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Preface

This book focuses on the DevOps and MLOps of deploying and productionising
machine learning projects with Kubeflow in Google Cloud platform. The
authors feel that in this era of machine learning, lot of companies failed to make
production of AI/ML projects in real time which was also a study from Forbes. It
is compelling and relevant content for today’s practicing DevOps/MLOps teams
as this sector is still changing. So, many machine learning platforms today take
different approaches to the architecture and solution space of managing machine
learning workflows. The core concepts of Kubernetes and Kubeflow and its
architecture alongside teaches us how to approach and make your AI/ML projects
from training to serving with scale in production with Kubeflow.

This book starts by taking you through today’s machine learning infrastructure
of Kubernetes and Kubeflow architecture. We then go on to outline the core
principles of deploying various AI/ML use cases with TensorFlow training serving
with Kubeflow and explain how Kubernetes solves some of the issues that arise.
We further show how to use TFX with Kubeflow alongside Explainable AI for
determining fairness and biasness with What-if Tool. We learn various serving
techniques framework for different use cases with Kubeflow KF serving. After that
we look at building sample computer vision based Ul in streamlit and deploying
that in Google cloud platform Kubernetes and Heroku deployment.

This book is divided into 8 chapters. They cover Kubernetes, Kubeflow basics,
advance deployment projects with Kubeflow, AWS Sagemaker deployment and
explainable Al with real time examples for deployment and container creation
with Docker and building pipeline in Kubeflow. More interest will arise among
learners in Machine learning deployment with Kubeflow.

The details are listed as follows:

Chapter 1: In this chapter, we will learn about the complete features of Kubeflow,
how it works and its need. We will also learn about the architecture functionality
of Kubernetes such as service, pod, Ingress, and so on. We will learn to build
the docker image and learn it's working. Here, we will see the components of
Kubeflow advantage, which we will be using in the upcoming chapters. Then,
we will proceed towards the complete setup of Kubeflow in the Google Cloud
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platform and Jupyter notebook setup. We have an optional item — how to create
the persistent volume claim and attach it to the file store to save your codes and
data.

Chapter 2: In this chapter, we will build an end-to-end TensorFlow classification
model deployment with Kubeflow orchestration which includes deploying
Kubeflow in Kubernetes Cluster in GCP, building the pipeline components for
the model with Docker and Kubeflow SDK, and then serving the model with KF
serving to have an endpoint for prediction. We will also track the monitoring and
performance for our serving traffic endpoint in Grafana dashboard.

Chapter 3: In this chapter, we will build an end-to-end TensorFlow computer vision
model with OpenCV operation and deploy that with the Kubeflow orchestration,
which includes deploying Kubeflow in Kubernetes cluster in GCP, building the
pipeline components for the model with Docker and Kubeflow SDK and then
serving the model with KF serving to have an endpoint for prediction. We will
then track the monitoring and performance in Grafana dashboard.

Chapter 4: In this chapter, we will build an end-to-end structured data classification
model and make it ready for production with the help of TFX, and serve the
model outputs with TF serving to get the prediction. We will also be building the
TensorFlow ecosystem model and visualizing the evaluation with Tensorboard
and Fairness. Then, we will learn about the various TFX components like TFT,
TFMA, TFDV, and so on. Later on, we will create a Kubeflow Pipeline on Google
Cloud.

Chapter 5: In this chapter, we will work on a classification model with the hotel
booking dataset, train the TensorFlow and boosting models, and visualize the
advanced explanation of our model results with Tensorboard, Shap, and What-if
products.

Chapter 6: In this chapter, we will build an end-to-end Light Model framework
and will monitor the model performance in the Weights and Biases (Wandb) tool.
Within Weights and Biases, we will see the live model RMSE graphs and parallel
coordinates’ hyper parameter performance graphs for each iteration. Next, we
will deploy the model with the KF serving in our Kubernetes Cluster inside
Google Cloud platform. We will be serving model endpoint which will be used for
prediction and monitored in the Grafana Dashboard, such as model rate request
with respect to the time and CPU and GPU consumption.
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Chapter 7: In this chapter, we will work on the Housing Price Sales dataset
project, where we will completely run, evaluate, and deploy the model in the
Amazon SageMaker Cloud environment and use S3 for data storage. We will also
be using the in-built container algorithm XG-Boost for model building so that we
are able to understand the architecture of SageMaker model building framework
end to end.

Chapter 8: In this chapter, we will build an end-to-end web application for the
computer vision models, and build the UI with Streamlit. We will be learning
about many Open CV models for image like cropping, changing pixels, and so
on. Next, we will host the web application with the Heroku Container Registry or
Kubernetes Cluster as a service application in Google Cloud.
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CHAPTER 1

Introduction to
Kubeflow &
Kubernetes Cloud

Architecture

In this chapter, we will learn about the complete features of Kubeflow, how it works,
and why we need Kubeflow. We will also learn about the architecture functionality
of Kubernetes, like service, pod, Ingress, and so on, and how to build the docker
image, and how it works. Here, we will see the components of Kubeflow advantage,
which we will be using in the upcoming chapters. Then, we will proceed towards
the complete setup of Kubeflow in the Google Cloud Platform and Jupyter notebook
setup. We have an optional item — how to create the Persistent Volume Claim, and
attach it to the File store to save your codes and data.

Structure

In this chapter, we will cover the following topics:
e Docker understanding
e Kubernetes concepts and architecture
e Kubernetes components
¢ Introduction on Kubeflow Orchestration for ML Deployment
e Components of Kubeflow

e Setting Up for Kubeflow in GCP
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Obj

Jupyter Notebook setup

Optional: PVC setup for Jupyter Notebook

ectives

This chapter will help you learn the following:

The core understanding of Docker and Kubernetes, and its application to be
used in Cloud.

Kubernetes and Kubeflow Architecture and its functionality and advantages.

The components of Kubeflow and how to setup Kubeflow IAP Cluster in
Google Cloud Platform.

Docker image of CPU for setting up the Jupyter notebook, alongside the
PVC Setup in Cloud.

NOTE Rest all the imports I have showed in my Colab Notebook, for which the
hyperlink of GitHub account of this chapter is given below. Note Colab
platform Python 3.x. RUN IN GOOGLE COLAB

CODE https://github.com/bpbpublications/Continuous-Machine-Learning-
with-Kubeflow/tree/main/Chapterl

1.1 Docker understanding

Docker

is a platform for the developers and system admins to build, run, and share

the applications with the containers. The containers used to deploy the applications
is called containerization. To deploy the applications, the containers are making
things easier and flexible.

Containerization is increasingly becoming popular because the containers have the
following features:

Flexible: We can containerize the most complex applications as well.

Scalable: We can distribute the container replica’s process across a data
center automatically.

Lightweight: The containers make things more efficient than the Virtual
machines by sharing and leveraging the host kernel.

Portable: Due it’s portable nature, we can build them locally, deploy to the
cloud, and run it from anywhere.
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¢ Loosely coupled: They are highly independent and encapsulated, which
allows us to replace or upgrade anyone without disrupting others.

¢ Secure: Without any required configuration on the part of the user, it applies
aggressive isolations and constraints to the processes.

Images and containers:

Logically, a container is a running process, with some added encapsulated features
which applies for the Host to be isolated from it and from the other containers.
The most important aspects is that each container interacts with its own private
file system, which is called container isolation; the Docker image provides this
file system. So, an image includes most of the things which are needed to run an
application — the code, runtimes, dependencies, and any other file system objects
required.

CONTAINER
App A App C
Bins/Libs Bins/Libs
Host OS
Infrastructure Infrastructure

Figure 1.1: Docker Architecture

The Docker has two concepts which are almost the same with its VM containers as
the idea of an image and a container. An image, which is the definition of that will be
executed, just like an operating system image, and for a given image, the container
is the running instance.
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1.1.1 Dockerfile

To get our Python or any language code running in a container is to warp it in a
package as a Docker image, after that run a container based on it. The steps are

sketched as follows:
— (1)

(AN RENRENN
-
Dockerfile Image Container

<[>

Figure 1.2: Docker file process

Next, for generating a Docker image, we need to create a Dockerfile which contains
some set of instructions needed to build the image. The Dockerfile is then processed
by the Docker builder which generates the Docker image. At last, with a simple
Docker run command, we can create and run a container with the Python service.

& Dockerfile X

# set base image (host 0S)
Base Docker
FROM python:3.8 Public Python
Image

# set the working directory in the container
WORKDIR /app

# copy the dependencies file to the working directory
COPY requirements.txt .

# install dependencies

PRI - : = Python Libraries
RUN pip install -r requirements.txt < el et

# copy the content of the local src directory to the working directory
COPY src/ .

# command to run on container start
CMD [ "python", "./server.py" ] =

Figure 1.3: Dockerfile code

Let’s split this file into the following lines:

e It uses the Python base image with the tag Python:3.8, which is a specific
version of Python.
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e Then, it creates a working directory, where we will copy our local files to that
directory; here we have created an app folder and copied the requirements
file which contains the Python library.

e Then, we have installed all the Python libraries with the pip command.

¢ Next, we use CMD, which is a command to run the Python file whenever the
container gets started.

Image Name

Image tag version
Current location of

7~ Dockerfile

)

docker build -t imagename:tag .

Run the Dokcer in Local

% docker run imagename:tag

Push the build image in
Cloud or DokcerHub

docker push imagename:tag

Figure 1.4: Dockerfile command

Now, run the preceding code in the terminal to push the image, which you have
built in local to cloud (GCP/AWS/AZURE) and Docker hub.

1.2 Kubernetes Architecture

In this section, we will see how the Kubernetes work, and learn about its architecture.

1.2.1 What is Kubernetes?

Kubernetes is an open-source container management system used in large-scale
enterprises in several dynamic industries to perform a mission-critical task or any
orchestration task. Some of its capabilities include the following:

¢ It manages the containers inside cluster.
e It deploys applications to which it provides tools.

e Itscales the applications as per requirement.
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e It manages the existing containerized application changes.

e It optimizes the use of the underlying hardware complexity beneath our
container.

e It enables an application component to restart and move across multiple
systems as per need.

1.2.2 Why do we need Kubernetes?

We need Kubernetes to manage the containers when we run our production grade
environments using a pattern of microservice with many containers. We need to
track features such as health check, version control, scaling, and rollback mechanism
among other things. It can be quite challenging and frustrating to make sure that
all of these things are running alright. Kubernetes gives us the orchestration and
management capabilities required to deploy the containers at scale. To build the
application services with the Kubernetes orchestration allows us to span multiple
containers and timely schedule those containers across a cluster, scale those
containers when it’s not in use, and manage the health of those containers from
time to time. In a nutshell, Kubernetes is more like a Master manager that has many
subordinates (containers). What a manager does is maintain what the subordinates
need to do.

1.2.3 What are the Advantages of Kubernetes?

The following are the advantages of Kubernetes:

Portable and Open-Source:

Kubernetes can run the containers on one or more public cloud environments, virtual
machines, or bare metal, which means it can be deployed on any infrastructure.
Moreover, Kubernetes is compatible across multiple platforms, making a multi-
cloud strategy a highly flexible and usable component.

Workload Scalability:
Kubernetes course offers the following useful features for scaling purpose:

¢ Horizontal Infrastructure Scaling: Operates on the individual server level to
implement horizontal scaling. New servers can be added or removed easily.

e Auto-Scaling: We can alter the number of containers running, based on the
usage of CPU resources or other application-metrics.

e Manual Scaling: The number of running containers through a command or
the interface can be manually scaled.
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¢ Replication Controller: The replication controller makes sure that the cluster
has a specified number of equivalent pods in a running condition. If there
are too many pods, the replication controller can remove the extra pods or
vice-versa.

High Availability:

Kubernetes can handle the availability of both the applications and the infrastructure.
It tackles the following:

e Health Checks: The application doesn’t fail by constantly checking with
the health of modes and containers. Kubernetes offers self-healing and auto
replacement if a pod crashes due to an error.

e Traffic Routing and Load Balancing: Kubernetes’ load balancer distributes
the load across multiple loads, enabling us to balance the resources quickly
during incidental traffic or batch processing.

Designed for Deployment:

Containerization has an ability to speed up the process of building, testing, and
releasing the software, and the useful features include the following:

¢ Automated Rollouts and Rollbacks: It can handle the new version and
update our app without any downtime, while we monitor the health
during the roll-out process. If any failure occurs during the process, it can
automatically roll back to the previous version.

¢ Canary Deployments: So, the production of the new deployment and the
previous version can be tested in parallel, that is, before scaling up the new
deployment and parallelly scaling down the previous deployment.

¢ ProgrammingLanguage and Framework Support: Most of the programming
languages and frameworks like Java, Python, and so on, are supported by
Kubernetes. If an application has the ability to run in a container, it can run
in Kubernetes as well.

Kubernetes and Stateful Containers:

Kubernetes” Stateful Sets provides resources like volumes, stable network ids, and
ordinal indexes from 0 to N, and so on, to deal with the stateful containers. Volume
is one such key feature that enables us to run the stateful application. The two main
types of volume supported are as follows:

¢ Ephermal Storage Volume: Ephermal data storage is different from Docker.
In Kubernetes, the volume is taken into account in any containers that run
within the pod, and the data is stored across the container. But, if the pods
get killed, the volume is automatically removed.
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o Persistent Storage: The data remains for the lifetime. So, when the pod dies
or it is moved to another node, that data will still remain until it is deleted by
the user. Hence, the data is stored remotely.

1.2.4 How do Kubernetes work?

A cluster is the foundation of Google Kubernetes Engine (GKE); the Kubernetes
objects that represent your containerized applications all run on top of a cluster. In
GKE, a cluster consists of at least one control plane and multiple worker machines,
called nodes. These control plane and node machines run the Kubernetes cluster
orchestration system.

&_,

General User

= CONTROL
| — PLANE
=

Etcd Storage Schedular

Control Manager

G & 2

VPC Network Load Balancer Persistent Disk

sese
“e00e-
e00e.

DEPLOYED

POD POD POD

=

Figure 1.5: Kubernetes Architecture

Master:

The master is the controlling element of the cluster. The master has the following
three parts:

e API Server: The application that serves Kubernetes’ functionality through a
RESTful interface and stores the state of the cluster.
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e Scheduler: The scheduler watches the API server for the new Pod requests.
It communicates with the Nodes to create the new pods and assign work to
the nodes while allocating the resources or imposing constraints.

¢ Controller Manager: The component on the master runs the controllers. It
includes the Node controller, Endpoint Controller, Namespace Controller,
and so on.

Slave (Nodes):
These machines perform the requested, assigned tasks. The Kubernetes master

controls them. There are the following four components inside the Nodes:

e Pod: All containers will run in a pod. Pods abstract the network and storage
away from the underlying containers. Your app will run here.

e Kubelet: The Kubectl registering the nodes with the cluster, watches for
work assignments from the scheduler, instantiates new Pods, and reports
back to the master.

¢ Container Engine: It is responsible for managing the containers, image
pulling, stopping the container, starting the container, destroying the
container, and so on.

e Kube Proxy: It is responsible for forwarding the app user requests to the
right pod.

1.3 Kubernetes components

In this section, let's understand the deep concept behind the functionality of
Kubernetes” each and every important components.

NODE:

A node is the smallest unit of the computing hardware in Kubernetes. It is a
representation of a single machine in your cluster. In most production systems, a
node will likely be either a physical machine in a datacenter, or a virtual machine
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hosted on a cloud provider, like the Google Cloud Platform. Don’t let conventions
limit you; however, in theory, you can make a node out of almost anything.

NODE_7
CPU:300
RAM:32GB

NODE_72
CPU:300
RAM:3Z2GB

NODE_m88
CPU:300
RAM:3Z2GB

Figure 1.6: Node Concept

Thinking of a machine as a “node” allows us to insert a layer of abstraction. Now,
instead of worrying about the unique characteristics of any individual machine, we
can instead simply view each machine as a set of CPU and RAM resources that

can be utilized. In this way, any machine can substitute any other machine in a
Kubernetes cluster.

CLUSTER:

Although working with the individual nodes can be useful, it’s not the Kubernetes
way. In general, you should think about the cluster as a whole, instead of worrying
about the state of individual nodes.

Kube-Cluster
CPU: 50000
RAM: 360 GB

Figure 1.7: Cluster Concept
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POD:

Unlike the other systems that you may have used in the past, Kubernetes doesn’t run
the containers directly; instead it wraps one or more containers into a higher-level
structure called a pod. Any containers in the same pod will share the same resources
and local network. The containers can easily communicate with the other containers
in the same pod, as though they were on the same machine while maintaining a
degree of isolation from the others.

Pods are used as the unit of replication in Kubernetes. If your application becomes too
popular and a single pod instance can’t carry the load, Kubernetes can be configured
to deploy the new replicas of your pod to the cluster as necessary. Even when not
under the heavy load, it is standard to have multiple copies of a pod running at any
time in a production system to allow the load balancing and failure resistance.

IP:l0555 819258 IP:102.56.89.223 IP:104.56.89.223

Figure 1.8: Pod Concept

The Pods contain one or more containers, such as the Docker containers. When a
Pod runs multiple containers, the containers are managed as a single entity, and
share the Pod's resources. Generally, running multiple containers in a single Pod is
an advanced use case.

Pods also contain shared networking and storage resources for their containers:

Network: Pods are automatically assigned unique IP addresses. Pod containers
share the same network namespace, including the IP address and network ports.
Containers in a Pod communicate with each other inside the Pod on localhost.
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Storage: Pods can specify a set of shared storage volumes that can be shared among
the containers.

! pod.yaml / Pod API version
apiVersion: batch/v1l

kind: Job
metadata: //_____’—J Pod Name
name: hello
spec:
template:
# This is the pod template
spec: Container
containers: Image

- name: hello

image: busybox:vl

command: ['sh', '-c', 'echo "Hello, Kubernetes!" && sleep 3600']
restartPolicy: OnFailure

Figure 1.9: Pod creation yaml

Deployment:

Although the pods are the basic unit of computation in Kubernetes, they are not
typically directly launched on a cluster. Instead, the pods are usually managed by
one more layer of abstraction — the deployment.

A deployment’s primary purpose is to declare how many replicas of a pod should be
running at a time. When a deployment is added to the cluster, it will automatically
spin up the requested number of pods, and then monitor them. If a pod dies, the
deployment will automatically re-create it.

000

IP:105.53.19.253 1P:102.56.89.223 1P:104.56.89.223

Figure 1.10: Deployment concept
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Using a deployment, you don’t have to deal with the pods manually. You can just
declare the desired state of the system, and it will be managed for you automatically.

(R P I Deployment api
version
el Deployment name

e replicas of image

Image name

Figure 1.11: Deployment yaml file

In the preceding figure, you can see that it was the template for Deployment and it
was the format for each container deployment.
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Service:

Aservice in Kubernetes is a REST object, similar to a Pod. Like all of the REST objects,
you can POST a Service definition to the API server to create a new instance. The
name of a Service object must be a valid DNS label name.

A

Client TCP:80

Application Load
Balancer

.-
-

noDE |

TCP:9376 CP:9376

000
|

Figure 1.12: Service Concept

TCP:9376

For example, suppose you have a set of Pods that each listen on TCP port 9376 and
carry a label app=MyApp - this specification creates a new Service object named
"my-service", which targets the TCP port 9376 on any Pod with the app=MyApp
label.

Kubernetes assigns this Service an IP address (sometimes called the "cluster IP"),
which is used by the Service proxies. Port definitions in Pods have names, and you
can reference these names in the targetPort attribute of a Service.

Why use a Service?

In a Kubernetes cluster, each Pod has an internal IP address. But the Pods in a
Deployment come and go, and their IP addresses change. So, it doesn't make sense
to use the Pod IP addresses directly. With a Service, you get a stable IP address that
lasts for the life of the Service, even as the IP addresses of the member Pods change.

A Service also provides load balancing. Clients call a single, stable IP address, and
their requests are balanced across the Pods that are members of the Service.
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1.3.1 Types of Services

There are the following five types of Services:

ClusterIP (default): Internal clients send requests to a stable internal IP
address.

NodePort: Clients send requests to the IP address of a node on one or more
nodePort values that are specified by the Service.

LoadBalancer: Clients send requests to the IP address of a network load
balancer.

ExternalName: Internal clients use the DNS name of a Service as an alias for
an external DNS name.

Headless: You can use a headless service in situations where you want a Pod
grouping, but don't need a stable IP address.

apiVersion: vl - [lservicairiverion |
kind: Service
metadata:

name: my-service <—{ Senice Name |
spec:

selector:

app: MyApp= Label;gjigenﬂfy
ports:

- protocol: TCP
port: 80 +——(SIEER

targetPort: 9376 |

Target Pod port

Figure 1.13: Service yaml file

Ingress:

Using the concepts described earlier, you can create a cluster of nodes, and launch
deployments of pods onto the cluster. There is one last problem to solve, however —
allowing external traffic to your application.
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By default, Kubernetes provides isolation between pods and the outside world. If
you want to communicate with a service running in a pod, you have to open up a
channel for communication. This is referred to as Ingress. There are multiple ways to
add ingress to your cluster. The most common ways are by adding either an Ingress
controller, or a LoadBalancer. The exact trade-offs between these two options are out
of scope for this post, but you must be aware that ingress is something you need to
handle before you can experiment with Kubernetes.

What is Ingress?

Ingress exposes HTTP and HTTPS routes from outside the cluster to the services
within the cluster. Traffic routing is controlled by the rules defined on the Ingress
resource. The following is a simple example where an Ingress sends all its traffic to
one Service.

An Ingress may be configured to give the Services externally-reachable URLs,
load balance traffic, terminate SSL/TLS, and offer name-based virtual hosting.
An Ingress controller is responsible for fulfilling the Ingress, usually with a load

balancer, though it may also configure your edge router or additional frontends to
help handle the traffic.

An Ingress does not expose the arbitrary ports or protocols. Exposing the services
other than the HTTP and HTTPS to the internet, typically uses a service of type
Service.Type=NodePort or Service.Type=LoadBalancer.

Client TCP:80 ! !

Route Rules foo.bar.com/foo Ingress foo.bar.com/bar Route Rules

TCP:9376 TCP:9376 TCP:9376 TCP:9376 TCP:9376 TCP:9376

000 000
| — I

Figure 1.14: Ingress architecture
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A fanout configuration routes traffic from a single IP address to more than one
Service, based on the HTTP URL being requested. An Ingress allows you to keep
the number of load balancers down to a minimum. For example, a setup like the
following:

The Ingress controller provisions an implementation-specific load balancer that
satisfies the Ingress, as long as the Services (servicel, service2) exist. When it has
done so, you can see the address of the load balancer at the Address field.

apiVersion: networking.k8s.io/vl == { Ingress APl Version I

kind: Ingress

metadata:
name: simple-fanout-example -= | Ingress Name
spec:
rules:
- host: foo.bar.com - { domain name ]
http:
paths:
pathType: Prefix
backend:
service:
name: servicel / deployment port ]
port:
number: 4200
- path: /bar - route gaih of
pathType: Prefix sonviced
backend:
service:
name: service2
port:
number: 8080 - { deployment port ]
Figure 1.15: Ingress yaml file
Namespace:

When to Use Multiple Namespaces?

Namespaces are intended for use in environments with many users spread across
multiple teams, or projects. For clusters with a few to tens of users, you should not
need to create or think about namespaces at all. Start using namespaces when you
need the features they provide. Namespaces provide a scope for the names. The
names of resources need to be unique within anamespace, but not across namespaces.
Namespaces cannot be nested inside one another and each Kubernetes resource can
only be in one namespace.
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Kubernetes starts with the four initial namespaces:
e default: The default namespace for objects with no other namespace.
e kube-system: The namespace for objects created by the Kubernetes system.

¢ kube-public: This namespace is created automatically and is readable by all
users (including those not authenticated). This namespace is mostly reserved
for cluster usage, in case some resources should be visible and readable
publicly throughout the whole cluster. The public aspect of this namespace
is only a convention, not a requirement.

¢ kube-node-lease: This namespace for the lease objects associates with each
node which improves the performance of the node heartbeats as the cluster
scales.

NAMESPACE-Kube-2 NAMESPACE-Kube-1
SERVICE SERVICE

Q00000
I

Figure 1.16: Namespace Concept

1.4 Introduction on Kubeflow
Orchestration for ML Deployment

Kubeflow is an open source Kubernetes-native platform for developing,
orchestrating, deploying, and running scalable and portable ML workloads. It helps
support the reproducibility and collaboration in ML workflow lifecycles, allowing
you to manage the end-to-end orchestration of ML pipelines, to run your workflow
in multiple or hybrid environments, and to help you reuse the building blocks across
different workflows.
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Container Container
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Kubeflow/Pipeline Orchestration Controllers Core Kubernates Controller Kubernates Node (VM)

Figure 1.17: Kubeflow Architecture

Kubeflow also provides support for the visualisation and collaboration in your ML

workflow.

1. Kubernetes resources: The Pipeline Service calls the Kubernetes API server
to create the necessary Kubernetes resources (CRDs) to run the pipeline.

2. Python SDK: You create the components or specify a pipeline using the
Kubeflow Pipelines domain-specific language (DSL).

3. DSL compiler: The DSL compiler transforms your pipeline’s Python code
into a static configuration (YAML).

4. Pipeline Service: You call the Pipeline Service to create a pipeline run from
the static configuration.

5. Orchestration controllers: A set of orchestration controllers execute the
containers needed to complete the pipeline. The containers execute within
the Kubernetes Pods on virtual machines. An example controller is the Argo
Workflow controller, which orchestrates the task-driven workflows.

6. Pipeline web server: The Pipeline web server gathers data from various

services to display relevant views — the list of pipelines currently running,
the history of pipeline execution, the list of data artifacts, debugging
information about individual pipeline runs, and execution status about
individual pipeline runs.
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7. Pipeline Service: You call the Pipeline Service to create a pipeline run from
the static configuration.

8. Persistence agent and ML metadata: The Pipeline Persistence Agent watches
the Kubernetes resources created by the Pipeline Service and persists the
state of these resources in the ML Metadata Service.

9. Artifact storage: The Pods store the following two kinds of data:

e Metadata: Experiments, jobs, pipeline runs, and single scalar metrics.
Metric data is aggregated for the purpose of sorting and filtering.
Kubeflow Pipelines store the metadata in a MySQL database.

e Artifacts: Pipeline packages, views, and large-scale metrics (time
series). Use large-scale metrics to debug a pipeline run or investigate an
individual run’s performance. Kubeflow Pipelines stores the artifacts
in an artifact store like Minio server or Cloud Storage.

Conceptual Overview of Kubeflow: You can deploy the workflow to various clouds,
local, and on-premises platforms for experimentation and production use.

./ 3 DVTC

JAupyter 1F TensorFlow m T
e’

L)

®Xnet .a’l - - m

I TensorFlow Serving 3 CORE

O PyTOI'Ch Seruing {z.‘ KF-Seruing
Q) BENTOML B triton

e L

Figure 1.18: Kubeflow Overview features

Kubeflow is the ML toolkit for Kubernetes. The preceding diagram shows Kubeflow
as a platform for arranging the components of your ML system on top of Kubernetes.

1.5 Components of Kubeflow

In this section, let’s explore some of the components for the introduction of Kubeflow,
which we will be using in the upcoming chapters in details.
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1.5.1 Central Dashboard
The Kubeflow Uls include the following:
¢ Home, acentral dashboard for navigation between the Kubeflow components.
e Pipelines for a Kubeflow Pipelines dashboard.
e Notebook Servers for Jupyter notebooks.
e Katib for hyperparameter tuning.
e Artifact Store for tracking of artifact metadata.

¢ Manage Contributors for sharing the user access across namespaces in the
Kubeflow deployment.

Kubeflow central Ul is accessible at the following URL:

https://<application-name>.endpoints.<project-id>.cloud.goog/

7o Kubeflow & aniruddha-choudhury (ow... +
H Dashboard Activity
ome.
Quick shortcuts Recent Notebooks &) Google Cloud Platform
4 Upload a pipeline B colordetection.ipynb Stackdriver Logging (2]
Pipelines Accessed 13/10/2020, 16:31:34 View cluster logs for the past hour
4 Viewallpipeline runs B et Project Overview =
Pipelines Accessed 13/10/2020, 15:56:00 Manage your GCP Project
4 Createanew Notebook server Deployment Manager I
Notebook Servers View your deployments
Recent Pipelines
4 View Katib Studies Kubernetes Engine ]
i Administer your GKE clusters
of  [Tutorial] DSL - Control structures
Created 13/10/2020, 11:42:44
4 ViewMetadata Artfacts
Arifact Store
off  [Tutorial] Data passing in python components Documentation
Created 13/10/2020, 11:42:43
ELISE SR i Getting Started with Kubeflow
ilizati = [Demo] TFX - Iris classification pipeline
Cluster CPU Utilzation Bl R i il Get your machinedearing workflow up and rnning on [}
Kubefl
30%- of  [Demo] TFX - Taxi tip prediction model trainer MiniKF =
Created 13/10/2020,11:42:41 A fast and easy way to deploy Kubeflow locally
of  [Demo] XGBoost - Training with confusion matrix Microk8s for Kubeflow =
Created 13/10/2020, 11:42:40 Quickly get Kubeflow running locally on native hypervisors
Minikube for Kubeflow I
s Quickly get Kubeflow running locally
Recent Pipeline Runs
0% pr— Kubeflow on GCP
s Error retrievina Pipeline Runs Running Kubeflow on Kubernetes Engine and Google Cloud [}

Figure 1.19: Kubeflow Dashboard

1.5.2 Registration Flow

Depending upon the setup of your Kubeflow cluster, you may need to create a
namespace when you first log in to Kubeflow. Namespaces are sometimes called
profiles or workgroups.
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For Kubeflow deployments that support single-user isolation, the Kubeflow cluster
has no namespace role bindings.

:f.‘ Kubeflow

Welcome
In order to use Kubeflow, a namespace for your account must be created. Follow the
steps to get started

Start Setup

[
Figure 1.20: Kubeflow Profile Setup

Click on the Start Setup button and follow the instructions on the screen to set up
your namespace. The default name for your namespace is your username.

e
Ve Kubeflow & aniruddha-choudhury (ow... ~
o

aniruddha-choudhury (Owner)

Figure 1.21: Kubeflow Namespace

1.5.3 Metadata

The goal of the Metadata project is to help the Kubeflow users understand and
manage their machine learning (ML) workflows by tracking and managing the
metadata that the workflows produce. Complete the following steps:

e Go to Kubeflow in your browser.

e C(Click on Artifact Store on the left-hand navigation panel.
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e The Artifacts screen opens and displays a list of items for all the metadata
events that your workflows have logged. You can click on the name of each
item to view the details.

= (% Kubeflow @ aniruddhachoudhury ow.. v

Artifacts

Name Version Type R Workspace Crestedat

No artifacts found.

