physics in that energy, momentum,
angular momentum, and other quantities of a bound system
are restricted to discrete values (quantization), objects
have characteristics of both particles and waves (wave-
particle duality), and there are limits to how accurately
the value of a physical quantity can be predicted prior
to its measurement, given a complete set of initial
conditions (the uncertainty principle).\n\nKeywords:",

 "temperature": 0.3,

 "max_tokens": 60,

 "top_p": 1,

 "frequency_penalty": 0.8,

 "presence_penalty": 0,

 "stop": ["\n"]

}

http://replit.com

Extracting text 187

5. Change the .replit file in your root folder to the following:

run = "python chapter07/keyword-extractor.py"

6. Click the Run button and review the results.

After running chapter07/keyword-extractor.py, you should see a result
similar to the console output in the following screenshot:

Figure 7.22 – Example output from chapter07/keyword-extractor.py

Let's take a look at another example.

HTML parsing
In this example, we will extract text from HTML. Specifically, the following prompt
extracts the value of the title tag (the text between <title> and </title>). As you
can see, the prompt is pretty simple. It just provides some simple directions, the HTML to
extract from, and a label for the title:

Extract the title, h1, and body text from the following HTML
document:

<head><title>A simple page</title></head><body><h1>Hello
World</h1><p>This is some text in a simple html page.</p></
body></btml>

Title:

188 Generating and Transforming Text

Now, let's try HTML parsing using Node.js/JavaScript.

Node.js/JavaScript example
To create the text from HTML example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file: chapter07/text-from-html.js.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
text-from-html.js.

4. Replace the params variable in chapter07/text-from-html.js with the
following code:

const params = {

 prompt: "Extract the title, h1, and body text from the
following HTML document:\n\n<head><title>A simple page</
title></head><body><h1>Hello World</h1><p>This is some
text in a simple html page.</p></body></html>\n\nTitle:",

 temperature: 0,

 max_tokens: 64,

 top_p: 1,

 frequency_penalty: 0.5,

 presence_penalty: 0

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/text-from-html.js"

6. Click the Run button and review the results.

After running chapter07/text-from-html.js, you should see a result
similar to the console output in the following screenshot:

http://replit.com

Extracting text 189

Figure 7.23 – Example output from chapter07/text-from-html.js

Let's take a look at the Python code.

Python example
To create the text from HTML example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/text-from-html.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
text-from-html.py.

4. Replace the params variable in chapter07/text-from-html.py with the
following code:

params = {

 "prompt": "Extract the title, h1, and body text from
the following HTML document:\n\n<head><title>A simple
page</title></head><body><h1>Hello World</h1><p>This is
some text in a simple html page.</p></body></html>\n\
nTitle:",

 "temperature": 0,

 "max_tokens": 64,

 "top_p": 1,

 "frequency_penalty": 0.5,

 "presence_penalty": 0

}

http://replit.com

190 Generating and Transforming Text

5. Change the .replit file in your root folder to the following:

run = "python chapter07/text-from-html.py"

6. Click the Run button and review the results.

After running chapter07/text-from-html.py, you should see a result
similar to the console output in the following screenshot:

Figure 7.24 – Example output from chapter07/text-from-html.py

Let's take a look at another example.

Extracting a postal address
Let's look at an example that extracts the postal address from an email. The following
prompt shows how you could accomplish this.

Important note
This example uses the davinci-instruct-beta engine, which is in beta at the
time of publishing.

You can see the prompt provides basic instructions and the postal address in the email is
provided in a standard way so GPT-3 will likely be able to identify the address:

Extract the postal address from this email:

Dear Paul,

Extracting text 191

I'm in the market for a new home and I understand you're the
listing agent for the property located at 2620 Riviera Dr,
Laguna Beach, CA 92651.

Is the seller flexible at all on the asking price?

Best,

Linda

Property Address:

Now try this prompt out with Node.js/JavaScript.

Node.js/JavaScript example
To create the extracting a postal address example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file: chapter07/extract-postal-address.js.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
extract-postal-address.js.

4. Replace the params variable in chapter07/extract-postal-address.
js with the following code:

const params = {

 prompt: "Extract the postal address from this email:\n\
nDear Paul,\n\nI'm in the market for a new home and I
understand you're the listing agent for the property
located at 2620 Riviera Dr, Laguna Beach, CA 92651.\n\
nIs the seller flexible at all on the asking price?\n\
nBest,\n\nLinda\n\nProperty Address:\n",

 temperature: 0,

 max_tokens: 64,

 top_p: 1,

 frequency_penalty: 0.5,

 presence_penalty: 0,

 stop: [""]

}

http://replit.com

192 Generating and Transforming Text

5. Change the .replit file in your root folder to the following:

run = "node chapter07/extract-postal-address.js"

6. Click the Run button and review the results.

After running chapter07/extract-postal-address.js, you should see a
result similar to the console output in the following screenshot:

Figure 7.25 – Example output from chapter07/extract-postal-address.js

Now let's try the same example using Python.

Python example
To create the extracting a postal address example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/extract-postal-address.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
extract-postal-address.py.

4. Replace the params variable in chapter07/extract-postal-address.
py with the following code:

params = {

 "prompt": "Extract the postal address from this
email:\n\nDear Paul,\n\nI'm in the market for a new
home and I understand you're the listing agent for the
property located at 2620 Riviera Dr, Laguna Beach, CA

http://replit.com

Extracting text 193

92651.\n\nIs the seller flexible at all on the asking
price?\n\nBest,\n\nLinda\n\nProperty Address:\n",

 "temperature": 0,

 "max_tokens": 64,

 "top_p": 1,

 "frequency_penalty": 0.5,

 "presence_penalty": 0,

 "stop": [""]

}

5. Change the .replit file in your root folder to the following:

run = "python chapter07/extract-postal-address.py"

6. Click the Run button and review the results.

After running chapter07/extract-postal-address.py, you should see a
result similar to the console output in the following screenshot:

Figure 7.26 – Example output from chapter07/extract-postal-address.py

Let's take a look at a similar example – extracting an email address.

194 Generating and Transforming Text

Extracting an email address
This prompt is similar to the postal address example but this time we're instructing GPT-3
to extract an email address:

Extract the email address from the following message:

Dear Paul,

I'm in the market for a new home and I understand you're the
listing agent for the property located at 2620 Riviera Dr,
Laguna Beach, CA 92651.

Can you send details to my wife's email which is beth@example.
com?

Best,

Kevin

Email Address:

Now, let's try this prompt out with Node.js/JavaScript.

Node.js/JavaScript example
To create the extracting an email address example in Node.js/JavaScript, follow these
steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file: chapter07/extract-email-address.js.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
extract-email-address.js.

4. Replace the params variable in chapter07/extract-email-address.js
with the following code:

const params = {

 prompt: "Extract the email address from the following
message:\n\nDear Paul,\n\nI'm in the market for a new
home and I understand you're the listing agent for
the property located at 2620 Riviera Dr, Laguna Beach,
CA 92651.\n\nCan you send details to my wife's email
which is beth@example.com?\n\nBest,\n\nKevin\n\nEmail
Address:\n",

 temperature: 0,

http://replit.com

Extracting text 195

 max_tokens: 64,

 top_p: 1,

 frequency_penalty: 0.5,

 presence_penalty: 0,

 stop: [""]

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/extract-email-address.js"

6. Click the Run button and review the results.

After running chapter07/extract-email-address.js, you should see a
result similar to the console output in the following screenshot:

Figure 7.27 – Example output from chapter07/extract-email-address.js

Let's take a look at the Python code.

Python example
To create the extracting an email address example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/extract-email-address.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
extract-email-address.py.

http://replit.com

196 Generating and Transforming Text

4. Replace the params variable in chapter07/extract-email-address.py
with the following code:

params = {

 "prompt": "Extract the email address from the
following message:\n\nDear Paul,\n\nI'm in the market for
a new home and I understand you're the listing agent for
the property located at 2620 Riviera Dr, Laguna Beach,
CA 92651.\n\nCan you send details to my wife's email
which is beth@example.com?\n\nBest,\n\nKevin\n\nEmail
Address:\n",

 "temperature": 0,

 "max_tokens": 64,

 "top_p": 1,

 "frequency_penalty": 0.5,

 "presence_penalty": 0,

 "stop": [""]

}

5. Change the .replit file in your root folder to the following:

run = "python chapter07/extract-email-address.py"

6. Click the Run button and review the results.

After running chapter07/extract-email-address.py, you should see a
result similar to the console output in the following screenshot:

Figure 7.28 – Example output from chapter07/extract-email-address.py

For our last example, we're going to close out with a chatbot.

Creating chatbots 197

Creating chatbots
For the last set of examples, we'll look at creating chatbots. Technically, this would be
classified as generating text so it could have been covered in Generating content and lists.
But creating chatbots with GPT-3 is so much fun it deserves a section of its own. We'll
start with a simple conversational chatbot.

A simple chatbot
For our simple chatbot, we'll be using the following prompt. We'll look at code for both
Node.js/JavaScript and Python but the prompt for both is the same.

The first part of the prompt provides instructions for how the bot should respond and
the general conversational style. You can change a lot about how the bot responds by
changing the instructions and the example dialog. For instance, you could change the
conversational tone by changing the words friendly and polite to rude and sarcastic.

Here is the prompt text for our simple bot:

The following is a conversation with an AI bot. The bot is very
friendly and polite.

Human: Hello, how are you?

AI: I am doing great, thanks for asking. How can I help you
today?

Human: I just wanting to talk with you.

AI:

Now, let's take a look at using to implement a simple bot in Node.js/JavaScript.

Node.js/JavaScript example
To create the simple chatbot example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node repl.

2. Create a new file: chapter07/simple-chatbot.js.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
simple-chatbot.js.

4. Replace the params variable in chapter07/simple-chatbot.js with the
following code:

const params = {

 prompt: "The following is a conversation with an AI

http://replit.com

198 Generating and Transforming Text

bot. The bot is very friendly and polite.\n\nHuman:
Hello, how are you?\nAI: I am doing great, thanks for
asking. How can I help you today?\nHuman: I just wanting
to talk with you.\nAI:",

 temperature: 0.9,

 max_tokens: 150,

 top_p: 1,

 frequency_penalty: 0,

 presence_penalty: 0.6,

 stop: ["\n, Human:, AI:"]

}

5. Change the .replit file in your root folder to the following:

run = "node chapter07/simple-chatbot.js"

6. Click the Run button and review the results.

After running chapter07/simple-chatbot.js, you should see a result
similar to the console output in the following screenshot:

Figure 7.29 – Example output from chapter07/simple-chatbot.js

Now the Python version.

Creating chatbots 199

Python example
To create the simple chatbot example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python repl.

2. Create a new file: chapter07/simple-chatbot.py.

3. Copy the code from the dumb-joke-generator.py file into chapter07/
simple-chatbot.py.

4. Replace the params variable in chapter07/simple-chatbot.py with the
following code:

params = {

 "prompt": "The following is a conversation with an
AI bot. The bot is very friendly and polite.\n\nHuman:
Hello, how are you?\nAI: I am doing great, thanks for
asking. How can I help you today?\nHuman: I just wanting
to talk with you.\nAI:",

 "temperature": 0.9,

 "max_tokens": 150,

 "top_p": 1,

 "frequency_penalty": 0,

 "presence_penalty": 0.6,

 "stop": ["\n, Human:, AI:"]

}

5. Change the .replit file in your root folder to the following:

run = "python chapter07/simple-chatbot.py"

http://replit.com

200 Generating and Transforming Text

6. Click the Run button and review the results.

After running chapter07/simple-chatbot.py, you should see a result
similar to the console output in the following screenshot:

Figure 7.30 – Example output from chapter07/simple-chatbot.py

That's our last example. Let's wrap up with a quick summary.