Figure 1.22: Kubeflow Metadata

1.5.4 Jupyter Notebook server

Click on Notebook Servers on the left-hand panel of the Kubeflow UI to access the
Jupyter notebook services deployed with Kubeflow:

=
& Kubeflow @ default ~
Dashboard Activity
Quick shortcuts Recent Notebooks £) Google Cloud Platform
* Upload a pipeline No Notsbook e it Stackdriver Logging z
Pipelines View cluster logs for the past hour
’ View all pipeline runs Recent Pipelines Project Overview Z
Pipelines Manage your GCP Project
+ Create a new Notebook server 3 [sample] Basic - Exit Handler Deployment Manager Z
Notebook Servers Created 05/08/2019, 14:07:26 View your deployments
4 View Katib Studies off [sample] Basic - Engine 2]
Katib Created 05/08/2019, 14:07:24 Administer your GKE clusters
4 View Metadata Artifacts of [sample] Basic - Parallel execution
Artifact Store Created 05/08/2019, 14:07:22
Documentation
o [sample] Basic - Sequential execution
_ Created 05/08/2019, 14:07:21 Getting Started with Kubeflow
Cluster CPU Utilization = C Get your machine-leaming workflow upand [}
of  [Sample] ML - TFX - Taxi Tip Prediction ... running on Kubeflow
Created 05/08/2019, 14:07:19
2o n MiniKF

Figure 1.23: Kubeflow Jupyter Notebook

= % @ aniruddh ©ow.. ¥
Notebook Servers -+ NEW SERVER
Status  Name Age Image CPU Memory  Volumes
° kfserving 4 days ago computervision-env-tf1.15:v1 340G H CONNECT i

Figure 1.24: Kubeflow Jupyter Notebook dashboard
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1.5.5 Katib

Use Katib for automated tuning of your ML model’s hyper parameters and
architecture. For more information, go to the following link: https://www.Kubeflow.
org/docs/components/hyperparameter-tuning/overview/

= & @ aniruddh: y Ow. ¥
&= HP ~
Submit
©  Monitor
Q  NAS ~
Submit
© Monitor

£ Trial Manifests

Figure 1.25: Kubeflow katib dashboard

1.6 Getting Started in GCP Kubeflow setup

Prerequisites: You must have an active GCP account and while you practice this
chapter, as it might charge for running the Kubernetes cluster.

I assume some basic Kubernetes and Docker knowledge is a must.

If you are using the GCP Free Tier or the 12-month trial period with $300 credit, note that
you can’t run the default GCP installation of Kubeflow, because the free tier does not offer
enough resources. You need to upgrade to a paid account.

Please follow the following link to set up the GCP project and make sure it will
charge you once after the free credits from your credit card, and enable all the API
required for our work: https://v1-0-branch.Kubeflow.org/docs/gke/deploy/project-
setup/

e Creating a Google Cloud Platform (GCP) project for your Kubeflow
deployment.

e Making sure that you have the owner role for the project.
e Making sure that billing is enabled for your project.

¢ Going to the GCP Console will ensure specified APIs are enabled:
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o Compute Engine API
o Kubernetes Engine API
o Identity and Access Management (IAM) API
o Deployment Manager API
o Cloud Resource Manager API
o Cloud Filestore API
o Al Platform Training and Prediction API
o Cloud Build API
API APIs & Services APIs & Services -+ ENABLE APIS AND SERVICES
<> Dashboard ‘\ 1hour 6hours 12hours 1day 2days 4days 7days 1ddays 30days
by ‘\
o Codemas Traffic \\ * Errors *
OAuth consent screen \\'SM :::
©  Domain verification \\ ] I s0%
=  Page usage agreements e \\ J -
U S— -
Median latency * ‘\\‘
10 Y
- coey = - eopiw 1 o8 “‘
b \ . w | os "-
| = . A1) = 04 ]
pot l\,J w Mt :
& API Library '
.
Welcome to the API Library
The API Library has documentation, links, and a smart search experience. O
e Q_  fearch for APIs & Services . ® °
Filter by Maps VIEW ALL (17)
vISIBILITY
Public (305) @ .q ’.. ‘
Private (85) Maps SDK for Android Maps SDK for i0S Maps JavaScript API Places AP|
Google Google Google Google
CATEGORY Maps for your native Android spp. Maps for your native iOS app. Maps for your website Get detailed information about 100
Advertising (14) P
Analytics (3)
Big data (16)

Figure 1.26: GCP APl & Service Dashboard

The following are to be installed for Kubeflow on the command line:

Ensure you have installed the following tools:

1. kubectl.

2. gcloud
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e If you're using Cloud Shell, enable boost mode.

e Next, please make sure that your GCP project meets the minimum
requirements described in the project setup guide.

e Follow the guide setting up the OAuth credentials. To create the OAuth
credentials for Cloud Identity-Aware Proxy (Cloud IAP), click on the
following link:

https://v1-0-branch.Kubeflow.org/docs/gke/deploy/

1.6.1 Install and Set Up kubectl

Now, let’s first install kubectl gcloud sdk, which will be used for connecting
Kubernetes.

Install with Homebrew on macOS:

If you are on macOS and using the Homebrew package manager, you can install
kubectl with Homebrew:

1. Run the installation command:
$ brew install kubectl

2. Test to ensure the version you installed is up-to-date:

$ kubectl version --client

For the other OS, follow the link for Linux or Windows or MacOs:
https://kubernetes.io/docs/tasks/tools/install-kubectl/

1.6.2 Install and Set Up gcloudsdk

Check which version (64-bit or 32-bit) your OS is running on.
Linux / macOS: Run getconf LONG_BIT from your command line.
Windows: Control Panel | System | System Type

Run the following command:

""" bash

$ curl -0 https://dl.google.com/dl/cloudsdk/channels/rapid/downloads/
google-cloud-sdk-302.0.0-1inux-x86_64.tar.gz

$ tar zxvf google-cloud-sdk-302.0.0-1linux-x86_64.tar.gz
$/google-cloud-sdk/install.sh

$ gcloud version
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Google Cloud SDK 329.0.0
app-engine-python 1.9.91
beta 2021.02.19

bq 2.0.65

cloud-datastore-emulator 2.1.0
core 2021.02.19

gsutil 4.59

kpt 0.33.0

kubectl 1.17.17

Figure 1.27: Gcloud version

Now, to install the google cloud sdk, please click on the following link:
https://cloud.google.com/sdk/docs/downloads-versioned-archives

1.6.3 Set Up OAuth from Cloud IAP

In this section, we will set up the OAuth for Cloud IAP to get the secret key. So, the

OAuth set up requires a few steps.

First create the OAuth Consent screen from the APIs and Service in GCP, and

complete the following steps:

e In the Application name box, enter the name of your application. The

following example uses the name “Kubeflow” .

e Under Support email, select the email address that you want to display as
a public contact. You must use either your email address or a Google Group

that you own.

e Ifyou see Authorized domains, enter the following:
<project>.cloud.goog

Here, <project> is your GCP project ID.

If you are using your own domain, such as acme.com, you should add that

as well.

The Authorized domains option appears only for certain project
configurations. If you don’t see the option, then there’s nothing you need to

set.

e (lick on Save.
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Please go to the following link and do the same that was provided: https://v1-0-
branch.Kubeflow.org/docs/gke/deploy/oauth-setup/

Step: Go to APIs & Service | OAuth consent screen | Credentials

= Google Cloud Platform = Google Cloud Platform

API APIs & Services API APIs & Services
&  Dashboard «»  Dashboard
i1 Library it Library
o«  Credentials o+ Credentials
¥  OAuth consent screen i¥  OAuth consent screen
Domain verification Domain verification

So  Pageusage agreements Z»  Page usage agreements

Figure 1.28: GCP APIs & Service
Please note: Copy the few important points after the preceding steps, which will be
required for the Kubeflow Deployment later.
To do that, complete the following steps:
1. Copy the CLIENT ID and CLIENT_SECRET in a note for future use.

Client ID 449053263861-j66phntgagp35hl190bqc3801rojsk04.apps.googleusercontent.com
Client secret 2y7tNtbbH_SJZ_irWP2_jJPo

Figure 1.29: OAuth ID & Secret Key

2. Change the Authorized redirect URIs in OAuth consent screen.
https://iap.googleapis.com/v1/oauth/clientlds/<CLIENT_
ID>:handleRedirect

3. Paste the CLIENT_ID in this URL and paste in the Authorized redirect URIs

in OAuth consent screen.

Please click on the following link for a detailed understanding:

https://www.Kubeflow.org/docs/gke/deploy/oauth-setup/
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1.6.4 Set Up Docker

Now, we will set up the Docker which is important to build the container Image.

Pre-requisites:
You should have the Docker Hub account https://hub.Docker.com/

@ docker ¢ t Explore  Pricing  Sign In sign Up

Build and Ship any _
. o Sign Up Today
Application Anywhere

bo(ker ID

Docker Hub is the world's easiest way to create, manage,
and deliver your teams' container applications.

Email

Password &
Send me occasional product updates and announcements.
(] tmmtartet e
J o
——
Sign Up

By creating an account, you agree to the Terms of Service,
Privacy Policy, and Data Processing Terms.

Figure 1.30: Docker Hub Sign hub page

Once you install the Docker for MacOS, Linux, or Windows, you have to login to the
application with the same credentials of the Docker hub with the DOCKER_ID and
PASSWORD.

Please click on the following link for the installation for Docker:

https://docs.Docker.com/Docker-for-mac/install/



30 Continuous Machine Learning with Kubeflow

1.6.5 Set Up Kubeflow in Kubernetes Cluster in
GCP

To setup Kubeflow in Kubernetes cluster, either you use the Google cloud shell or

Microsoft Visual Studio Terminal of your system. Here, we will use the Google cloud
shell.

Google Cloud Platform s es @ e 2 i

@ Kubernetes Engine Kubemetes clusters CICREATECLUSTER  EIDEPLOY (' REFRESH T e SHOWINFOPANEL @ LEARN

& Clusters R CLOUD SHELL ACTIVATE

BY Tominel  (conese-gadpettessio) x + - o m® @i _ B x

Figure 1.31: Activate cloud shell

Now, we will activate the boost shell.

Upload File

Download File

Default Mode

Safe Mode

Cloud Shell boosted for 9:01:31

> Usage Quota

Usage Statistics

About Cloud Shell

Help

Figure 1.32: Activate cloud shell Boost Mode

Please complete the following steps in cloud shell.

The only thing which we need to give is CLIENT_ID, CLIENT_SECRET, PROJECT_
ID, ZONE, CLUSTER_NAME and change the CONFIG_URI according to the version of
Kubeflow release yaml file.

And you have this below code yaml file in GitHub. Please run the step 5 after all the
activities of the chapter to incur cost in google cloud.
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Deploy using CLI: This guide describes how to use the kfctl command line
interface (CLI) to deploy Kubeflow on GCP. The command line deployment gives
you more control over the deployment process.

## Setting Up Kubeflow on Google Cloud Platform

Note: Use latest official Kubeflow documentation available at ** https://v1-
0-branch.Kubeflow.org/docs/gke/deploy/deploy-cli/** to install the latest
release and config files.

latest release are available at **https://github.com/Kubeflow/kfctl/
releases**

### Step 1 : Setup GCP

"7 “bash

# login to gcloud for authentication : done once
gcloud auth login

# create application default credentials : done once
gcloud auth application-default login

# GCP Project ID

export PROJECT=<PROJECT_ID>

gcloud config set project ${PROJECT}

# GCP Zone (use us-eastl-c)

export ZONE=<ZONE>

gcloud config set compute/zone ${ZONE}

### Step 2 : download the release based on your Operating system

"7 “bash

# KFCTL file url : Get the latest file from

# https://github.com/Kubeflow/kfctl/releases based on the operating system

KFCTL_FILE_PATH="https://github.com/Kubeflow/kfctl/releases/download/
v1.0.2/kfctl_v1.0.2-0-ga476281_linux.tar.gz"

KFCTL_FILE="kfctl.tar.gz"

# download KFCTL compressed file

wget $KFCTL_FILE_PATH -0 $KFCTL_FILE
# extract KFCTL

tar -xvf${KFCTL_FILE}

#mv kfctl-${PLATFORM} kfctl
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# add KFCTL to path
PATH=${PATH}:$(pwd)

### Step 3: setup the deployment

Copy and paste the Client ID and the secret in step C (OAuth Setup Cloud).

"~ “bash

# Deployment Name e.g.

export KF_NAME=<CLUSTER_NAME>

# set client ID and client secret
export CLIENT_ID=<CLIENT_ID>

export CLIENT_SECRET=<CLIENT_SECRET>

# set the config URI : use the official documentation to use the latest
config file

# get latest config URI from official Kubeflow documentation : https://v1-0-
branch.Kubeflow.org/docs/gke/deploy/deploy-cli/

#export CONFIG_URI=https://raw.githubusercontent.com/Kubeflow/manifests/
vl.0-branch/kfdef/kfctl_gcp_iap.v1l.0.2.yaml

Copy the preceding URL to the following command in bash:

export CONFIG_URI="<CONFIG_URI>"

# set the base directory
BASE_DIR=$(pwd)

# set the directory for deployment
KF_DIR=${BASE_DIR}/${KF_NAME}

# create the directory

mkdir -p ${KF_DIR}

# navigate to the directory
cd${KF_DIR}

# build deployment using the config file. Make changes in your configuration
if needed

kfctl build -V -f ${CONFIG_URI}
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#it# Step 4: Deploy

"~ “bash

# setup the config file

Now, that you are in the present folder ${KF_DIR}, run the following command to
check files:

"7 “bash

1s

kfctl gcp iap.v1.0.2.yaml

Figure 1.33: Kubeflow installation yaml files

Now, from preceding figure, we can copy the kfctl_gcp_iap.v1.0.2.yaml and
paste in the following <CONFIG_FILE_NAME> to set the environment variables to
deploy that yaml.

Next, go to the gcp_config folder from earlier, and run vim cluster-Kubeflow.yaml
and change the cluster-version to “1.19” and save the file, and go back to the root
folder of {KF_DIR}.

export CONFIG_FILE=${KF_DIR}/<CONFIG_FILE_NAME>
# apply changes
kfctl apply -V -f ${CONFIG_FILE}

gcloud container clusters get-credentials ${KF_NAME} --zone ${ZONE}
--project ${PROJECT}

Please use run the step 5 after all the activities to delete everything at the end of the
project to incur cost in google cloud.

#it# Step 5 : Delete

"~ “bash
# If you want to delete all the resources, including storage:
kfctl delete -f ${CONFIG_FILE} --delete_storage

Now, wait for 15-20 minutes for the Ingress to be ready. Let’s open the Ingress to
check; click on Kubernetes Engine | Service & Ingress, and in the name, find
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the envoy-ingress; see the following example as the URL where the Kubeflow is
hosted; click to open the Kubeflow dashboard.

@ Kubernetes Engine Services & Ingress C' REFRESH CREATE INGRESS W DELETE
Cluster Namespace
Clusters kubeflow-pipe-cv - 15 options selected - RESET  SAVE BETA
% Workloads SERVICES INGRESS
&  Services & Ingress pipe-cv
s O  centraldashboard @ oK Cluster IP 10.15.242.5 ”n kubeflow kubeflow-
Applications pipecy
B Configuration O  certmanager QoK Cluster [P 10.15.248.221 n cert-manager kubeflow-
pipe-ov
B  storage O  certmanager-webhook @ oK Cluster IP 10.15.247.206 n cert-manager kubeflow-
pipe-ov
%= Object Browser
O  cloud-endpoints-controller @ oK Cluster IP 10.15.243.80 ”n kubeflow kubeflow-
A Migrate to containers pipecv
O  clusterlocagateway @ ok Cluster IP 10.15.248.19 ”n istio-system kubeflow-
pipe-cv
O  controller @ oK Cluster IP 10.15.249.18 n knative-serving kubeflow-
pipe-cv
O  envoy-ingress @ oK Ingress kubeflow-pipe-cv.endpoints.cohesive-gadget- A 0/0 istio-system kubeflow-
166410.cloud.goog/* 2 pipe-ov
O grafana @ oK Cluster IP 10.15.247.79 ”n istio-system kubeflow-
pipe-cv
O  istiocitadel @ oK Cluster IP 10.15.248.79 n istio-system kubeflow-

Figure 1.34: Kubeflow Service & Ingress URL

Click on the following URL which is shown in the preceding figure:

https://<application-name>.endpoints.<project-id>.cloud.goog/
If you want to run Kubeflow 1.3 please check below link:

https://github.com/aniruddhachoudhury/mlopsworld

1.6.6 Connect to cluster and Deploy Grafana
##t## Setup knative-monitoring

"7 “bash

##RUN THE COMMAND IN GOOGLE SHELL

# Connect to cluster

gcloud container clusters get-credentials <$ClusterName> --zone
<$ZONE> --project <$PROJECTID>

#create namespace

kubectl create namespace knative-monitoring

#setup monitoring components

kubectl apply --filename https://github.com/knative/serving/releases/
download/v@0.17.2/monitoring-metrics-prometheus.yaml™ "~
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1.6.7 Jupyter Notebook server setup in
Kubeflow

Let’s create a custom Jupyter lab or Notebook for all the operations and projects in
this book.

FROM gcr.io/kubeflow-images—public/tensorflow-2.1.0-notebook-cpu:1.0.0

tensorflow-datasets==2.1.0
jupyterlab==2.1.1
google-cloud-storage==1.26.0
plotly==4.10.0
streamlit==0.66.0
matplotlib==3.3.2
seaborn==0.11.0
altair==4.1.0

9 pandas==1.1.2
10 kfserving==0.3.0
11 numpy==1.18.1
12 scikit-learn==0.22.2.post1
13 kubeflow-metadata==0.3.1
14 Pillow==7.0.0

USER root

COPY . .
RUN pip3 install -r requirements.txt

10U A WNPR
O NV A WN R

Figure 1.35: Custom Docker image Jupyter NB

Now, we will build the custom Docker image; for that, make sure that you start the
Docker. You will see the Docker is activated on top, as we can see the first icon in the
following figure, which indicates that the Docker is started:

e PDoOoBRTE = I = W) 9% (%) Sun10:59AM Q=

Figure 1.36: Docker Activation in your system

"7 “bash

PROJECT_ID=$(gcloud config get-value core/project)
IMAGE_NAME=custom-image-1
IMAGE_NAME=gcr.io/$PROJECT_ID/$IMAGE_NAME
IMAGE_TAG=latest

# build image
Docker build -t $IMAGE_NAME:$IMAGE_TAG .
# run locally to test

Docker run -it --rm -p 8888:8888 -p 6006:6006 -v $(pwd):/home/jovyan
$IMAGE_NAME : $IMAGE_TAG

# authorize Docker
gcloud auth configure-Docker --quiet

# push image
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Docker push $IMAGE_NAME:$IMAGE_TAG

So, we will use the custom Docker image in the Jupyter Notebook.

gcr.io/custom-image-1:1latest

Complete the following steps:

1. Click on Notebook Servers on the left-hand panel of the Kubeflow UI to
access the Jupyter notebook services deployed with Kubeflow:

»
q’[.‘ Kubeflow @ default ~
Dashboard Activity
Quick shortcuts Recent Notebooks 3 Google Cloud Platform
Upload a pipeline No Notebook MTNSEECE CRVaLM Stackdriver Logging
4 [t

Pipelines . o G View cluster logs for the past hour

Figure 1.37: Kubeflow NB Dashboard

2. Now click on the NEW SERVER to create a new Jupyter Notebook.

= (% Kubeflow @ kubeflow-anichoud2 (own... ¥

Notebook Servers + NEW SERVER

Status  Name Age Image CPU Memory  Volumes

Figure 1.38: Click New server

3. Enter a name of your choice for the notebook server. The name can include
the letters and numbers, but no spaces. For example, my-first-notebook.

Kubeflow automatically updates the value in the namespace field to be the
same as the namespace that you selected in a previous step. This ensures that
the new notebook server is in a namespace that you can access.

B Name

Specify the name of the Notebook Server and the Namespace it will belong to.
Name Namespace

kubeflownote kubeflow-anichoud2

& Image
A starter Jupyter Docker Image with a baseline deployment and typical ML packages.

Custom Image

Custom Image

ger.lo/cohesive-gadget-166410/custom-image-1:latest

Figure 1.39: Configuration Name for Notebook
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4. Select a Docker image for the baseline deployment of your notebook server.
You can specify a custom image or choose from a range of standard images.
Here, we will use Custom Image. Paste the preceding Docker Image: ger.
io/custom-image-1:1latest. Specify the total amount of CPU that your
notebook server should reserve. The default is 0.5. For the CPU-intensive
jobs, you can choose more than one CPU (for example, 1.5). Specify the total
amount of memory (RAM) that your notebook server should reserve. The
default is 1.0Gi.

Custom Image

Custom image

ger.lo/cohesive-gadget-166410/custom-image-1:latest

# CPU/RAM

Specify the total amount of CPU and RAM reserved by your Notebook Server. For CPU-intensive workloads, you can choose
more than 1 CPU (e.g. 1.5).

cPU Memory

1 1.0Gi

Figure 1.40: Configuration image and CPU & Memory

5. Specify a workspace volume to hold your personal workspace for this
notebook server. Kubeflow provisions a Kubernetes persistent volume (PV)
for your workspace volume. The PV ensures that you can retain the data
even if you destroy your notebook server.

The default is to create a new volume for your workspace with the following
configuration:

Name: The volume name is synced with the name of the notebook server,
and has the form workspace-<server-name>. When you start typing the
notebook server name, the volume name appears. You can edit the volume
name, but if you later edit the notebook server name, the volume name
changes to match the notebook server name.

Size: 10Gi

Access mode: ReadWriteOnce. This setting means that the volume can be
mounted as read-write by a single node.

Mount point: /home/jovyan

Alternatively, you can point the notebook server to an existing volume by
specifying the name of the existing volume.
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(Optional) Specify one or more data volumes if you want to store and access
data from the notebooks on this notebook server. You can add new volumes
or specify the existing volumes. Kubeflow provisions a Kubernetes persistent
volume (PV) for each of your data volumes.

L& Workspace Volume
Configure the Volume to be mounted as your personal Workspace,

() Don't use Persistent Storage for User's home

Type Name Size Mode Mount Polnt

New ~ workspace-kubeflownote 10Gi ReadWriteOnce b /home/jovyan

&> Data Volumes

Configure the Volumes to be mounted as your Datasets.

<+ ADD VOLUME
Type Name Size Mode Mount Point

New o kubeflownote-vol-1 10Gi ReadWriteOnce ~ /home/jovyan/data-vol-1 a

Figure 1.41: Configuration PVC & Volume

6. Selectadd gcp credentials from the drop down. Similarly, to use the GPU
image, we have to give a custom GPU Image which will be there in GitHub.
But, as we will work on CPU, as of now, we will not provide any GPU here.

= Configurations

Extra layers of configurations that will be applied to the new Notebook. (.. Insert credentials as Secrets, set Environment
Variables.)

Configurations

add gcp credential v

{ GPUs

Specify the number and Vendor of GPUs that will be assigned to the Notebook Server's Container.

Number of GPUs

None v GPU Vendor v

¢ Miscellaneous Settings
Other possible settings to be applied to the Notebook Server.
@) Enable Shared Memory

LAUNCH CANCEL

Figure 1.42: Configuration/GPU/Launch



Introduction to Kubeflow & Kubernetes Cloud Architecture 39

7. Click on LAUNCH. You should see an entry for your new notebook server on
the Notebook Servers page, with a spinning indicator in the Status column.
The following is the sample Notebook which we have created:

@ kubeflow-aniruddha-chou.. v

Notebook Servers + NEW SERVER
Status Name Age image CPU Memory Volumes

@ ain ddhanb  3hoursago  computer-vision-jupyter-lab:default 8 806 i CONNECT [

Figure 1.43: Notebook ready

8. When the notebook server is running, you should see the Jupyter dashboard
interface. If you requested a new workspace, the dashboard should be empty
of notebooks.

1.7 Optional: PVC setup for Jupyter
Notebook

If you want to attach your PVC to the file store, so that you can save your data
or codes in the Jupyter Notebook to external storage, then we can complete the
following steps:

Optional: (Cost will be applied for 1TB storage)
Step 1: Create a Filestore instance with 1 TB of storage capacity.

"~ “bash
FS=[NAME FOR THE FILESTORE YOU WILL CREATE]
gcloud beta filestore instances create ${FS} \
--project=${PROJECT} \
--zone=${ZONE} \
--tier=STANDARD \
--file-share=name="volumes",capacity=1TB \

--network=name="default"

Step 2: Retrieve the IP address of the Filestore instance.
""" bash

FSADDR=$(gcloud beta filestore instances describe ${FS} \
--project=${PROJECT} \
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--zone=${ZONE} \

--format="value(networks.ipAddresses[0])")

Step 3: Connect to the cluster which you have created.

“*“bash
export ZONE=us-eastl-c
export CLUSTER_NAME= {Your-cluster name}

gcloud container clusters get-credentials <CLUSTER_NAME>--zone <ZONE>
--project <PROJECT>

Step 4: Grant yourself the cluster-admin privileges.

"~ “bash

ACCOUNT=$(gcloud config get-value core/account)

kubectl create clusterrolebinding core-cluster-admin-binding \
--user ${ACCOUNT} \
--clusterrole cluster-admin

Step 5: Download Helm.

""" bash

wget https://storage.googleapis.com/kubernetes-helm/helm-v2.11.0-1inux-
amd64.tar.gz

tar xf helm-v2.11.0-1inux-amd64.tar.gz
sudo 1n -s $PWD/linux-amd64/helm /usr/local/bin/helm

Step 6: Create a file named rbac-config.yaml containing the following:

apiVersion: vl
kind: ServiceAccount
metadata:
name: tiller
namespace: kube-system
apiVersion: rbac.authorization.k8s.io/vilbetal

kind: ClusterRoleBinding
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metadata:
name: tiller
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: tiller

namespace: kube-system

Step 7: Create the tiller service account and cluster-admin role binding.
""" bash

kubectl apply -f rbac-config.yaml

Step 8: Initialize Helm.
" “bash

helm init --service-account tiller

Step 9: Copy the namespace that you can find by either running the following
command which will give a list of namespace, or from the UL

" “bash

kubectl get namespace

Otherwise, copy the drop down and paste in the Notepad example here: aniruddha-
choudhury.

o~
Pe Kubeflow & aniruddha-choudhury (ow...
)

aniruddha-choudhury (Owner)

Figure 1.44: Namespace
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Step 10: Deploy the NFS-Client Provisioner.

Create an instance of NFS-Client Provisioner connected to the Filestore instance
that you created earlier via its IP address (${FSADDR}). The NFS-Client Provisioner
creates a new storage class: nfs-client. Persistent volume claims against that storage
class will be fulfilled by creating persistent volumes backed by directories under the
/volumes directory on the Filestore instance's managed storage.

" “bash

helm install stable/nfs-client-provisioner --name nfs-cp --set nfs.
server=${FSADDR} --set nfs.path=/volumes

watch kubectl get po -1 app=nfs-client-provisioner

imm Filestore Instances CREATE INSTANCE

B  Instances An instance is a fully managed network-attached storage system you can use with your

8 Google Compute Engine and Kubernetes Engine instances. Learn more
2 Backups

= Filter table

Figure 1.45: FileStore

Step 11: Make a Persistent Volume Claim.

Create a Kubernetes Persistent Volume Claim specification. This is a .yaml file that
allows a Kubernetes pod to access the storage resources of a Persistent Volume. The
specification looks similar to the following example:

: nfs-client

Figure 1.46: PVC yaml

Here, storage is the size of the Persistent Volume Claim that you want to make
available to the Kubernetes objects.
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You must specify the storage value in one of the supported units described in the
Resource quantities. The value you specify must be equal to or less than the storage
you specified for the Persistent Volume.

Deploy the Persistent Volume Claim specification:
kubectl create -f persistent-volume-claim-file-name.yaml

Here, persistent-volume-file-name is the name of the Kubernetes Persistent Volume
specification file that you created in the previous step.

Step 12: Copy the PVC name from above and paste it in the Jupyter Notebook in
Kubeflow Workspace Volume Name.

"7 “bash
## paste the namespace here to get the name

kubectl get pvc -n {namespace}

1.8 Conclusion

In this chapter, we learned about the Kubernetes Orchestration concepts and
architecture, and how it works in deployment level and scaling our application,
alongside exposing to the outer world with the Network & Service.; and how the
Docker makes it easy for a developer to containerize applications.

Then, we saw how to set up the Jupyter Notebook with CPU and GPU with the PVC
attached and how to setup the PVC to store our required data for lifetime. We also
learned more about deployment, service, and the ingress framework structure in
Google Cloud. Finally, we learned how to setup Kubeflow in Google Cloud Platform
for our following chapters.

In this chapter, we have gained how to leverage the power of Google Cloud Platform,
and how to use your Devops knowledge with Machine Learning to become a MLops.

1.9 Reference

e https://kubernetes.io/docs/tutorials/kubernetes-basics/
e https://kubernetes.io/docs/reference/
e https://github.com/kubernetes/kubernetes

e https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/






CHAPTER 2

Developing
Kubeflow
Pipeline in GCP

n this chapter, we will build an end-to-end TensorFlow classification Model

deployment with Kubeflow Orchestration, which includes deploying Kubeflow
in Kubernetes Cluster in GCP, building the pipeline components for the model with
Docker and Kubeflow SDK, and then serving the Model with KF serving to have an
endpoint for prediction. We will also track the monitoring and performance for our
serving traffic endpoint in Grafana Dashboard.

Structure

In this chapter, we will cover the following topics:

Problem statement

Getting started in GCP Kubeflow and Docker setup

Breakdown technique to build the production pipeline

Building the Kubeflow Pipeline components for TensorFlow model
Serving the Model with KF Serving

Building the pipeline end to end

Monitoring the performance with Grafana dashboard
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Objectives
In this chapter, we will learn the following:
e How to use Docker and Kubernetes to build the Kubeflow Pipeline.

e How to build the individual pipeline components like the training and
model evaluation.

e How to serve the Model with KF serving and predict the model request, and
monitor with the Grafana Dashboard.

¢ How to use Kubernetes, and many Google Cloud Platform to leverage the
power of Machine learning with Devops Knowledge.

2.1 Problem statement

In this example, we have a classification dataset of breast cancer, and it will have 30
attributes. We have to classify the Malignant and Benign.

NOTE Rest all the imports I have showed in my Colab Notebook, for which
the hyperlink of GitHub Account of this chapter is given below. Note
Colab platform Python 3.x. RUN IN GOOGLE COLAB.

CODE https://github.com/bpbpublications/Continuous-Machine-
Learning-with-Kubeflow/tree/main/Chapter2

2.2 Getting started in GCP Kubeflow setup

So, before we begin, we must setup the Kubeflow Cluster in GCP; please refer to
Chapter 1: Introduction to Kubeflow & Kubernetes Cloud Architecture, section 1.6 (Getting
Started in GCP Kubeflow setup).

2.3 Breakdown technique to build
production pipeline

In this section, we will see how to frame your business problem, so that we can break
down the Machine learning life cycle components, and build each component, so
that we can build the Kubeflow pipeline.
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The following is the high level framework from the Jupyter Notebook code to the
Pipeline components, and serving and hosting that in Cloud.

Kubeflow Pipeline Kubernates Workloads
S ®.
Extraction Pre-| Prqam
Jupyter Notebook
for Tensorflow
Model /L
PVC for Data
D Response result
iﬁ Prediction Request

One single Cloud Client

component Storage

Breakdown

Figure 2.1: Pipeline Components E2E Architecture

We will Dockerize each and every component, and push to the container registry
of any Cloud, like for AWS, GCP, Azure, so that we can use that in the Kubeflow
pipeline.

Steps to perform:

Data Extraction or Ingestion: Let’s say we have our machine learning; the first
component is to extract the data from any sources like S3 bucket, Cloud Storage,
and so on. Now, we will write the single component of the Input data sources and
connection between Kubeflow components to all the data sources in the Python
code.

And a next a service account in json format will be used so that we can connect to
external source. Then, we will Dockerize the component.

Building pipeline for first Component Data Extraction

) @ First Component Build Pipeline JAWS (S3) e
Data Cloud
/ Ingestion Storage

Jupyter
o

Step 1 Kubeflow Component 1

Figure 2.2: Pipeline Component 1: Data Ingestion
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Data Pre-processing: The next component in our machine learning project is to
pre-process or feature the engineering step. Here, we will build or transform all
the incoming data which will be required for the training, according to all the use
case like Computer vision, NLP, Structured data with the respective business pre-
processing logic, and we will save the artifacts or the transformed data back to the
Storage bucket for future reference.

Building pipeline for Second Component Data preprocessing
o am® E
Second Component Dat Build Pipeline AWS (53) cloud
a Storage
L e - g
J u pyte r Preprocessing
Upload Artifacts to
S 2 Storage
) op Kubeflow Component 2

Training: So, here we will train the model it can any TensorFlow or Sklearn, and
so on with our pre-process data, and will save the model artifacts and logs in the
external storage and internally in the native Kubernetes’ Persistent Volume Claim
(PVC).

Figure 2.3: Pipeline Component 2: Data Pre-processing

Building pipeline for Third Component Data training

AWS (S3) Cloud

.A. Third Component Build Pipeline Storage
Data - -
.. Upload Artifacts lile
J u pyte r S e Training Tensorboard logs,
Model save, efc to
) Step 3 Kubeflow Component 3 Storage & PVC

-

Similarly, like the preceding step, we will build the evaluator component for the
Kubeflow pipeline and then we will serve the model by loading the model from any
storage like S3, Cloud Bucket, and so on.

Figure 2.4: Pipeline Component 3: Training

Serving: Next, we will keep our pre-process logic inside the serving Python code
to the incoming data which will be transformed automatically prior to prediction.
Then, we will load our trained model which is saved in S3, Bucket, and so on for
prediction. Simultaneously, if we have any other pre-process model, let’s say for
example, the label-encoder in Sckit-learn, we can load that when we saved the
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artifacts in our data pre-processing step 2, so that it can transform the incoming data,
and predict with our loaded model.

Building pipeline for fifth Component Data training =
AWS (S3) Cloud

L] ® fifth Component Build Pipeline Storage
Data
e Load the model from
Jjupyter—— | Trining $3 Bucke!
® Stap 5 Kubeflow Component 5
Save the

prediction

(=] e
il Cloud MySQL

Database

Figure 2.5: Pipeline Component 4:serving

Next, we will start to build a TensorFlow Model pipeline from scratch.

2.4 Building the Kubeflow Pipeline
components for TensorFlow model

In this section, we will not show how we will build the training classifier with
TensorFlow; the main focus here is how we build the pipeline in Kubeflow to
structure that into the pipeline end-to-end. You can use Microsoft Visual Studio and
install the Docker and configure in Visual Studio.

So, the folder structure for our pipeline would be like the following format:

v use-cases
v breast_cancer
v pipeline
> 1_dataextraction
> 2_processing
> 3_train
> 4_evaluation
> B_serving
> setup_kubeflow
= Pipeline.ipynb
¥ steps.md

Figure 2.6: Pipeline folder Structure

Below we going to see the Breakdown Architecture for our Pipeline and what each
component compromises to build a pipeline end to end.
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Here, we have KF-serving which is deployed in Kubernetes and running, and we
can hit the endpoint for prediction.

Similar to this step, all of the other steps can be found in the pipeline/folder, and all
have the following structure:

e Pipeline.py which exposes the functionality through a CLL
e requirements.txt which states the Python dependencies to run.

e Dockerfile which uses the requirements to build the image with one line.

2.3.1 Data Extraction or Ingestion Component

Let’s see how we will build the component Data extraction Python file, which is
given as follows:

dataextraction.py:

from _ future__import absolute_import, division, print_function,
unicode_literals

import click, json, os, dill , argparse
import numpy as np
import pandas as pd

from sklearn.datasets import load_breast_cancer

@click.command()

@click.option('--data-file', default="/mnt/breast.data")
def get _data(data_file):

cancer = load_breast_cancer()

df_cancer = pd.DataFrame(np.c_[cancer['data'], cancer['target']],
columns = np.append(cancer['feature_names'], ['target']))

print(df_cancer.head(3))

print(df_cancer.describe())

with open(data_file,"wb") as f:
dill.dump(df_cancer,f)

return

if _name__ == "_main__":

get _data()
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Let’s breakdown the code as follows:

First we will load the data from Sklearn datasets. Then, import all the
required datasets.

Then the @click command will be passing the argument in the function
get_data().

Then the dill command will be helping to save the data in pvc.

So, as we can see “data-file” is “/mnt”, so mnt is the mount point; we will
use mnt every time; after that we can give a file name with .data extension;
it will save the data in any format like csv, txt, numpy, dataframe, and so on.

So, whatever data we save with dill.dump, it will be used for the next
pipeline data pre-processing, where with @click, we will input the saved
data.

Next, let’s see how we will build the component Dockerfile for the data extraction.
The following screenshot shows the requirements file where each library will be
used inside the pipeline.py and we will need to load the requirements.txt file
as an environment to run the Python function inside Docker:

= requirements.txt X

use-cases > breast_ca
1 pandas

pyyaml

hSpy

dill

click

sklearn

numpy

SNouy s WwN

Figure 2.7: Pipeline Requirements.txt

Docker:

FROM python:3.7-slim-stretch

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update&& \

apt-get-y install gcc mono-mcs g++ git curl && \
rm-rf /var/lib/apt/lists/*

RUN mkdir/app

WORKDIR /app

ADD requirements.txt /app/requirements.txt

RUN pip3 install -r requirements.txt
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# copy python

ADD dataextract.py. /app/dataextract.py

RUN chmod +x /app/dataextract.py
ENTRYPOINT ["python"]
CMD["/app/dataextract.py"]

So let’s break the Docker file code as follows:

Loading the Python image as base Image to run the pipeline code of 3.7
version.

RUN function will run whenever the Docker image will start and create a /
app folder first with mkdir command.

Next, we will redirect our command to WORKDIR where all the files and
dependencies will be installed.

Next, we will ADD the requirements file in the /app folder, and then run the
pip command to install the Python libraries.

Next, we will copy our pipeline.py Python code and give an administrative
access to run the file whenever the Docker image will run with chmod
command.

Next, we will set our entry pointas Pythonand CMD as “/app/dataextract.
py” to run this first.

Now, we will build the Docker image; for that, make sure you start the Docker, after
which you will see the Docker is activated on the top. As we can see in the following
screenshot, the first icon is the Docker, which is started.

& oz reE s » 2 W) 9% (%) Sun10:59AM Q=

Figure 2.8: Docker Activation

Next, we can redirect to our visual studio code, and open the terminal from the
visual studio by right clicking on the Docker file inside the dataextraction folder:
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¢ use-cases

v breast_cancer

v pipeline

v 1_dataextraction I

® D0 QOpen to the Side Ao
= Reveal in Finder X #R
>2p Open in Terminal

: 3% select for Compare
4e
> 5.5 Open Timeline
v setup  cut %X

= oipy Copy #C

Copy Path X C
Copy Relative Path X {3C

JUTLINE
‘IMELINE Rename P
Delete #»E
o timelii
Build Image...

Open iTerm2 Here

Figure 2.9: Open terminal from Visual Studio

Run all the following commands by connecting to GCP via Local:
*"“bash

gcloud init

#Select the Email/Project associated with GCP

Build the container for Data Extraction:

“*“bash

cd /pipeline/dataextraction

PROJECT_ID=$(gcloud config get-value core/project)
IMAGE_NAME=breast_cancer/stepl_loadingdata
IMAGE_VERSION=v1
IMAGE_NAME=gcr.io/$PROJECT_ID/$IMAGE_NAME

Building Docker image:

Docker build -t $IMAGE_NAME:$IMAGE_VERSION .
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Push training image to Google container registry (GCR):

Docker push $IMAGE_NAME:$IMAGE_VERSION

The following is the screenshot where your image will be stored:

[.‘.] Container Registry & Images C REFRESH # DELETE
B Images breast_cancer
&  Settings gerio / anigg 7.3/ breast_cancer I

= Filter by name or tag

| Name Tags

@ custom_serving_nermodel =
@ step1_loadingdata =
(] step2_dataprocessing =
@ step3_training_model —

@ step4_evaluation_model =

Figure 2.10: Docker Container Registry in GCR

Next, we will see how to build the training component, and as shown earlier, we will
build pre-processing.

2.3.2 Data pre-processing component

Now, we will build the pre-processing step, and assume that the input will come
from the previous data ingestion component. So, whatever data we have dumped
with @dill command, we will load it first and will do the necessary pre-processing
step.

In this part of the code, let's import all the dependency, and create the utility
correlation plot function. preprocessing.py:

from _ future__ import absolute_import, division, print_function,
unicode_literals

import os, argparse, json, click, dill
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from tensorflow.python.lib.io import file_io

import pandas as pd

from sklearn.model selection import train_test split
from google.cloud import storage

from plotly.subplots import make_subplots

import plotly.graph_objects as go

import numpy as np

os.environ[ 'GOOGLE_APPLICATION_CREDENTIALS'] = "service_account_iam.
json™

def correlation_plotting(data,s,correlation_plot):

correlation = data.corr()

matrix_cols = correlation.columns.tolist()

corr_array = np.array(correlation)
trace = go.Heatmap(z = corr_array, x = matrix_cols, y = matrix_cols,
xgap = 2, ygap = 2, colorscale='Viridis', colorbar = dict()
layout = go.lLayout(dict(title = 'Correlation Matrix' +s, autosize
= False, height = 720, width = 800, margin = dict(r =0 ,1 =
210, t = 25,b = 210,), yaxis = dict(tickfont = dict(size = 9)),
xaxis = dict(tickfont = dict(size = 9)),))

fig = go.Figure(data = [trace],layout = layout)

fig.update_layout(title={'y':1, 'x':0.6, 'xanchor': 'center',
'yanchor': 'top'})

fig.write_image(correlation_plot)

@click.command()

@click.option('--data-file', default="/mnt/breast.data")
@click.option('--train-file', default="/mnt/training.data")
@click.option('--test-file', default="/mnt/test.data")
@click.option('--validation-file', default="/mnt/validation.data")
@click.option('--train-target', default="/mnt/trainingtarget.data")
@click.option('--test-target', default="/mnt/testtarget.data")

@click.option('--validation-target', default="/mnt/validationtarget.
data")

@click.option('--split-size', default=0.1)
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@click.option('--bucket-data', default="gs://kubeflowusecases/breast/
data.csv")

@click.option('--bucket-name', default="gs://kubeflowusecases")
@click.option('--commit-sha', default="breast/visualize")
@click.option('--metrics-plot', default="/mnt/correlation.png")

def training data_processing(data_file,train_file,test_file,metrics_
plot,validation_file,split_size,train_target,test_target,validation_
target,bucket_data,bucket_name,commit_sha):

with open(data_file, 'rb') as in_f:
data= dill.load(in_+f)

data=data.fillna(data.mean())
correlation_plotting(data,"for the Breast Cancer Dataset",metrics_
plot)

In continuation to the previous page of pre-processing code, here we will upload the
correlation image which we saved with plotly for Kubeflow Python Visualization,
in the following section. Then, we will dump the metadata for the image and table
in the run time pipeline to visualize that.

image _path = os.path.join(bucket_name, commit_sha, 'correlation.
png’)

image _url = os.path.join('https://storage.cloud.google.com', bucket_
name.lstrip('gs://"'), commit_sha, 'correlation.png?authuser=0")

html_path = os.path.join(bucket_name, commit_sha, 'correlation.html")
data.to_csv(bucket_ data)
header = data.columns.tolist()
file_io.copy(metrics_plot, image_path)
rendered_template = """
<html>
<head>
<title>Correlation</title>
</head>
<body>
<img src={}>
</body>

</html>""".format(image_url)
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file_io.write_string to_file(html_path, rendered_template)

metadata = {'outputs' : [{'type': 'table', 'storage': 'gcs',

"format': 'csv', 'header': header, 'source': bucket_data }, { 'type':
'web-app', 'storage': 'gcs', 'source': html_path,}]1}}

with open('/mlpipeline-ui-metadata.json', 'w') as f:
json.dump(metadata, f)

target_name = 'target'

data_target = data[target_name]

data = data.drop([target_name], axis=1)

#%% split training set to validation set

train, test, target, target_test = train_test_split(data, data_

target, test_size=split_size, random_state=0)

Xtrain, Xval, Ztrain, Zval = train_test split(train, target, test_

size=split size, random_state=0)

with open(train_file,"wb") as f:

Let’s

dill.dump(Xtrain,f)

with open(test_file,"wb") as f:
dill.dump(test,f)

with open(validation_file,"wb") as f:
dill.dump(Xval,f)

with open(train_target,"wb") as f:

dill.dump(Ztrain,f)

with open(test_target,"wb") as f:
dill.dump(target_test,f)

with open(validation_target,"wb") as f:
dill.dump(zval,f)

return
breakdown the code for pre-processing as follows:

First, we will import all the libraries, and create the utility plotly correlation
function, which will save an image of the plot. Then we will save that in
the GCS bucket, so that we can visualize that in static HTML format in the
Kubeflow Dashboard.
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Then we will add the service account . json file in the environment, so that
it can give access to the push data or artifacts in the GCP Bucket.

Next, the @click option will input all the required dumps which we have
done in the data ingestion step, so that we can use it here, after which we
will load those first and use those for the pre-processing steps for training
the data.

Then, we will authorise and push the artifacts image in the GCS bucket
by TensorFlow file.io function, and after that, we will create a static
HTML to publish in the Kubeflow dashboard. It is pulling the image from
storage bucket location, which we saved earlier in following path gs://
Kubeflowusecase/breast/visualize/correlation.html and dumped
the metadata as json format. We have split the data and dumped the data for
the next training step.

Before creating the Docker file, make sure we have the service service_account_
iam.json file which will be used for the cloud storage bucket access.

Please click on the following link to download the json key, and paste it in the
preprocessing folder:

The JSON File will look like the following:

{"type": "service_account”,

"project_id": "project-id",

"private_key_id": "key-id",

"private_key": "----- BEGIN PRIVATE KEY----- \nprivate-key\n----- END
PRIVATE KEY----- \n",

"client_email"”: "service-account-email”,

"client_id": "client-id",

"auth_uri": "https://accounts.google.com/o/oauth2/auth",

"token_uri": "https://accounts.google.com/o/oauth2/token",

"auth_provider_x509 cert_url": "https://www.googleapis.com/oauth2/v1/
certs",

"client_x509 cert_url": "https://www.googleapis.com/robot/vl/metadata/
x509/service-account-email™}
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While creating the Service account, search Cloud Storage, and then select Storage
Admin.

9 IAM & Admin Create service account
2 M @ Service account details — @) Grant this service account access to project (optional) — ) Grant users access to this service account (optional)
©  Identity & Organization
9, Policy Troubleshooter Service P p
A Grant this service account access to GCP-Data-Experiments-78508 so that it has

B Organization Policies permission to complete specific actions on the resources in your project. Learn more
& Quotas Select a role —————— ] 5
°3  Service Accounts = Type tofitter
@  Labels Storage Admin

Cloud Services Storsge Admif Full control of GCS resources.
& Settings Cloud Spanner Storage HMAC Key Admin
@  Privacy & Security < CloudsaL Storage Object Admin

Storage Object Creator

T Identity-Aware Proxy lond Soeson

Cloud Talent Solution Slorage Objet Views:
2  Roles

Cloud Tasks Storage Transfer Admin
= AuditLogs o ThesatDaksction Storage Transfer User

Qbnrana Tranafar Viswar
2% Groups

MANAGE ROLES

Figure 2.11: Service account cloud storage selection

The preceding screenshot shows the role we will give for the service account.
Similarly, we will create the Docker Image, and add the service account json key.
Docker:

FROM python:3.7-slim-stretch

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update && apt-get-y install gcc mono-mcs g++ git curl && \
rm-rf /var/lib/apt/lists/*

RUN mkdir/app

WORKDIR /app

COPY service_account_iam.json

ENV GOOGLE_APPLICATION_CREDENTIALS="service_account_iam.json"

ADD requirements.txt /app/requirements.txt

RUN pip3 install -r requirements.txt

ADD dataextract.py. /app/preprocessing.py

RUN chmod +x /app/preprocessing.py

ENTRYPOINT ["python"]

CMD["/app/processing.py"]
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Similar to the preceding step, in the data ingestion step, we will build the Docker
image.

Now, from the Dockerfile location, we will build the Docker image, and push that
in the GCS Container registry. You can get the entire folder in the GCP Bucket, and
all you need is to rename the Docker image name, and run those Docker build and
push command.

2.3.3 Training model component

In this section, we will build a TensorFlow model, and then we will build a distributed
model strategy, save the model in the GCP bucket, and push the Tensorboard logs in
the Bucket for the Kubeflow Dashboard Tensorboard Visualization.

Let’s see how we will build the component pipeline. py file.

train.py:

from__future__import absolute_import, division, print_function, unicode_
literals

import click, dill, json, logging,os
import pandas as pd
import tensorflowas tf

from storage import Storage

def model build(Xtrain):
model = tf.keras.models.Sequential([

tf.keras.layers.Dense(units=32, kernel _initializer='glorot_
uniform',activation="relu', input_shape=(len(Xtrain.columns),)),

tf.keras.layers.Dense(units=64, kernel initializer='glorot_
uniform',activation="relu'),

tf.keras.layers.Dropout(0.5),

tf.keras.layers.Dense(units=64, kernel initializer='glorot_
uniform',activation="relu'),

tf.keras.layers.Dropout(0.5),

tf.keras.layers.Dense(units=1, kernel initializer='glorot_uniform',
activation="sigmoid')])

return model

def get callbacks(path):
checkpointdir = path
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classcustomLog(tf.keras.callbacks.Callback):

def on_epoch_end(self, epoch, logs={}):
logging.info('epoch: {}'.format(epoch + 1))
logging.info('loss={}"'.format(logs['loss']))
logging.info('accuracy={}"'.format(logs[ ' 'accuracy']))
logging.info('val loss={}"'.format(logs['val loss']))
logging.info('val_accuracy={}"'.format(logs['val accuracy']))

callbacks = [tf.keras.callbacks.
ModelCheckpoint (filepath=checkpointdir),customLog()]

return callbacks

@click.command()

@click.option('--epochs', default=100)
@click.option('--batch-size', default=4)
@click.option('--learning-rate', default=0.001)
@click.option('--tensorboard-logs', default='/mnt/logs/")

@click.option('--tensorboard-gcs-logs', default='gs://kubeflowusecases/
breast/logs')

@click.option('--model-output-base-path', default="/mnt/saved model")
@click.option('--gcs-path', default="gs://kubeflowusecases/breast/model")
@click.option('--mode', default="local")

def train_model(train_file,test_file,validation_file,train_target,test_
target,validation_target, ,batch_size,learning_rate,tensorboard_
logs,tensorboard_gcs logs,model output_base_ path,gcs_path,mode,epochs):

with open(train_file, 'rb') asin_t:

train= dill.load(in_f)
So, this a continuation of the train.py, as we declared the utility function for the
callback and model building function, alongside the @click to input the previous

pipeline outputs, which will be used as an input here, alongside the new input for
these pipeline parameters like epoch, learning rate, and so on.

with open(test file, 'rb') asin_f:
test= dill.load(in_+)

with open(validation_file, 'rb') asin_f:
validation= dill.load(in_*)

with open(train_target, 'rb') asin_f:



62 Continuous Machine Learning with Kubeflow

train_tar= dill.load(in_f)

with open(test_target, 'rb') asin_f:
test_tar= dill.load(in_f)

with open(validation_target, 'rb') asin_f:

validation_tar= dill.load(in_f)

strategy = tf.distribute.experimental.
MultiWorkerMirroredStrategy()

logging.info("Number of devices: {0}".format(strategy.
num_replicas_in_sync))

with strategy.scope():
optimizer = tf.keras.optimizers.Adam(learning_ rate)
model = model build(train)

model.compile(optimizer=optimizer, loss=tf.keras.losses.binary
crossentropy,metrics=[ 'accuracy'])

TF_STEPS_PER_EPOCHS=5

BATCH_SIZE = batch_size * strategy.num_replicas_in_
sync

tensorboard_callback = tf.keras.callbacks.TensorBoard(log
dir=tensorboard_logs, histogram_freqg=1)

logging.info("Training starting...")
model.fit(train,train_tar, epochs=epochs, batch_size=BATCH_SIZE,

validation_data=(validation, validation_
tar),callbacks=[tensorboard_callback])

logging.info("Training completed.")
model.save(model output_base path)

new_model = tf.keras.models.load model(model output_base_
path)

# Check its architecture
print(new_model.summary())
Storage.upload(tensorboard_logs,tensorboard gcs logs)

metadata = {
"outputs': [{'type': 'tensorboard', 'source': tensorboard gcs logs, }]}
with open("/mlpipeline-ui-metadata.json", 'w') as f:

json.dump(metadata,f)
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if mode!= 'local':

print("uploading to {@}".format(gcs_path))
Storage.upload(model_output_base path,gcs_path)
else:

print("Model will not be uploaded")

pass

if__name__ == "__main__":

train_model()
So, the preceding is the train.py file,; let’s break the pipeline code as follows:

e First we import all the required datasets.

¢ Them the @click command will be passing the argument in the function
train_model().

e Then the dill command will help save or load the data from pvc.

e Next, we will pass all the arguments like epochs and batch size, learning rate
from the outside and train our model.

o We will push the model train output to we will push Google Storage Bucket.
We have imported the Storage. py file to the Storage class to save our model
artifacts.

e Next, we will visualize the Tensorboard and follow the same metadata json
format with “/mpipeline-ui-metadata.json” and give the GCS bucket
path, where you save your model artifacts.

For Python visualization, you can visit the following link:

https://www.Kubeflow.org/docs/pipelines/sdk/output-viewer/
Docker:

Before creating the Docker file, make sure you copy the service service_account_
iam. json file which we created earlier and which will be used for we will push cloud
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storage bucket access, and the storage.py Python file will be there for uploading
the data to GCS bucket.

~ breast_cancer
v pipeline
> 1_dataextraction
> 2_processing
& Dockerfile
= requirements.txt
{} service_account_iam.json
% storage.py
@ train.py
> 4_evaluation
> 5_serving
setup_kubeflow
= Pipeline.ipynb
¥ steps.md

v

Figure 2.12: Training Folder structure

Similarly, we will create the Docker Image and add the service account json key.
Docker:

FROM python:3.7-slim-stretch

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update && \apt-get-y install gcc mono-mcs g++ git curl && \
rm-rf /var/lib/apt/lists/*

RUN mkdir/app

WORKDIR /app

ADD requirements.txt /app/requirements.txt

RUN pip3 install -r requirements.txt

COPY service_account_iam.jsonservice_account_iam.json

ENV GOOGLE_APPLICATION_CREDENTIALS="service_account_iam.json"

ADD train.py /app/train.py

ADD storage.py /app/storage.py

RUN chmod +x /app/train.py



Developing Kubeflow Pipeline in GCP 65

ENTRYPOINT[ "python"]
CMD["/app/train.py"]

Next we will create the Docker image and will push the image similarly what we did
above on Data Extraction.

2.3.4 Evaluation component

Similarly, we will create the evaluation component. Please have a look at the GitHub
steps.md file.

The following are a few important highlights on what we did in the evaluation
component:

We have dumped the confusion Matrix and ROC Curve as a csv in the GCP bucket
and gave the path a storage location of those in the metadata, and dumped that as
json, so that the Kubeflow pipeline will take that and visualize the ROC & Confusion
Matrix.

2.5 Serving the Model with KF Serving

In this section, we will build our serving for our model. In the following screenshot,
we can see the three major components for our model serving Dockerfile is the model
folder, Dockerfile, servebreast.py.

So, here we kept the saved trained model from the local to the root of the Docker file
or the Cloud Storage bucket.
v breast_cancer
v pipeline
> 1_dataextraction
> 2_processing
> 3_train
> 4_evaluation
v 5_serving
{} breast.json
I' custom_breast_model.yaml
& Dockerfile
= requirements.txt
% servebreast.py
{} service_account_iam.json

Figure 2.13: KF — Serving Component Folder Structure
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Architecture of KF-Serving:

The InferenceService Data Plane architecture consists of a static graph of components
which coordinates the requests for a single model.

S ; )

Default Endpoint 0
Hsﬁo-lngw‘ss *~»f | Transformer
:Predict ]

User  :Explain

:Explain

X

Kubernates
Cluster

:Predict

vy -

Canary Endpoint

:Predict

b Istio Mesh

Figure 2.14: KF — Serving Architecture

Endpoint: InferenceServers are divided into two endpoints — “default" and "canary".
The endpoints allow the users to safely make the changes using the Pinned and
Canary rollout strategies. Canarying is completely optional, enabling the users to
simply deploy with a BlueGreen deployment strategy on the "default" endpoint.

Component: Each endpoint is composed of multiple components — "predictor”,
"explainer", and "transformer". The only required component is the predictor, which
is the core of the system. As KFServing evolves, we plan to increase the number of
supported components to enable the use cases like Outlier Detection.

Predictor: The predictor component is the workhorse of the InferenceService. It is
simply a model and a model server that makes it available at a network endpoint.

Explainer: It enables an optional alternate data plane that provides our model
explanations, in addition to the predictions. So the users may also define their own
explanation container, which KFServing will configure with the relevantenvironment
variables like prediction endpoint. For the common scenario, KFServing provides
out-of-the-box explainers like Alibi.

Transformer: The transformer enables the users to define a pre and post processing
step before the prediction and explanation workflows. Like the explainer, it also
configures with the relevant environment variables. For the common use cases,
KFServing provides the out-of-the-box transformers like Feast.
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Here, we will use the custom image serving because of the following reason:

The goal of the custom image supportis to allow the users to bring their own wrapped
model inside a container and serve it with KFServing. Here, in this example, located
in the model-server directory extends the kfserving. KFModel uses the tornado web
server.

You can use KFServing to do the following;:

¢ Provide a Kubernetes Custom Resource Definition for serving the ML models
on the arbitrary frameworks.

e Encapsulate the complexity of autoscaling, networking, health checking,
and server configuration to bring cutting edge serving features like GPU
autoscaling, scale to zero, and canary rollouts to your ML deployments.

e Enable a simple, pluggable, and complete story for your production ML
inference server by providing prediction, pre-processing, post-processing
and explainability out of the box.

Let’s see how we will build the serving component Transformer. py file.
Transformer.py:

import tensorflow as tf

import sys,o0s,json,kfserving

import numpyas np

import kfserving

from typing import List, Dict

os.environ[ 'GOOGLE_APPLICATION_CREDENTIALS'] = "service_account_iam.
json"

class KFServingSampleModel(kfserving.KFModel):

def _ init_ (self, name: str):
super().__init__ (name)
self.name = name
self.ready = False
self.model output_base path = "gs://kubeflowusecases/breast/model/"

def 1load(self):

model = tf.keras.models.load model(self.model
output_base_path)
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self.model = model
self.ready = True
def predict(self, request: Dict) ->Dict:
inputs = np.array(request["instances"])
reshaped_to_2d = np.reshape(inputs, (-1, len(inputs)))
results = self.model.predict(reshaped_to_2d)
result = (results >0.5)*1
if result==1:
result="malignant"
else:
result="Benign"
print("result : {@}".format(result))
return {"predictions": result}
if__name__ == "__main__":

model = KFServingSampleModel("kfserving-breast-model")

model.load()

kfserving.KFServer(workers=1).start([model])

So let’s break the transformer predictor code as follows:

We kept the service account which has the storage bucket in the Docker root
and then declared that folder as an environment variable to an object model_
output_base_path for gcp bucket path.

Next, in the Load function, we loaded the model in from the TensorFlow
library.

Then, in the predict method, the incoming data will come as a json format
which we need to extract as a key-value pair and do the necessary prediction
and return as a dictionary.

So, in the “main” function, the KFServingSampleModel class takes the name
of that deployment; keep a note of that and apply to the yaml file; here it is
"kfserving-breast-model”

Next, we will build the Docker image for our serving model.

Docker:
FROM python:3.7-slim-stretch
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ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update && \

apt-get-y install gcc mono-mcs g++ git curl bash && \
rm-rf /var/lib/apt/lists/*

RUN mkdir /app

WORKDIR /app

ADD requirements.txt /app/requirements.txt

RUN pip install -r /app/requirements.txt

ADD servebreast.py /app/servebreast.py

COPY service.json

ENV GOOGLE_APPLICATION_CREDENTIALS="service.json"
CMD ["python","servebreast.py"]

Now, in the preceding Docker code, we have copied the service account for the
storage bucket access and saved it in /app. Then, we copied the Python serving
file in the same location and kept the working directory as /app. Then, we built the
image using the following code. Similarly, we created the Docker image; please have
a look at the GitHub steps.md file.

To deploy the model server using the kubectl command line, or using the KFServing
client SDK, complete the following steps:

¢ Deploy using the command line.

¢ Deploy using the KFServing client SDK.

Deploy using the command line:

Now, let’s deploy it with the command line, but first let’s fill the yaml file.

Custom_KFServing.yaml:

apiVersion: serving.kubeflow.org/vlalpha2

kind: InferenceService

metadata:
annotations:

sidecar.istio.io/inject: "false"

name: kfserving-breast-model
namespace: kubeflow

spec:

default:
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predictor:
custom:

container:

image: gcr.io/<PROJECT_ID>/breast_cancer/custom_serving:vl

Here, in the preceding yaml file, we will give the same name which we have provided
in the Transformer.py file, having the model name (“Kfserving-breast-model”), and
then we will provide the namespace “Kubeflow”, where it will be deployed. Next,
we will give the Docker image a name for our Transformer model, which we have

created.

@ servebreast.py X
use-cases > BPP > breast_cancer > pipeline > 5_serving > @ servebreast.py > ...

6  import kfserving
7 from typing import List, Dict

9 os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = "service_account_iam.json"

12 class KFServingSampleModel(kfserving.KFModel):

13 def __init__(self, name: str):

14 super().__init__(name)

15 self.name = name

16 self.ready = False

17 self.model_output_base_path = “gs://kubeflowusecases/breast/model/"
18

19 def load(self):

20 model = tf.keras.models.load_model(self.model_output_base_path)
21 self.model = model

22 self.ready = True

23

24 def predict(self, request: Dict) -> Dict:

25 inputs = np.array(request["instances"])

26 reshaped_to_2d = np.reshape(inputs, (-1, len(inputs)))
27 results = self.model.predict(reshaped_to_2d)

28 result = (results > 0.5)%1

29 if result==1:

30 result="malignant"

31 else:

32 result="Benign"

33

34 print("result : {0}".format(result))

35 return {"predictions": result}

36

37

38 if _name_ == "_main_":

39 model = KFSer ("kfserving-bre del")
40 model. load()

an Kkfserving.KFServer(workers=1).start( [model])

42

! custom_breast_model.yaml X

seline > 5_serving > ! custom_breast_modelyaml > {} spec > {} default > {} predictor > {} cust

PN VA WN R

apiversion: serving.kubeflow.org/vlalpha2
kind: InferenceService
metadata:
annotations:
sidecar.istio.io/inject: “"false"
name: kfserving-breast-model
namespace: kubeflow
spec:
default:
predictor:
custom:
container:
image: gcr.io/<PROJECT_ID>/breast_cancer/custom_serving_breast_c:
imagePullPolicy: Always
name: user-container
imagePullSecrets:
- name: user-gcp-sa

Figure 2.15: KF — Serving Model name match

As we can see in the preceding screenshot, line number 38 from the left image and 6

from the right should be always the same.