Summary
In this chapter, we covered generating and transforming text. We walked through 15
examples in both Node.js/JavaScript and Python. The examples included generating
content and lists, translating and transforming text, extracting text, and creating simple
chatbots.

In the next chapter, we'll walk through examples of classifying and categorizing text.

8
Classifying and

Categorizing Text
In the last chapter, we looked at different ways to generate text. In this chapter, we'll
discuss text classification and the OpenAI API classifications endpoint. We'll start with a
quick overview of text classification and the classifications endpoint, and then we'll work
through implementing sentiment analysis, assigning an ESRB rating to text, categorizing
text by language, and classifying text from keywords, which are all common text
classification examples.

The topics we will be covering in this chapter are as follows:

• Understanding text classification

• Introducing the classifications endpoint

• Implementing sentiment analysis

• Assigning an ESRB rating to text

• Classifying text by language

• Classifying text from keywords

202 Classifying and Categorizing Text

Technical requirements
This chapter requires that you have access to the OpenAI API. You can request access by
visiting https://openapi.com.

Understanding text classification
A text classification task takes in text and returns a label. Classifying email as spam or
determining the sentiment of a tweet are both examples of text classification tasks. There
are multiple ways to do text classification using the OpenAI API and we've looked at
some of them already. But one method we haven't covered yet is using the completions
endpoint. However, before we dive into the completions endpoint, let's quickly review
some of the different ways we can do text classification that we've already covered.

Using the completions endpoint for text classification
For starters, you can perform classification tasks using the completions endpoint by
describing the task in our prompt. For example, the following prompt can be used to
classify a social media post:

Social media post: "My favorite restaurant is opening again
Monday. I can't wait!"

Sentiment (positive, neutral, negative):

The previous prompt would return positive, natural, or negative, but most likely positive,
given the post.

Content filtering is a text classification task
Content filtering is also a type of text classification task. Recall from Chapter 6, Content
Filtering, when we used the content filter engine, that it returned 0 = safe, 1 = sensitive,
and 2 = unsafe, for text that was provided. That was text classification.

While there are multiple ways to do text classification using the OpenAI API. There is
one endpoint that is specifically designed for classification tasks. That endpoint is the
classifications endpoint, and we'll discuss this next.

https://openapi.com

Introducing the classifications endpoint 203

Introducing the classifications endpoint
The OpenAI API also provides the classifications endpoint for text classification tasks.
The classifications endpoint simplifies many classification tasks. It uses a combination
of semantic search and completions engines to classify text based on the samples you
provide. You can provide up to 200 examples along with your HTTP request or you can
pre-uploaded files containing example data.

The URL for the classifications endpoint is https://api.openai.com/v1/
classifications. It expects an HTTP POST with a JSON body containing input
parameters. One of the required parameters is the query parameter. The value of
the query parameter is the text to classify. The query value is first used to do a semantic
search to find relevant examples from the examples provided. Then, the examples are
used, along with the query, to create a prompt for a defined completions engine that will
classify the text.

The following code block shows a simple request body for the classifications endpoint.
Note that the examples are provided with this request and the model that will be used to
do the classification is the curie model:

{

 "query": "That makes me smile",

 "examples": [

 ["That is awesome", "Happy"],

 ["I feel so sad", "Sad"],

 ["I don't know how I feel", "Neutral"]

],

 "model": "curie"

}

As mentioned, you can also upload example data and use a file parameter to reference the
uploaded example data. This is useful when you have a large number of examples – over
200. Let's look at uploading files.

Uploading files
Example data for the classifications endpoint can be uploaded using the OpenAI API
files endpoint. The file should be formatted based on the JSON lines text format, which is
basically a valid JSON object on each line that is separated by a line break.

https://api.openai.com/v1/classifications
https://api.openai.com/v1/classifications

204 Classifying and Categorizing Text

Important note
You can learn more about the JSON lines format at https://
jsonlines.org.

The following code block provides an example of the format required for a classifications
sample file. The text property and label properties are required, but the metadata is
optional. The metadata property can contain a JSON object with any information you'd
like. This data can then optionally be returned with the query results:

{"text": "that is awesome", "label": "Happy", "metadata":
{"id":"1"}}

{"text": "i feel so sad", "label": "Sad", "metadata":
{"id":"2"}}

{"text": "i don't know how i feel", "label": "Neutral",
"metadata": {"id":"3"}}

To upload a sample file, you use the OpenAI API files endpoint. For the examples in this
chapter, we won't be using files. However, we'll take a closer look at the files endpoint in
Chapter 9, Building a GPT-3 Powered Question-Answering App.

Implementing sentiment analysis
A common classification task is sentiment analysis. Using sentiment analysis, you can
classify text based on its general tone – for example, happy, sad, mad, or neutral. This can
be useful in a lot of applications; for example, if you're a restaurant owner and you want to
respond quickly to unhappy customer reviews. Let's take a look at how we could do that
using the OpenAI API classifications endpoint.

In this example, we will classify restaurant reviews. We'll label the reviews with the labels
Good, Poor, or Neutral. We will use the classifications endpoint for this example, and we'll
provide some example reviews with the request.

Node.js/JavaScript example
To create the review classifier example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node REPL.

2. Create a new file – chapter08/reviews-classifier.js.

https://jsonlines.org
https://jsonlines.org
http://replit.com

Implementing sentiment analysis 205

3. Add the following code to the beginning of the reviews-classifier.js file:

const axios = require('axios');

const client = axios.create({

 headers: {

 'Authorization': 'Bearer ' + process.env.OPENAI_API_
KEY

 }

});

const endpoint = "https://api.openai.com/v1/
classifications";

4. Then, add example reviews that will be used with the request:

const examples = [

 ["The service was super quick. I love that.","Good"],

 ["Would not go back.","Poor"],

 ["I tried the chicken and cranberry pizza...
mmmm!","Good"],

 ["There were no signs indicating cash only!","Poor"],

 ["I was disgusted. There was a hair in my
food.","Poor"],

 ["The waitress was a little slow but
friendly.","Neutral"]

]

5. Next, add the request parameters for the classifications endpoint:

const params = {

 "query": "I'm never going to this place again",

 "examples": reviews,

 "model": "curie"

}

6. Finally, add the following code to log the result to the console:

client.post(endpoint, params)

 .then(result => {

206 Classifying and Categorizing Text

 console.log(params.query + '\nLABEL:' + result.data.
label);

 }).catch(err => {

 console.log(err);

 });

7. Change the .replit file in your root folder to the following:

run = "node chapter08/reviews-classifier.js"

8. Click the Run button and review the results.

After running the chapter08/reviews-classifier.js file, you should see a
result similar to the console output in the following screenshot:

Figure 8.1 – Example output from chapter08/reviews-classifier.js

Next, let's look at the same example using Python.

Python example
To create the online review classifier example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python REPL.

2. Create a new file – chapter08/reviews-classifier.py.

http://replit.com

Implementing sentiment analysis 207

3. Add the following code to the beginning of the reviews-classifier.py file:

import requests

import os

import json

headers = {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + os.environ.get("OPENAI_
API_KEY")

}

endpoint = "https://api.openai.com/v1/classifications"

4. Create an array for the review examples:

examples = [

 ["The service was super quick. I love that.","Good"],

 ["Would not go back.","Poor"],

 ["I tried the chicken and cranberry pizza...
mmmm!","Good"],

 ["There were no signs indicating cash only!","Poor"],

 ["I was disgusted. There was a hair in my
food.","Poor"],

 ["The waitress was a little slow but
friendly.","Neutral"]

]

5. Set the request parameters for the endpoint:

params = {

 "query": "I'm never going to this place again",

 "examples": examples,

 "model": "curie"

}

208 Classifying and Categorizing Text

6. Make the HTTP request and print the results to the console:

result = requests.post(endpoint, headers=headers,
data=json.dumps(params))

print(params["query"] + '\nLABEL:' + result.json()
["label"])

7. Change the .replit file in your root folder to the following:

run = "python chapter08/reviews-classifier.py"

8. Click the Run button and review the results.

After running the chapter08/online-review-classifier.py file, you
should see a result similar to the console output in the following screenshot:

Figure 8.2 – Example output from chapter08/online-review-classifier.py

Let's now take a look at another example.

Assigning an ESRB rating to text
In the last example, we provided sample data to help with our classification task. But
GPT-3 is pre-trained with a huge dataset, meaning it can perform a surprising number
of classification tasks without providing any example data. Let's take a look at another
example using the completions endpoint. In this example, we'll look at classifying text
with an Entertainment Software Rating Board (ESRB) rating.

In this example, we will use the completions endpoint to assign an ESRB rating to text
without any example data.

Assigning an ESRB rating to text 209

Node.js/JavaScript example
To create the ESRB rating classifier example in Node.js/JavaScript, follow these
steps:

1. Log in to replit.com and open your exploring-gpt3-node REPL.

2. Create a new file – chapter08/esrb-rating-classifier.js.

3. Add the following code to the beginning of the esrb-rating-classifier.js
file:

const axios = require('axios');

const apiKey = process.env.OPENAI_API_KEY;

const client = axios.create({

 headers: { 'Authorization': 'Bearer ' + apiKey }

});

const endpoint = "https://api.openai.com/v1/engines/
davinci/completions";

4. Add the endpoint parameters to the esrb-rating-classifier.js file with
the following code:

const params = {

 prompt: "Provide an ESRB rating for the following
text:\n\n\"i'm going to hunt you down, and when I
find you, I'll make you wish you were dead.\"\n\nESRB
rating:",

 temperature: 0.7,

 max_tokens: 60,

 top_p: 1,

 frequency_penalty: 0,

 presence_penalty: 0,

 stop: ["\n"]

}

5. Add the following code to log the endpoint response to the console:

client.post(endpoint, params)

 .then(result => {

 console.log(params.prompt + result.data.choices[0].
text);

http://replit.com

210 Classifying and Categorizing Text

 // console.log(result.data);

 }).catch(err => {

 console.log(err);

 });

6. Change the .replit file in your root folder to the following:

run = "node chapter08/esrb-rating-classifier.js"

7. Click the Run button and review the results.

After running the chapter08/esrb-rating-classifier.js file, you
should see a result similar to the console output in the following screenshot:

Figure 8.3 – Example output from chapter08/esrb-rating-classifier.js

Now, let's look at the ESRB rating classifier in Python.

Python example
To create the ESRB rating classifier example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python REPL.

2. Create a new file – chapter08/esrb-rating-classifier.py.

http://replit.com

Assigning an ESRB rating to text 211

3. Add the following code to the beginning of the esrb-rating-classifier.py
file:

import requests

import os

import json

headers = {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + os.environ.get("OPENAI_
API_KEY")

}

endpoint = 'https://api.openai.com/v1/engines/davinci/
completions'

4. Add the endpoint parameters to the esrb-rating-classifier.js file with
the following code:

params = {

 "prompt": "Provide an ESRB rating for the following
text:\n\n\"i'm going to hunt you down, and when I
find you, I'll make you wish you were dead.\"\n\nESRB
rating:",

 "temperature": 0.7,

 "max_tokens": 60,

 "top_p": 1,

 "frequency_penalty": 0,

 "presence_penalty": 0,

 "stop": ["\n"]

}

5. Add the following code to log the endpoint response to the console:

result = requests.post(endpoint, headers=headers,
data=json.dumps(params))

print(params["prompt"] + result.json()["choices"][0]
["text"])

6. Change the .replit file in your root folder to the following:

run = "node chapter08/esrb-rating-classifier.js"

212 Classifying and Categorizing Text

7. Click the Run button and review the results.

After running the chapter08/esrb-rating-classifier.js file, you
should see a result similar to the console output in the following screenshot:

Figure 8.4 – Example output from chapter08/esrb-rating-classifier.py

Let's now take a look at another example.