Next, run the following command from bash where the files are kept in Visual Studio.

e Connect to the GCP cluster using the following command:

gcloud container clusters get-credentials <$ClusterName> --zone

<$ZONE> --project <$PROJECTID>

e Create the inference service by deploying it in the cluster:

kubectl apply -f custom_breast_model.yaml
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e Check the inference service. Try it after some interval to check if it has been
created:

kubectl get inferenceservice -n Kubeflow

NAME URL READY ~ DEFAULT TRAFFIC ~ CANARY TRAFFIC  AGE
lffseryipg:lz_(g§§§?qngdgl h'gtp://lff.serv_ing:breast—model.kubeflow.example.com/vl/models/kfserving—breast—cnodel True 100 2d10h

Figure 2.16: KF — Serving Inference Output

Sample Prediction:
¢ Run the following command in Bash from the serving folder:
"7 “bash
MODEL_NAME=kfserving-braintumor

HOST=$(kubectl get inferenceservice -n Kubeflow$MODEL_NAME -o
jsonpath="{.status.url}' | cut -d "/" -f 3)

INPUT_PATH=@./data.json

CLUSTER_IP=$(kubectl -n istio-system get service kfserving-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}")

curl -v -H "Host: ${HOST}" http://${CLUSTER_IP}/v1/models/${MODEL_
NAME}:predict -d $INPUT_PATH

Now, the following is the Response prediction request:

* Trying 77 °
TCP_NODELAY set
Connected to - * ~ -y (@ port 80 (#0)
POST /v1/models/kfserving-breast-model:predict HTTP/1.1
Host: kfserving-breast-model.kubeflow.example.com
User-Agent: curl/7.64.1
Accept: *x/*

Content-Length: 256
Content-Type: application/x-www-form-urlencoded

HTTP/1.1 200 OK

content-length: 28

content-type: application/json; charset=UTF-8
date: Fri, 24 Jul 2020 05:40:42 GMT

server: istio-envoy
X-envoy-upstream-service-time: 11796

Connection #0 to host left intact

*
*
>
>
>
>
>
>
>
* upload completely sent off: 256 out of 256 bytes
<
<
<
<
<
<
<
*
{"predictions": "malignant"}* Closing connection @

Figure 2.17: KF — Serving Prediction Output
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¢ Run the following command in Python from the serving folder:

Now, we will create some sample data to predict the results from the
preceding URL. The following is the code to create the sample data:

import base64,json,requests

from sklearn.datasets import load_breast_cancer
import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

cancer = load_breast_cancer()

df_cancer = pd.DataFrame(np.c_[cancer['data'], cancer['target']],
columns = np.append(cancer['feature_names'], ['target']))

X = df_cancer.drop([ "target'],axis=1)

y = df_cancer['target']

X_train, X test, y train, y test = train_test_split(X, y, test_
size = 0.1, random_state = 9)

data = json.dumps({"instances": X_test.iloc[7].to_list()})
data

data

{"instances": [11.7, 19.11, 74.33, 418.7, 0.08814, 0.05253, 0.01583, 0.01148, 0.1936, 0.06128, 0.1601, 1.43, 1.109, 11.28, 0.006064, 0.00911, 0.01042, 0.007638, 0.02349, 0.001661, 12.61,
26.55, 80.92, 483.1, 0.1223, 0.1087, 0.07915, 0.05741, 0.3487, 0.06958]}'

Figure 2.18: Sample Data

MODEL_NAME="kfserving-breast-model"
cluster_ip = <COPY YOUR CLUSTER IP HERE>
headers={"Host": "{@}.Kubeflow.example.com".format(MODEL_NAME)}

response = requests.post("http://{0}/vl/models/{1}:predict".
format(cluster_ip, MODEL_NAME), data = data,headers = headers)

response.json()
{'predictions': 'malignant'}
Figure 2.19: Prediction output

As we can see in the preceding screenshot, our prediction output is malignant.
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2.6 Building the pipeline end to end

Now, let’s see how we build the Pipeline, and we will run this platform in the
Kubeflow Notebook server.

Open the URL: GCP Kubernetes > Service & ingress > Click on the URL.

= Google Cloud Platform :Wv

@ Kubernetes Engine Services & Ingress CREFRESH [ CREATEINGRESS  {§ DELETE L

I

Cluster t

@ Clusters bodhiplatform v | | Namespace - RESET  SAVE Beta !

% Workioads R Py <KF_NAME>_endpoints.<PROJECT_ID>.cloud.goog/* | E

A = S o C e !

A& Services&ingress O cloudendpoints-contrlier @ ok Cluster IP ’ N kubeflow |
# Applications O  clusterlocal-gateway [ XS Cluster IP / 272 istio-system
B Configuration O controler @ ok Cluster IP A\l n knative-serving

O  envoyingress QoK Ingress. ~endpoints. -.cloud.goog/* 2 0/0 istio-system r

Figure 2.20: Ingress URL

As in Chapter 1, Introduction to Kubeflow & Kubernetes Cloud Architecture already in
section 1.6, we have created a Jupyter notebook that we will use.

@ kubeflow-aniruddha-chou.. ¥

Notebook Servers + NEW SERVER

Status  Name Age image CPU Memory Volumes

(] 3hours ago P . 8 806 H CONNECT

Figure 2.21: Notebook Server output

Now, paste the following code and run the pipeline; before that replace the PROJECT _
ID and bucket name from the following code, and it will dump a zip file:

import kfp.dsl as dsl

import yaml

from kubernetes import client as k8s
import kfp.gcp as gcp

from kfp import components

from string import Template

import json

from kubernetes import client as k8s_client

@dsl.pipeline(
name="'breast cancer pipeline’,
description="End to End pipeline for Tensorflow Breast Cancer')

def breast cancer_tensorflow_pipeline(
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dataextraction_step_image="gcr.io/<$PROJECT_ID>/breast_cancer/
stepl_loadingdata”,

dataprocessing step_image="gcr.io/<$PROJECT_ID>/breast_cancer/
step2_dataprocessing”,

trainmodel step _image="gcr.io/<$PROJECT_ID>/breast_cancer/step3_
training_model”,

evaluator_step_image="gcr.io/<$PROJECT_ID>/breast_cancer/step4_
evaluation_model™,

train_file='/mnt/training.data’,
data_file="/mnt/breast.data",
test_file='/mnt/test.data’,
validation_file="/mnt/validation.data",
split_size=0.2,
train_target="/mnt/trainingtarget.data”,
test_target="/mnt/testtarget.data",
validation_target="/mnt/validationtarget.data”,
epochs=5,

learning_rate=.001,

batch_size=64,

shuffle_size=1000,
tensorboard_logs="/mnt/logs/",
tensorboard_gcs_logs="gs://<$YOUR_BUCKET>/breast/logs",
model output_base_path="/mnt/saved_model",
gcs_path="gs://<$YOUR_BUCKET>/breast/model",
gcs_path_confusion="gs://<$YOUR_BUCKET>/breast",
mode="gcs",

probability=0.5,
serving_name="kfserving-breast-model”,
serving_namespace="Kubeflow",

image="gcr.i0/<$PROJECT_ID>/breast_cancer/custom_serving
nermodel"):

Pipeline

# PVC : PersistentVolumeClaim volume
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vop = dsl.VolumeOp(
name="'my-pvc',
resource_name="my-pvc",
modes=ds1.VOLUME_MODE_RWO,
size="1Gi"
)
# data extraction
data_extraction_step = dsl.ContainerOp(
name='data_extraction’,
image=dataextraction_step_image,
command="python",
arguments=[
"/app/dataextract.py"”,
"--data-file", data_file],

pvolumes={"/mnt": vop.volume})

# processing
data_processing_step = dsl.ContainerOp(
name='data_processing’,
image=dataprocessing step_image,
command="python",
arguments=[
"/app/preprocessing.py",
"--train-file", train_file,
"--test-file", test_file,
"--validation-file", validation_file,
"--data-file",data_file,
"--split-size",split_size,
"--train-target"”,train_target,
"--test-target"”,test_target,
"--validation-target"”,validation_target],

pvolumes={"/mnt": data_extraction_step.pvolume})

#ttrainmodel
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train_model step = dsl.ContainerOp(
name="'train_model",
image=trainmodel_step_image,
command="python",
arguments=[
"/app/train.py",
"--train-file", train_file,
"--test-file", test_file,
--validation-file", validation_file,
--train-target"”,train_target,
--test-target",test_target,
--validation-target"”,validation_target,

--epochs",epochs,
"--batch-size",batch_size,
'--learning-rate",learning_rate,

--tensorboard-logs",tensorboard_logs,

--tensorboard-gcs-logs",tensorboard_gcs_logs,

--model-output-base-path",model_output_base_path,

--gcs-path", gcs_path,

--mode", mode],

pvolumes={"/mnt": data_processing step.pvolume})

#evaluationmodel
evaluation_model step = dsl.ContainerOp(
name="'evaluation_model’,
image=evaluator_step_image,
command="python",
arguments=[
"/app/evaluator.py",
"--test-file", test_file,
"--test-target"”,test_target,
"--probability",probability,
"--model-output-base-path",model output_base_path,
"--gcs-path", gcs_path,
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"--gcs-path-confusion"”, gcs_path_confusion],

pvolumes={"/mnt": train_model step.pvolume)

kfserving template = Template("""{

"apiVersion": "serving.Kubeflow.org/vlalpha2",
"kind": "InferenceService",
"metadata”: {

"labels": {

"controller-tools.k8s.io": "1.0"},
"name": "$name",
"namespace": "$namespace"},

"spec": {

"default": {

"predictor”: {

"custom”: {
"container": {
"image": "$image"}}}}}}""")

kfservingjson = kfserving template.substitute({ 'name': str(serving_
name),

'namespace': str(serving_namespace),
'image': str(image)})
kfservingdeployment = json.loads(kfservingjson)
serve = dsl.ResourceOp(

name="serve",

k8s_resource=kfservingdeployment,

action="apply",

success_condition="status.url")

serve.after(evaluation_model step)

if __name__ == '__main__":
import kfp.compiler as compiler

pipeline_func = breast_cancer_tensorflow_pipeline
pipeline_filename = pipeline_func.__name__ + '.pipeline.zip’

compiler.Compiler().compile(pipeline_func,pipeline_filename)
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Now, let’s break the pipeline code as follows:

Pipelines are expected to include a @ds1.pipeline decorator to provide the
metadata about the pipeline.

The pipeline is defined in the breast_cancer_tensorflow_pipeline
function. It includes a number of arguments, which are exposed in the
Kubeflow Pipelines Ul when creating a new Run. Although passed as strings,
these arguments are of type kfp.dsl.PipelineParam.

Each individual block defines one component like ‘train’, ‘evaluation’, and
so on. A component is made up of a kfp.dsl.ContaineroOp object with the
container path and a specified name. The container image used is defined as
the Docker file which we have created.

After defining the train component, we also set a number of environment
variables for the training script.

At the bottom of the script is the main function. This is used to compile the
pipeline when the script is run; next, the .after method will trigger the
pipeline one after the other.

When you run the preceding code, it will dump a zip like the following:

@2 File Edit View Run Kemel Git Tabs Settings Help

O« B & 0O

. oo [ I

B+ XD OB » m c » Coe v @ gt SubmitNotebook... Python3 O

I
-/

| Name = Last Modified
[ breast_cancer_tensorflow_pipeline.pipeline.zip 12 minutes ago
[ pipeline.ipynb 10 minutes ago

kfservingjson = kfserving_template.substitute({ 'name': str(serving_name),
"namespace': str(serving_namespace),
‘image': str(image)})

kfservingdeployment = json.loads(kfservingjson)

serve = dsl.Resource0p(
name="serve",
k8s_resource=kfservingdeployment,
action="apply",
success_condition="status.url"

)
serve.after(evaluation_model_step)

if __name__ == '__main__':
import kfp.compiler as compiler
pipeline_func = breast_cancer_tensorflow_pipeline
pipeline_filename = pipeline_func.__name__ + '.pipeline.zip'
compiler.Compiler().compile(pipeline_func,pipeline_filename)

[22): dimport kfp
from kfp import compiler
import kfp.components as comp
import kfp.dsl as dsl
from kfp import gcp
EXPERIMENT_NAME = 'Breast’
client = kfp.Client()

try:
experiment = client.get_experiment(experiment_name=EXPERIMENT_NAME)
except:

experiment = client.create_experiment(EXPERIMENT_NAME)

print(experiment)

{'created_at': datetime.datetime(2020, 1@, 20, 17, 40, 56, tzinfo=tzlocal()),
‘description’: None,

‘id': '80395917-4c50-473b-bb84-89ec89876dfc’,

‘name’: 'Breast’,

‘resource_references': None,

'storage_state': None}

Figure 2.22: Pipeline zip
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Next, we will create an experiment; under that, we can create multiple runs of a
pipeline. The following code is for creating the experiment:

import kfp

from kfp import compiler
import kfp.components as comp
import kfp.dsl as dsl

from kfp import gcp
EXPERIMENT_NAME = 'Breast'’
client = kfp.Client()

try:

experiment = client.get_experiment(experiment_name=EXPERIMENT_ NAME)
except:

experiment = client.create_experiment (EXPERIMENT_NAME)
print(experiment)

The following snippet will create a run for the zip that we have dumped in that
location:

arguments = {}
run_name = pipeline_func.__name__ + ‘'breast_run'

run_result = client.run_pipeline(experiment.id, run_name, pipeline_
filename, arguments)

print(experiment.id)
print(run_name)
print(pipeline_filename)

print(arguments)
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Click on the run link, once the pipeline is ready. The following is how our pipeline
training looks:

@ breast_cancer_tensorflow_pipelinebreast_run1

Graph Run output Config
b4 breast-cancer-pipeline-widfw-1357569617
my-pvc o y ’
Artifacts  Input/Output  Volumes  Manifest Logs
Logs can also be viewed in
/ Train on 364 samples, validate on S1 samples
Epoch 1/5
" ) 2e20-87-24 e6126155.556081 | Cansor low/ core/profiLar) internal epu/cupti tracer. ce:1328]  function cupti_fnterface >Enablacallback( o1, subscriy
data-extraction 2020-07-24 06:26:55.590887: - ore/profiler/internal/gpu/device._tra 8] GpuTracer has collected o callback api
64/364 (= S 3 ¥ T4 < loss: 52.4165 - accuracy: ©.4551192/364 (= S I, =
Epoch 2/5
64/364 [= . : @s - loss: 30.4473 - accuracy: 0.4219364/364 [ s 191us/sample
Epoch 3/5
64/364 [= atiToRaneaoD 3 : 0s - loss: accuracy: 0.5156364/364 [ 169us/sample
Epoch 4/5
© 5 : @s - loss: 30.. accuracy: 0.4844364/364 [ 163us/sample

data-processing

accuracy: .5938364/364 [ s 163us/sampl
currently considered sequences, but change in the future

4 ] - EmA
020-07-24 06:26 1: W
8
sing Keras pass »_constraint arguments t

R Rl A A L T e e T S T e T S e R e R
Instructions for updating:
If using Keras pass *_constraint arguments to layers.

sequential”

train-model

Layer (type) Output Shape Param #

. = ()
(]

evaluation-model

dropout_1 (Dropout)
serve ]
3 (Dense)

Total params: 7,329
Trainable params: 7,329
Non-trainable params: ©

Figure 2.23: Training pipeline output

The following is how our pipeline Serving looks:
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Figure 2.24: Serving pipeline output
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The following screenshot is of the pipeline which we have created and the Python
visualizations, tables and static HTML plots:
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Figure 2.25: Serving pipeline output

Next, let’s find out how to Monitor an endpoint in Grafana.

2.7 Monitoring the performance with
Grafana dashboard

Run the command in the Google Cloud shell after connecting the Cluster and then
Create Namespace.
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" “bash

gcloud container clusters get-credentials <$ClusterName> --zone
<$ZONE> --project <$PROJECTID>

#create namespace

kubectl create namespace knative-monitoring

#setup monitoring components

kubectl apply --filename https://github.com/knative/serving/releases/
download/v@.177.20/monitoring-metrics-prometheus.yaml

configmap/scaling-config created
configmap/grafana-dashboard-definition-knative created
configmap/grafana-datasources created
configmap/grafana-dashboards created

service/grafana created

deployment.apps/grafana created
configmap/prometheus-scrape-config created
service/kube-controller-manager created
service/prometheus-system-discovery created
serviceaccount/prometheus-system created
role.rbac.authorization.k8s.io/prometheus-system created
role.rbac.authorization.k8s.io/prometheus-system created
role.rbac.authorization.k8s.io/prometheus-system created
role.rbac.authorization.k8s.io/prometheus-system created
clusterrole.rbac.authorization.k8s.io/prometheus-system created
rolebinding.rbac.authorization.k8s.io/prometheus-system created
rolebinding.rbac.authorization.k8s.io/prometheus-system created
rolebinding.rbac.authorization.k8s.io/prometheus-system created
rolebinding.rbac.authorization.k8s.io/prometheus-system created
clusterrolebinding.rbac.authorization.k8s.io/prometheus-system created
service/prometheus-system-np created
statefulset.apps/prometheus-system created

Figure 2.26: Prometheus deploye

Next, run from the Local Terminal and open the “grafana dashboard by using
“localhost:8080" on the browser. Explore the different components of the grafana
dashboard.

""" bash

kubectl port-forward --namespace knative-monitoring $(kubectl get
pod --namespace knative-monitoring --selector="app=grafana" --output
jsonpath="{.items[@].metadata.name}') 8080:3000
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Hit the Curl request from bash and see the output in the Dashboard.

curl -v -H "Host: ${HOST}" http://${CLUSTER_IP}/v1/models/${MODEL_
NAME}:predict -d $INPUT_PATH

v
I ¥ @ B8 ERRR R8RSR

Figure 2.27: Grafana Dashboard Contents

The preceding dashboard is for the contents of Grafana; we can click on the individual
section and see the reports there.

The following Dashboard talks about the HTTP requests for Knative Serving
Visualization which we serve per/sec request.

0.04 ops

Figure 2.28: Grafana Dashboard HI'TP Request
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So, the following is the Dashboard for the Control Plane which shows the CPU Usage
and memory usage efficiency.

Figure 2.29: Prometheus Dashboard

2.8 Conclusion

In this chapter, we learned how to build end-to-end Kubeflow Orchestrator Pipeline
for a TensorFlow Model and how to Dockerize each component and build it in
Google Platform.

Then, we learned how to build the pipeline with the kfp library package and
triggered the pipeline from the Kubeflow Dashboard. We have now deployed the
Kubeflow on the Kubernetes Platform and learned how to trigger the pipeline from
the Notebook. We have also deployed the model in the Kubernetes cluster with the
KF serving and monitored our prediction results in the Grafana Dashboard.

We have also learned how to leverage the power of Google Cloud Platform, and use
our Devops knowledge with Machine Learning to become an MLops.

2.9 Reference
e https://knative.dev/docs/serving/autoscaling/autoscaling-concepts/
e https://vl-1-branch.Kubeflow.org/docs/
e https://vl-1-branch.Kubeflow.org/docs/gke/
e https://vl-1-branch.Kubeflow.org/docs/gke/monitoring/



CHAPTER 3

Designing
Computer Vision
Model in Kubeflow

In this chapter, we will build an end-to-end TensorFlow Computer Vision Model
with OpenCV operation and deploy that with the Kubeflow Orchestration, which
includes deploying Kubeflow in Kubernetes Cluster in GCP, building the pipeline
components for the model with Docker and Kubeflow SDK, and then serving the
Model with KF serving to have an endpoint for prediction. We will then perform the
monitor and performance in Grafana Dashboard.

Structure

In this chapter, we will cover the following topics:

Problem statement
Getting started in GCP Kubeflow and Docker setup
Analytics behind the problem statement

Building the Kubeflow Pipeline components for Computer Vision (CNN)
TensorFlow model

Serving the Model with KF Serving
Building the pipeline end to end

Auto-Scaling of the serving endpoint



86

Continuous Machine Learning with Kubeflow

Obj

ectives

In this chapter, we will learn the following:

How to set Docker and Kubernetes to build the Kubeflow Pipeline.

How to pre-process Image with OpenCV library, and build our data for the
training model, and how it will be used for Kubeflow pipeline.

How to do Ingestion of data from an external source like Kaggle and how to
do Batch-Prediction.

How to build the individual pipeline components like training and model
evaluation.

How to serve the Model with KF serving, and predict the model request and
monitor with the Grafana Dashboard.

How to use Kubernetes and many Google Cloud Platform to leverage the
power of Machine learning with Devops Knowledge.

How to use pre-trained model weights of TensorFlow and use that for Model
building.

How to autoscale a kf-serving inference service with concurrent request and
target concurrency.

3.1 Problem statement

Here, we have a classification dataset of the brain cancer X-ray images, and it has
a two-class folder, one having Brain Tumor and the other not; we will publish the
data from Kaggle and build an end to end classification model; after that we have to

deploy
L]

the same.
NO: No tumor, encoded as 0

YES: Tumor, encoded as 1

NOTE Rest all the imports I have showed in my Notebook, which we
gave hyperlink of my Github Account of this chapter.
CODE https://github.com/bpbpublications/Continuous-Machine-Learn-

ing-with-Kubeflow/tree/main/Chapter3

3.2 Getting started in GCP Kubeflow setup

Before we start with this chapter, we must set up the Kubeflow Cluster in GCP;
please refer to Chapter 1, Introduction to Kubeflow & Kubernetes Cloud Architecture,

Section

1.6 (Getting Started in GCP Kubeflow setup).
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3.3 Analytics behind the problem

statement

The main purpose of this project was to build a CNN model that would classify if
the subject has a tumor or not, based on an MRI scan. We used the VGG-16 model
architecture and weights to train the model for this binary problem. We used accuracy
as a metric to justify the model performance which can be defined as follows:

What is brain tumor?

A cancerous or non-cancerous mass or growth of abnormal cells in the brain. Tumors
can startin the brain, or the cancer from elsewhere in the body can spread to the brain.
These symptoms may include headaches, seizures, problems with vision, vomiting,
and mental changes. The headache is classically worse in the morning and goes
away with vomiting. Other symptoms may include difficulty in walking, speaking
or difficulty with other sensations. As the disease progresses, unconsciousness may
occur.

Here, our goal is to compute the extreme points along the contour of the brain scan
in the image; find the extreme north, south, east, and west (x, y)-coordinates along a
given contour. This method can be used on both raw contours and rotated bounding
boxes.

Let’s import the required libraries.

from IPython.display import clear_output

Ipip install imutils

clear_output()

import numpy as np

from tqdm import tqdm

import cv2,0s, shutil, itertools, imutils

import plotly.express as px

from skimage import io

import plotly.graph_objs as go

from plotly.offline import init_notebook_mode, iplot

from plotly import tools

from plotly.subplots import make_subplots

The following function performs thresholding the image and a series of erosions and
dilations to remove any small regions of noise; next it finds contours in the threshold
image, then grabs the largest one. At last, it finds extreme points to crop the image,
and return all the steps array, so that we can plot them.
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def analytics(filepath):
IMG_SIZE = (224,224)
cv2.imread(filepath)
cv2.resize(img, dsize=IMG_SIZE, interpolation=cv2.INTER_

img

img
CUBIC)

gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
gray

# threshold the image, then perform a series of erosions +

cv2.GaussianBlur(gray, (5, 5), 9)

# dilations to remove any small regions of noise
thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1]

thresh = cv2.erode(thresh, None, iterations=2)

thresh = cv2.dilate(thresh, None, iterations=2)
# find contours in thresholded image, then grab the largest one

cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.
CHAIN_APPROX_SIMPLE)

cnts = imutils.grab_contours(cnts)

¢ = max(cnts, key=cv2.contourArea)

# find the extreme points

extLeft = tuple(c[c[:, :, @].argmin()][0])

extRight = tuple(c[c[:, :, ©].argmax()][0])

extTop = tuple(c[c[:, :, 1].argmin()][0])

extBot = tuple(c[c[:, :, 1].argmax()][0])

# add contour on the image

img_cnt = cv2.drawContours(img.copy(), [c], -1, (@, 255, 255), 4)
# add extreme points

img pnt = cv2.circle(img_cnt.copy(), extLeft, 8, (@, @, 255), -1)
img _pnt = cv2.circle(img_pnt, extRight, 8, (@, 255, @), -1)

img pnt = cv2.circle(img_pnt, extTop, 8, (255, @, @), -1)
img_pnt = cv2.circle(img_pnt, extBot, 8, (255, 255, @), -1)
# crop

ADD_PIXELS = ©

new_img = img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS,
extLeft[@]-ADD_PIXELS:extRight[@]+ADD_PIXELS].copy()

return img,img_cnt,img_pnt,new_img
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Here, we can call the function by downloading the sample data folder from the
GitHub link.

img,img_cnt,img_pnt,new_img=analytics('/<YOUR_LOCATION>/Sample_Tumor_
Data/Y2.jpg"')

Next, we will create a utility plotly function to plot the extreme points of the original
and cropped image with the help of plotly.

def make_subplots_image(img,img _cnt,img _pnt,new_img):
fig = make_subplots(1l, 4, horizontal spacing=0.08)
fig.add_trace(go.Image(z=img), 1, 1)
fig.add_trace(go.Image(z=img_cnt), 1, 2)
fig.add_trace(go.Image(z=img_pnt), 1, 3)
fig.add_trace(go.Image(z=new_img), 1, 4)
fig[ "layout'][ 'xaxisl'].update(showgrid=False, title= 'Original
image"')
fig[ "layout'][ 'xaxis2'].update(showgrid=False, title='Find the
biggest contour')

fig[ "layout'][ 'xaxis3'].update(showgrid=False, title='Find the
extreme points')

fig[ "layout'][ 'xaxis4'].update(showgrid=False, title='Crop the
image')

fig.update_layout(height=400, width=1500)

fig.show()

Call the preceding function:
make_subplots_image(img,img_cnt,img_pnt,new_img)

100 150 200 0 50 100 150 200 0 50 100 150 200

Original image Find the biggest contour Find the extreme points Crop the image

Figure 3.1: Extreme Points of Brain Scan

Now, we will apply the transformation for all the images for our training data during
our Pipeline building phase.
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3.4. Building the Kubeflow pipeline
components for Computer Vision (CNN)
TensorFlow model

In this section, we will see the complete Architecture that we will be using to build
the individual components.

=2

kaggle

Kaggle API
JSON

Connector

Breakdown .
Compon;ﬂs I?ump Model in Bucket = = = - .e
® 1
_ ]
Ju pyte r .
® Dump Artifacts a& data in

C for pipeline use

\

A

Kubernetes

Load Model from
Bucket for serving

==
15 Grofona

Cloud
Storage

Figure 3.2: Architecture of CNN Kubeflow Pipeline

From the preceding diagram, let’s breakdown the component’s overview as follows:

e The data ingestion will be provided by Kaggle connector API, and we will
download that inside PVC. It will be used for further pipeline components.
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Next, we will train our CNN TensorFlow model, and save that in the GCP
bucket.

After that, we will evaluate our model performance and visualize that in
the Kubeflow Dashboard with the ROC and Confusion Matrix for that
experiment Run.

At last, we will deploy the model for serving and loading that model from
the bucket which we saved during the training phase, and then check the
model endpoint performance traffic in the Grafana dashboard.

We will see how to autoscale a kf-serving InferenceService with the concurrent
request and target concurrency, and here we will build a Batch-Prediction of
KF serving.

3.4.1 Data extraction or Ingestion component

Now, let’s build the Data ingestion component; here we will get the data from
Kaggle, and we will extract that with the help of Kaggle APL

dataextraction.py:

from __ future__ import absolute_import, division, print_function,

unic

ode_literals

import click,json,o0s,dill,argparse,logging,shutil,itertools,Kaggle

@click.command()
@click.option('--data-file', default="/mnt/BrainScan_Data/")
@click.option('--root',default="/mnt/")

@click.option('--kaggle-api-data',default="navoneel/brain-mri-images-

for-
def

brain-tumor-detection")
download_data(root,data_file,kaggle api_data):
logging.info(kaggle.api.authenticate())
kaggle.api.dataset_download_files(kaggle api_data, path=data_file,

unzip=True)

YES"

logging.info("Downloaded Data")
print(len(os.listdir( data_file +"brain_tumor_dataset/no")))
print(len(os.listdir(data_file +"brain_tumor_dataset/yes")))

directory=["TRAIN" ,"TEST" ,"VAL" ,"TRAIN/YES" ,"TRAIN/NO" ,"TEST/
, "TEST/NO" ,"VAL/YES" ,"VAL/NO"]

for i in directory:



92 Continuous Machine Learning with Kubeflow

path = os.path.join(root, i)
try:
os.mkdir(path)
except OSError as error:
print(error)
for CLASS in os.listdir(data_file):
logging.info(CLASS)
print(CLASS)
if not CLASS.startswith('.'"):
IMG_NUM = len(os.listdir(data_file + CLASS))
logging.info(IMG_NUM)
print (IMG_NUM)
for (n, FILE_NAME) in enumerate(os.listdir(data_file + CLASS)):
img = data_file + CLASS + '/' + FILE_NAME
if n < 5:
try:

shutil.copy(img, '/mnt/TEST/' + CLASS.upper() +
/' + FILE_NAME)

except OSError as error:
print(error)
elif n < ©0.8*IMG_NUM:
try:

shutil.copy(img, '/mnt/TRAIN/'+ CLASS.upper() +
'/"' + FILE_NAME)

except OSError as error:

print(error)
else:

try:

shutil.copy(img, '/mnt/VAL/'+ CLASS.upper() +
/' + FILE_NAME)

except OSError as error:

print(error)

return

__main__":
download_data()

if _ _name__ ==



Designing Computer Vision Model in Kubeflow 93

Let’s breakdown the code as follows:

Load the data from Kaggle DB with Kaggle API, and give it a particular
project name.

Import all the required datasets.
The @click command is a passing argument in the function get_data().

Next, we will create individual folders for Train, Test, Validation, and we will
shuffle the raw data to fill all the folders inside Tumour Yes or No Tumour
sub-folders.

All the folders saved and stored inside the PVC which will be used after
pipeline.

Next, see how we will build the component Dockerfile for the data ingestion and we
will keep the requirements.txt file in the root of the dockerfile, which we will be
needing as an environment to run the Python function inside Docker. Then, we will
place the kaggle api json file in the root of Docker for authentication to Kaggle to
download the data from the Kaggle projects.

To get the Kaggle API json file, please look into Chapter 6, Building Weights & Biases
Pipeline Development, Section 6.2.2 ( Kaggle API Setup).

» 1_dataextraction

@ dataextract.py

& Dockerfile

{} kaggle.json
requirements.txt

Figure 3.3: dataextraction folder

Now, we will build the Docker image; for that make sure you start the Docker, and
you will see the Docker is activated on the top. As we can see, the first icon Docker
is started.

Docker:

FROM python:3.7-slim-stretch

ENV DEBIAN_FRONTEND noninteractive
RUN apt-get update && \

apt-get -y install gcc mono-mcs g++ git curl && \

rm -rf /var/lib/apt/lists/*

RUN mkdir /app
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RUN mkdir ~/.kaggle
WORKDIR /app

ADD
RUN
ADD
ADD
RUN
RUN
RUN

requirements.txt /app/requirements.txt
pip3 install -r requirements.txt
dataextract.py /app/dataextract.py
kaggle.json /app/kaggle.json

chmod +x /app/dataextract.py

cp /app/kaggle.json ~/.kaggle

chmod 600 ~/.kaggle/kaggle.json

ENTRYPOINT ["python"]

CMD ["/app/dataextract.py”]

So let’s break the Docker file code as follows:

Load the Python image as the base Image to run the pipeline code of 3.7
version.

The RUN function will run whenever the Docker image will start and create
a /app folder first with the mkdir command, and another one for the ./
kaggle folder for storing kaggle API json file.

Next, we will redirect our command to WORKDIR where all the files and
dependencies will be installed.

Next, we will ADD the requirements file in the /app folder, and run the pip
command to install the Python libraries.