Classifying text by language
Now, let's consider an example. Suppose we needed to route support messages based on
the language the message was written in – for a multinational support center. In this case,
we could use GPT-3 to classify messages by language, such as English, French, Hindi,
Spanish, and Russian. Let's see how we'd go about doing that.

In this example, we will classify support messages by language using the classifications
endpoint and examples for each language.

Node.js/JavaScript example
To create the email classifier example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node REPL.

2. Create a new file – chapter08/language-classifier.js.

3. Add the following code to the beginning of the language-classifier.js file:

const axios = require('axios');

const apiKey = process.env.OPENAI_API_KEY;

http://replit.com

Classifying text by language 213

const client = axios.create({

 headers: { 'Authorization': 'Bearer ' + apiKey }

});

const endpoint = "https://api.openai.com/v1/
classifications";

4. Create an array for the language examples:

const examples = [

 ["Hello, I'm interested in applying for the prompt
designer position you are hiring for. Can you please tell
me where I should send my resume?","English"],

 ["Здравствуйте, я хочу подать заявку на должность быстрого дизайнера,
на которую вы нанимаете. Подскажите, пожалуйста, куда мне отправить
резюме?","Russian"],
 ["Hola, estoy interesado en postularme para el puesto
de diseñador rápido para el que está contratando. ¿Puede
decirme dónde debo enviar mi currículum?", "Spanish"],

 ["Bonjour, je suis intéressé à postuler pour le poste
de concepteur rapide pour lequel vous recrutez. Pouvez-
vous me dire où je dois envoyer mon CV?","French"],

 ["नमस्कार, मैं उस त्वरित डिज़ाइनर पद के लिए आवेदन करने में रुचि रखता हूं, जिसके
लिए आप नौकरी कर रहे हैं। क्या आप मुझे बता सकते हैं कि मुझे अपना रिज्यूम कहां भेजना
चाहिए?","Hindi"]
]

If necessary, you can use https://translate.google.com to create the
example data.

5. Add the endpoint parameters with the following code:

const params = {

 "query": "¿Con quién debo comunicarme sobre ofertas de
trabajo técnico?",

 "examples": examples,

 "model": "curie"

}

https://translate.google.com

214 Classifying and Categorizing Text

6. Add the following code to log the endpoint response to the console:

client.post(endpoint, params)

 .then(result => {

 console.log(params.query + '\nLABEL:' + result.data.
label);

 }).catch(err => {

 console.log(err);

 });

7. Change the .replit file in your root folder to the following:

run = "node chapter08/language-classifier.js"

8. Click the Run button and review the results.

After running the chapter08/email-classifier.js file, you should see a
result similar to the console output in the following screenshot:

Figure 8.5 – Example output from chapter08/language-classifier.js

Let's look at the Python version next.

Classifying text by language 215

Python example
To create the language classifier example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python REPL.

2. Create a new file – chapter08/language-classifier.py.

3. Add the following code to the beginning of the language-classifier.py file:

import requests

import os

import json

headers = {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + os.environ.get("OPENAI_
API_KEY")

}

endpoint = "https://api.openai.com/v1/classifications"

4. Create an array for the language examples:

examples = [

 ["Hello, I'm interested in applying for the prompt
designer position you are hiring for. Can you please tell
me where I should send my resume?","English"],

 ["Здравствуйте, я хочу подать заявку на должность быстрого дизайнера,
на которую вы нанимаете. Подскажите, пожалуйста, куда мне отправить
резюме?","Russian"],
 ["Hola, estoy interesado en postularme para el puesto
de diseñador rápido para el que está contratando. ¿Puede
decirme dónde debo enviar mi currículum?", "Spanish"],

 ["Bonjour, je suis intéressé à postuler pour le poste
de concepteur rapide pour lequel vous recrutez. Pouvez-
vous me dire où je dois envoyer mon CV?","French"],

 ["नमस्कार, मैं उस त्वरित डिज़ाइनर पद के लिए आवेदन करने में रुचि रखता हूं, जिसके
लिए आप नौकरी कर रहे हैं। क्या आप मुझे बता सकते हैं कि मुझे अपना रिज्यूम कहां भेजना
चाहिए?","Hindi"]
]

http://replit.com

216 Classifying and Categorizing Text

If necessary, you can use https://translate.google.com to create the
example data.

5. Add the endpoint parameters with the following code:

const params = {

 "query": "¿Con quién debo comunicarme sobre ofertas de
trabajo técnico?",

 "examples": examples,

 "model": "curie"

}

6. Add the following code to log the endpoint response to the console:

result = requests.post(endpoint, headers=headers,
data=json.dumps(params))

print(params["query"] + '\nLABEL:' + result.json()
["label"])

7. Change the .replit file in your root folder to the following:

run = "python chapter08/language-classifier.py"

8. Click the Run button and review the results.

After running the chapter08/language-classifier.py file, you should see
a result similar to the console output in the following screenshot:

Figure 8.6 – Example output from chapter08/language-classifier.py

Let's now take a look at another example.

https://translate.google.com

Classifying text from keywords 217

Classifying text from keywords
Another common text classification task is to classify documents based on keywords. To
do this, we can use GPT3 to create a list of keywords that will be related to the content
of the document. However, GPT3 doesn't just extract keywords from the document.
It determines keywords that are relevant based on the document content. Let's try an
example.

In this example, we will use the completions endpoint to classify a document based on
relevant keywords.

Node.js/JavaScript example
To create the keywords classifier example in Node.js/JavaScript, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-node REPL.

2. Create a new file – chapter08/keywords-classifier.js.

3. Add the following code to the beginning of the keywords-classifier.js file:

const axios = require('axios');

const apiKey = process.env.OPENAI_API_KEY;

const client = axios.create({

 headers: { 'Authorization': 'Bearer ' + apiKey }

});

const endpoint = "https://api.openai.com/v1/engines/
davinci/completions";

4. Add the endpoint parameters to keywords-classifier.js with the help of
the following code:

const params = {

 prompt: "Text: When NASA opened for business on October
1, 1958, it accelerated the work already started on
human and robotic spaceflight. NASA's first high profile
program was Project Mercury, an effort to learn if humans
could survive in space. This was followed by Project
Gemini, which used spacecraft built for two astronauts
to perfect the capabilities needed for the national
objective of a human trip to the Moon by the end of the
1960s. Project Apollo achieved that objective in July
1969 with the Apollo 11 mission and expanded on it with

http://replit.com

218 Classifying and Categorizing Text

five more successful lunar landing missions through 1972.
After the Skylab and Apollo-Soyuz Test Projects of the
mid-1970s, NASA's human spaceflight efforts again resumed
in 1981, with the Space Shuttle program that continued
for 30 years. The Shuttle was not only a breakthrough
technology, but was essential to our next major step
in space, the construction of the International Space
Station.\n\nKeywords:",

 temperature: 0.3,

 max_tokens: 60,

 top_p: 1,

 frequency_penalty: 0.8,

 presence_penalty: 0,

 stop: ["\n"]

}

5. Add the following code to log the endpoint response to the console:

client.post(endpoint, params)

 .then(result => {

 console.log(params.prompt + result.data.choices[0].
text);

 // console.log(result.data);

 }).catch(err => {

 console.log(err);

 });

6. Change the .replit file in your root folder to the following:

run = "node chapter08/keywords-classifier.js"

7. Click the Run button and review the results.

After running the chapter08/keywords-classifier.js file, you should
see a result similar to the console output in the following screenshot. Notice in the
results that some of the keywords identified may not exist in the original text:

Classifying text from keywords 219

Figure 8.7 – Example output from chapter08/keywords-classifier.js

Alright, next, let's look at the Python version.

Python example
To create the keywords classifier example in Python, follow these steps:

1. Log in to replit.com and open your exploring-gpt3-python REPL.

2. Create a new file – chapter08/keywords-classifier.py.

3. Add the following code to the beginning of the keywords-classifier.py file:

import requests

import os

import json

headers = {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + os.environ.get("OPENAI_
API_KEY")

}

endpoint = 'https://api.openai.com/v1/engines/davinci/
completions'

http://replit.com

220 Classifying and Categorizing Text

4. Add a params variable to chapter08/keywords-classifier.py with the
following code:

params = {

 "prompt": "Text: When NASA opened for business on
October 1, 1958, it accelerated the work already started
on human and robotic spaceflight. NASA's first high
profile program was Project Mercury, an effort to learn
if humans could survive in space. This was followed by
Project Gemini, which used spacecraft built for two
astronauts to perfect the capabilities needed for the
national objective of a human trip to the Moon by the
end of the 1960s. Project Apollo achieved that objective
in July 1969 with the Apollo 11 mission and expanded
on it with five more successful lunar landing missions
through 1972. After the Skylab and Apollo-Soyuz Test
Projects of the mid-1970s, NASA's human spaceflight
efforts again resumed in 1981, with the Space Shuttle
program that continued for 30 years. The Shuttle was
not only a breakthrough technology, but was essential to
our next major step in space, the construction of the
International Space Station.\n\nKeywords:",

 "temperature": 0.3,

 "max_tokens": 60,

 "top_p": 1,

 "frequency_penalty": 0.8,

 "presence_penalty": 0,

 "stop": ["\n"]

}

5. Add the following code to log the endpoint response to the console:

result = requests.post(endpoint, headers=headers,
data=json.dumps(params))

print(params["prompt"] + result.json()["choices"][0]
["text"])

6. Change the .replit file in your root folder to the following:

run = "python chapter08/keywords-classifier.py"

Summary 221

7. Click the Run button and review the results.

After running the chapter08/keywords-classifier.py file, you should see
a result similar to the console output in the following screenshot:

Figure 8.8 – Example output from chapter08/keywords-classifier.py

Again, notice that some of the keywords returned don't appear in the text provided,
but they are still relevant. This is possible because GPT3 is using its language model to
consider keywords that are the best fit, even if they aren't contained in the text.

Summary
In this chapter, we covered understanding text classification and the classifications API
endpoint. Then, we worked through examples of implementing sentiment analysis,
assigning an ESRB rating to text, classifying text by language, and classifying text with
keywords.

In the next chapter, we will look at working with the semantic search API endpoint.

9
Building a GPT-3-

Powered Question-
Answering App

Up to this point, we've looked at (and written) a lot of code. But we haven't actually
created a fully functional app. Well, that's what we're going to do now. In this chapter,
we're going to build a simple but powerful web app that lets users ask questions that
GPT-3 will answer from a knowledge base we will provide. The app could be used to
answer any kind of questions, but we're going to use it to answer questions people might
have about us – an ask me anything app. So, imagine a website that recruiters or a potential
employer could use to ask questions about your skills, accomplishments, and experience.
Not looking for a new job? No problem. Again, this app can be used for just about any
question-answering application – so maybe a GPT-3-powered product FAQ, or a GPT-3-
powered teaching assistant – it's completely up to you. We'll start with a quick overview of
how the app will work, then we'll step through the process of building it.

224 Building a GPT-3-Powered Question-Answering App

The topics we'll cover are the following:

• Introducing GPT Answers

• Introducing the Answers endpoint

• Setting up and testing Express

• Creating the API endpoint for GPT Answers

• Creating the GPT Answers user interface

• Integrating the Answers endpoint

• Generating relevant and factual answers

• Using files with the Answers endpoint

Technical requirements
This chapter requires that you have access to the OpenAI API. You can request access by
visiting https://openapi.com.

Introducing GPT Answers
In this section, we're going to be building a GPT-3-powered web app that lets users ask
any questions and get back answers from a knowledge base of data that we'll provide. We
will call the app GPT Answers. Yes, the name is underwhelming, but we can always use
GPT-3 to help us brainstorm a better name later.

The following is a screenshot of what the app will look like when it's completed. Sure, the
user interface might be as underwhelming as the name, but the power behind it is sure to
impress!

Figure 9.1 – GPT Answers user interface

Now let's get into what's behind the UI and how the app will be built.

https://openapi.com

Introducing the Answers endpoint 225

GPT Answers technical overview
GPT Answers will be built using Node.js, JavaScript, and HTML. We'll also be using a web
framework called Express, to simplify the development.

Important note
This app could also be built using Python but for this chapter, unlike the
previous chapters, we'll only be covering the steps to create the app using
Node.js/JavaScript.

Questions will be submitted through a simple web form that will use JavaScript to make
requests to an API endpoint that the app will also expose. The app API will primarily act
as a proxy for interacting with the OpenAI API, but it will also provide exception handling
and response formatting.

Hosting the app
Up to this point, we've only used replit.com for writing and testing code. However,
replit.com also supports hosting apps and it's surprisingly easy to work with. For
web apps, you can even use your own domain name. So, replit.com is going to be our
hosting environment as well as our development environment.

Important note
GPT-3-powered apps need to be approved by OpenAI before they can be
public-facing. We won't get into that in this chapter, but we'll cover the app
approval process in Chapter 10, Going Live with OpenAI-Powered Apps.

The main OpenAI endpoint the app will use is the Answers endpoint. But since we have
not covered the Answers endpoint yet, let's do a quick introduction before we start coding.

Introducing the Answers endpoint
The OpenAI Answers endpoint is specifically designed for question-answering tasks. It
provides more control than the Completions endpoint by enabling the use of a source of
truth for the answers. For our GPT Answers app, that source of truth will be a knowledge
base that will be used for answering questions. The knowledge base (that is, documents)
can be provided along with the endpoint request or by referencing a pre-uploaded file
containing the data.

http://replit.com
http://replit.com
http://replit.com

226 Building a GPT-3-Powered Question-Answering App

The URL for the Answers endpoint is https://api.openai.com/v1/answers
and the endpoint accepts an HTTP POST request and a number of input parameters. The
following is a brief description of the available input parameters, but for more complete
details, see the OpenAI docs for the Answers endpoint located at https://beta.
openai.com/docs/api-reference/answers.

Here are the required parameters:

• model (required, string) – The ID of the model that will be used for completions.

• question (required, string) – The question to be answered.

• examples (required, array) – A list of questions with answers to help steer the
model toward the tone and answer format for the answer.

• examples_context (required, string) – A text snippet containing the contextual
information used to generate the answers for the examples you provide.

• documents (array) – A list of documents from which the answer for the input
question should be derived. If the documents parameter is an empty list, the
question will be answered based on the question-answer examples. Also, the
documents parameter is only required if the file parameter is not used.

• file (string) – The ID of an uploaded file containing documents to derive the
answer from. The file parameter is only required if the documents parameter is
not used.

The optional parameters are as follows:

• search_model (string) – The engine to use for search. This defaults to ada.

• max_rerank (integer) – The maximum number of documents to be. A higher
value can improve accuracy but will increase the latency and cost. This defaults to
200.

• temperature (number) – Defaults to 0, which is best for well-defined answers,
but a higher value can be used for less deterministic answers.

• logprobs (integer) – Defaults to null. The number of likely probable tokens to
return.

• max_tokens (integer) – The maximum number of tokens that will be used to
generate an answer. Defaults to 16.

• stop (string or array) – An optional sequence of up to four patterns that will cause
the API to stop generating a completion. This defaults to null.

https://api.openai.com/v1/answers
https://beta.openai.com/docs/api-reference/answers
https://beta.openai.com/docs/api-reference/answers

Setting up and testing Express 227

• n (integer) – The number of answers to generate for each question. This defaults to
1.

• logit_bias (map) – Can be used to control the likelihood of specified tokens
appearing in the completion.

• return_metadata (Boolean) – If the file parameter is used and the file
referenced includes metadata, this will cause the response to include the metadata
from the file.

• return_prompt (Boolean) – Causes the prompt text to be returned with the
response. This defaults to false.

• expand (array) – Causes the response to include details about the completion or
file. The value of expand can currently include completion and file. This
defaults to an empty array.

Important note
We won't be using all of the available parameters for our GPTAMA app.

Now that we've done a quick introduction to the Answers endpoint, let's get to coding up
our GPTAMA app!

Setting up and testing Express
Express is a lightweight but flexible web application framework for Node.js that we'll be
using for the app. It's pretty easy to get it up and running, especially with Replit.com. So,
the first thing we'll do is get Express set up on Replit.com and test it out. We'll be starting
from scratch, so we'll be creating a new repl for GPTAMA.

To create a new Node.js REPL and set up Express, complete the following steps:

1. Log in at replit.com.

2. Create a new Node.js REPL named gptanswers-node.

3. In the output pane, click on the Shell tab and enter this command:

npx express-generator --no-view --force .

http://replit.com

228 Building a GPT-3-Powered Question-Answering App

4. Run the previous command by pressing the Enter key and you should see a result
that looks like the following screenshot:

Figure 9.2 – Output from express-generator

Important note
The npx command is included with NPM, which is installed with Node.js. It
is used to run express-generator, which creates a basic Express app
as a starting point. The command ends with a period to instruct express-
generator to add files to the current directory. The --no-view switch
tells the generator we're just using plain HTML for our UI and the --force
switch tells the generator to overwrite any existing files in the current directory.

5. After express-generator completes, run the following command in the shell:

npm update

6. Now create a file named .replit and add the following Run command to it:

Run = "node ./bin/www"

Creating the API endpoint for GPT Answers 229

7. Finally, click the Run button to start the Express server. If all went well, you should
see a browser window open in the Replit.com editor with a welcome message from
Express. It should look like the following screenshot:

Figure 9.3 – Express server running in Replit.com

Two things to note are the URL in the browser pane and that the Run button became
a Stop button. This is because Express is running an HTTP server that will continue
running until it's stopped. So, the app is available on the web and is accessible via the URL
in the browser pane while the Express server is running. Also, when you make changes,
you'll need to stop and restart Express by clicking the Stop button and then the Run
button.

If you run into any issues and don't see the Express page, you can go through the steps
in this section again without hurting anything. When you see the Express welcome page,
you're all set to move on. Next, we'll create an API endpoint for our GPT Answers app.

Creating the API endpoint for GPT Answers
When our app is complete, we'll have a fully functional API endpoint that can return
answers generated by the OpenAI API. But for now, we'll just create an endpoint that
returns a placeholder response. Then, we'll test the endpoint using Postman and we'll
come back later and finish coding it up.

230 Building a GPT-3-Powered Question-Answering App

Creating the API endpoint
To create the API endpoint, do the following:

1. Open the app.js file that was created by express-generator. The file should
look like the following screenshot:

Figure 9.4 – Default app.js created by express-generator

2. Edit line 7 and change var usersRouter = require('./routes/
users') to the following:

var answerRouter = require('./routes/answer');

3. Edit line 18 and change app.use('/users', usersRouter); to the
following:

app.use('/answer', answerRouter);

After editing lines 7 and 18, the app.js file should look like the following
screenshot:

Creating the API endpoint for GPT Answers 231

Figure 9.5 – Edited app.js file

4. Delete the routes/users.js file.

5. Create a new file, routes/answer.js.

6. Add the following code to the answers.js file:

const axios = require('axios');

const express = require('express');

const router = express.Router();

router.post('/', (req, res) => {

 res.send({answer:'placeholder for the answer'});

});

module.exports = router;

7. Click the Stop button and then Start. You should see the Welcome to Express
message again.

232 Building a GPT-3-Powered Question-Answering App

The API endpoint we created accepts an HTTP POST. The endpoint URL will be the URL
you can see in the address bar of the Replit.com browser followed by /answer. But since
it accepts an HTTP POST, we'll need to test it by making a POST request. To do that, we'll
use Postman.

Testing our API with Postman
At this point, we should be able to make an HTTP POST request to our /answer
endpoint and get a response. To complete the test, copy the app URL from the Replit.
com browser (the one showing the Express welcome message) to your clipboard:

1. Open a new browser tab and log in to https://postman.com.

2. Create a new collection named gptanswers-node.

3. Create a new request named test-answer-api in the gptanswers-node
collection to make a post to your app API endpoint. You should have copied the
app URL to your clipboard, and you can paste that into Postman and add a slash
and then answer (/answer). The format of the endpoint URL is as follows but
where {username} is your Replit.com username (assuming you named the repl
gptanswers-node):

https://gptanswers-node.{username}.repl.co

4. Below the endpoint URL input, select the Body tab, choose the Raw radio button,
and choose JSON from the dropdown for the content type.

5. Finally, add the following JSON for the request body:

{

 "question" : "How old are you?"

}

After setting up the request in Postman, it should look something like the following
screenshot:

http://Replit.com
http://Replit.com
https://postman.com

Creating the GPT Answers user interface 233

Figure 9.6 – Postman request to test the GPT-CV app API endpoint

6. Click the blue Send button to submit the request and review the response, which
should be the following:

{

 "answer": "placeholder for the answer"

}

Okay, now that we have our API endpoint responding, we'll move on to creating a web
form to call the API.

Creating the GPT Answers user interface
Now let's create a simple web form interface that will let users submit a question to get
an answer from our API. We'll start by adding UIkit – a popular lightweight frontend
framework that you can learn more about at https://getuikit.com/. We'll also use
Axios to make HTTP calls to the app API using a bit of JavaScript.