Then we will copy our pipeline.py Python code and kaggle.json giving
an administrative access to run the file whenever the Docker image will run
with the chmod command.

Next, we will set our entry point as Python and CMD as “/app/dataextract.
py” to run this first.

Now, we will build the Docker image; for that, make sure you start the Docker, and
you will see the Docker is activated on top. As we can see, the first icon Docker is

started.

Run all the following commands by connecting to GCP via Local:

“*“bash

gcloud init

#Select the Email/Project associated with GCP
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Build the container for Data Extraction.

"7 “bash

cd $WORKDIR/pipeline/dataextraction
PROJECT_ID=$(gcloud config get-value core/project)
IMAGE_NAME=brain_tumor_scan/stepl_download_data
IMAGE_VERSION=v1
IMAGE_NAME=gcr.io/$PROJECT_ID/$IMAGE_NAME

Building Docker image:

docker build -t $IMAGE_NAME:$IMAGE_VERSION .

Push training image to Google container registry (GCR):

docker push $IMAGE_NAME :$IMAGE_VERSION

Next, we will see how to build the training component and similarly as the above,
after that we going to build the pre-processing step for our Kubeflow pipeline.

3.4.2 Data pre-processing component

Now, we will build the pre-processing step, assuming the input will come from the
previous data ingestion component. So, whatever data we have dumped with the
@dill command, we will load first and will do the necessary pre-processing step.

In this part of the code, let's import all the dependency and create the utility
correlation plot function.

Preprocessing.py

from _ future__ import absolute_import, division, print_function,
unicode_literals

import click,json,os,argparse,dill,cv2,imutils
from tqdm import tqdm
import numpy as np

import tensorflow as tf

def load_data_array(dir_path, img_size=(100,100)):
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X =[]
y =[]
i=20

def

labels = dict()
for path in tqdm(sorted(os.listdir(dir_path))):
if not path.startswith('.'):
labels[i] = path
for file in os.listdir(dir_path + path):
if not file.startswith('.'):
img = cv2.imread(dir_path + path + '/' + file)

X.append(img)
y.append(i)
i+=1
X = np.array(X)
y = np.array(y)

print(f'{len(X)} images loaded from {dir_path} directory.")

return X, y, labels

crop_imgs(set_name, add_pixels value=0):
set_new = []
for img in set_name:
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1]

thresh
thresh
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.

cv2.erode(thresh, None, iterations=2)

cv2.dilate(thresh, None, iterations=2)

CHAIN_APPROX_SIMPLE)

cnts = imutils.grab_contours(cnts)

¢ = max(cnts, key=cv2.contourArea)

extLeft = tuple(c[c[:, :, @].argmin()][0])
extRight = tuple(c[c[:, :, ©].argmax()][0])
tuple(c[c[:, :, 1].argmin()][0])
tuple(c[c[:, :, 1].argmax()][@])

extTop
extBot
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ADD_PIXELS = add_pixels_value

new_img = img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS,
extLeft[@]-ADD_PIXELS:extRight[@]+ADD_PIXELS].copy()

set_new.append(new_img)
return np.array(set_new)

The code is continued to next page here; in the preceding code, we have imported
the required libraries and built some utility functions like crop_img() and load_
data_array().

In continuation, the pre-processing code is as follows:
def save_new_images(x_set, y_set, folder_name):
i=29
for (img, imclass) in zip(x_set, y set):
if imclass ==
cv2.imwrite(folder_name+'NO/'+str(i)+'.jpg', img)
else:
cv2.imwrite(folder_name+'YES/'+str(i)+'.jpg', img)

i+=1

def preprocess_images(set_name, img_size):
set new = []
for img in set_name:

img = cv2.resize(img,dsize=img_size, interpolation=cv2.INTER_
CUBIC)

set_new.append(tf.keras.applications.vggl6.preprocess_

input(img))
return np.array(set_new)

@click.command()
@click.option('--root',default="/mnt/")
@click.option('--train-file', default="/mnt/training.data")
@click.option('--test-file', default="/mnt/test.data")
@click.option('--validation-file', default="/mnt/validation.data")
@click.option('--train-target', default="/mnt/trainingtarget.data")
@click.option('--test-target', default="/mnt/testtarget.data")
@click.option('--validation-target', default="/mnt/validationtarget.data")
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@click.option('--label', default="/mnt/labels.data")
@click.option('--image-size', default=224)

deftraining_data_processing(root,train_file,label,test_file,validation_
file,image _size,train_target,test_target,validation_target):

TRAIN_DIR = root + 'TRAIN/'

TEST_DIR = root + 'TEST/'

VAL_DIR = root + 'VAL/'

IMG_SIZE = (image_size,image_size)

X_train, y_train, labels = load_data_array(TRAIN_DIR, IMG_SIZE)
X test, y test, _ = load_data_array(TEST_DIR, IMG_SIZE)

X_val, y val, _ = load_data_array(VAL_DIR, IMG_SIZE)

X_train_crop = crop_imgs(set_name=X_train)
X_val_crop = crop_imgs(set_name=X_val)
X_test_crop = crop_imgs(set_name=X_test)

directory=["TRAIN_CROP" ,"TEST_CROP" ,"VAL_CROP" ,"TRAIN_CROP/
YES" ,"TRAIN_CROP/NO" ,"TEST_CROP/YES" , "TEST CROP/NO" ,"VAL_CROP/YES"
,"VAL_CROP/NO" ]

for i in directory:
path = os.path.join(root, i)
try:
os.mkdir(path)
except OSError as error:
print(error)
save_new_images(X_train_crop, y train, folder_name='/mnt/TRAIN_
CROP/")
save_new_images(X_val crop, y_val, folder_name='/mnt/VAL_CROP/')
save_new_images(X_test_crop, y test, folder_name='/mnt/TEST_CROP/')

The code is continued to the next page; in the preceding section of the code, we
are inputting the files from the previous pipeline component, after which we will
transform the images into an array, and crop those images; after that we will be
creating some new folders for those cropped images and save those images.

with open(label,"wb") as f:
dill.dump(labels,f)
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with open(train_file,"wb") as f:
dill.dump(X_train_prep,f)

with open(test_file,"wb") as f:
dill.dump(X_test_prep,f)

with open(validation_file,"wb") as f:
dill.dump(X_val_prep,f)

with open(train_target,"wb") as f:
dill.dump(y_train,f)

with open(test_target,"wb") as f:
dill.dump(y_test,f)

with open(validation_target,"wb") as f:
dill.dump(y_val,f)

return

if __name__ == "__main__":

training_data_processing()

Let’s breakdown the code for pre-processing as follows:

o First of all, we will import all the libraries and create the utility function like
crop_img() which will crop an original image, and load_data_array()
will help to transform the images into arrays X, y and labels.

e Next, the save_new_images() will save those cropped images into new
folders and the pre_process_images() function will pre-process those
cropped images with the help of the vggl6 applications of keras and save
those in the new array sets.

e Next, the @click.option will input all the required dumps which we have
done in the data ingestion step, so that we can use here, and load those first
and use those for the pre-processing steps for training the data.

e Then, the @dill.dump will dump the pre-process arrays for training for the
next pipeline components.

Docker:

FROM python:3.7-slim-stretch

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update && \
apt-get -y install gcc mono-mcs g++ git curl && \
rm -rf /var/lib/apt/lists/*
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RUN mkdir /app

WORKDIR /app

RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
RUN python get-pip.py

RUN rm get-pip.py

RUN pip install --upgrade pip

RUN apt-get update && yes | apt-get upgrade

RUN apt-get install -y libsm6 libxext6 libxrender-dev

RUN apt-get install -y protobuf-compiler python-pil python-1xml python-
pip python-dev git

RUN apt-get update && apt-get install -y protobuf-compiler python-pil
python-1xml

ADD requirements.txt /app/requirements.txt
RUN pip3 install -r requirements.txt

ADD preprocessing.py /app/preprocessing.py
RUN chmod +x /app/preprocessing.py
ENTRYPOINT ["python"]

CMD ["/app/preprocessing.py"]

Similarly like the preceding data ingestion step, we will build the Docker image. As
we can see in the preceding Docker images, we have installed the required libraries
to run any computer vision Docker image.

"7 “bash

PROJECT_ID=$(gcloud config get-value core/project)
IMAGE_NAME=brain_tumor_scan/step2_dataprocessing
IMAGE_VERSION=v1
IMAGE_NAME=gcr.io/$PROJECT_ID/$IMAGE_NAME

Building Docker image.

docker build -t $IMAGE_NAME:$IMAGE_VERSION .

Push training image to GCR.

docker push $IMAGE_NAME :$IMAGE_VERSION
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3.4.3 Training model component

In this section, we will build a TensorFlow CNN model, and download the pre-
trained VGG-16 weights and keep that in the path of the train folder. So, go to the
following link and download the file:

https://www.kaggle.com/gaborfodor/keras-pretrained-models?select=vggl6_
weights_tf _dim_ordering_tf kernels_notop.h5

Data Explorer m

1019.22 MB < vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5 (56.16 MB) &

[ Kuszma.JPG
{i} imagenet_class_index.json About this file
D inception_resnetv2_weight...

D inception resnet.v2_weight VGG16 bottleneck fi VGG ig| i include_top=False)
D inception_v3_weights_tf_di...
D inception_v3_weights_tf_di... Unable to show preview

D resnet50_weights_tf_dim_or...
D resnet50_weights_tf_dim_or...

D vgg16_weights_tf_dim_order... n

D xception_weights_tf_dim_or...

e m—
D xception_weights_tf_dim_or...

Previews for binary data are not supported

Figure 3.4: VGG16 download location

This is how our train folder looks, and we will keep the storage bucket service
account and Storage.py to upload to the bucket.

Vv 3_train
& Dockerfile
requirements.txt
{} service_account_iam.json
@ storage.py
@ train.py
= vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5

Figure 3.5: train folder

Next, we will find out how we built the Train Component.
Train.py

from __ future__ import absolute_import, division, print_function,
unicode_literals

import click,dill,json,loggig,o0s,PIL

import pandas as pd
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import tensorflow as tf
from storage import Storage

from sklearn.metrics import accuracy_score

def model build(base _model,NUM_CLASSES,activation):

model = tf.keras.models.Sequential([base_model,tf.keras.layers.
Flatten(),

tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(NUM_
CLASSES,activation=activation)])

model.layers[@].trainable = False

return model

@click.command()

@click.option('--train-file', default="/mnt/training.data")
@click.option('--test-file', default="/mnt/test.data")
@click.option('--validation-file', default="/mnt/validation.data")
@click.option('--train-target', default="/mnt/trainingtarget.data")
@click.option('--test-target', default="/mnt/testtarget.data")

@click.option('--validation-target', default="/mnt/validationtarget.
data")

@click.option('--epochs', default=100)
@click.option('--activation', default="sigmoid")
@click.option('--learning-rate', default=0.001)
@click.option('--tensorboard-logs', default='/mnt/logs/")

@click.option('--tensorboard-gcs-logs', default='gs://kubeflowusecases/
brain/logs"')

@click.option('--model-output-base-path', default="/mnt/saved model")
@click.option('--gcs-path', default="gs://kubeflowusecases/brain/model™)
@click.option('--mode', default="local")

@click.option('--image-size', default=224)

@click.option('--label', default="/mnt/labels.data")

deftrain_model(train_file,test_file,validation_file,train_target,test_
target,validation_target,

label,epochs,activation,image_size,learning_rate,tensorboard_
logs,tensorboard_gcs logs,model output_base_path,gcs_path,mode):
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with open(label, 'rb') as in_f:
labels= dill.load(in_f)
with open(train_file, 'rb') as in_f:
train= dill.load(in_f)
with open(test_file, 'rb') as in_t:
test= dill.load(in_f)
with open(validation_file, 'rb') as in_f:
validation= dill.load(in_f¥)
with open(train_target, 'rb') as in_f:
train_tar= dill.load(in_f)
with open(test_target, 'rb') as in_f:
test_tar= dill.load(in_f)
with open(validation_target, 'rb') as in_f:
validation_tar= dill.load(in_f)
The code is continued to the next page, here in preceding section, we have imported
the required libraries and we have all the input from the previous pipeline; we have

imported them with @dill load. And we have created one utility function model_
build() for building layers for TensorFlow model.

In continuation to the preceding snippet code, the train.py Python file contains the
following section:

IMG_SIZE = (image_size,image_size)
RANDOM_SEED = 123

TRAIN_DIR = '/mnt/TRAIN_CROP/'
VAL_DIR = '/mnt/VAL_CROP/'

train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(

rotation_range=15,width_shift_range=0.1,height_
shift_range=0.1,shear_range=0.1,brightness_range=[0.5, 1.5],
horizontal flip=True,vertical_flip=True, preprocessing_function=tf.keras.
applications.vggl6.preprocess_input)

train_generator = train_datagen.flow_from directory(TRAIN_
DIR,color_mode='rgb', target_size=IMG_SIZE,batch_size=32,class_
mode="binary', seed=RANDOM_SEED)



104 Continuous Machine Learning with Kubeflow

val datagen = tf.keras.preprocessing.image.ImageDataGenerator(

preprocessing function=tf.keras.applications.vggl6.preprocess_
input)

validation_generator = val_datagen.flow_from_directory(

VAL_DIR,color_mode='rgb',target_
size=IMG_SIZE, batch_size=16,class_mode='binary', seed=RANDOM_SEED)

vggle_weight_path="/app/vggl6 weights_tf dim_ordering_tf_kernels_notop.
h5"

base_model=tf.keras.applications.VGG16(

include_top=False, weights=vggl6_weight_path, input_shape=IMG_
SIZE + (3,))

NUM_CLASSES=1
model=model build(base_model,NUM_CLASSES,activation)

optimizer=tf.keras.optimizers.RMSprop(learning_rate=learning_
rate)

model.compile(loss=tf.keras.losses.binary_
crossentropy,optimizer=optimizer, metrics=["'accuracy'])

tensorboard_callback = tf.keras.callbacks.TensorBoard(log
dir=tensorboard_logs, histogram_freqg=1)

earlystopping = tf.keras.callbacks.EarlyStopping(monitor="val _
loss', mode="'max',patience=6)

logging.info("Training starting...")
model.fit_generator(train_generator,epochs=epochs,

validation_data=validation_generator,validation_
steps=25, callbacks=[earlystopping,tensorboard_callback])

logging.info("Training completed.")

model.save(model output_base_path)

new_model = tf.keras.models.load model(model output_base_path)

print(new_model.summary())

predictions = new_model.predict(validation)

predictions = [1 if x>0.5 else @ for x in predictions]
accuracy = accuracy_score(validation_tar, predictions)

print('Val Accuracy = %.2f' % accuracy)

logging.info(('Val Accuracy = %.2f' % accuracy))

Storage.upload(tensorboard logs,tensorboard_gcs logs)
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metadata = {'outputs': [{'type': 'tensorboard’,

'source': tensorboard_gcs_logs,}]}

So, the preceding code contains the training and pre-processing with Image Data
Generator after that we trained the model with preprocessed images in pipeline and
the trained artifacts are saved as tensorflow models in GCP Bucket.

with open("/mlpipeline-ui-metadata.json", 'w') as f:
json.dump(metadata,f)

if mode!= 'local':
print("uploading to {@}".format(gcs_path))
Storage.upload(model output_base path,gcs_path)

else:
print("Model will not be uploaded")
pass
if __name__ == "_main__":

train_model()

So, the preceding code is the train.py file; lets break the pipeline code as follows:
e Import all the required datasets.

e The @click command is passing the argument in the function train_
model().

e Here, we load the VGG16 model from the Docker root in the train Python
code, so that we can import that with TensorFlow for our model training,
Then, the dill command will be helping to save or load the data from pvc.
Next, we will pass all the arguments like epochs and batch size, learning rate
from the outside and will train our model.

e We will then push the model train output to the Google Storage Bucket.
Then, we will import the Storage.py file to the imported storage class to
save our model artifacts.

e And to visualize, the Tensorboard will follow the same metadata json format
with “/mpipeline-ui-metadata.json” and will give the gcs bucket path
where you saved your model artifacts.

Similarly, we will create the Docker Image, and add the service account json key.
Please have a look at the GitHub steps.md file.
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3.3.4 Evaluation component

Similarly, we will create the evaluation component. Please have a look at the GitHub
steps.md file. We have dumped the confusion Matrix and ROC Curve as a csv
in GCP bucket and gave the path a storage location of those in the metadata and
dumped that as json.

for predicted_index, count in enumerate(target_row):

data_conf= []
for target_index, target_row in enumerate{cm): }
data_conf.append((vocab(target_index], vocab(predicted_index], count))

df_cm = pd.DataFrame(data_conf, columns=['target’', 'predicted', 'count'])
cm_file = os.path.join(gcs_path_confusion, ‘confusion_matrix.csv')
with file_io.FileIO(cm_file, 'w') as f:
df_cm.to_csv(f, columns=['target’, 'predicted', 'count'], header=False, index=False)
false_positive_rate, true_positive_rate, threshelds = roc_curve(test_tar, predictions)

df_roc = pd.DataFrame({'fpr': false_positive_rate, 'tpr': true_positive_rate, 'thresholds': thresholds})
roc_file = os.path.join(gcs_path_confusion, 'roc.csv')
with file_io.FileIO(roc_file, 'w') as f:

df_roc.to_csv(f, columns=['fpr', "tpr', 'thresholds'], header=False, index=False)

metadata = {

‘outputs': [{

‘type': ‘roc’,

‘format': ‘csv',

*schema': [
{'name': 'fpr*, 'type‘': 'NUMBER'},
{'name': "tpr', 'type': 'NUMBER'},
{'name': 'thresholds', 'type': 'NUMBER'},

1.

"source': roc_file,

hd
‘type': ‘confusion_matrix',
‘format': 'csv',
‘schema': [

{'name': 'target', 'type': 'CATEGORY'},
{'name': ‘predicted', 'type': 'CATEGORY'},
{'name': ‘count', 'type': 'NUMBER'},

l!
‘source': cm_file,
‘labels': list(map(str, vocab)),

H
} [ the json so
with open('/mlpipeline-ui-metadata.json', 'w') as f: } o
json.dump(metadata, f) B P‘Pﬂfﬂﬂ can
[ used that for

Figure 3.6: Evaluator Component

3.5. Serving the Model with KF Serving

In this section, we will build our serving model. As shown in the following section,
there are three major components for the service account with the storage bucket
access json file, requirements.txt, Dockerfile, brainserving.py.

We will build a custom endpoint serving, and we will see how we can do a Batch
prediction of multiple test input images.



Designing Computer Vision Model in Kubeflow 107

brainserving.py
import kfserving, argparse, json, cv2, logging,os,base64,io,imutils
from typing import List, Dict
import numpy as np
from PIL import Image
import tensorflow as tf
os.environ[ 'GOOGLE_APPLICATION_CREDENTIALS'] = "service_account_iam.
json"
def crop_imgs(set_name, add_pixels_value=0):
set_new = []
for img in set_name:
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
gray = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.erode(thresh, None, iterations=2)
thresh

cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.
CHAIN_APPROX_SIMPLE)

cv2.dilate(thresh, None, iterations=2)

cnts = imutils.grab_contours(cnts)

¢ = max(cnts, key=cv2.contourArea)

extLeft = tuple(c[c[:, :, @].argmin()][0])
extRight = tuple(c[c[:, :, ©].argmax()][0])
extTop = tuple(c[c[:, :, 1].argmin()][0])
extBot = tuple(c[c[:, :, 1].argmax()][0])
ADD_PIXELS = add_pixels_value

new_img = img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS,
extLeft[@]-ADD_PIXELS:extRight[@]+ADD_PIXELS].copy()

set_new.append(new_img)

return np.array(set_new)

def preprocess_imgs(set_name, img size):
set_new = []
for img in set_name:

img = cv2.resize(img,dsize=img_size,interpolation=cv2.INTER_CUBIC)
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set_new.append(tf.keras.applications.vggl6.preprocess_
input(img))
return np.array(set_new)

def image_transform(instance):
logging.info("Inside Image Transform")
originalimage = base64.b64decode(instance)
jpg_as_np = np.frombuffer(originalimage, dtype=np.uint8)
img = cv2.imdecode(jpg_as_np, flags=1)
image expanded = np.expand_dims(img, axis=0)
crop_image = crop_imgs(set_name=image_expanded)
IMG_SIZE=(224,224)
prep_image = preprocess_imgs(set_name=crop_image, img size=IMG_SIZE)

return prep_image

class Transformer(kfserving.KFModel):
def __init_ (self, name: str):
super().__init__ (name)
self.name = name
self.ready = False

self.model_output_base path='gs://kubeflowusecases/brain/model/"’

def load(self):

self.model = tf.keras.models.load model(self.model output_base_
path)

self.ready = True

def predict(self, request: Dict) -> Dict:

data={'instances': [image_transform(request['instances'][i]) for
i in range(len(request['instances']))]}

transformdata=[]

for i in data['instances']:
logging.info("Inside transform data")
arraydata=self.model.predict(i)
logging.info(self.model.predict(i))

transformdata.append(arraydata)
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if _ _name__ ==

result=[]
Predict=0
predictions = [1 if x>0.5 else @ for x in transformdata]
for i in predictions:
if i == Predict:

result.append("No tumor inside Brain")

else:
result.append("Tumor inside Brain")
return json.dumps({"predictions” : result})
"_main__":

model = Transformer("kfserving-braintumor™)

model.load()

kfserving.KFServer(workers=1).start([model])

So, let’s break the transformer predictor code as follows:

We kept the service account, which has the storage bucket in the Docker
root, and here we have declared that folder as an environment variable to an
object model_output_base_path for the gcp bucket path.

Next, in the load function, we loaded the model in from the TensorFlow
library.

Here, the incoming data is an encoded string of Image; then we transformed
the image with the following functions image_transform(), which will
change the encoded strings to the decoded one; next we will crop the image
with the crop_imgs () function, after which, we will pre-process the array of
the image with the preprocess_image() and return that array.

Then, in the predict method, the incoming data will come as a json format
which we need to extract as a key-value pair and do the necessary prediction
and return as a dictionary.

So, in the “main” function, the KFServingSampleModel Class will take the
name of that deployment; keep a note of that and apply to the yaml file; here
it is “kfserving-breast-model”.

Docker:
FROM python:3.7-slim-stretch
ENV DEBIAN_FRONTEND noninteractive
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RUN apt-get update && apt-get -y install gcc mono-mcs g++ git curl bash
&& \

rm -rf /var/lib/apt/lists/*
RUN mkdir /app
WORKDIR /app
RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
RUN python get-pip.py && rm get-pip.py && pip install --upgrade pip
RUN apt-get update && yes | apt-get upgrade

RUN apt-get install -y libsmé libxext6 libxrender-dev protobuf-compiler
python-pil python-1xml python-pip python-dev git protobuf-compiler
python-pil python-1xml

ADD requirements.txt /app/requirements.txt

RUN pip3 install -r requirements.txt

ADD brainserving.py /app/brainserving.py

COPY service_account_iam.json service_account_iam.json

ENV GOOGLE_APPLICATION_CREDENTIALS="service_account_iam.7json"
CMD ["python","brainserving.py"]

Now, in the preceding Docker code, we have copied the service account for the
storage bucket access, and saved it in /app. Then, we copied the Python serving
file in the same location and kept the working directory as /app. Then, we build the
image by using the above code. Similarly, we created the Docker image; please have
a look at the GitHub steps.md file.

To deploy the model server using the kubect1 command line, or using the KFServing
client SDK, you can do either of the following:

¢ Deploy using the command line

e Deploy using the KFServing client SDK
Deploy using the command line:
Now, let’s deploy it with the command line, and first let’s fill the yaml file:
Custom_KFServing.yaml:
apiVersion: serving.kubeflow.org/vlalpha2
kind: InferenceService
metadata:

annotations:

sidecar.istio.io/inject: "false"
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name: kfserving-braintumor

namespace: kubeflow
spec:

default:
predictor:
custom:
container:
image: gcr.io/<PROJECT_ID>/brain_tumor_scan/ kf_serving_

braintest:vi
Here, in the preceding yaml file, we will give the same name which we have provided
in the serving.py file having the model name (“kfserving-braintumor”), and then
we will provide the namespace “kubeflow” where it will be deployed. Next, we will
give the Docker image name.

# brainserving.py ! custom_brain_model.yaml X
e-cases > BPP > CV_Tensorflow > Framework_pipeline > pipeline > 5_serving > Docker > # brainserving.py > ..  use-cases > Brain_tumor > Pipeline > pipeline > 5_serving > servefinal > ! custom_brain_model.yam
13 if i == Predict: 1 apiVersion: serving.kubeflow.org/vialpha2
114 result.append("No tumor inside Brain") kind: InferenceService
115 else: 3 metadata:
116 result.append(“Tumor inside Brain") 4 labels:
17 5 controller-tools.k8s.io: "1.0"
18 return json.dumps ({"predictions" : result}) 5 name: kfserving-braintumor
119 7 namespace: kubeflow
120 if _name_ == "_main_": 8  spec:
121 model = Transformer("kfserving-braintumor") 9 default:
122 model. Load () 10 predictor:
123 Kkfserving.KFServer(workers=1).start( [model] ) 1 custom:
124 12 container:
125 13 image: gcr. 10/<PROJECT_ID>/brain_tumor_scanl/kf_serving_braintest:vl
tne 1211 e .
name :
(Kfserving-braintumor) 16 imagePullsecrets:
should be same on 17 - name: user-gcp-sa

right side line number
6th

Figure 3.7: KF — Serving Model name match

As we can see, the 121* line number from the left image and the 6th from the right
should always be the same.

Next, run the following command from the bash where the files are kept in the
Visual Studio:
e Connect to the GCP cluster by using the following command:
gcloud container clusters get-credentials <$ClusterName> --zone
<$ZONE> --project <$PROJECTID>

e Create the inference service by deploying it in the cluster:

kubectl apply -f custom_brain_model.yaml
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e Check the inference service. Try it after some interval to check if it has been
created:

kubectl get inferenceservice -n kubeflow

kfser?ing:@rg@n;gmgr S ht;p:/(kfgerving-ﬁraintumor.default.exaﬁpie.Eom/vl/modéls/kfserving-braintumor True 100

Figure 3.8: KF — Serving Inference service ready

Sample Prediction:

¢ Run the following command in Bash from the serving folder:

"7 “bash
MODEL_NAME=kfserving-breast-model

HOST=$(kubectl get inferenceservice -n kubeflow$MODEL_NAME -o
jsonpath="{.status.url}’ | cut -d "/" -f 3)

INPUT_PATH=@./breast.json

CLUSTER_IP=$(kubectl -n istio-system get service kfserving-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].

ip}")
curl -v -H "Host: ${HOST}" http://${CLUSTER_IP}/v1/
models/${MODEL_NAME}:predict -d $INPUT_PATH

Now, the following is the response prediction request:

*  Trying 35.231.208.41...

* TCP_NODELAY set

* Connected to 35.231.208.41 (35.231.208.41) port 80 (#0)
> POST /vl/models/kfserving-braintumor:predict HTTP/1.1
> Host: kfserving-braintumor.kubeflow.example.com

> User-Agent: curl/7.64.1

> Accept: */x

> Content-Length: 194683

> Content-Type: application/x-www-form-urlencoded

> Expect: 100-continue

>

< HTTP/1.1 100 Continue

* We are completely uploaded and fine

< HTTP/1.1 200 0K

< content-length: 108

< content-type: text/html; charset=UTF-8

< date: Thu, 22 Oct 2020 13:11:09 GMT

< server: istio-envoy

< x-envoy-upstream-service-time: 2920

<

* Connection #0 to host 35.231.208.41 left intact
{"predictions": ["No tumor inside Brain", :Tumor inside Brain", "Tumor inside Brain", "Tumor inside Brain"]}x Closing connection 0

Figure 3.9: KF — Serving Prediction Output

e Run the following command in Python from the serving folder.

Now we create some sample data to predict the results from the preceding
URL. To create the sample data, the code is as follows:

import json

import base64
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import requests

samples=[]

NUM_SAMPLES=4

for index in range(NUM_SAMPLES):

with open("Brain_{0}.jpg".format(index + 1), "rb") as image file:

encoded_bytes = base64.b64encode(image_file.read())
# result: string (in utf-8)
encoded_string = encoded_bytes.decode('utf-8")

samples.append(encoded_string)

# prepare test data

data = json.dumps({"instances": samples})
data_read = json.loads(data)

with open('data.json','w') as out:

json.dump(data_read, out)

%%bash

gcloud container clusters get-credentials <CLUSTER_NAME> --zone
us-eastl-d --project <PROJECT_ID>

CLUSTER_IP=$(kubectl -n istio-system get service kfserving-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress[@].

ip}")
echo $CLUSTER_IP

MODEL_NAME="kfserving-braintumor"
#Replace the cluster IP
cluster_ip = "COPY YOUR IP FROM ABOVE"

headers={"Host": "{0}.kubeflow.example.com".format(MODEL_
NAME), "Content-Type": "application/json"}

response = requests.post("http://{0}/vl/models/{1}:predict".
format(cluster_ip, MODEL_NAME), data = data,headers = headers)

print(response.json())

{&#39;predictions&#39;: [&#39;No tumor inside Brain&#39;, &#39;Tumor inside Brain&#39;, &#39
Tumor inside Brain&#39;, &#39;Tumor inside Brain&#39;]}

Figure 3.10: Prediction output

In the preceding screenshot, we can see our prediction output of Batch predictions.
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3.6 Building the pipeline end to end

Now, let’s see how we will build the Pipeline, and run this platform in Kubeflow
Notebook server.

Open the URL: GCP Kubernetes > Service & ingress > Click the URL

As shown in Chapter 1, Introduction to Kubeflow & Kubernetes Cloud Architecture,
already in section 1.6, we have created a Jupyter notebook that we will be using.