UIkit will make it easy to create a simple but clean and modern look for our app. You
can download UIkit for free from https://getuikit.com. Or you can use a hosted
version that is available from https://jsdeliver.com, a free Content Delivery
Network (CDN) for open source projects, and that's what we'll be using.

https://getuikit.com/
https://getuikit.com
https://jsdeliver.com

234 Building a GPT-3-Powered Question-Answering App

To add UIkit, do the following:

1. Open the public/index.html file.

2. Replace the URL for the style sheet with https://cdn.jsdelivr.net/npm/
uikit@3.6.22/dist/css/uikit.min.css.

3. Replace everything between the <body> tag and the </body> tag with the
following:

 <div class="uk-section uk-section-large uk-height-
viewport">

 <div class="uk-container uk-text-center uk-padding-
large">

 <h1 class="uk-heading-medium">GPT</
strong> Answers </h1>

 <p class="uk-text-lead">An Example Knowledge Base
App Powered by GPT-3</p>

 </div>

 <div class="uk-container uk-text-center">

 <form class="uk-grid-collapse" uk-grid>

 <div class="uk-width-1-1 ">

 <input id="question" class="uk-input
uk-width-1-3" type="text">

 <button type="submit" class="uk-button
uk-button-default uk-width-1-5">Get Answer</button>

 </div>

 </form>

 </div>

 <div class="uk-container uk-text-center uk-padding">

 <div class="uk-inline">

 <div id="answer" class="uk-flex uk-flex-center
uk-flex-middle uk-padding uk-width-expand"></div>

 </div>

 </div>

 </div>

https://cdn.jsdelivr.net/npm/uikit@3.6.22/dist/css/uikit.min.css
https://cdn.jsdelivr.net/npm/uikit@3.6.22/dist/css/uikit.min.css

Creating the GPT Answers user interface 235

4. Add the following code above the </body> tag. This will add references to
JavaScript files the page will use. Three of the scripts we'll get from a CDN and one,
the /javascripts/script.js file, we'll create in the next step:

<script src="https://unpkg.com/axios/dist/axios.min.
js"></script>

<script src="https://cdn.jsdelivr.net/npm/uikit@3.6.22/
dist/js/uikit.min.js"></script>

<script src="https://cdn.jsdelivr.net/npm/uikit@3.6.22/
dist/js/uikit-icons.min.js"></script>

<script src="/javascripts/script.js"></script>

At this point, the code in public/index.html should look like the following
screenshot:

Figure 9.7 – Completed index.html code

236 Building a GPT-3-Powered Question-Answering App

If you stop and restart the Express server by clicking the Stop button followed by clicking
the Run button, you should see the home screen updated to look like the following
screenshot:

Figure 9.8 – Question input form
Now we need to add some JavaScript to make the call to the app API.

5. Create the javascripts/script.js file and add the following code.

6. First, we'll add two variables to hold the HTML form and answer div:

const form = document.querySelector('form');

const answer = document.querySelector('#answer');

Creating the GPT Answers user interface 237

7. Next, we'll add code that will fire when the form is submitted:

const formEvent = form.addEventListener('submit', event
=> {

 event.preventDefault();

 const question = document.querySelector('#question');

 if (question.value) {

 askQuestion(question.value);

 } else {

 answer.innerHTML = "You need to enter a question to
get an answer.";

 answer.classList.add("error");

 }

});

8. The following code will append the text to the answer div:

const appendAnswer = (result) => {

 answer.innerHTML = `<p>${result.answer}</p>`;

};

9. Finally, we'll add a function to call the app API endpoint using Axios:

const askQuestion = (question) => {

 const params = {

 method: 'post',

 url: '/answer',

 headers: {

 'content-type': 'application/json'

 },

 data: { question }

 };

 axios(params)

 .then(response => {

 const answer = response.data;

 appendAnswer(answer);

 })

 .catch(error => console.error(error));

};

238 Building a GPT-3-Powered Question-Answering App

10. Now we can test it by clicking the Stop button and then the Start button. Then, in
the browser pane, enter a question into the textbox and click the GET ANSWER
button. You should see the API respond back with placeholder for the answer as
shown in the following screenshot:

Figure 9.9 – Testing the web UI with the placeholder API code

At this point, we have the basic framework for our application in place. What we need
to do next is write a bit of code to pass the question on to the OpenAI API Answers
endpoint.

Integrating the Answers endpoint
Now we'll go back and add some code to our routes/answer.js file so that it calls
the OpenAI Answers endpoint to answer the user's question, rather than returning the
placeholder text:

1. Open the routes/answer.js file and do the following.

2. Delete all of the code after line 5.

3. Starting on line 5, add the following code followed by a line return:

const apiKey = process.env.OPENAI_API_KEY;

const client = axios.create({

 headers: { 'Authorization': 'Bearer ' + apiKey }

});

Integrating the Answers endpoint 239

4. Next, add the following code with a line return after it:

const documents = [

 "I am a day older than I was yesterday.<|endoftext|>",

 "I build applications that use GPT-3.<|endoftext|>",

 "My preferred programming is Python.<|endoftext|>"

]

5. Add the following code starting on line 16 followed by a line return:

const endpoint = 'https://api.openai.com/v1/answers';

6. Next, beginning on line 18, add the following to complete the code:

router.post('/', (req, res) => {

 // call the OpenAI API

 const data = {

 "documents": documents,

 "question": req.body.question,

 "search_model": "ada",

 "model": "curie",

 "examples_context": "My favorite programming language
is Python.",

 "examples": [["How old are you?", "I'm a day older
than I was yesterday."], ["What languages do you know?",
"I speak English and write code in Python."]],

 "max_tokens": 15,

 "temperature": 0,

 "return_prompt": false,

 "expand": ["completion"],

 "stop": ["\n", "<|endoftext|>"],

 }

 client.post(endpoint, data)

 .then(result => {

 res.send({"answer" : result.data.answers[0]})

 }).catch(result => {

 res.send({"answer" : "Sorry, I don't have an
answer."})

240 Building a GPT-3-Powered Question-Answering App

 });

});

module.exports = router;

When you're done editing routes/answer.js, the file will look like the
following screenshot:

Figure 9.10 – Edited routes/answer.js file
We're just about done. The final step before testing is to add our OpenAI API key as
an environment variable.

7. Add your OpenAI API key as a secret for the REPL by clicking the padlock icon and
adding a key with the name OPENAI_API_KEY and the value of your OpenAI API
key, like the example in the following screenshot:

Integrating the Answers endpoint 241

Figure 9.11 – Add a secret for your OpenAI API key

8. Click the Stop button followed by Run to restart Express and then enter What
is your favorite food? into the question text field and click the GET ANSWER
button. You should see something like the following screenshot – an answer coming
from GPT-3:

Figure 9.12 – Answer from GPT-3

We now have a simple but functional GPT-3-powered question-answering app. However,
you might be wondering why we're getting a response (an answer) for What is your
favorite food? when we haven't provided an answer for that. We'll discuss that next.

242 Building a GPT-3-Powered Question-Answering App

Generating relevant and factual answers
GPT-3 is a language model – it predicts the statistical likelihood of the text that should
follow the prompt text it was provided. It's not a knowledge base in the sense that it's
concerned much with the factual accuracy of the responses it generates. That doesn't
mean it won't generate factual answers; it just means you can't count on the answers being
accurate all of the time. But the Answers endpoint can provide a lot of control over the
accuracy or relevancy of the answers that will get generated.

As we discussed earlier in Introducing the Answers endpoint, answers will be generated
from the documents we provide. At this point, we're providing documents as part of the
endpoint request. Using that method, if the answer can't be derived from the documents,
the engine defined by the model parameter will be used to generate an answer. You
can find that set in the routes/answer.js file – we used the Curie engine. But
let's say we only want answers to be derived from our documents and we don't want
to return answers otherwise. While we don't have 100% control over that, we can use a
pre-uploaded file to get us pretty close.

When pre-uploaded files are used with the Answers endpoint, you're not limited to just
200 documents like you are when you provide documents with the HTTP request. In fact,
a pre-uploaded file might contain a very large number of documents because you can
have up to 1 GB of file space per organization. Because a file might contain a very large
number of documents, a keyword filter is applied to the documents in the file to narrow
the possible documents that could be used for the answer. From there, the documents
are ranked and then used by the engine defined by the model parameter to generate the
answer. When you send documents with a request parameter, the keyword filtering is
skipped because the number of documents you can send is limited to 200. For our GPT
Answers app, keyword filtering will help us decrease the chances that irrelevant questions
will be answered. So, let's take a look at using files with the Answers endpoint.

Using files with the Answers endpoint 243

Using files with the Answers endpoint
To use documents from a file, the first thing we'll need to do is get the file uploaded to
OpenAI so it can be used by the Answers endpoint. The process involves creating a file
containing our documents, then using the files endpoint to upload the file and get a
file ID that can be used when we make requests to the Answers endpoint. To create and
upload the answer file, complete the following steps:

1. Create a new jsonl file named answers.jsonl and some answers for the file in
the following format:

{"text": "I am a day younger than I will be tomorrow"}

{"text": "I like to code in Python."}

{"text": "My favorite food is carrot cake."}

2. Create another new file named files-upload.js.

3. Add the following code in file-upload.js:

4. Require a few modules that will be used:

const fs = require('fs');

const axios = require('axios');

const FormData = require('form-data');

5. Next, add the following code to read in the jsonl data for the request:

const data = new FormData();

data.append('purpose', 'answers');

data.append('file', fs.createReadStream('answers.
jsonl'));

244 Building a GPT-3-Powered Question-Answering App

6. Add a variable for the HTTP request parameters:

const params = {

method: 'post',

url: 'https://api.openai.com/v1/files',

headers: {

 'Authorization': 'Bearer ' + process.env.OPENAI_API_
KEY,

 ...data.getHeaders()

},

data : data

}

7. Finally, add code to make the HTTP request and log results:

axios(params)

 .then(function(response) {

 console.log(response.data);

 })

 .catch(function(error) {

 console.log(error);

 });

When you're done editing files-upload.js, it should look like the code in the
following screenshot:

Using files with the Answers endpoint 245

Figure 9.13 – Completed code for file-upload.js

8. In the output pane, click on the Shell tab.

9. At the ~/gptanswers-node prompt, enter the following command with your
OpenAI API key:

export OPENAI_API_KEY="your-api-key-goes-here"

10. Next, enter the following command in the shell:

node files-upload.js

246 Building a GPT-3-Powered Question-Answering App

After running the previous shell commands, you should see a result like the output
in the following screenshot:

Figure 9.14 – Shell output from files-upload.js

11. Copy the id value from the JSON results (the value that begins with file-) to
your clipboard.

12. Click on the padlock icon and create a new secret/environment variable named
ANSWERS_FILE and paste the ID value you copied in the last step into the value
input, then click the Add new secret button.

13. Open routes/answer.js and rename the documents parameter on line 20 to
file. Then replace the documents value with process.env.ANSWERS_FILE.

After the previous update, line 20 should look like line 20 in the following
screenshot:

Figure 9.15 – The Answers endpoint parameters using the file parameter
At this point, you are ready to test.

Using files with the Answers endpoint 247

14. Click the Run button, then enter What is your favorite food? in the question input
followed by clicking the GET ANSWER button. This time you'll notice that the
answer was generated from our answers file, as the following screenshot shows:

Figure 9.16 – An answer generated from the answers file

But now if you enter a question that's not related at all to the data in your file, the response
will be Sorry, I don't have an answer. You can test this by asking something such as
Do you sell this one in red? You should see a result like the one shown in the following
screenshot:

Figure 9.17 – A question that can't be answered

248 Building a GPT-3-Powered Question-Answering App

An important thing to keep in mind is that both the answers file and the completion
engine (Curie in our case) are used to generate the answer. So, it's possible to get an
answer that isn't represented in your file. However, the more data you have in your
answers file, the less likely that will be. But because we just have three documents in our
answers file now, if you ask a question such as What is your favorite vacation spot?,
you might see a response with an answer that isn't defined in your answers file, as the
following screenshot shows:

Figure 9.18 – An answer that isn't from the answers file

So, even though we're providing answers in our answers file, that doesn't guarantee GPT-3
won't generate an answer that isn't accurate. But we'll discuss this more later in this
chapter and in Chapter 10, Going Live with OpenAI-Powered Apps.

At this point, we have a fully functional app. Of course, there is a lot more we could add
to polish our app, but the core functionality is in place. The main thing you'll need to do
is add more documents to the answers file. To do that, complete the following steps each
time you want to add new data:

1. Add new documents to the answers.jsonl file.

2. Open the shell.

3. Run the following shell command to set your API key as an environment variable
that the shell can access:

export OPENAI_API_KEY="your-api-key-goes-here"

4. Run the following command in the shell to execute files-upload.js:

node files-upload.js

5. Copy the file ID and replace the ANSWERS_FILE environment variable by clicking
the padlock icon and replacing the value with the ANSWERS_FILE secret.

6. Click the Stop button and then the Run button to restart Express.

Summary 249

Again, more data in your answers file will minimize the chances of non-factual answers.
But it's still possible that GPT-3 will generate answers that clearly aren't from your answers
file. So, it's still important to consider content filtering, which is why we'll be covering that
more in the next chapter.

Summary
In this chapter, we introduced the Answers endpoint and used Node.js/JavaScript to build
a simple but functional web application that can answer questions from documents we
provide. For our applications, we created an API that acts as a proxy to the OpenAI API
and an HTML page that provides the user interface.

In the next chapter, we will discuss the OpenAI app review process and implement a few
modifications to our application based on recommendations from OpenAI. Then, we'll
cover the steps necessary for going live!

10
Going Live with

OpenAI-Powered
Apps

Before going live with apps that use the OpenAI API, they must be approved for
publishing by OpenAI. The approval process helps prevent the OpenAI API from being
misused either intentionally or accidentally. It also helps app providers, and OpenAI, plan
for resource requirements to ensure the app performs well at launch, and as usage grows.

In this chapter, we’ll discuss OpenAI application use case guidelines along with the review
and approval process. Then we’ll discuss changes to our GPT Answers app based on
OpenAI guidelines. Finally, we’ll implement the suggested updates and discuss the process
for submitting our app for review, and hopefully, approval!

The topics we’ll cover are the following:

• Going live

• Understanding use case guidelines

• Addressing potential approval issues

• Completing the pre-launch review request

252 Going Live with OpenAI-Powered Apps

Technical requirements
This chapter requires that you have access to the OpenAI API. You can request access by
visiting https://openai.com.

Going live
OpenAI defines a live application as any application that is serving API outputs to more
than five people. This includes people in your company or organization. So, even a private
beta app is considered live if it is using the OpenAI API and has more than five users. To
move beyond this limit, your app needs to be reviewed and approved by OpenAI.

Going live without approval from OpenAI could result in your API key being revoked
immediately, and without warning. Further, going live without approval could possibly
cause your account to be permanently blocked from further API access. So, it’s a good idea
to understand the OpenAI use cases guidelines and review process.

Understanding use case guidelines
There is a wide range of applications that could use the OpenAI API. However, not all use
cases are permitted, so every application must be reviewed and approved before going live.

Every app is evaluated on a case-by-case basis, so the only way to know whether your
application will be allowed is to go through the review process. However, OpenAI
publishes guidelines that you can review and follow to give your app the best chances of
approval. You can find the guidelines located at https://beta.openai.com/docs/
use-case-guidelines. Before investing a lot of time in an app, you should first read
the guidelines carefully.

We’re not going to cover all the app guidelines in this section. But mostly, the guidelines
relate to safety and security. Safety, as defined by OpenAI, is Freedom from conditions
that can cause physical, psychological, or social harm to people, including but not limited
to death, injury, illness, distress, misinformation, or radicalization, damage to or loss of
property or opportunity, or damage to the environment.

https://openai.com
https://beta.openai.com/docs/use-case-guidelines
https://beta.openai.com/docs/use-case-guidelines

Addressing potential approval issues 253

So, apps that cheat, deceive, exploit, harass, hurt, intimidate, manipulate, mislead, steal,
trick, or that could potentially cause harm or damage in any way, whether intentional
or not, are not allowed. Most of the guidelines should seem pretty obvious. But some
guidelines aren’t so obvious. For example, in most cases, you can’t build apps that generate
content for Twitter tweets. This is because using AI-generated content violates Twitter’s
acceptable use policies. So, again, the point of this section is not to cover the specific
guidelines; the point is to emphasize the importance of reviewing and understanding the
guidelines before building an app. By reviewing the guidelines before you start building,
you’ll be able to focus on all the acceptable use cases and avoid potential approval issues.
We’ll look at some of the potential issues that we can address before the review process
next.

Addressing potential approval issues
After reading the OpenAI use case guidelines, we can consider how they apply to our
GPT Answers app. Our application is limited to answering questions with answers that
we provide in our answers file. So, it has a very limited scope and does not generate
open-ended responses. Based on that, the guidelines suggest our app is Almost-always
approvable. However, again, every app is approved on a case-by-case basis, so that’s not a
guarantee.

Also, we want to do everything we can as a developer to consider safety best practices.
OpenAI publishes safety best practices at https://beta.openai.com/docs/
safety-best-practices that will help ensure our app is safe and can’t be exploited.
This will also help increase the chances of our app being approved for publishing. Based
on those guidelines, we’re going to consider a few modifications to our GPT Answers app.
Specifically, we are going to consider the following:

• Content filtering

• Input and output lengths

• Rate limiting

Let’s look at each of these considerations individually and discuss how they apply to
our app.

https://https://beta.openai.com/docs/safety-best-practices
https://https://beta.openai.com/docs/safety-best-practices

254 Going Live with OpenAI-Powered Apps

Content filtering
Content filtering probably isn’t necessary for our GPT Answers app because the
completions are being generated from an answers file that we’re providing – which is
kind of one way to filter the output. However, we might not want to send inappropriate
questions to the OpenAI API because even though the response will be safe in our case,
we’ll still be using tokens. So, we’ll implement content filtering for the questions to check
for inappropriate words.

The content filtering process flow that we’ll be implementing is the following:

1. The user asks a question.

2. We check the question for profane language.

3. If profane language is detected, we display: That’s not a question we can answer.

4. If profane language is not detected, we pass the question to the OpenAI API.

We’ll use a Node.js library called bad-words to check for profanity in the question
text before sending it to the OpenAI API. If profanity is found in the text, we’ll politely
respond with a message saying, That’s not a question we can answer.

To implement content filtering on the question text, do the following:

1. Require the bad-words library on the first line of routes/answer.js with the
following code:

const Filter = require(‘bad-words’);

2. In the routes/answer.js file, add the following code above the line that begins
with const data:

let filter = new Filter();

if (filter.isProfane(req.body.question)) {

 res.send({ “answer”: “That’s not a question we can
answer.”});

 return;

}

3. Click the Stop and then the Run button and test it by entering a question that
includes profanity. You should see a result like the following screenshot:

Addressing potential approval issues 255

Figure 10.1 – Filtering profanity in questions

Now we have content filtering in place for the question. If we were generating answers
using the completions endpoint, we’d also want to look at using the content filter engine
that we discussed in Chapter 6, Content Filtering, to apply content filtering to the answer.
But again, since we are generating answers from a file we’re providing, that’s probably
not necessary for the GPT Answers app. So, let’s move on and consider input and output
lengths.

Input and output lengths
OpenAI recommends limiting both input and output lengths. Outputs can be easily
limited with the max_tokens parameter. We’ve set the max_tokens parameter for
the GPT Answers app to 150. This is the recommended length for scoped output – like
answers to questions from our answers file. This will support ~6-8 sentences for our
answer text. If you have shorter answers, you can reduce the max_tokens length. Less is
better provided you’re allowing enough to fully answer the questions.

An injection attack is an attack that exploits web applications that allow untrusted or
unintended input to be executed. For example, in the GPT Answers app – what if the user
submits something other than a question and our backend code were to pass it on to the
OpenAI API? Remember text in/text out? Although our application is tightly scoped and
something other than a relevant question isn’t going to return anything, it’s still worth
adding in a bit of code to prevent very large text inputs because the input will still use
tokens. So, we’ll add some code to limit the input length. The average sentence is 75-100
characters, so we’ll limit the input to 150 characters to allow for longer sentences.

256 Going Live with OpenAI-Powered Apps

To limit the input length in our GPT Answers app, do the following:

1. Open routes/answer.js and add the following code on a new line after the line
that begins with router.post:

if (req.body.question.length > 150) {

 res.send({ “answer”: “Sorry. That question is too
long.” });

 return;

}

2. Stop and run the Express service by clicking the Stop button and then the Run
button.

3. Enter a text input over 150 characters long into the question input and click the
GET ANSWER button.

You will see the form now tells the user the text they entered was too long, as shown
in the following screenshot:

Figure 10.2 – Form output with long text

Addressing potential approval issues 257

Again, while our app shouldn’t generate unexpected completions, limiting the input, along
with request rate limiting, will help prevent malicious attempts to exploit your app. Let’s
talk about rate limiting next.

Request rate limiting
Rate limiting prevents users from making more than a predefined number of requests in a
given timeframe. This prevents malicious scripts from potentially making a large number
of requests to your app. We will add rate-limiting functionality to our GPT Answers app
using a library available for Node.js called Express Rate Limit and we’ll set the
limit to a maximum of six requests per minute – per OpenAI's suggested guidelines.

To implement rate limiting, do the following:

1. Open app.js and after line 9 (or after var app = express();), add the
following code:

const rateLimit = require(“express-rate-limit”);

const apiLimiter = rateLimit({

 windowMs: 1 * 60 * 1000,

 max: 6

});

app.use(“/answer/”, apiLimiter);

2. Open routes/answer.js and add the following code after the line that begins
with router.post:

if (req.rateLimit.remaining == 0) {

 res.send({“answer” : “Ask me again in a minute.”});

 return;

};

258 Going Live with OpenAI-Powered Apps

The previous changes added a rate limit of six requests per minute. When the rate
limit is hit before a request is made to the OpenAI API, we respond with a message
to ask again in a minute, as in the following screenshot:

Figure 10.3 – Message when request rate is exceeded

Because we’re sending the message back in the same JSON format as an answer, the
message is displayed on the form page.

Important note
You can learn more about the rate limiter library used by visiting https://
www.npmjs.com/package/limiter.

Alright, now that we have reviewed the use case guidelines and implemented some safety
best practices, we’re ready to discuss the OpenAI pre-launch review and approval process.

Completing the pre-launch review request
When your app is ready to go live, you begin the approval process by completing the
Pre-Launch Review Request form located at https://beta.openai.com/forms/
pre-launch-review.

The form collects your contact information, along with a link to your LinkedIn profile, a
video demo of your app, and answers to a number of specific questions about the app use
case and your growth plans. In the following sections, we’ll list the current questions and
example answers that might apply to the GPT Answers app.

https://https://www.npmjs.com/package/limiter
https://https://www.npmjs.com/package/limiter
https://beta.openai.com/forms/pre-launch-review
https://beta.openai.com/forms/pre-launch-review

Completing the pre-launch review request 259

There are a lot of questions on the Pre-Launch Review Request form, so the
recommendation is to complete the questions first in a Google doc (or some other app)
and then copy and paste the answers into the form when you’re ready.

The form begins by collecting your contact details. After providing your contact
information, the first set of questions ask about the use case at a high level.

High-level use case questions
The high-level use case questions are pretty straightforward. However, one of the
questions asks for a video demo. So, you’ll need to provide a video walk-through and post
it someplace like YouTube so you can provide a link. Here are the questions and some
example answers:

• QUESTION: Have you reviewed OpenAI’s use case guidelines?

ANSWER: Yes
• QUESTION: Please describe what your company does.

ANSWER: My company provides technical learning resources.
• QUESTION: Please describe what your application does.

ANSWER: It lets users get answers to questions about me.
• QUESTION: Has your application been reviewed by OpenAI previously? What was

the outcome of this review? How does this submission relate to the prior review?

ANSWER: No
• QUESTION: Please link to a short video demonstration of your application.