Now, paste the following code and run the pipeline; before that, replace the
PROJECT_ID and bucket name from the following code and it will dump a zip file:

import kfp.dsl as dsl

import yaml

from kubernetes import client as k8s
import kfp.gcp as gcp

from kfp import components

from string import Template

import json

from kubernetes import client as k8s_client

@dsl.pipeline(
name="",

description="End to End pipeline for Tensorflow Brain MRI
)
def brain_tensorflow_pipeline(

dataextraction_step_image="gcr.io/<PROJECT_ID>/brain_tumor_scanl/
stepl_download_data:v1",

dataprocessing_step_image="gcr.io/<PROJECT_ID>/brain_tumor_scan4/
step2_dataprocessing:v1",

trainmodel_step_image="gcr.io/<PROJECT_ID>/brain_tumor_scanl/step3_
training_model:v1",

evaluator_step_image="gcr.io0/<PROJECT_ID>/brain_tumor_scanl/step4_
evaluation_model:V1",

root="/mnt/",data_file="/mnt/BrainScan_Data/",

kaggle_api_data="navoneel/brain-mri-images-for-brain-tumor-
detection",

train_file='/mnt/training.data’,test_file="'/mnt/test.data’,
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validation_file="/mnt/validation.data",label="/mnt/labels.data",

activation="sigmoid",image_size=224,train_target="/mnt/
trainingtarget.data”,

test_target="/mnt/testtarget.data",validation_target="/mnt/
validationtarget.data”,

epochs=10,learning_rate=.001, shuffle_size=1000,tensorboard_logs="/
mnt/logs/",

tensorboard_gcs_logs="gs://<BUCKET_NAME>/brain/logs",

model output_base_path="/mnt/saved_model",gcs_path="gs://<BUCKET_
NAME>/brain/model",

gcs_path_confusion="gs://<BUCKET_NAME>/brain",
mode="gcs",probability=0.5,

serving_name="kfserving-braintumor",serving_namespace="kubeflow",

image="gcr.i0/<PROJECT_ID>/brain_tumor_scan/kf_serving_
braintest:vi"):

Pipeline
# PVC : PersistentVolumeClaim volume
vop = dsl.VolumeOp(

name="my-pvc', resource_name="my-pvc",modes=dsl.VOLUME_MODE_
RWO, size="1Gi")

# data extraction
data_extraction_step = dsl.ContainerOp(

name="'data_extraction',image=dataextraction_step_
image, command="python",

arguments=[
"/app/dataextract.py"”,
"--root",root,
"--data-file", data_file,
"--kaggle-api-data"”, kaggle_api_data,

1,pvolumes={"/mnt": vop.volume}).apply(gcp.use_gcp_secret("user-
gcp-sa”))
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# processing
data_processing_step = dsl.ContainerOp(

name="'data_processing',image=dataprocessing step_
image, command="python",

arguments=[
"/app/preprocessing.py",
"--train-file", train_file,
"--test-file", test_file,
"--validation-file", validation_file,
"--root",root,
"--image-size",image_size,
"--train-target"”,train_target,
"--test-target",test_target,
"--validation-target"”,validation_target,

"--label"”,label],pvolumes={"/mnt": data_extraction_step.
pvolume}

).apply(gcp.use_gcp_secret("user-gcp-sa"))

#trainmodel
train_model step = dsl.ContainerOp(

name="'train_model', image=trainmodel step_image,
command="python",

arguments=[
"/app/train.py",
"--train-file", train_file,
"--test-file", test_file,
"--label",label,
"--activation",activation,
"--validation-file", validation_file,
"--train-target"”,train_target,
"--test-target"”,test_target,
"--validation-target"”,validation_target,
"--epochs",epochs,

"--image-size",image_size,
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"--learning-rate",learning_rate,
"--tensorboard-logs",tensorboard_logs,
"--tensorboard-gcs-logs",tensorboard_gcs_logs,
"--model-output-base-path",model output_base_path,
"--gcs-path", gcs_path,

"--mode", mode,
1,file_outputs={"mlpipeline-ui-metadata”: "/mlpipeline-ui-metadata.

json"},

pvolumes={"/mnt": data_processing step.pvolume}).apply(gcp.use_gcp_

secret("user-gcp-sa"))

#evaluation
evaluation_model step = dsl.ContainerOp(

name="'evaluation_model',image=evaluator_step_
image, command="python",

arguments=[
"/app/evaluator.py",
"--test-file", test_file,
"--test-target",test_target,
"--probability",probability,
"--model-output-base-path",model output_base_path,
"--gcs-path", gcs_path,
"--label",label,
"--gcs-path-confusion"”, gcs_path_confusion,
1,file_outputs={"mlpipeline-metrics":"/mlpipeline-metrics.

json","mlpipeline-ui- metadata": "/mlpipeline-ui-metadata.json"},

pvolumes={"/mnt": train_model step.pvolume}).apply(gcp.use_gcp_
secret("user-gcp-sa"))

kfserving_template = Template("""{

"apiVersion": "serving.kubeflow.org/
vlalpha2",

"kind": "InferenceService",

"metadata”: {
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"labels": {
"controller-tools.k8s.io": "1.0"
¥
"name": "$name",
"namespace": "$namespace"
¥
"spec": {
"default": {
"predictor”: {
"custom”: {
"container": {

"image": "$image"

}
3

kfservingjson = kfserving template.substitute({ 'name': str(serving_
name),

'namespace': str(serving_namespace),

'image': str(image)})
kfservingdeployment = json.loads(kfservingjson)

serve = dsl.ResourceOp(
name="serve",k8s_resource=kfservingdeployment,
action="apply",success_condition="status.url)

serve.after(evaluation_model step)

if __name__ == '__main__":

import kfp.compiler as compiler

pipeline_func = brain_tensorflow_pipeline

pipeline_filename = pipeline_func.__name__ + '.pipeline.yaml’

compiler.Compiler().compile(pipeline_func,pipeline_filename)
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So, let’s break the pipeline code as follows:

e DPipelines are expected to include a @dsl.pipeline decorator to provide
metadata about the pipeline.

e The pipeline is defined in the brain_tensorflow_pipeline function.
It includes a number of arguments, which are exposed in the Kubeflow
Pipelines UI when creating a new Run. Although passed as strings, these
arguments are of type kfp.dsl.PipelineParam.

e Each individual block defines one component like ‘train’, ‘evaluation’, etc. A
component is made up of a kfp.dsl.ContaineroOp object with the container
path and a name specified. The container image used is defined as Dockerfile
which we have created.

e After defining the train component, we also set a number of environment
variables for the training script.

e At the bottom of the script is the main function. This is used to compile the
pipeline when the script is run; then the .after method will trigger the
pipeline one after the other.

Next, we will create an experiment; under that, we can create multiple runs of a
pipeline. The following code is for creating the experiment:

EXPERIMENT_NAME = 'Brain_experiment’
client = kfp.Client()

try:

experiment = client.get_experiment(experiment_name=EXPERIMENT_NAME)
except:

experiment = client.create_experiment(EXPERIMENT_NAME)
print(experiment)

This following snippet will create a run for the zip that we had dumped in that
location:

arguments = {}
run_name = pipeline_func.__name__ + "heart_run’

run_result = client.run_pipeline(experiment.id, run_name, pipeline_
filename, arguments)

print(experiment.id)

print(run_name)
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print(pipeline_filename)

print(arguments)

Click on the run link once the pipeline is ready. The following is how our pipeline
training looks:

Experiments > HEART R
& Pipeli . _ etry
A < @ brain_tensorflow_pipelineheart_run

7/  Experiments
Graph  Runoutput  Config

o®  Artifacts X brain-tensorflow-pipeline-wkkkx-558964343
my-pre °

Artifacts  Input/Output  Volumes Manifest Logs
P> Executions

ROC Curve I

B  Archive

10

B Documentation ¥

data-processing o
€) GithubRepo &

@ AlHubSamples @ g

train-model o
o |

& ) o6 07 08 03 10

ovaluation-model @

e ° Confusion matrix =

‘
' -
Cluster name: k-test
Visualization Creator [ ]
Build commit: 7437460
Runtime exacution graph. Only steps that ars currantly running or have already complet¢

Reotrt anlisiic! o] 2 graph. Only steps that are currantly running ady compl Ty L

Figure 3.11: Pipeline Kubeflow e2e

The following image is the pipeline which we have created, and the Python
visualizations, ROC Curve & Confusion Matrix & Tensorboard:
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Graph

Runoutput  Config

No metrics found for this run.

train-model 2]

Tensorboard 2.0.0 is running for this
output.

Open Tensorboard

Delete Tensorboard

for

0.0

00 01 02 03 04 0S5 06 07 08 09 10

Another way to run the pipeline from Ul is as follows:

TensorBoard SCALARS

[ Show data download links
Ignore outliers in chart scaling

Tooltip sorting method: default -

Smoothing
—

Horizontal Axis

Runs

WALL

Write a regex to filter runs
O train
O validation

TOGGLE ALL RUNS

1

gsikubeflowusecases/brainfiogs

GRAPHS

DISTRIBUTIONS ~ HISTOGRAMS  PROFILE

Q_ Filter tags (regular expressions supported)

epoch_accuracy

epoch_accuracy

ogz |

Name

Smoothed Value Step Time

train 14.93

Figure 3.12: Pipeline Visualization

¢ Create a new experiment button after clicking on that it will redirect to a new
screen for experiment creation page.

::. $ kubefi (own... v
o + Create run + Create experiment Compare runs Clone run Archive  Refn
EIDSIDSS Experiments -
Experiments
All experiments Allruns
Artifacts

g

Figure 3.13: Create experiment
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e DProvide an experiment name.
= (% Kubeflow P aniruddha-choudhury (ow.. ~

Experiments

*2 Pipeli .
s < New experiment

« Experiments
Experiment details

Think of an Experiment as a space that contains the history of all pipelines and their associated runs
«®  Artifacts

Experiment name*
{ Brain_experiment

P> Executions

‘ Description (optional)

Archive
Next Cancel

Figure 3.14: Create experiment and provide name

e C(lick on Skip this step.

Parameters will appear after you select a pipeline

Start Skip this step A pipeline version must be selected

Figure 3.15: Create experiment skip step

e Now, the experiment is ready; now click on Run.

A + Create run + Create experiment Compare runs Clone run Archive  Refre
Experiments - il
All experiments Allruns
Experiment name Description Last 5 runs

v Brain_experiment

D Run name Status Duration Pipeline Version Recurring Run Start time

Figure 3.16: Create run
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Next, upload the zip which we have created during the pipeline building
earlier.

Pipeline Versions

< Upload Pipeline or Pipeline Version

@ Create a new pipeline O Create a new pipeline version under an existing pipeline

Upload pipeline with the specified package.

Pipeline Name * ’

Pipeline Description* ]

Choose a pipeline package file from your computer, and give the pipeline a unique name.
You can also drag and drop the file here.

For expected file format, refer to Compile Pipeline Documentation.

® uploadaafile File* Choose file
O Import by url Package Url
Code Source (optional)

Create Cancel Must specify either package url or file in .yaml, .zip, or .tar.gz

Figure 3.17: Upload Pipeline tar or yaml file
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¢ Now), create a run of that Pipeline, which you have uploaded, and choose the
experiment which we have created earlier.

Experiments

< Startarun

Run details

Pipeline* Choose

Pipeline Version* Choose

Run name *

Description (optional)

This run will be associated with the following experiment

Brain_experiment Choose

This run will use the following Kubernetes service account. e

Service Account (Optional)

Run Type
@ Ore-off (0) Recurring

Run parameters
Parameters will appear after you select a pipeline

Start Cancel A pipeline version must be selected

Figure 3.18: Start Run with choosing experiment

Next, let’s see how to autoscale the KF-Serving endpoint and monitor that in the
Grafana Dashboard.

3.7. Auto-Scaling of the Serving Endpoint

One of the main features of Knative is the automatic scaling of the replicas for an
application to closely match the incoming demand, including the scaling applications
to zero, if no traffic is being received. Knative Serving enables this by default, using
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the Knative Pod Autoscaler (KPA). The Autoscaler component watches the traffic
flow to the application, and scales the replicas up or down, based on the configured
metrics.

Deploy the kf-serving Knative Service:
Custom_auto_scale.yaml:

apiVersion: serving.kubeflow.org/vlalpha2
kind: InferenceService
metadata:
annotations:
sidecar.istio.io/inject: "false"
autoscaling.knative.dev/target: "10"
labels:
controller-tools.k8s.io: "1.0"
name: <SERVING_MODEL_NAME>
namespace: kubeflow
spec:
default:
predictor:
minReplicas: 1
custom:
container:

image: gcr.io/<PROJECT_ID>/brain_tumor_scan/kf_serving_
braintest:vl

imagePullPolicy: Always
name: user-container
imagePullSecrets:

- hame: user-gcp-sa

e Connect to the GCP cluster by using the following command:
gcloud container clusters get-credentials <$ClusterName> --zone

<$ZONE> --project <$PROJECTID>

e Create the inference service by deploying it in the cluster:
kubectl apply -f custom_autoscale.yaml
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e Check the inference service. Try it after some interval to check if it has been
created:

kubectl get inferenceservice -n kubeflow

li(fser{/i_q_g_—»l_w_rf}gtg@gr el r)t_tp:/.{Ij(fierving-Eraintumcr.default.exalﬁpie.Eom/vl/modéls/kfserving—braintumor True 100
Figure 3.19: KF — Serving autoscale Inferenceservice ready

We can use any load testing tool to simulate the load. Here, we will be using
the Hey (https://github.com/rakyll/hey) tool to test the autoscaling:

"7 “bash

# on macO0S

brew install hey

We have already installed Prometheus in Chapter 1, Introduction to Kubeflow
& Kubernetes Cloud Architecture, section 1.6.6; if you haven't, please refer to
that chapter.

e Send 30 seconds of traffic, maintaining 50 in-flight requests:

"~ “bash
MODEL_NAME=kfserving-braintumor

HOST=$(kubectl get inferenceservice -n kubeflow $MODEL_NAME -o
jsonpath="{.status.url}' | cut -d "/" -f 3)
INPUT_PATH=@./data.json

CLUSTER_IP=$(kubectl -n istio-system get service kfserving-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].
ip}")

hey -z 30s -c 100 -m POST -H "Host: ${HOST}" -d $INPUT_PATH
http://${CLUSTER_IP}/v1/models/${MODEL_NAME}:predict
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Summary:
Total: 30.9381 secs
Slowest: 2.4160 secs
Fastest: 0.3205 secs
Average: 0.6304 secs
Requests/sec: 155.6978
Response time histogram:
0.321 [1]
0.530 [928] Em——
0.740 [3435] | o
0.949 [326] —
1.159 [45] ]
1.368 [25]
1.578 [@]
1.787 [30]
1.997 [21]
2.206 [4]
2.416 [2]
Latency distribution:
10% in 0.4698 secs
25% in 0.5516 secs
50% in 0.6244 secs
75% in 0.6655 secs
90% in 0.7328 secs
95% in 0.8477 secs
99% in 1.6786 secs
Details (average, fastest, slowest):
DNS+dialup: 0.0184 secs, 0.3205 secs, 2.4160 secs
DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0000 secs
req write: 0.0000 secs, 0.0000 secs, 0.0004 secs
resp wait: 0.3716 secs, 0.3189 secs, 2.2550 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0012 secs
Status code distribution:
[404] 4817 responses
Figure 3.20: Hey Traffic Report
e Check out the pods that it was running.
""" bash
kubectl get pods -n kubeflow | grep kfserving-braintumor
kfserving-braintumor-predictor-default-xk9np-deployment-582ct7n 1/2 Running 0 53s
kfserving-braintumor-predictor-default-xk9np-deployment-5881p7k 1/2 Running 0 33s
kfserving-braintumor-predictor-default-xk9np-deployment-589mw7n 1/2 Running (/] 53s
kfserving-braintumor-predictor-default-xk9np-deployment-58kc4jv  1/2 Running 0 54s
kfserving-braintumor-predictor-default-xk9np-deployment-58qqtém 1/2 Running (/] 31s
kfserving-braintumor-predictor-default-xk9np-deployment-58rqdqz 1/2 Running 0 50s
kfserving-braintumor-predictor-default-xk9np-deployment-58szgg6 1/2 Running 0 27s
kfserving-braintumor-predictor-default-xk9np-deployment-58vk4jm 1/2 Running 0 50s
kfserving-braintumor—-predictor-default-xk9np—-deployment-58vnjb5 1/2 Running 0 28s
kfserving-braintumor—-predictor-default-xk9np-deployment-58wx6cw  1/2 Running 0 31s

Figure 3.21: Pods of autoscale



128

Continuous Machine Learning with Kubeflow

¢ Open the Grafana dashboard.
View the Knative Serving Scaling dashboards:
" “bash

# use port-forwarding

kubectl port-forward --namespace knative-monitoring $(kubectl
get pod --namespace knative-monitoring --selector="app=grafana"
--output jsonpath='{.items[@].metadata.name}') 8080:3000

88 Knative Serving - Scaling Debugging -

Namespace  kubeflow=  Configuration  Kfserving-braintumor-predictor-default Revision  Kfserving-braintumor-predictor-default-xkanp
Revision Pod Counts

> Resource Usages (2 panels)
Autoscaler Metrics

Pod Counts

0044

Observed Concurrency

0032 o 00:34 0035 0036 00:37

— Average Concurrency = Average Panic Concurrency = Target Concurrency = Excess Burst Capacity.

Figure 3.22: Grafana Knative Dashboard autoscale

As we can see, when we sent the traffic of 100 in-flight requests for 30 seconds, it
created 10 pods.
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Auto-Scaling explanation: how it works?

|
I <_I ----- Panic Window
1 1
Stable Target -—-——> Q— ————————— t=ssmp 10 CONCURRENCY
| ! |
|
1 |
| <= - % ——————-—— Stable Window
1 | 1
|
P L L L L T I 1 ) I S b o -

TIME
Figure 3.23: Auto-scaling Working Concept

Algorithm

Knative Serving autoscaling is based on the average number of in-flight requests per
pod (concurrency). The system has a default target concurrency of 100 (search for the
container-concurrency-target-default), but we used 10 for our service.

We loaded the service with 100 concurrent requests, so the autoscaler created 5 pods.

(100 concurrent requests [ target of 10 = 10 pods)

Panic

The autoscaler calculates the average concurrency over a 60-second window, so
it takes a minute for the system to stabilize at the desired level of concurrency.
However, the autoscaler also calculates a 6-second panic window and will enter the
panic mode if that window reached 2x the target concurrency. In the panic mode,
the autoscaler operates on the shorter, more sensitive panic window. Once the panic
conditions are no longer met for 60 seconds, the autoscaler will return to the initial
60 second stable window.

3.8 Conclusion

In this chapter, we learned how to build end-to-end Kubeflow Orchestrator Pipeline
for a TensorFlow CNN Model and how we Dockerized each component and built it
in Google Platform.

Then, we saw how to build the pipeline with the kfp library package and triggered
the pipeline from the Kubflow Dashboard and built a batch prediction serving. Now,
we have deployed Kubeflow on the Kubernetes Platform and learned how to trigger
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the pipeline from the Notebook. We have also deployed the model in the Kubernetes
cluster with KF serving and Monitored the auto-scaling in Grafana Dashboard.

In this chapter, we have learned how to leverage the power of Google Cloud Platform,
and use our Devops knowledge with Machine Learning to become an MLops.

3.9 Reference

https://knative.dev/docs/serving/autoscaling/autoscaling-concepts/
https://v1-1-branch.kubeflow.org/docs/
https://v1-1-branch.kubeflow.org/docs/gke/
https://v1-1-branch.kubeflow.org/docs/gke/monitoring/

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/



CHAPTER 4

Building TFX
Pipeline

n this chapter, we will build an end-to-end structured data classification model and

make it ready for production with the help of TFX, and serve the model outputs
with TF serving to get the prediction. We also be building the TensorFlow ecosystem
Modelling, and visualizing the evaluation with Tensorboard and Fairness. Then, we
will learn about the various TEX Components like TFT, TEMA, TFDV, and so on.
Later on, we will create a Kubeflow Pipeline in Google cloud.

Structure

In this chapter, we will cover the following topics:
e Problem statement
e Architecture of TFX components
e TFXenvironment setup
e TEX pipeline
e Serve the model with TF serving

¢ Building Kubeflow Pipeline Orchestrator
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Objective

After studying this chapter, we will be able to do the following:

e Understand the complete BERT Architecture Model, and it’s tokenization
and pre-processing.

e Evaluate the BERT Base Model and creation of Framework for sentiment
Analysis.

e Build the TFX Pipeline Components, which provides a configuration
framework and shared library to integrate the common components needed
to define, launch, and monitor your machine learning system.

e Pre-process the training data for your BERT model training and validation.

¢ Analyse and review the trained and tuned models, deploying the best model
which will be pushed by the pusher component.

4.1 Problem statement

In this chapter, we will be using Taxi Trips dataset. This is a dataset for the binary
sentiment classification, containing substantially more data than the previous
benchmark datasets. Also, we will be predicting the tips. Here, we will build a
classification model and a Kubeflow pipeline in TFX with various components, so
that it will be ready for production. Also, we will be using the TF-Serving.

NOTE Rest all the imports I have showed in my Google Colab, which I gave
hyperlink of Github Account of this chapter. Note: Package Python 3.x

CODE https://github.com/bpbpublications/Continuous-Machine-Learning-
with-Kubeflow/tree/main/Chapter4

4.2 Architecture of TFX components

The machine learning pipelines can become very complicated and consume a lot of
overhead to manage the task dependencies. At the same time, the machine learning
pipelines can include a variety of tasks, including the tasks for data validation, pre-
processing, model training, and any post-training tasks. The connections between the
tasks are often brittle, and can cause the pipelines to fail. Having brittle connections
ultimately means that the production models will be updated infrequently; the data
scientists or machine learning engineers loathe updating the stale models. Pipelines
also require well-managed distributed processing, which is why the TFX leverages
Apache Beam. This is especially true for large workloads.
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A TFX

TFX Architecture
ol Tensorflow
i
Tensorboard i
Faimess H [ |
What-if Tool .
- - ‘ =
Tensorflow JS
Data 1 Deploy 0

Ingestion
P | Tensorflow | Phone
Serving —

(0

- Mobile
: Devices

Tensorflow
| Metadata Store I Lite

GPU
Figure 4.1: TFX Architecture

pipeline is a sequence of components that implement a machine learning

pipeline, which is specifically designed for scalable, high-performance machine
learning tasks.

ExampleGen is the initial input component of a pipeline that ingests and
optionally splits the input dataset.

StatisticsGen calculates the statistics for the dataset.

SchemaGen examines the statistics and creates a data schema.
ExampleValidator looks for the anomalies and missing values in the dataset.
Transform performs feature engineering on the dataset.

Trainer trains the model.

Tuner tunes the hyper parameters of the model.

Evaluator performs deep analysis of the training results and helps you
validate your exported models, ensuring that they are "good enough" to be
pushed to production.

Pusher deploys the model on a serving infrastructure.

Brief of TFX Components: A component handles a more complex process than just
the execution of a single task. All machine learning pipeline components read from
a Channel to get the input artifacts from the metadata store. The data is then loaded
from the path provided by the metadata store and processed. The output of the
component, the processed data, is then provided to the next pipeline components.
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The generic internals of a component are always as follows:
e Receive some inputs
e Perform an action

e Store the final result

TFX COMPONENT FUNCTIONALITY

METRDRATRASTORE

Figure 4.2: TEX Component Functionality

In TFX terms, the three internal parts of the component are called Driver, Executor,
and Publisher. The driver handles the querying of the metadata store; the executor
performs the actions of the components; and the publisher manages the saving of the
output metadata in the MetadataStore. The driver and the publisher aren’t moving
any data, but instead, they read and write the references from the MetadataStore.

4.3 TFX environment setup

Now, we will install each and every dependency with respect to our projects.
try:

import colab

Ipip install --upgrade pip
except:

pass

Ipip install -q -U --use-feature=2020-resolver tfx

Next, we have to restart the kernel and we will import each and every dependency.

from tfx.components.base import executor_spec

from tfx.components.trainer.executor import GenericExecutor
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from tfx.dsl.experimental import latest_blessed_model resolver

from tfx.proto import evaluator_pb2, example_gen_pb2, pusher_pb2,
trainer_pb2

from tfx.types import Channel
from tfx.types.standard_artifacts import Model, ModelBlessing
from tfx.utils.dsl_utils import external_input

from tfx.components import (Evaluator, ExampleValidator,
ImportExampleGen,ModelValidator, Pusher, ResolverNode,
SchemaGen,StatisticsGen, Trainer, Transform,Tuner)

from tfx.orchestration import (metadata, pipeline)

from tfx.orchestration.experimental.interactive.interactive_context
import InteractiveContext

from tfx.proto import (pusher_pb2, trainer_pb2)

from tfx.proto.evaluator_pb2 import SingleSlicingSpec

from tfx.utils.dsl utils import external_input

from tfx.types.standard _artifacts import (Model, ModelBlessing)
tf.get_logger().propagate = False

pp = pprint.PrettyPrinter()

%load_ext tfx.orchestration.experimental.interactive.notebook_
extensions.skip

Setting Directory and Download Data

Steps for Setting the Root directory are as follows:
Step 1: This is the root directory for your TEX pip package installation.
Step 2: This is the directory containing the TEX Chicago Taxi Pipeline example.
Step 3: This is the path where your model will be pushed for serving.
Step 4: Set up logging.
def setting_directory():
#stepl
_tfx_root = tfx.__path_ [0]
print(_tfx_root)
#step2

_taxi_root = os.path.join(_tfx_root, 'examples/chicago_taxi_
pipeline')

print(_taxi_root)
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#step3

_serving model dir = os.path.join(tempfile.mkdtemp(), 'serving model/
taxi_simple")

print(_serving_model_dir)
#stepd
absl.logging.set_verbosity(absl.logging.INFO)

return _tfx_root,_taxi_root,_serving model dir

Now, we call the preceding function to set the directory:

_tfx_root,_taxi_root,_serving _model dir=setting directory()

def download _data():
_data_root = tempfile.mkdtemp(prefix="tfx-data")

DATA_PATH = 'https://raw.githubusercontent.com/tensorflow/tfx/master/
tfx/examples/chicago_taxi_pipeline/data/simple/data.csv'’

_data_filepath = os.path.join(_data_root, "data.csv")
urllib.request.urlretrieve(DATA PATH, _data_filepath)
return _data_root,_data_filepath

_data_root,_data_filepath = download _data()

Let’s check a glimpse on our dataset:

pickup_community area fare trip_start month trip_start hour

trip_start_day trip_start_timestamp pickup_latitude pickup longitude dropoff_latitude dropoff longitude trip miles pickup_census_tract dropo!

o NaN 1245 5 19 6 1400269500 NaN NaN NaN NaN 00 NaN

1 NaN 000 3 19 5 1362683700 NaN NaN NaN NaN 00 NaN
2 600 27.05 10 2 3 1380593700 41836150 -87.648788 NaN NaN 126 NaN
3 100 585 10 1 2 1382319000 41985015 -87.804532 NaN NaN 00 NaN

4 140 1665 5 7 5 1369897200 41.968069 -87.721559 NaN NaN 0.0 NaN
Figure 4.3: Chicago Dataset

In the preceding screenshot, we can see the features in our dataset; we will be using
that for the classification model building with TensorFlow.

4.4 TFX pipeline components

TEX provides several Python package libraries which will be used here to create the
pipeline components.
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In this section, we have created the Interactive Context using the default parameters,
which will help to create the ephemeral ML Metadata database instance.

context = InteractiveContext()

[> WARNING:absl:InteractiveContext pipeline root argument not provided: using temporary directory /tmp/tfx-interactive-2(
WARNING:absl:InteractiveContext metadata connection config not provided: using SQLite ML Metadata database at /tmp/tf:

Figure 4.4: Initializing interactive Context

Next, we will build the pipeline.

4.4.1 ExampleGen

The ExampleGen componentis usually at the start of a TFX pipeline. TEX examplegen
will customize the train/eval split ratio, which the ExampleGen will output, set
the output_config; for example, Gen component. Each Version within a Span can
further be subdivided into multiple Splits. The most common use-case for splitting
a Span is to split it into the training and eval data.

The hash_buckets were set in this example.

-
Train
Split
Span 1 <
Eval
Split
\
r
Train
Split
Span 2 <
Eval
Split
\

Figure 4.5: Example Gen
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The preceding diagram is the example gen component, which will split the dataset
in that manner. So, this is the architecture of the ExampleGen.

Component: ExampleGen

Paste

Split TF
Record Data

1 TensorFlow

Figure 4.6: Example Gen Architecture

The ExampleGen TFX Pipeline component ingests the data into TEX pipelines.
def examplegen(_data_root):

example_gen = CsvExampleGen(input=external_input(_data_root))

return example_gen

Define the path where we downloaded the data:

example_gen= examplegen(_data_root)
context.run(example_gen)

'VExecutionResult at 0x7{11c58e5978
.execution_id 1

»>C at 0x7f11c58e5780
.component.inputs {}
outputs

1| VChannel of type 'Examples' (1 artifact) at 0x7{11c58e5320
.type_name Examples

i [0]| v Artifact of type (uriz Amp/tfx: 2020-10-30T18_40_25.173616-vnjm_j02/CsvExampleGen/examples/1)
.type <class 'tix.types. _artifacts. S
uri /tmp/tfx-interactive-2020-10-30T18_40_25.173616-vnjm_j02/CsvExampleGen/examples/1
.span 0
.split_names ["train", "eval"]
.version

Figure 4.7: Example Gen Output

The preceding screenshot is the output for the ExampleGen where we split the data
into train and evaluation and stored the path as shown.
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4.4.2 StatisticsGen

The StatisticsGen component computes the statistics over your dataset for the data
analysis, as well as for use in the downstream components. It uses the TensorFlow
Data Validation library.

Component: StatisticsGen

Data 3 b ocm

Figure 4.8: Statistics Gen Architecture

1 TensorFlow

StatisticsGen takes as input, the dataset that we just ingested using ExampleGen:

def statisticsgen(example_gen):

statistics_gen = StatisticsGen(examples=example_gen.
outputs['examples'])

return statistics_gen

statistics_gen=statisticsgen(example_gen)

context.run(statistics_gen)

> | VExecutionResult at 0x7efbb2652748

.execution_id 2
.component ) StatisticsGen at 0x7efc29aebac8

omponentmputs ['examples'] »>Channel of type 'Examples’ (1 artifact) at 0x7efc0014cc50

-component.outputs ['statistics'] > Channel of type 'ExampleStatistics' (1 artifact) at 0x7efc13ee98d0

Figure 4.9: Statistics Gen Output

Visualize the outputted statistics of our training data and evaluation data:

%%skip_for_export

context.show(statistics_gen.outputs['statistics'])
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The StatisticsGen will give us the distribution of all the features and stats of the
categorical and numerical columns, from which we can analyse the skewness and
missing value analysis.

Sort by
Feature order ~ [ Reverseorder Feature search (regex enabled)

Features: int(4) fixed-length ints(1) variable-length ints(4) float(3) variable-length floats(4) string(1) variable-length strings(1)

[ Numeric Features (16) ‘ Chart to show
Standard .
count  missing mean  std dev zeros min  median MaX 49 Dexpand
dropoff_census_tract
10.0k 0% 17.0B 330k 0% 17.0B 17.0B 17.0B
500 I == | .

178 178 17B

178 178

dropoff_community_area

10.0k 0% 20.92 17.62 0% 1 10 77 i I .

10 3 70

dropoff_latitude

10.0k 0% 419 0.04 0% 41.66 41.89 42.02

1K L

9 42

0 50
a7 78 |
dropoff_longitude
10.0k 0% -87.65 0.06 0% -87.91 -87.63 -87.54
K3 _ J

Figure 4.10: Statistics Gen Output Visualization
The StatisticsGen TEX pipeline component generates the feature statistics over

both the training and the serving data, which can be used by the other pipeline
components. StatisticsGen uses Beam to scale to large datasets.

4.4.3 SchemaGen

The SchemaGen component generates a schema based on your data statistics. (A
schema defines the expected bounds, types, and properties of the features in your
dataset.) It also uses the TensorFlow Data Validation library.

Component: SchemaGen

Figure 4.11: Schema Gen Architecture

1 TensorFlow
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SchemaGen will take as input, the statistics that we generated with StatisticsGen,
looking at the training split by default.

def schemagen(statistics_gen):

schema_gen = SchemaGen(statistics=statistics_gen.
outputs['statistics'],infer_feature_shape=False)

return schema_gen

Let’s generate the schema table:

schema_gen=schemagen(statistics_gen)

%kskip_for_export

context.show(schema_gen.outputs['schema'])

Data schema for the type of input tensors is as follows:

Feature name
‘company’
'dropoff_census_tract'
'dropoff_community_area'
'dropoff_latitude'
'dropoff_longitude'
'fare’
‘payment_type'
'pickup_census_tract'
'pickup_community_area’
'pickup_latitude'
'pickup_longitude’
'tips’
'trip_miles'
'trip_seconds'
'trip_start_day'
'trip_start_hour'
'trip_start_month'

'trip_start_timestamp'

Type

STRING
INT

INT
FLOAT
FLOAT
FLOAT
STRING
INT

INT
FLOAT
FLOAT
FLOAT
FLOAT
INT

INT

INT

INT

INT

Presence Valency

required
required
required
required
required
required
required
required
required
required
required
required
required
required
required
required
required

required

single

single

single

single

single
single
single

single

Domain

‘company’

'payment_type'

Figure 4.12: Schema Gen Output Visualization
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So, schema is a part of schema.proto. It will specify the data types for the feature
values, whether that feature has to be present in all the examples, value ranges, and
other properties. The SchemaGen component will generate that schema by inferring
the types, categories, and ranges from the training data automatically.