ANSWER: A link to a video demo goes here.
• QUESTION: Please share a login credential the OpenAI team can use to demo/test

your application.

ANSWER: No login credentials are required.
The next set of questions relates to security and risk mitigation. As you might guess, there
are a lot of questions about security and risk mitigation. Let’s take a look.

260 Going Live with OpenAI-Powered Apps

Security and risk mitigation questions
There are 14 security and risk mitigation questions at the time this book is being written.
Some of the questions you’ll see are questions about content filtering, setting input and
output lengths, and request rate limiting. These are important and required for approval,
which is why we implemented them in our GPT Answers app:

• QUESTION: What is the maximum number of characters that a user can insert into
your application’s input textboxes?

ANSWER: 150
• QUESTION: What are the maximum output tokens for a run of your application?

ANSWER: 150
• QUESTION: Who are the typical users of your application (for example, enterprise

businesses, research labs, entrepreneurs, academics, and so on)? Do you verify or
authenticate users in some way? If so, how?

ANSWER: The most likely users are recruiters who are interested in my professional
background. Users are not verified but rate limiting is in place using the user’s IP
address.

• QUESTION: Do users need to pay to access your application? If so, how much?

ANSWER: No
• QUESTION: Do you implement rate-limiting for your application? If so, what are

the rate limits and how are they enforced?

ANSWER: Yes, rate limiting is enforced by IP address and requests are limited to six
requests per minute.

• QUESTION: Do you implement a form of content filtration for your application? If
so, what is being filtered, by what means, and how is this enforced?

ANSWER: All answers are generated from an answers file that is pre-uploaded for
use with the answers endpoint. So, content filtering is not used.

• QUESTION: Do you capture user feedback on the quality of your outputs or on
other details (for instance, returning unpleasant content)? If so, how is this data
monitored and acted upon?

ANSWER: A link is provided to a Google form that lets users report any issues they
might encounter.

Completing the pre-launch review request 261

• QUESTION: Will you monitor the usage of particular users of your application (for
example, investigating spikes in volume, flagging certain keywords, et cetera)? If so,
in what ways and with what enforcement mechanisms?

ANSWER: No, because the scope is limited to just the data in the answers file that is
provided by me.

• QUESTION: Is it clearly disclosed in your application that the content is generated
by an AI? In what way?

ANSWER: Yes, the text on the question input pages lets the user know the answers
are generated by GPT-3.

• QUESTION: Is there a human in the loop in your application in some form? If so,
please describe.

ANSWER: Yes, all of the answers to questions are from an answers file that is
originally created and updated by humans.

• QUESTION: Are there any other security or risk-mitigation factors you have
implemented for this project? Please describe.

ANSWER: OpenAI token usage will be closely monitored for unusual usage
patterns.

• QUESTION: What, if any, is the relationship between your application and social
media?

ANSWER: None.
• QUESTION: What, if any, is the relationship between your application and political

content?

ANSWER: None.
• QUESTION: If your team has particular credentials or background that may help to

mitigate any risks described above, please elaborate here.

ANSWER: We have no specific credentials.
After the security and risk mitigation questions, you’ll be asked about your growth plans.

Growth plan questions
To manage resource requirements and limit the potential for abuse, new applications are
granted a maximum spend limit. This puts a cap on the maximum number of tokens that
can be processed and therefore limits the scalability. However, the maximum spend limit
can be increased over time as you build a track record with your application.

262 Going Live with OpenAI-Powered Apps

Your initial spend limit will need to be approved to go live and an additional form needs
to be submitted to request a spend limit increase after your application is launched.
The spend limit increase form can be located at https://beta.openai.com/
forms/quota-increase. To calculate your spend limit, enter a typical prompt into
the Playground and set the engine and response length. Then hover over the number
just below the prompt input and you’ll see an estimated cost, as shown in the following
screenshot:

Figure 10.4 – Estimated cost

With the cost from the Playground, you can multiply by the estimated number of users
and requests you’ll get on a monthly basis. You will need to provide an estimate for the
questions in the growth plans section.

The following questions are asked about your growth plans:

• QUESTION: What $-value monthly quota would you like to request?

ANSWER: $18
• QUESTION: What amount of token consumption do you expect per month? For

which engine(s)?

ANSWER: ~ 1 Mn ada tokens and ~1 Mn curie tokens.
• QUESTION: To how many users (approximately) will you initially roll out your

application? How do you know these users? / How will you find these users?

ANSWER: 5,000 users who subscribe to our SaaS service
• QUESTION: Please describe your growth plans following the initial rollout.

ANSWER: We plan to introduce the app to all new users of our
service – ~500 / month

https://beta.openai.com/forms/quota-increase
https://beta.openai.com/forms/quota-increase

Completing the pre-launch review request 263

• QUESTION: If approved, on what date would you intend to launch your
application?

ANSWER: 2021-11-05
• QUESTION: You may elaborate here on the launch date above if useful.

ANSWER: We want to launch as soon as possible.
Following the growth planning questions, there are just a few miscellaneous questions to
wrap up, and you’re done.

Wrapping-up questions
The wrapping-up questions request feedback on the app development process and your
experience building the app. This is an opportunity to provide OpenAI with information
that can help them improve the development experience for other developers:

• QUESTION: We love feedback! Is there anything you’d like to share with the
OpenAI team (for example, the hardest part of building your application or the
features you would like to see)?

ANSWER: The hardest part was figuring out the best way to do request rate
limiting.

• QUESTION: Are there any collaborators you would like added to API access if we
approve your application? If so, please list their emails separated by commas.

ANSWER: No, just me at this point.
• QUESTION: We are especially interested in feedback about this process. How long

did this form take you to complete? What did you find most difficult about it?

ANSWER: It took me about 5 days. I’m new to coding so the learning curve was
challenging.

• QUESTION: Anything else you would like to share?

ANSWER: I’m really enjoying working with the API!
• QUESTION: Date of form submission

ANSWER: 05/11/2021
After you complete and submit the Pre-Launch Review Request form, you should hear
back within a few days. The response back will be an approval or a rejection with a reason
for the rejection. Depending on the rejection reason, you might be able to address any
noted issues and resubmit for another review. However, hopefully, your application is
approved, and you’re cleared to go live!

264 Going Live with OpenAI-Powered Apps

Summary
Congratulations, you’ve completed Exploring GPT-3 and your first OpenAI-powered app!
At this point, your application should be ready for the review process. Keep in mind that
all apps are approved on a case-by-case basis. So, just completing the steps in this book
doesn’t guarantee approval. But you now understand the use case guidelines and the
application review and approval process. Further, you have the knowledge and skills to
address any changes that OpenAI might require to complete the review.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

266 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Natural Language Processing Cookbook

Zhenya Antić

978-1-83898-731-2

• Become well-versed with basic and advanced NLP techniques in Python
• Represent grammatical information in text using spaCy, and semantic information using

bag-of-words, TF-IDF, and word embeddings
• Perform text classification using different methods, including SVMs and LSTMs
• Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT
• Work with visualization techniques such as NER and word clouds for different NLP tools
• Build a basic chatbot using NLTK and Rasa
• Extract information from text using regular expression techniques and statistical and deep

learning tools

https://www.packtpub.com/product/python-natural-language-processing-cookbook/9781838987312

Why subscribe? 267

Getting Started with Google BERT

Sudharsan Ravichandiran

ISBN: 978-1-83882-159-3

• Understand the transformer model from the ground up

• Find out how BERT works and pre-train it using masked language model (MLM)
and next sentence prediction (NSP) tasks

• Get hands-on with BERT by learning to generate contextual word and sentence
embeddings

• Fine-tune BERT for downstream tasks

• Get to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT models

• Get the hang of the BERT models based on knowledge distillation

• Understand cross-lingual models such as XLM and XLM-R

• Explore Sentence-BERT, VideoBERT, and BART

https://www.packtpub.com/product/getting-started-with-google-bert/9781838821593

268 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

Symbols
.replit file

creating 106

A
acronym translator example

about 166
creating, in Node.js/JavaScript 167, 168
creating, in Python 168, 169

Ada 15, 16, 53
Answers endpoint

about 225
files, using with 243-249
integrating 238-241
parameters 226
reference link 226
relevant and factual answers,

generating 242
API authentication

about 80, 81
API keys, keeping private 82

API endpoint
creating, for GPT Answers 229-232
testing, with Postman 232, 233

Application Programming
Interface (API) 70, 71

authenticated request
making, to OpenAI API 83

authorization header
setting 85, 86

Axios 233

B
Babbage 15, 16, 53
basic authentication 81
batch classification 35, 36
bearer token 83
best of settings, Playground 60
book suggestions list example

about 160
creating, in Node.js/JavaScript 160, 161
creating, in Python 162

C
chatbot example

creating, in Node.js/JavaScript 197, 198
creating, in Python 199, 200

chatbots

270 Index

about 197
creating 197

children's book generator example
about 163
creating, in Node.js/JavaScript 163, 164
creating, in Python 165, 166

classifications endpoint
about 203
files, uploading 203

community libraries
reference link 122

completion 6, 12, 20
completions endpoint

using, for text classification 202
using 90-94

content
generating 150

Content Delivery Network (CDN) 233
content-filter-alpha-c4

reference link 130
content filtering

about 129-133, 202
process, testing 133-135
with JavaScript 136-140
with Python 142-146

content filtering model 16
Content-Type 73
Create Completions endpoint 75
Curie 15, 53
CURL

about 76
download link 77

D
Davinci 15, 16, 53
dumb joke generator example

about 150
creating, in Node.js/JavaScript 151, 152

E
elements 89
email address

extracting 194
email address extraction example

creating, in Node.js/JavaScript 194, 195
creating in Python 195, 196

email classifier example
creating, in Node.js/JavaScript 212-214

endpoints 70
engine, Playground

Ada 53
Babbage 53
Curie 53
Davinci 53

English to Spanish translator example
creating, in Node.js/JavaScript 170, 171
creating, in Python 171, 172

Entertainment Software Rating
Board (ESRB) rating

about 208
assigning, to text 208

ESRB rating classifier example
creating, in Node.js/JavaScript 209, 210
creating, in Python 210-212

Express
setting up 227-229
testing 227-229

F
few-shot classification 34, 35
few-shot prompt 9, 10
fifth-grade summary example

Index 271

about 175, 176
creating, in Node.js/JavaScript 176-178
creating, in Python 178

files
using, with Answers endpoint 243-249

frequency and presence penalty
settings, Playground 59, 60

G
Generative Pre-trained Transformer

Version 3 (GPT-3)
about 4, 5
demo, URL 40

GPT-3, general use cases
about 20
classification 20
semantic search 20
text generation 20

GPT-3 risks
about 17
inappropriate or offensive results 17
malicious usage 17

GPT Answers
about 224, 225
API endpoint, creating for 229-232
app, hosting 225
user interface, creating 233-238

grammar correction converter example
about 180
creating, in Node.js/JavaScript 180, 181
creating, in Python 182, 183

Grammatical Standard English
preset 65, 66

H
HTML

extracting, from text 187
HTML parsing

Node.js/JavaScript, using 188, 189
Python, using 189, 190

HTTP
about 71
body 72
headers 73
response status codes 73

HTTP methods 72

I
inappropriate results

preventing 128, 129
inject restart text, Playground 61, 63
inject start text, Playground 61, 63
instruct models 15, 16
Integrated Development

Environment (IDE) 100

J
JavaScript

content filtering with 136-140
OpenAI API, using 107
unsafe words, flagging with 140-142

JavaScript Object Notation
(JSON) 70, 89, 90

JavaScript to Python translator example
about 172
creating, in Node.js/JavaScript 173
creating, in Python 174, 175

JSON lines format
reference link 204

272 Index

K
keyword extractor example

creating, in Node.js/JavaScript 184, 185
creating, in Python 186, 187

keywords
extracting, from text 183, 184

keywords classifier example
creating, in Node.js/JavaScript 217, 218
creating, in Python 219-221

L
language classifier example

creating, in Python 215, 216
List Engines endpoint 74
lists

generating 150

M
mars facts example

about 154
creating, in Node.js/JavaScript 155, 156
creating, in Python 156, 157

meta-learning 12
multiple organizations

working with 86-88

N
Natural Language Processing (NLP)

about 4
democratizing 6
simplifying 4, 5

Node.js/JavaScript
acronym translator example,

creating 167, 168

book suggestions list example,
creating 160, 161

chatbot example, creating 197, 198
children's book generator

example, creating 163, 164
dumb joke generator example,

creating 151-154
email address extraction example,

creating 194, 195
English to Spanish translator

example, creating 170
fifth-grade summary example,

creating 176, 178
grammar correction converter

example, creating 180, 181
JavaScript to Python translator

example 173, 174
keyword extractor example,

creating 184, 185
mars facts example, creating 155, 156
OpenAI API, using 107
postal address extraction example,

creating 191, 192
repl, creating for 102-104
unsafe words, flagging with 140-142
used, for HTML parsing 188, 189
webinar description generator

example, example 158
Not Safe for Work (NSFW) 132
NPM package manager

reference link 108

O
OAuth 2.0

URL 83
offensive results

Index 273

preventing 128, 129
one-shot prompt 8
OpenAI API

authenticated request, making to 83
key, setting as environment

variable 104-106
OpenAI API endpoints

Create Completions endpoint 75
List Engines endpoint 74
Retrieve Engine 74
reviewing 73
Semantic Search endpoint 75

OpenAI API, in Python
about 115
completions endpoint, calling 118-120
engines endpoint, calling 115-118
search endpoint, calling 120-122

OpenAI API keys
URL 38

OpenAI API, with Node.js/JavaScript
about 107
completions endpoint, calling 110-113
engines endpoint, calling 107-110
search endpoint, calling 113, 114

OpenAI Application Programming
Interface (API) 4

OpenAI developer console
accounts and organizations 46, 47
developer documentation 44
developer resources 46
exploring 44
member management 50
Playground 50, 51
pricing and billing 48, 49
usage reporting 49

OpenAI developer documentation
example 44, 45

OpenAI-Organization HTTP header 86

OpenAI-powered apps
live streaming 252
potential approval issues, addressing 253
use case guidelines 252, 253

P
Parse unstructured data preset 68
PIP package manager

reference link 116
Playground

about 20
accessing 20-22
presets, working with 64, 65
reference link 20
Response Length setting 21

Playground, OpenAI developer console
about 50, 51
best of settings 60
engine, selecting 51-53
frequency and presence

penalty settings 59, 60
inject restart text 62, 63
inject start text 62, 63
response length settings 53
show probabilities 63, 64
stop sequence 61
temperature settings 54-57
Top P setting 54-59

postal address
extracting, from email 190

postal address extraction example
creating, in Node.js/JavaScript 191, 192
creating, in Python 192, 193

Postman
about 78
reference link 78, 79
request, making 79, 80

274 Index

URL 232
used, for testing API endpoint 232, 233

Postman variables
setting 84, 85

potential approval issues, addressing
content filtering 254, 255
input and output lengths 255, 257
request rate limiting 257, 258

pre-launch review request form
completing 258
growth plan questions 261, 263
high-level use case questions 259
security and risk mitigation

questions 260, 261
wrapping-up questions 263

presets, Playground
Grammatical Standard

English preset 65, 66
Parse unstructured data 68
Text to command preset 67
working with 64, 65

programming language
selecting 100
using 122

prompt
about 6, 7, 20
examples 10-12

prompt, types
about 7
few-shot prompt 9, 10
one-shot prompt 8
zero-shot prompt 7, 8

Python
acronym translator example,

creating 168, 169
book suggestions list example,

creating 162

chatbot example, creating 199, 200
children's book generator

example, creating 165, 166
content, filtering with 142-146
dumb joke generator example,

creating 153, 154
email address extraction example,

creating 195, 196
English to Spanish translator

example, creating 171, 172
fifth-grade summary example,

creating 178, 179
grammar correction converter

example, creating 182, 183
JavaScript to Python translator

example, creating 174, 175
keyword extractor example,

creating 186, 187
mars facts example, creating 156, 157
OpenAI API, using 115
postal address extraction example,

creating 192, 193
repl, creating for 102
unsafe words, flagging with 146-148
used, for HTML parsing 189, 190
webinar description generator

example, creating 159, 160

R
rate limiter library

reference link 258
repl

creating 102
creating, for Node.js 102-104
creating, for Python 102

Replit
.replit file, creating 106

Index 275

about 100, 101
OpenAI API key, setting as

environment variable 104-106
repl, creating 102

response length settings, Playground 53
Retrieve Engine endpoint 74

S
Secure Socket Layer (SSL) 81
semantic search 37
Semantic Search endpoint

about 75
using 94-97

Semantic Search tool
about 38, 39
URL 38

sentiment analysis
implementing 204
Node.js/JavaScript example 204-206
Python example 206-208

show probabilities, Playground 63, 64
snapshot in time 17
Software Developer Kit (SDK) 71
state-of-the-art (SOTA) 5
stop sequence, Playground 61

T
temperature settings, Playground 54-57
text

HTML, extracting from 187
keywords, extracting 183, 184
transforming 166
translating 166
values, extracting from 183

text, by language

classifying 212
text classification

about 32, 202
batch classification 35, 36
completions endpoint, using 202
content filtering 202
few-shot classification 34, 35
handling 22
zero-shot classification 33, 34

text, from keywords
classifying 217

text generation
about 22
content creation 23
conversational applications 24
handling 22
idea generation 23, 24
list generation 25, 26
quiz generation 26, 27

text summarization
about 27
basic summary 27, 28
grade summary 29, 30
one-sentence summary 28, 29

Text to command preset 67
text transformation

about 31
conversion 32
translation 31

token 6, 12, 14, 15
Top P setting, Playground 54, 57, 59

U
UIKit

about 233
URL 233

Uniform Resource Identifier (URI) 72

276 Index

Uniform Resource Locator (URL) 70
unsafe words

flagging, with Node.js/
JavaScript 140-142

flagging, with Python 146-148

W
webinar description generator example

about 157
creating, in Node.js/JavaScript 158
creating, in Python 159, 160

Z
zero-shot classification 33, 34
zero-shot prompt 7, 8

	Cover
	Title page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1: Understanding
GPT-3 and the OpenAI API
	Chapter 1: Introducing GPT-3 and the OpenAI API
	Technical requirements
	Introduction to GPT-3
	Simplifying NLP
	What exactly is GPT-3?

	Democratizing NLP
	Understanding prompts, completions, and tokens
	Prompts
	Completions
	Tokens

	Introducing Davinci, Babbage, Curie, and Ada
	Davinci
	Curie
	Babbage
	Ada
	Content filtering model
	Instruct models
	A snapshot in time

	Understanding GPT-3 risks
	Inappropriate or offensive results
	Potential for malicious use

	Summary

	Chapter 2: GPT-3 Applications and Use Cases
	Technical requirements
	Understanding general GPT-3 use cases
	Introducing the Playground
	Getting started with the Playground

	Handling text generation and classification tasks
	Text generation
	Text classification

	Understanding semantic search
	The Semantic Search tool

	Summary

	Section 2:
Getting Started
with GPT-3
	Chapter 3: Working with the OpenAI Playground
	Technical requirements
	Exploring the OpenAI developer console
	Developer documentation
	Developer resources
	Accounts and organizations
	Pricing and billing
	Usage reporting
	Member management

	Diving deeper into the Playground
	Choosing the right engine
	Response length
	Temperature and Top P
	Frequency and presence penalty
	Best of
	Stop sequence
	Inject Start Text and Inject Restart Text
	Show Probabilities

	Working with presets
	Grammatical Standard English
	Text to command
	Parse unstructured data

	Summary

	Chapter 4: Working with the OpenAI API
	Technical requirements
	Understanding APIs
	Getting familiar with HTTP
	Uniform resource identifiers
	HTTP methods
	The HTTP body
	HTTP headers
	HTTP response status codes

	Reviewing the OpenAI API endpoints
	List Engines
	Retrieve Engine
	Create Completions
	Semantic Search

	Introducing CURL and Postman
	Understanding API authentication
	Keeping API keys private

	Making an authenticated request to the OpenAI API
	Working with multiple organizations

	Introducing JSON
	Using the Completions endpoint
	Using the Semantic Search endpoint
	Summary

	Chapter 5: Calling the OpenAI API in Code
	Technical requirements
	Choosing your programming language
	Introducing replit
	Creating a repl
	Setting your OpenAI API key as an environment variable
	Understanding and creating the .replit file

	Using the OpenAI API with Node.js/JavaScript
	Calling the engines endpoint
	Calling the Completions endpoint
	Calling the search endpoint

	Using the OpenAI API in Python
	Calling the completions endpoint
	Calling the search endpoint

	Using other programming languages
	Summary

	Section 3:
Using the
OpenAI API
	Chapter 6: Content Filtering
	Technical requirements
	Preventing inappropriate and offensive results
	Understanding content filtering
	Testing the content filtering process
	Filtering content with JavaScript
	Flagging unsafe words with Node.js/JavaScript

	Filtering content with Python
	Flagging unsafe words with Python

	Summary

	Chapter 7: Generating and Transforming Text
	Technical requirements
	Using the examples
	Generating content and lists
	Dumb joke generator
	Mars facts (in most cases)
	Webinar description generator
	Book suggestions
	Children's book generator

	Translating and transforming text
	Acronym translator
	English to Spanish
	JavaScript to Python
	Fifth-grade summary
	Grammar correction

	Extracting text
	Extracting keywords
	HTML parsing
	Extracting a postal address
	Extracting an email address

	Creating chatbots
	A simple chatbot

	Summary

	Chapter 8: Classifying and Categorizing Text
	Technical requirements
	Understanding text classification
	Using the completions endpoint for text classification
	Content filtering is a text classification task

	Introducing the classifications endpoint
	Uploading files

	Implementing sentiment analysis
	Assigning an ESRB rating to text
	Classifying text by language
	Classifying text from keywords
	Summary

	Chapter 9: Building a GPT-3-Powered Question-Answering App
	Technical requirements
	Introducing GPT Answers
	GPT Answers technical overview
	Hosting the app

	Introducing the Answers endpoint
	Setting up and testing Express
	Creating the API endpoint for GPT Answers
	Creating the API endpoint
	Testing our API with Postman

	Creating the GPT Answers user interface
	Integrating the Answers endpoint
	Generating relevant and factual answers
	Using files with the Answers endpoint
	Summary

	Chapter 10: Going Live with OpenAI-Powered Apps
	Technical requirements
	Going live
	Understanding use case guidelines
	Addressing potential approval issues
	Content filtering
	Input and output lengths
	Request rate limiting

	Completing the pre-launch review request
	High-level use case questions
	Security and risk mitigation questions
	Growth plan questions
	Wrapping-up questions

	Summary
	Why subscribe?

	About Packt
	Other Books You May Enjoy
	Index