4.4.4 ExampleValidator

The ExampleValidator component detects the anomalies in your data, based on the
expectations defined by the schema. It also uses the TensorFlow Data Validation
library.

Component: ExampleValidator

Statistics

Anomolies

P TensorFlow

Schema

Figure 4.13: ExampleValidator Architecture

ExampleValidator will take as input, the statistics from StatisticsGen, and the schema
from SchemaGen. By default, it compares the statistics from the evaluation split to
the schema from the training split.

def examplevalidator(statistics_gen,schema_gen):

example_validator = ExampleValidator(statistics=statistics_gen.
outputs['statistics'],schema=schema_gen.outputs['schema'])

return example_validator
Let’s call the function to check the anomaly report.
example_validator =examplevalidator(statistics_gen,schema_gen)

context.run(example_validator)
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Visualize the anomalies table:

%%skip_for_export

context.show(example_validator.outputs['anomalies'])
Artifact at tmp/tfx-interactive-2020-10-30T18_40_25.173616-vnjm_j02/ExampleValidator/anomalies/4
'train' split:

No anomalies found.
‘eval' split:

No anomalies found.
This cell will be skipped during export to pipeline.

Figure 4.14: ExampleValidator Anomaly Table

So, the ExampleValidator pipeline component finds the anomalies in the training
and serving data. It helps to detect the different anomaly classes in our data. Take a
look at the following:

e It does a validity check that compares the data statistics against a schema,
which will codifie the expectations of a user.

e Next, it helps to detect a training-serving skew by checking the comparison
between the training and serving data.

e It helps to detect the data drift by looking at a series of data.

4.4.5 Transform

The Transform component performs the feature engineering for both the training
and the serving. The Transform component processes the data that we ingested into
our pipeline, together with the earlier generated data set schema, and it outputs the
following two artifacts:

e Pre-processed training and evaluation datasets in the TFRecords format. The
produced datasets can be consumed downstream in a Trainer component of
our pipeline.
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e Exported preprocessing graph (with assets) which will be used when we’ll
export our machine learning model.

Component: Transform

Data

Transformed Data

Schema

T TensorFlow

Transform Graph
Code

Figure 4.15: Transform Architecture

Steps for Transformation: The Transform is used to transform the numerical
and categorical one-hot encoded features, bucketized features, and raw string
representation data by completing the following steps:

Step 1: Categorical features are assumed to each have a maximum value in the
dataset and dense float features, and the categorical is distributed in a list.

Step 2: Number of buckets used by tf.transform for encoding each feature.

Step 3: Number of vocabulary terms used for encoding VOCAB_FEATURES by
tf.transform.

Step 4: Count of out-of-vocab buckets in which the unrecognized VOCAB_FEATURES
are hashed.

Step 5: Designating the target Feature columns.

Step 6: Itis a good practice to rename the features by appending a suffix to the feature
name (for example, _xf). The suffix will help to distinguish whether the errors are
originating from the input or output features and it prevents us from accidently
using a non-transformed feature in our actual model.

%%skip_for_export

%kwritefile {_taxi_constants_module_file}

# Stepl
MAX_CATEGORICAL_FEATURE_VALUES = [24, 31, 12]
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CATEGORICAL_FEATURE_KEYS = ['trip_start_hour', 'trip_start_day', 'trip_
start_month',

"pickup_census_tract', 'dropoff_census_tract', 'pickup_community_area',
"dropoff_community_area']

DENSE_FLOAT_FEATURE_KEYS = ['trip_miles', 'fare', 'trip_seconds']
# Step2
FEATURE_BUCKET_COUNT = 10

BUCKET_FEATURE_KEYS = ['pickup_latitude', 'pickup_longitude', 'dropoff_
latitude', 'dropoff_longitude']

# Step3

VOCAB_SIZE = 1000

# Stepd

O0V_SIZE = 10

VOCAB_FEATURE_KEYS = ['payment_type', 'company’]
# Step5

LABEL_KEY = 'tips'

FARE_KEY = 'fare'’

#Stepb

def transformed_name(key):

return key + '_xf'

The Transform component from TEX in our pipeline, expects the transformation
code to be provided in a separate Python file. The name of the module file can be
set by the user (for example, in our case taxi_transform.py), but the entry point
preprocessing_fn() needs to be contained in the module file and the function
can’t be renamed. Import the preceding Python code in the following transform file:

The Transformation code for the pre-processing steps and filling missing values are
as follows:

Step 1: Importing the Features from the Python file.

Step 2: tf.transform's callback function for preprocessing inputs of the artifacts data
for training.

Step 3: TensorFlow Transform expects the transformation outputs to be dense,
therefore we are using the following helper function to convert the sparse to dense
features:

%%skip_for_export

%writefile { taxi_transform_module_file}
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#Stepl
import tensorflow as tf
import tensorflow_transform as tft

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS

_VOCAB_SIZE = taxi_constants.VOCAB_SIZE

_O0V_SIZE = taxi_constants.0O0V_SIZE

_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS
_FARE_KEY = taxi_constants.FARE_KEY

_LABEL_KEY = taxi_constants.LABEL_KEY

_transformed_name = taxi_constants.transformed_name

#Step2
def preprocessing_fn(inputs):
outputs = {}
for key in _DENSE_FLOAT_FEATURE_KEYS:
# Preserve this feature as a dense float, setting nan's to the mean.

outputs[_transformed_name(key)] = tft.scale_to z score(_fill in_
missing(inputs[key]))

for key in _VOCAB_FEATURE_KEYS:
# Build a vocabulary for this feature.
outputs[_transformed_name(key)] = tft.compute_and_apply vocabulary(

_fill in_missing(inputs[key]),top_k=_VOCAB_SIZE,num_oov_buckets=_
00V_SIZE)

for key in _BUCKET_FEATURE_KEYS:

outputs[_transformed name(key)] = tft.bucketize(_fill in_
missing(inputs[key]), _FEATURE_BUCKET_COUNT, always_return_num_
quantiles=False)

for key in _CATEGORICAL_FEATURE_KEYS:
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outputs[_transformed_name(key)] = _fill in missing(inputs[key])

# Was this passenger a big tipper?
taxi_fare = _fill_in_missing(inputs[_FARE_KEY])
tips = _fill_in_missing(inputs[_LABEL_KEY])
outputs[_transformed_name(_ LABEL_KEY)] = tf.where(tf.math.is_nan(taxi_
fare),
tf.cast(tf.zeros_like(taxi_fare), tf.int64),
# Test if the tip was > 20% of the fare.

tf.cast(tf.greater(tips, tf.multiply(taxi_fare,
tf.constant(0.2))), tf.int64))

return outputs

#step3
def _fill_in_missing(x):

default_value = if x.dtype == tf.string else @

return tf.squeeze(tf.sparse.to_dense(tf.SparseTensor(x.indices,
x.values, [x.dense_shape[@], 1]),default_value),axis=1)

The following function is the transformation function for our Transform function for
all the features:

def transformation(example_gen,schema_gen):

transform = Transform(examples=example_gen.
outputs['examples'],schema=schema_gen.outputs['schema'],module_file=os.
path.abspath(_taxi_transform_module file))

return transform

When we execute the transform component, TensorFlow Extended will apply the
transformations, defined in our taxi_transform.py module file, and apply those
to the loaded input data, loaded to TFRecords during the data ingestion step. The
component will then output our transformed data, a transform graph, and the
required metadata.
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transform=transformation(example_gen,schema_gen)
context.run(transform)

VExecutionResult at 0x7f11683ece80

.execution_id 5
.component P Transform at 0x711683d92e8

-component.inputs ['examples'] »>Channel of type 'Examples’ (1 artifact) at 0x7f11c58e5320
['schema'] P Channel of type 'Schema’ (1 artifact) at 0x7f11c3ac9f60

~omponent-outputs ['transform_graph'] »>Channel of type 'TransformGraph’ (1 artifact) at 0x7f11683a5e80

['transformed_examples'] »Channel of type 'Examples’ (1 artifact) at 0x7f11683a58d0
['updated_analyzer_cache'] > Channel of type 'TransformCache' (1 artifact) at 0x711683a5a58

Figure 4.16: Transform Output

The output data structure for the transformation structure is shown in the preceding
screenshot.

J
e}
feature {
key: "pickup_longitude_xf"
value {
int64_list {
value: 9
}
}
}

feature {
key: "tips_xf"
value {
int64_list {
value: 0
}
}
}
feature {
key: "trip_miles_xf"
value {
float_list {
value: -0.15886740386486053
}
}
}

Figure 4.17: Transform Serialized json output

preprocessing_fn function, as shown in the preceding function defines all the
transformations that we want to apply to the raw data. When we execute the
transform component, the preprocessing_fn function will receive the raw data,
applying the transformation and returning the processed data.
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4.4.6 Tuner and Trainer

The Trainer component will train a model that you define in TensorFlow (either
using the Estimator API or the Keras API with model_to_estimator).

Now, first the Model will be trained with the hyperparameter, and then it will
train the model with the Trainer component which takes as input the schema from
SchemaGen, the transformed data and graph from Transform, training parameters,
as well as a module that contains the user-defined model code.

Component: Trainer
Transform Graph
Data
——
- Schema .
—>

Figure 4.18: Trainer Architecture

3 beam

T TensorFlow

The Trainer component requires the following inputs:
e The previously generated data schema, generated by the data validation.
¢ The transformed data and its preprocessing graph.

¢ The training parameters (for example, number of training steps).
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¢ A module file containing a run_fn() function which defines the training
process.

Chicago Taxi Cab Dataset

trip_start_hour dropoff_longitude payment_type trip_miles
Features trip_start_day pickup_longitude company fare
trip_start_month dropoff_latitude trip_seconds
pickup/drop_off_cencus_tract pickup_latitude
pickup/drop_off_community_area

waie QOO0 0000 OO
+Deep)

Labels=tips >
(fare*20%)

Figure 4.19: Transform Features

PRE-PROCESSING FUNCTION()

1: tft.scale_to_z_score(): If you want to normalize a feature with a mean of 0
and standard deviation of 1, you can use this useful TFT function.

2: tft.bucketize(): This useful function lets us bucketize a feature into bins. It
returns the bin or bucket index. You can specify the argument num_buckets to set
the number of buckets. TFT will then divide the equal sized buckets.

3: tft.compute_and_apply_vocabulary(): This is one of the most amazing
TensorFlow Transform functions. It computes all the unique values of a feature
column and then maps the most frequent values to an index. This index mapping
is then used to convert the feature to a numerical representation. The function
generates all the assets for your graph behind the scenes.

The Trainer file will train an estimator model by completing the following steps:
Step 1: Import the features in a list.

Step 2: Suffix will help to distinguish whether the errors are originating from the input
or the output features and it prevent us from accidently using a non-transformed
feature in our actual model.

Step 3: Tf.Transform considers these features as "raw".
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Step 4: Small utility returning a record reader that can read gzip'ed files.

Step 5: _build_estimator() function will create Wide and Deep model architecture
with the estimator.

Step 6: Build the serving in inputs.
Step 7: Build the tf-model-analysis to run the model.

Step 8: Generate the features and labels for training or evaluation by the data
generators.

Step 9: TEX will call this function as the main function to execute all the utility
function.

%kskip_for_export

%iwritefile { taxi_trainer_module_file}

#Stepl

import tensorflow as tf

import tensorflow_model _analysis as tfma

import tensorflow_transform as tft

from tensorflow_transform.tf_metadata import schema_utils

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS

_VOCAB_SIZE = taxi_constants.VOCAB_SIZE

_00V_SIZE = taxi_constants.O0V_SIZE

_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS

_MAX_CATEGORICAL_FEATURE_VALUES = taxi_constants.MAX_CATEGORICAL_
FEATURE_VALUES

_LABEL_KEY = taxi_constants.LABEL_KEY
_transformed_name = taxi_constants.transformed_name
#Step2

def _transformed_names(keys):

return [_transformed_name(key) for key in keys]
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#Step3
def _get raw_feature_spec(schema):

return schema_utils.schema_as_feature_spec(schema).feature_spec
#Stepd
def _gzip reader_fn(filenames):

return tf.data.TFRecordDataset(filenames,compression_type='GZIP")
#Step5
def build estimator(config, hidden_units=None, warm_start_from=None):

real valued columns = [tf.feature_column.numeric_column(key, shape=())
for key in _transformed_names(_DENSE_FLOAT_FEATURE_KEYS)]

categorical_columns = [tf.feature_column.categorical_column_with_
identity(

key, num_buckets=_VOCAB_SIZE + _OOV_SIZE, default_value=0)
for key in _transformed_names(_VOCAB_FEATURE_KEYS) ]

categorical_columns += [tf.feature_column.categorical_column_with_
identity(

key, num_buckets=_FEATURE_BUCKET_COUNT, default_value=0)
for key in _transformed_names(_BUCKET_FEATURE_KEYS)]

categorical_columns += [tf.feature_column.categorical_column_with_
identity(key,

num_buckets=num_buckets,default_value=0) for key, num_buckets in zip(

_transformed_names(_CATEGORICAL_ FEATURE_KEYS), MAX_CATEGORICAL_
FEATURE_VALUES) ]

return tf.estimator.DNNLinearCombinedClassifier(config=config,

linear_feature_columns=categorical columns,dnn_feature_columns=real_
valued_columns,

dnn_hidden_units=hidden_units or [100, 70, 50, 25],warm_start_
from=warm_start_from)

#Stepb

def _example_serving receiver_fn(tf_transform_graph, schema):
raw_feature_spec = _get raw_feature_spec(schema)
raw_feature_spec.pop(_LABEL_KEY)

raw_input_fn = tf.estimator.export.build_parsing_serving input_
receiver_fn(

raw_feature_spec, default_batch_size=None)serving input_receiver =
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raw_input_fn()
transformed_features = tf_transform_graph.transform_raw_features(
serving_input_receiver.features)
return tf.estimator.export.ServingInputReceiver(
transformed_features, serving input_receiver.receiver_tensors)
#Step7
def _eval input_receiver_fn(tf_transform_graph, schema):

# Notice that the inputs are raw features, not transformed features
here.

raw_feature_spec = _get raw_feature_spec(schema)
serialized_tf_example = tf.compat.vl.placeholder(
dtype=tf.string, shape=[None], name='input_example_tensor')

# Add a parse_example operator to the tensorflow graph, which will
parse raw, untransformed, tf examples.

features = tf.io.parse_example(serialized tf_example, raw_feature_
spec)

# Now that we have our raw examples, process them through the tf-
transform function computed during the preprocessing step.

transformed_features = tf_transform_graph.transform_raw_features(
features)

# The key name MUST be 'examples'.

receiver_tensors = {'examples': serialized_tf_example

# NOTE: Model is driven by transformed features (since training works
on the materialized output of TFT, but slicing will happen on raw
features.

features.update(transformed_features)

return tfma.export.EvalInputReceiver(features=features,receiver_
tensors=receiver_tensors,

labels=transformed_features[_transformed_name(_ LABEL_KEY)])
#Step8
def _input_fn(filenames, tf_transform_graph, batch_size=200):

transformed_feature_spec = (tf_transform_graph.transformed_feature_
spec().copy())
dataset = tf.data.experimental.make_batched features_dataset(

filenames, batch_size, transformed_feature_spec, reader=_gzip_
reader_fn)
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transformed_features = (tf.compat.vl.data.make_one_shot_
iterator(dataset).get _next())

# We pop the label because we do not want to use it as a feature while
we're training.

return transformed_features, transformed_features.pop(_transformed_
name (_LABEL_KEY))

#Step9

def trainer_fn(trainer_fn_args, schema):
# Number of nodes in the first layer of the DNN
first_dnn_layer_size = 100
num_dnn_layers = 4

0.7

40

dnn_decay_factor

train_batch_size
eval batch_size = 40

tf_transform_graph = tft.TFTransformOutput(trainer_fn_args.transform_
output)

train_input_fn = lambda: _input_fn(trainer_fn_args.train_files,tf_
transform_graph,

batch_size=train_batch_size)

eval_input_fn = lambda: _input_fn(trainer_fn_args.eval_files,tf_
transform_graph,

batch_size=eval_batch_size)

train_spec = tf.estimator.TrainSpec(train_input_fn,max_steps=trainer_
fn_args.train_steps)

serving_receiver_fn = lambda: _example_serving_receiver_fn(tf_
transform_graph, schema)

exporter = tf.estimator.FinalExporter('chicago-taxi', serving_
receiver_fn)

eval spec = tf.estimator.EvalSpec(eval_input_fn,steps=trainer_fn_args.
eval_steps,

exporters=[exporter],name="'chicago-taxi-eval')
run_config = tf.estimator.RunConfig(save_checkpoints_steps=999, keep_
checkpoint_max=1)
run_config = run_config.replace(model_dir=trainer_fn_args.serving model
dir)
estimator = _build_estimator(hidden_units=[max(2, int(first_dnn_layer_
size * dnn_decay factor**i))for i in range(num_dnn_layers)], config=run_
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config, warm_start_from=trainer_fn_args.base_model)

# Create an input receiver for TFMA processing

receiver_fn = lambda: _eval_input_receiver_fn( # pylint: disable=g-
long-lambda

tf_transform_graph, schema)

return {'estimator': estimator, 'train_spec': train_spec, 'eval_spec':
eval_spec,

‘eval_input_receiver_fn': receiver_fn}

Let’s build the Tuner function with the train and eval parameters steps:
def tuner_model(transform):
tuner = Tuner(module_file=os.path.abspath(_taxi_trainer_module_file),
examples=transform.outputs['transformed_examples'],
transform_graph=transform.outputs['transform_graph'],
train_args=trainer_pb2.TrainArgs(num_steps=20),
eval_args=trainer_pb2.EvalArgs(num_steps=50))

return tuner

Next, we will create a Trainer function which will take the Tuner, Transform, Schema
as the input for the model training:

def trainer_model(transform,schema_gen,tuner):

trainer = Trainer(module_file=os.path.abspath(_taxi_trainer_module_
file), transformed_examples=transform.outputs['transformed_examples'],

schema=schema_gen.outputs['schema'],

transform_graph=transform.outputs['transform_graph'],
hyperparameters=tuner.outputs['best_hyperparameters'],
train_args=trainer_pb2.TrainArgs(num_steps=10000),
eval _args=trainer_pb2.EvalArgs(num_steps=5000))

return trainer
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Let’s call the Tuner component and pass it to the trainer function:
tuner=tuner_model (transform)
trainer=trainer_model(transform, schema_gen)
context.run(trainer)

VExecutionResult at 0x7f1128089080

.execution_id 6

.component P Trainer at 0x7f1128089828

-component.Inpute ['examples'] P Channel of type 'Examples' (1 artifact) at 0x7f116832a58d0
['transform_graph'] »>Channel of type 'TransformGraph' (1 artifact) at 0x7f11683a5e80
['schema’] »Channel of type 'Schema' (1 artifact) at 0x7f11c3ac9f60

['hyperparameters'] »Channel of type 'HyperParameters' (0 artifacts) at 0x7{1128089b70

-component.outputs 15417 p-Channel of type 'Model' (1 artifact) at 0x7f1128089940
['model_run'] »Channel of type 'ModelRun' (1 artifact) at 0x7f11280890f0

Figure 4.20: Trainer Output

Analyze the Training with TensorBoard

Optionally, we can connect the TensorBoard to the Trainer to analyze our model's
training curves. Get the URI of the output artifact representing the training logs,
which is a directory:

model dir = trainer.outputs['model’'].get()[0].uri

%load_ext tensorboard

%tensorboard --logdir {model dir}

TensorBoard SCALARS  GRAPHS

[] show data download links
Ignore outliers in chart scaling

Tooltip sorting method: default - 0.499
0.498
Smoothing oaer
0.496
@ 0.6 ! | | | B
0 1k 2k 3%k 4k S5k 6k 7k 8k 9k 10k
o EH
Horizontal Axis

RELATIVE WALL
=1 baton_oss

Runs
Write a regex to filter runs
O logs/train
O logs/validation
TOGGLE ALL RUNS

/tmp/tix-interactive-2020-06-28T05_04_
40.864893-bknpsglw/Trainer/model/6

0 1k 2 3 4k 6k 6k 7k B O 10k
=
Figure 4.21: Tensorboard Output
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4



Building TFX Pipeline 157

Here, we will visualize the Batch Accuracy and Batch loss and Epoch Loss and epoch
accuracy in our TensorBoard.

4.4.7 Evaluator

The Evaluator component computes the model performance metrics over the
evaluation set. So, the Evaluator component automatically evaluates the sentiment
as the probability.

Component: Evaluator

Data

Evaluation

Model

1 TensorFlow

Figure 4.22: Evaluator Architecture

Let’s build the Evaluation Component which will evaluate the Model performance:

def evaluation_configuration():
eval config = tfma.EvalConfig(
model_specs=[tfma.ModelSpec(signature_name='eval')],

metrics_specs=tfma.MetricsSpec(metrics=[tfma.MetricConfig(class_
name="'ExampleCount')],

thresholds = {'accuracy': tfma.MetricThreshold(

value threshold=tfma.GenericValueThreshold(lower
bound={'value': 0.5}),

change_threshold=tfma.GenericChangeThreshold(

direction=tfma.MetricDirection.HIGHER IS
BETTER,absolute={"'value': -1e-10}))})1],

slicing_specs=[tfma.SlicingSpec(),tfma.SlicingSpec(feature_
keys=["trip_start_hour'])])

return eval_config

Here, we will return the metrics which we will define for our evaluator model:

eval_config = evaluation_configuration()
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The Resolver component is required if we want to compare a new model against a
previous model. It checks for the last blessed model and returns this as a baseline,
so it can be passed on to the Evaluator component with the new candidate model.

model resolver = ResolverNode(instance_name='latest blessed model
resolver',

resolver_class=latest _blessed_model_resolver.lLatestBlessedModelResolver,

model=Channel (type=Model),model
blessing=Channel(type=ModelBlessing))

The Evaluator component uses the TEFMA library to evaluate a model’s predictions
on a validation dataset. It takes as input the data from the ExampleGen component,
the trained model from the Trainer component, and an EvalConfig for TEMA.

def evaluator_component(model resolver):

evaluator = Evaluator(examples=example_gen.
outputs['examples'],model=trainer.outputs['model’],

baseline_model=model_resolver.outputs['model’],eval_
config=eval_config)

return evaluator
evaluator=evaluator_component(model resolver)

The Evaluator helps to validate our exported models, confirming that they are "good
enough" to be pushed for production.

4.4.7.1 Fairness and TFMA Visualization

TensorFlow Model Analysis (TFMA) helps to get more detailed metrics than just
those used during the model training. TFMA visualizes the metrics as the time series
across the model versions, and it gives us the ability to view the metrics on the slices
of a dataset. It also scales easily to large evaluation sets, thanks to the Apache Beam.

%%skip_for_export

context.show(evaluator.outputs['evaluation'])

I example_count
4,967

- _
4,965
Overall

feature accuracy accuracy_baseline auc auc_precision_recall average_loss example_count label/mean pot

Overall 0.79078 0.77124 0.93557 0.71065 0.34475 4966 0.22876

Figure 4.23: TFMA Metric Visualization
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TEMA helps to visualize them in the metrics_specs argument to the EvalConfig.

evaluation_uri = evaluator.outputs['output'].get()[0].uri
eval result = tfma.load_eval result(evaluation_uri)

tfma.addons.fairness.view.widget_view.render_fairness_indicator(eval_
result)

The Fairness Indicators is a library that enables the easy computation of the
commonly-identified fairness metrics for the binary and multiclass classifiers. With
the Fairness Indicators tool suite, you can do the following:

¢ Compute commonly-identified fairness metrics for the classification models.

e Compare the model performance across the subgroups to a baseline, or to
the other models.

e Use the confidence intervals to surface the statistically significant disparities.

e Perform evaluation over multiple thresholds.

avvuavy  ap

accuracy
09+

[ accuracy_baseline
08+

O auc 07

[ auc_precision_recall Lol

05+

[ average_loss
04+

[J example_count el

[ label/mean 02

0.1+
[ example_count

00-1

[ precision
feature accuracy accuracy against Overall example_co
[ prediction/mean
Overall 0.79 0% 4966
[ recall
trip_start_hour:0 0.76 J -4.24% 206
trip_start_hour:1 0.76 b -3.38% 178

Figure 4.24: Fairness Metric Visualization

The Fairness Indicators is extremely useful tool for model analysis. It helps to some
overlapping capabilities with TEMA, but one particularly useful feature of it is the
ability to view metrics sliced on features at a variety of decision thresholds.

4.4.8 Pusher

The Pusher component is usually at the end of a TFEX pipeline. It checks whether a model
has passed the validation, and if so, exports the model to _serving_model_dir.
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It takes as input a saved model, the output of the Evaluator component and a file
path for the location of our models will be stored for serving.

Component: Pusher

Deployment
Options

Figure 4.25: Pusher Architecture

Data

1 TensorFlow

Let’s build the Pusher component, where the model will be pushed automatically
for serving.

def pusher_model(trainer,evaluator):

pusher = Pusher(model=trainer.outputs['model’], model
blessing=evaluator.outputs['blessing'],

push_destination=pusher_pb2.PushDestination(

filesystem=pusher_pb2.PushDestination.Filesystem(base_directory=_
serving model _dir)))

return pusher

Next, call the pusher Model for pushing the model for serve ready.
pusher=pusher_model(trainer,evaluator)

context.run(pusher)

VExecutionResult at 0x7f1cbbcfe940

.execution_id 9
.component P Pusher at 0x7f1d500856d8

-component.inputs 1,546y » Channel of type 'Model' (1 artifact) at 0x7f1cbb996668
['model_blessing'] »Channel of type 'ModelBlessing' (1 artifact) at 0x7f1d500b124
.component.outputs r

pushed_model'] »>Channel of type 'PushedModel' (1 artifact) at 0x7f1d50085c88
Figure 4.26: Pusher Output

The Pusher component is provided with the model evaluator outputs and the serving
destination. It depends on one or more blessing model from the other validation
components to decide whether to push that model or not. The Evaluator blesses that
model if the new trained model is fairly "good enough" to be pushed in production.
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4.5 Serve the Model with TF Serving

Now that we have a trained model that has been blessed by ModelValidator, and
pushed to our deployment target by Pusher, we can load it into the TensorFlow
Serving and start serving the inference requests.

Installation

We're preparing to install the TensorFlow Serving using Aptitude since this Colab
runs in a Debian environment. We'll add the tensorflow-model-server package to
the list of packages that Aptitude knows about. Note that we're running as root.
This example is running the TensorFlow Serving natively, but you can also run it in
a Docker container, which is one of the easiest ways to get started using TensorFlow
Serving.

Step 1:

lecho "deb http://storage.googleapis.com/tensorflow-serving-apt stable
tensorflow-model-server tensorflow-model-server-universal"” | tee /etc/apt/
sources.list.d/tensorflow-serving.list && \

curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-
serving.release.pub.gpg | apt-key add -

lapt update

Step 2:
Running TensorFlow Serving in a Docker Container:
lapt-get install tensorflow-model-server

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
tensorflow-model-server
0 upgraded, 1 newly installed, 0 to remove and 13 not upgraded.
Need to get 210 MB of archives.
After this operation, 0 B of additional disk space will be used.
Get:1 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 tensorflow-mode
Fetched 210 MB in 3s (73.7 MB/s)
Selecting previously unselected package tensorflow-model-server.
(Reading database ... 144628 files and directories currently installed.)
Preparing to unpack .../tensorflow-model-server_ 2.3.0_all.deb ...
Unpacking tensorflow-model-server (2.3.0) ...
Setting up tensorflow-model-server (2.3.0) ...

Figure 4.27: Installation Output

The next step is to load the Pusher and it will export your model in the SavedModel
format and load the path.

latest _pushed _model = os.path.join(_serving model dir, max(os.listdir(_
serving _model_dir)))
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!saved_model_cli show --dir {latest_pushed_model} --all

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def[ 'classification']:
The given SavedModel SignatureDef contains the following input(s):
inputs[ 'inputs'] tensor_info:
dtype: DT STRING
shape: (-1)

Figure 4.28: Show the graphs

Start running the Tensorflow Serving

This is where we start running the TensorFlow Serving and load our model. Once
it loads, we can start making the inference requests using REST. There are some
important parameters, which are as follows:

e rest_api_port: The port that you'll use for the REST requests.
e model_name: You'll use this in the URL of the REST requests. It can be
anything.

e model_base_path: This is the path to the directory where you've saved
your model. Note that this base_path should not include the model version
directory, which is why we split it off as follows:

os.environ["MODEL_DIR"] = os.path.split(latest_pushed_model)[0]
%%bash --bg
nohup tensorflow_model_server \
--rest_api_port=8501 \
--model_name=online_news_simple \
--model_base_path="${MODEL_DIR}" >server.log 2>&1

Itail server.log

Perform Inference on the example data

Let's load some examples from the eval dataset, remove their labels (as the serving
model does not expect labels), and send them to the Tensorflow Serving through a
single REST API call. Note that this will include the labels, but the server will ignore
them.

eval uri = example_gen.outputs['examples'].get()[@].uri

eval tfrecord _paths = [os.path.join(eval_uri, name)for name in
os.listdir(eval _uri)]

def strip label(serialized_example):
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example = tf.train.Example.FromString(serialized_example.numpy())

return example.SerializeToString()

dataset = tf.data.TFRecordDataset(eval_tfrecord pathsl,compression_
type="GZIP")

serialized_examples = [strip_label(serialized_example)for serialized_
example in dataset.take(3)]

Here, we serialized the transformed data for evaluation and made a dataset TFRecord.
Send requests to the model, and print the results as follows:

e server_addr: Network address of the model server in "host:port" format.

e model_name: Name of the model as understood by the model server.

e serialized_examples: Serialized examples of the data to do the inference
on.

def do_inference(server_addr, model name, serialized_examples):
parsed_server_addr = server_addr.split(':")
host=parsed_server_addr[0]
port=parsed_server_addr[1]
json_examples = []
for serialized_example in serialized_examples:

example bytes = base64.b64encode(serialized_example).
decode('utf-8")

predict_request = '{ "b64": "%s" }' % example_bytes

json_examples.append(predict_request)

json_request = '{ "instances": [' + ','.join(map(str, json_
examples)) + ']}

server_url = 'http://' + host + ':' + port + '/vl/models/' +

model_name + ':predict’

response = requests.post(server_url, data=json_request,
timeout=5.0)

response.raise_for_status()
prediction = response.json()

print(json.dumps(prediction, indent=4))



164 Continuous Machine Learning with Kubeflow

Let’s call the inference function for our prediction of our sample dataset:

do_inference(server_addr="'127.0.0.1:8501",
model_name='online_news_simple’,
serialized_examples=serialized_examples)
{

"predictions": [
{

"scores": [
0.775838792,
0.224161178

1,

"classes": [
"0“’
lllll

"scores": [
0.775838792,
0.224161178

1,

"classes": [
lloll -

I|1II

"scores": [
0.775838792,
0.224161178

1s

"classes": [

IIOII ’
wyw

Figure 4.29: Test Model Prediction

In the preceding screenshot, we can see the classification output for the batch of 3
records and the probability score for both the Tips greater than Fare by 20% or not.

4.6 Building Kubeflow Pipeline
Orchestrator

Prerequisites: So, before starting this chapter, we must setup the Kubeflow Cluster

in GCP, we have already created a Jupyter notebook; we will use that.
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Open the terminal once after you connect to the Jupyter Notebook from Kubeflow
Dashboard and install the TEX SDK.

"7 “bash

Ipip install tfx==0.22.0

Optional: If you get a following error run the following commands:

/uUsr/local/ L1p/pytnons.o/alst—packages/apacne_peam/portaplillty/apl/enapolnts_ppZ.py 1N <moaule>

19 syntax='proto3"',

20 serialized_options=b'\n!org.apache.beam.model.pipeline.v1B\tEndpointsZ\0@13pipeline_v1',
—— 21 create_key=_descriptor._internal_create_key,

22 serialized_pb=b'\n\x0f\x65ndpoints.proto\x12!org.apache.beam.model.pipeline.v1\"r\n\x14\x
\n\x@3url\x18\x01 \x01(\t\x12M\n\x0e\x6luthentication\x18\x02 \x01(\x0b\x32\x35.0rg.apache.beam.mod¢
pec\"2\n\x12\x41luthenticationSpec\x12\x0b\n\x03urn\x18\x01 \x01(\t\x12\x0f\n\x07payload\x18\x02 \x0:
model.pipeline.v1B\tEndpointsZ\x@bpipeline_v1b\x@6proto3"

23 )

AttributeError: module 'google.protobuf.descriptor' has no attribute '_internal_create_key"

Figure 4.30: Error

Run the following commands:
"7 “bash
PROTOC_ZIP=protoc-3.7.1-0sx-x86_64.zip

curl -OL https://github.com/protocolbuffers/protobuf/releases/download/
v3.7.1/$PROTOC_ZIP

sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP

pip install -upgrade protobuf

Now, please go to the GitHub of this project and download those folders and save
those files in your GCP Bucket, as shown in the following screenshot:

tfx-pipeline
OBJECTS CONFIGURATION PERMISSIONS RETENTION LIFECYCLE
B«M)E) the taxi_simple )

UPLOAD FILES UPLOAD FOLDER (CREATE FOLDER MANAGE HOLDS DELETE

T Filter Filter by object or folder name prefix

O teme sze  Type °
Keep the data e — — — —
for Kubeflow B e R e = i
Pipeline

Buckets > tfpipeline > thx taxi_simple > modules

Buckets > txpipeline > thc taxisimple > data Ky
UPLOADFILES ~ UPLOADFOLDER ~ CREATEFOLDER  MANAGEHOLDS  DELETE

uPLOAD FLES oeLeTe
% Fiter Filter by object or folder pref h h il = Fier Filter by object or folder name prefix
e o foder name prefix K .
eep the python file
G o o) Sorgecess st modi which contains the CIe o it @ Coze
O @ dstacsy  18MB  tetosv  May14,2020,60405PM  Standard May 14,20 transform and train O B texiutispy 121KB  text/xpython  May14,2020,6:0408PM  Standard Me

code

gs://<BUCKET_NAME> /tix_taxi_simple/data gs://<BUCKET_NAME>/tfx_taxi_simple/modules/taxi_utils.py

Figure 4.31: Kubeflow Pipeline Folders data & file
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Now, let’s see the pipeline code and how we can generate the constructive pipeline
for TFX.

Complete the following steps:

1. Define the pipeline parameters used for the pipeline execution. The path to
the module file should be a GCS path, or a module file baked in the Docker
image used by the pipeline.

2. The path to the CSV data file, under which there should be a data.csv file.

3. The path of the pipeline root should be a GCS path.

4. Create a simple Kubeflow-based Chicago Taxi TFX pipeline.
pipeline_root: The root of the pipeline output.
csv_input_location: The location of the input data directory.
taxi_module_file: The location of the module file for Transform / Trainer.
enable_cache: Whether to enable cache or not.

5. Apipelineis a directed acyclic graph (DAG) with a containerized process on
each node, which runs on the top of argo.

A logical TFX pipeline object. After that we going to build KubeflowDagrunner
which will dump a yaml file and it will be used to deploy that in Kubeflow to run
the pipeline.

import os

from typing import Text

import kfp

import tensorflow_model_analysis as tfma

from tfx.components.evaluator.component import Evaluator

from tfx.components.example_gen.csv_example_gen.component import
CsvExampleGen

from tfx.components.example_validator.component import ExampleValidator
from tfx.components.pusher.component import Pusher

from tfx.components.schema_gen.component import SchemaGen

from tfx.components.statistics_gen.component import StatisticsGen

from tfx.components.trainer.component import Trainer

from tfx.components.transform.component import Transform

from tfx.orchestration import data_types

from tfx.orchestration import pipeline
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from tfx.orchestration.kubeflow import kubeflow_dag_runner
from tfx.utils.dsl_utils import external_input

from tfx.proto import pusher_pb2, trainer_pb2

STEP 1:

_taxi_module_file_param = data_types.RuntimeParameter(name="module-file',
default="gs://<BUCKET_NAME>/tfx_taxi_simple/modules/taxi_utils.

py',ptype=Text)

STEP 2:

_data_root_param = data_types.RuntimeParameter(name="'data-root’,
ptype=Text

default="gs://<BUCKET_NAME>//tfx_taxi_simple/data’)

STEP 3:

pipeline_root = os.path.join('gs://{{kfp-default-bucket}}"', "tfx_taxi_
simple', kfp.dsl.RUN_ID PLACEHOLDER)

STEP 4:

def create pipeline(pipeline_root: Text, csv_input location: data_
types.RuntimeParameter,

taxi_module_file: data_types.RuntimeParameter, enable_cache: bool):

examples = external input(csv_input_location)
example_gen = CsvExampleGen(input=examples)

statistics_gen = StatisticsGen(examples=example_gen.
outputs['examples'])

infer_schema = SchemaGen(statistics=statistics_gen.
outputs['statistics'],

infer_feature_shape=False)

validate_stats = ExampleValidator(statistics=statistics_gen.
outputs['statistics'], schema=infer_schema.outputs['schema’'],)

transform = Transform(examples=example_gen.outputs['examples'],
schema=infer_schema.outputs['schema'],module file=taxi_module_ file)

trainer = Trainer(module_ file=taxi module_file,
transformed_examples=transform.outputs['transformed_examples'],

schema=infer_schema.outputs['schema'],
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transform_graph=transform.outputs['transform_graph'],
train_args=trainer_pb2.TrainArgs(num_steps=10),

eval args=trainer_pb2.EvalArgs(num_steps=5))

eval config = tfma.EvalConfig(model specs=[tfma.ModelSpec(signature_
name='eval')], metrics_specs=[tfma.MetricsSpec(metrics=[tfma.
MetricConfig(class_name='ExampleCount')], thresholds={'binary_
accuracy':tfma.MetricThreshold(

value_threshold=tfma.GenericValueThreshold(lower_
bound={'value': 0.5}), change_threshold=tfma.GenericChangeThreshold(

direction=tfma.MetricDirection.HIGHER_IS_
BETTER,absolute={"value': -1e-10}))})], slicing specs=[tfma.
SlicingSpec(),tfma.SlicingSpec(feature_keys=["'trip_start_hour'])])

model_analyzer = Evaluator(examples=example_gen.outputs['examples'],

model=trainer.outputs[ 'model’],eval_config=eval config)

pusher = Pusher(model=trainer.outputs['model’'],

model_blessing=model_analyzer.outputs['blessing'], push_
destination=pusher_pb2.PushDestination(

filesystem=pusher_pb2.PushDestination.Filesystem(

base_directory=os.path.join(str(pipeline.ROOT_PARAMETER), 'model_
serving'))),)

return pipeline.Pipeline(pipeline_name="parameterized_tfx_
oss',pipeline_root=pipeline_root, components=[example_gen, statistics_
gen, infer_schema, validate_stats, transform, trainer, model _analyzer,
pusher],enable_cache=enable_cache)

if __name__ == '__main__":
enable_cache = True

pipeline = _create pipeline(pipeline_root, data_root_param, taxi_
module_file_param, enable_cache=enable_cache)

metadata_config = kubeflow_dag_runner.get_default_kubeflow _metadata_
config()

config = kubeflow_dag_runner.KubeflowDagRunnerConfig(

kubeflow_metadata_config=metadata_config,tfx_image="'gcr.io/tfx-oss-
public/tfx:0.22.0")
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kfp_runner = kubeflow_dag runner.KubeflowDagRunner (output_
filename="pipe9' + '.yaml', config=config)

kfp_runner.run(pipeline)

After running the preceding code, it will dump a yaml, as shown in the following
screenshot. Before running the file, replace the bucket name here in step1/2.

File Edit View Run Kernel Git Tabs Settings Help

+ * Cc ¢ [® Pipeline.ipynb X | B Terminal 1 X _
-/ B+ X0 » m C » Code v (@© git SubmitNotebook ...

Name -~ Last Modified I ke el

config = kubeflow_dag_runner.KubeflowDagRunnerConfig(

n kubeflow_metadata_config=metadata_config,

W Pipeline.ipynb seconds ago | tfx_image='gcr.io/tfx-oss-public/tfx:0.22.0",

)

kfp_runner = kubeflow_dag_runner.KubeflowDagRunner(
output_filename='pipeline' + '.yaml', config=config

Y pipe9.yaml 10 hours ago

kfp_runner.run(pipeline)

Figure 4.32: Kubeflow Pipeline yaml

Once we dump the yaml, complete the following steps to run the pipeline in
Kubeflow:

1. Upload the pipeline.yaml file in the Kubeflow pipeline, and click on

Create.
H {f.""" @ kubefl ichoud2 (own.. v
Pipeline Versions
Pipelines . " o . .
< Upload Pipeline or Pipeline Version
Experiments @ Create a new pipeline o Create a new pipeline version under an existing pipeline
Upload pipeline with the specified package.
! Artifacts ipel -
( pipeline J
Executions
Pipeline Description* ]
2 Choose a pipeline package file from your computer, and give the pipeline a unique name.
Archive You can also drag and drop the file here.
For expected file format, refer to Compile Pipeline Documentation.
File*
Documentation & @® Uploadafile ( pipelineyaml Choose file

) Github Repo &

o Import by url

Package Url ]

| Al Hub Samples &

Code Source (optional) 1

—

Figure 4.33: Upload pipeline.yaml
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2. Next, create an experiment if you haven’t yet; we have done so already in
our previous chapters. After that, click on Run and choose that pipeline.

+ Upload version + Cr

csvexamplegen
Figure 4.34: Create Run

3. Before starting the pipeline, run ‘choose an experiment’ and then change
the following parameters, like replacing your Bucket name; for example: tfx-
pipeline is my bucket name and tfx is my experiment name.

4. C(Click on Start.

This run will be associated with the following experiment

~ Experiment™*

TFX Choose

Run parameters

Specify parameters required by the pipeline

pipeline-root
[ gs://tfx-pipelineftfx_taxi_simple/{{workflow.uid}}

data-root
gs://ifx-pipeline/tfx_taxi_simple/data
module-file

gs://ifx-pipeline/tfx_taxi_simple/modules/taxi_utils.py

e -

Figure 4.35: Pipeline parameters



Building TFX Pipeline 171

After that, the pipeline will be ready, as shown in the following screenshot:

Experiments > Default

< @ Runof pipe9 (144b9)

Graph Run output Config

Figure 4.36: Pipeline of TFX

Each pipeline component, represented as a block, is a self-contained piece of code,
packaged as a Docker image. It contains the inputs (arguments) and outputs and
performs one step in the pipeline. In the example pipeline, shown earlier, the
transform_data step requires the arguments that are produced as an output of
the extract_data and of the generate_schema steps, and its outputs are the
dependencies for train_model.

Your ML code is wrapped into components, where you can do the following:
¢ Specify parameters — which become available to edit in the dashboard and

configurable for every run.

e Attach persistent volumes — without adding persistent volumes, we would
lose all the data if our notebook was terminated for any reason.

e Specify artifacts to be generated — graphs, tables, selected images, models —
which end up conveniently stored on the Artifact Store, inside the Kubeflow
dashboard.
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Finally, when you run the pipeline, each container will now be executed throughout
the cluster, according to the Kubernetes scheduling, taking the dependencies into
consideration. This containerized architecture makes it simple to reuse, share, or
swap out the components as your workflow changes, which tends to happen.

Gopoimants > vt

€« o Runof pipe? (144b9)

Epinants > Dulach
< @ Runof pipe9 (144b9)
Cooh Mo Conty

Groph  Runoutput  Config
X parametrisnd- oo A7 242 T

e ] Type: Model
Artifact model
sonty Properties:
Fostre - () Revese  Foature seach statstesgen ° urk g/ pipelne/t taxi_simple/édOTIS-
L [ b1 562c-4900-bea2-a06048a601ce/Tranerimodels
oy W W e e
schemagen ° \1 type_id 20
SRR S type_name: Mode!
Numerc Features (15) ° state pubished
scnomagen pit_names: None
/ \ cont  mesng  mean  sddew producer_component. Trainer
[e——— o ropot_cersus_iact
ase s wos sk / \
ropot_communty_wea
J “s 3% m2 um wamplovaidator @ transtorm.

i (]
-~ aropon iasndo
s aex s oo
trainer €
aropot lngrude
s saex  eres ooe
ourer

= pusher
Fostro - ) Revese  Foaturo search
L™ o) A

[—— R ——
S oY, Foawos: B o) 0 Soun) 8 seno)

Figure 4.37: Kubeflow pipeline visualization
After running the pipeline, you will be able to explore the results on the pipelines

interfaces, debug, tweak parameters, and run experiments by executing the pipeline
with the different parameters or data sources.
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Now, after the completion of the pipeline, run the model artifacts dumped inside
the GCS bucket. In the following screenshot, we can see the serving model directory:

<  Bucket details

tfx-pipeline
OBJECTS CONFIGURATION PERMISSIONS RETENTION LIFECYCLE
Buckets )| thx_taxi_simple > 6d011835-562c-49d0-bea2-a06048a601ce If)

UPLOAD FILES UPLOAD FOLDER CREATE FOLDER MANAGE HOLDS DELETE

= Filter Filter by object or folder name prefix

O Name Size Type Created time @ Storage class Last modified Public access @
O s CsvExampleG  — Folder - - - -
O = Evaluator/ - Folder - - - -
0O = Examplevalide  — Folder - - - -
O m Pusher - Folder - - - -
0 m SchemaGew - Folder  — - - -
O m sutisticsGeny  — Folder - - - -
0O m Trainer - Folder - - - -
0O wm Transform/ - Folder - - - -
O m modelLserving — Folder - = - -

Figure 4.38: Kubeflow pipeline Artifacts & Model in GCS

4.7 Conclusion

In this chapter, we learned how to build the TFX pipeline for the BERT Model
for production ready with the integration of Visualization Tools like Fairness,
Tensorboard, TFMA.
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We also learned how to load the BERT Model from TF-HUB and how to use it. Then,
we learned about the transformation pipeline prior to training the Model. We have
also learned how to train our BERT Model with the distributed GPU Node strategy.
Then, we created a pipeline with the TFX Components and visualized and evaluated
the blessed model with the Fairness Indicators and metrics. Then, we loaded the
server model and tested with a sample movie review and checked its sentiment
probability.

4.8 Reference

e https://www.tensorflow.org/tfx/tutorials

e https://www.tensorflow.org/responsible_ai/fairness_indicators/tutorials/
Fairness_Indicators_Example_Colab



CHAPTER 5

ML Model
Explainability &
Interpretability

n this chapter, we will work for a classification model with the hotel booking
dataset, train the TensorFlow and boosting models, and visualize the advanced
explanation of our model results with Tensorboard, Shap, and What-if products.

Structure

In this chapter, we will cover the following topics:

Problem statement

Getting started with Python library installation and data loading in Colab
Feature transformation for Training Model

LightGBM Model training

Model Analysis with advance visualization along Shap tool

TensorFlow Estimator Model Building Framework

Advance Visualization for TensorFlow Model with Tensorboard, What-IF
Tool and Fairness
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Objectives
After studying this chapter, we will be able to understand the following:

¢ The implementation of Shapely Additive explanations and how to use it’s
different approach on model evaluation.

e How to build LightGBM model building from scratch.
e The different Advance Shap plots for model analysis.
e How to build the TensorFlow Estimator Framework end to end.

e How to evaluate the Model performance with the What-if Tool alongside the
Fairness indicator.

5.1 Problem

The problem statement for this data set contains the booking information for a city
hotel and a resort hotel, which includes some information, such as when the booking
was made, length of stay, and the number of adults, children, or babies, and the
number of available parking spaces, among other things.

Have you ever wondered when the best time is in a year to book a hotel room?
Or wondered about the optimal length of stay in order to get the best daily rate?
Or, what if you wanted to predict whether or not a hotel is familiar to receive a
disproportionately high amount of special requests?

NOTE Rest all the imports I have showed in my Colab Notebook, which I gave
hyperlink of the GitHub Account of this chapter. Note: Colab platform
Python 3.x. RUN IN GOOGLE COLAB

CODE https://github.com/bpbpublications/Continuous-Machine-Learning-
with-Kubeflow/tree/main/Chapter5

5.2 General idea and concept behind Shap

The goal of SHAP is to explain the prediction of an instance x by computing the
contribution of each feature to the prediction. From the coalitional game theory, the
shapely values were computed from the SHAP explanation methods. Each feature
value instance acts as players in a coalition. How to fairly distribute the prediction
among the features, Shapley values tells us that. A player is an individual feature
value, for example, from a tabular data. A group of feature values can also be a

player.
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For example, the prediction distribution among the image pixels can also be grouped
to super pixels. One of the innovation that SHAP brought to the table is an additive
feature attribution method, a linear model that explain the Shapley value.

SHAP specifies the explanation as follows:
M
8z) = 0o+ ) /%)
j=0

SHAP describes the following three desirable properties:
e Local accuracy
M
(x) = 8() = B+ ) 0]
j=1

For &setall to1, itis the efficiency property of Shapley; only with a different
name and by using coalition vector.

f(x) = 0, + TN, 0 X] = B, () + I, 0

e Missingness
X'=0=>0=0

It tells that a missing feature gets an attribution of zero. Note that x' refers to
the coalitions, where a value of 0 represents the absence of a feature value. In
the coalition notation, all the feature values x.' of the instance to be explained
should be '1'. The presence of a 0 means that the feature value is missing.

e Consistency

Let f (z')=f(h (z'))and z(j' ) indicate that zj' = 0. For any two models, f and
f' that satisfy the following:

fo@)-f z\)=f z)-f(z,))
For all inputs z' € {0,1}", then:
0,(F',%)20, (£,%)
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The consistency property tells that if a model changes so that the marginal
contribution of a feature value increases or stays the same irrespective of
other features, then the Shapley value also increases or stays the same.

hy(z)
Coalitions »| Feature Values
_ Tell me what you want to do
Age Weight Color Age Weight Color
Instance X A o A 0.5 20 Blue
Age Weight Color Age Weight Color
Instanc{e with "absent"
Il

earures ~ o o 0.5 x Me

| |

17 Orange

Figure 5.1: Shap explanation example

For example, for a vector of (1,0,1,0), it represents that the first and third features
have coalitions. The dataset for the regression model became K sampled coalitions.
So, for the regression model, the target became the prediction for a coalition.

We need a function h _(z') = z where h :{0,1}* - RF to get the data instances which are
valid from the coalitions of the features values. So, maps to 1’s respective value to
the instance x which will we explain here. Now, for a tabular form of data, it maps
0’s to another instance values that we got from the sample data. This says that next
we will equate the "absent feature value" with the "feature value” and will replace
that by the random set of feature values from data.

Now, from figure 5.1, functions maps a valid instance to coalition. Next, the maps
feature values (1) of x to the present features.

For the absent features (0), maps the values of a randomly sampled data instance.
for tabular data treats and as independent and integrates over the marginal
distribution:

fh_(z') = E,_[f(x)]

In the game theory, SHAP has a solid theoretical foundation. The fairly distributed
predictions among the feature values compare the prediction with the average
prediction to get the contrastive explanations.
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5.3 Getting Started with Python library
Installation and Data loading in Colab

Now, we will start with the installation of the Library of Shap and Witwidget.
I'pip install shap
Successfully built shap
Installing collected packages: shap
Successfully installed shap-0.35.0
Figure 5.2: Installation of Shap
try:
import google.colab
Ipip install --upgrade witwidget
except:
pass

Reciuirement alreadir satisfied, skii)i)iné ubérade: pyi:>:‘:1rsing>=2.0.2 i

Installing collected packages: witwidget
Successfully installed witwidget-1.6.0

Figure 5.3: Installation of wit-widget

We have successfully installed both the wit-widget and the Shap visualization tools.

Now we will be importing the required libraries.

import numpy as np

import tensorflow as tf

from pprint import pprint

import lightgbm as 1gb

import shap, warnings, functools

from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.preprocessing import LabelEncoder
data=pd.read_csv("hotel bookings.csv")

data.head()

=4 hotel is_canceled lead time arrival date_year arrival date month arrival date_week_number arrival date_day of month stays_in_weekend_nights stays_in_week_

Resort
Hotel 0 342 2015 July 27 1 0

Resort
1 Hotel 0 737 2015 July 27 1 0
Resort
Hotel o 7 2015 July 27 1 o
Resort
Hotel 0 13 2015 July 27 1 0
Resort

4 Hotel o 14 2015 July 27 i o

Figure 5.4: Hotel Booking Dataset Table
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data.is_canceled.value_counts()

G o 75166
1 44224
Name: is_canceled, dtype: inté64

Figure 5.5: Target column distribution

In the preceding screenshots, we can see the value count distribution for the target
predictor column.

Now, according to our domain knowledge and understanding, we choose some
columns manually.

features = ["lead_time","arrival_date_week_number","arrival date_day_of_
month",

"stays_in_weekend_nights","stays_in_week_

nights","adults","children",

"babies","is_repeated_guest", "previous_cancellations"”,
n n

"previous_bookings_not_canceled", "agent","company",

"required_car_parking_spaces", "total_of_special requests",
"adr","hotel","arrival_date_month","meal", "market_segment",

"distribution_channel", "reserved_room_type","deposit_type", "customer_
type",'is_canceled']

Raw_Data=data[features]

5.4 Feature transformation for Training
Model

Now we will be creating some copy for our dataframe and not change the original
dataframe, so that we can use that for further analysis without intervening any
changes to that.

X = Raw_Data.drop(["is_canceled"], axis=1)
y = Raw_Data["is_canceled"]

X_display =X.copy()

y_display = y.copy()

X_new=X.copy()

Next, we will check the data types for our dataset and will do necessary transformation
for our features which is categorical.
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X.dtypes
[ lead_time inté64
arrival_date_week_number inté64
arrival_date_day_ of month int64
stays_in_weekend_nights inté64
stays_in_week_nights int64
adults int64
children float64
babies int64
is_repeated_guest int64
previous_cancellations int64
previous_bookings_not_canceled int64
agent floaté64
company floaté64
required_car_parking_spaces inté64
total_of_special_requests inté64
adr float64
hotel object
arrival_date_month object
meal object
market_segment object
distribution_channel object
reserved_room_type object
deposit_type object
customer_type object

dtype: object

Figure 5.6: Data Types for features

In the preceding screenshot, we can see the datatypes object that we need to
transform, as we don’t have any missing values in this dataset. So, we will deal with
all the categorical columns like deposit_type, meal, customer_type, etc.

Here is the function for transformation as we will use label encoder in object data
types columns and will iterate through those and replace the dataset columns.

def transform_categorical():

s = (X.dtypes == 'object")
object_cols = list(s[s].index)
print(object_cols)
for i in object_cols:

1b_make = LabelEncoder()

X[i] = 1b_make.fit_transform(X[i])
#for i in object_cols:
# X[1i] = X[i].astype(float)

return X
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X=transform_categorical()
X.head()

o
arking_spaces total of_special_requests adr hotel arrival_date_month meal market_segment distribution_channel reserved room type deposit_type customer_type

0.0 1 5 0 3 1 2 2

offlSll o o o
- © o o o
~
o
°

0
0
0
0
0

o o o wn
MNP oNDN

3 1
3 1
2 0
6 3

o @ o o«
o © o o

1
75.0 1
1
Figure 5.7: Transform Table

Now, we have transformed our dataset; next, we will split our dataset for training
and will train our model.

def data_split():
random_state = 7

X_train, X test, y train, y_test = train_test_split(X, y, test_
size=0.2, random_state=random_state)

return X_train, X_test, y_train, y test

X_train, X test, y train, y_test=data_split()

Now, we are ready for training our Model.

5.5 LightGBM Model training

LightGBM uses the histogram-based algorithm which bucket the continuous feature
(attribute) values into discrete bins. This speeds up the training and reduces the
memory usage. For further reading, please go to the following link:

https://lightgbm.readthedocs.io/en/latest/Features.html

Now, we will be creating the data preparation for LightGBM model.
d_train = lgb.Dataset(X_train, label=y_train)
d_test = lgb.Dataset(X_test, label=y_test)

random_state=7

params = {
"max_bin": 512, "learning_rate": 0.05,"boosting_type": "gbdt",
"objective"”: "binary","metric": "binary_logloss", "num_leaves": 10,
"verbose": -1, "min_data": 100, "boost_from_average": True,

"random_state": random_state
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Let’s give a brief summary for the Model Parameters:

e max_bin default = 255, type = int, constraints: max_bin > 1 so,
the maximum number of bins that feature values will bucket in, and the
small number of bins will reduce the training accuracy but it may increase
the general power (deal with over-fitting).

e boosting_type is choosing the algorithm technique traditional Gradient
Boosting Decision Tree.

e Num_leaves it is the maximum number of leaves in one tree.

So, there are many parameters which we can learn in detail from the following link:

https://lightgbm.readthedocs.io/en/latest/Parameters.html

Next, we will train our model.
model = lgb.train(params, d_train, 10000, valid_sets=[d_test], early_
stopping_rounds=50, verbose eval=1000)

[» Training until validation scores don't improve for 50 rounds.
[1000] wvalid 0's binary logloss: 0.344903
[2000] wvalid 0's binary logloss: 0.334606
[3000] wvalid 0's binary logloss: 0.32872
[4000] wvalid 0's binary_logloss: 0.325002
[5000] wvalid 0's binary logloss: 0.322382
Early stopping, best iteration is:
[5889] wvalid 0's binary logloss: 0.320531

Figure 5.8: LightGBM model Output

Next, we will visualise our results with the advanced Al technique with the help of
Shap to have a better visibility.

5.6 Model Analysis with advance
Visualization along Shap Tool

In this section, we will visualize the different patterns and analysis of our model
results. Now, we will compute the SHAP values and the SHAP interaction values for
the first 20 test observations.

explainer = shap.TreeExplainer(model)
expected_value = explainer.expected_value
if isinstance(expected_value, list):

expected_value = expected_value[1]
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print(f"Explainer expected value: {expected_value}")

select = range(20)
features = X_test.iloc[select]

features_display = X_display.loc[features.index]

with warnings.catch_warnings():
warnings.simplefilter("ignore")
shap_values = explainer.shap_values(features)[1]

shap_interaction_values = explainer.shap_interaction_
values(features)

if isinstance(shap_interaction_values, list):
shap_interaction_values = shap_interaction_values[1]

[»> Setting feature_perturbation = "tree_path_dependent" because no background data was given.
Explainer expected value: [-0.22869578]

Figure 5.9: Shap calculation Values

So, now the explainer value is -0.22; next, we see the patterns and relation analysis.

5.6.1 Basic decision plot features

Refer to the following decision plot of the 20 test observations; note that this plot
isn't informative by itself; we use it only to illustrate the primary concepts:

o The x-axis represents the model's output. In this case, the units are log odds.

e The plot is centered on the x-axis at explainer.expected_value. All the
SHAP values are relative to the model's expected value, like a linear model's
effects are relative to the intercept.

¢ The y-axis lists the model's features. By default, the features are ordered by its
descending importance. The importance is calculated over the observations
plotted. This is usually different from the importance ordering for the entire
dataset. In addition to the feature importance ordering, the decision plot
also supports the hierarchical cluster feature ordering and the user-defined
feature ordering.

e Each observation's prediction is represented by a colored line. At the top
of the plot, each line strikes the x-axis at its corresponding observation's
predicted value. This value determines the color of the line on a spectrum.
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e Moving from the bottom of the plot to the top, the SHAP values for each
feature are added to the model's base value. This shows how each feature
contributes to the overall prediction.

e At the bottom of the plot, the observations converge at explainer.
expected_value.

shap.decision_plot(expected_value, shap_values, features_display)

[ -15

deposit_type
required_car_parking_spaces
previous_cancellations
lead_time

customer_type
total_of_special_requests
agent

adr

market_segment
previous_bookings_not_canceled
arrival_date_day_of_month
arrival_date_week_number
adults
stays_in_weekend_nights
stays_in_week_nights
arrival_date_month

meal

company

is_repeated_guest

distribution_channel
-15 -10 -5 0 5 10
Model output value

Figure 5.10: SHAP Model Output Values

Now, we can see from the preceding screenshot that the expected value is at -0.22,
and at the bottom of the plot, the observations converges. Like the force plot, the
decision plot supports link="logit' to transform the log odds to probabilities.
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shap.decision_plot(expected_value, shap_values, features_display,
link="logit")

deposit_type
required_car_parking_spaces
previous_cancellations
lead_time

customer_type
total_of_special_requests
agent

adr

market_segment
previous_bookings_not_canceled
arrival_date_day_of _month
arrival_date_week_number
adults
stays_in_weekend_nights
stays_in_week_nights
arrival_date_month

meal

company

is_repeated_guest

distribution_channel

0.0 02 0.4 06 08 10
Model output value

Figure 5.11: SHAP Model Log transform output

The cumulative effect of interactions:

The decision plots support the SHAP interaction values. So, from the tree-based
models, the first-order interactions were estimated. The SHAP dependence plots
provides the interactions of the individual’s visualize, which plot a decision plot to
show the cumulative effect of the main effects and interactions with one or another
observation among the data.

5.6.2 Force Plots Analysis

The observations can be highlighted using a dotted line style. Here, we highlighted
a misclassified observation. Our naive cutoff point is zero log odds (probability 0.5).
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y_pred = (shap_values.sum(1l) + expected value) > ©
misclassified = y_pred != y_ test[:20]
shap.decision_plot(expected_value, shap_values, features_display,
link="logit"', highlight=misclassified)

0.0 0.
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required_car_parking_spaces
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total_of_special_requests
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market_segment
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stays_in_weekend_nights
stays_in_week_nights
arrival_date_month

meal

company

is_repeated_guest

distribution_channel

0.0 02 04 06 08 10
Model output value

Figure 5.12: SHAP Model Naive cut threshold graph

Let's inspect the misclassified observation by plotting it alone. When a single
observation is plotted, its corresponding feature values are displayed. Notice that
the shape of the line has changed. Why? The feature order has changed on the y-axis,
based on the feature importance for this line observation. The section on "Preserving
order and scale between plots" shows how to use the same feature order for multiple
plots.
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shap.decision_plot(expected_value, shap_values[misclassified], features_
display[misclassified],link="1logit"', highlight=0)
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Figure 5.13: SHAP Misclassified output

A force plot for the misclassified observation is shown as follows. In this case, the
decision plot and the force plot are both effective at showing how the model arrived
at its decision.

%matplotlib inline
shap.initjs()

shap.force plot(expected value, shap_values[misclassified], features_
display[misclassified],

link="logit', matplotlib=False,show=True)
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Figure 5.14: SHAP Force plot decision misclassified

From the preceding JavaScript dynamic visualization for the misclassified analysis,
we can figure out the manual interpretation by seeing those results. The focus of this
section is to build the architecture and how to play with our dataset.

5.7 TensorFlow Estimator Model
Framework Building

In this section, we will work on building the TensorFlow Estimator model and then
we will analyse the Model analysis with the Tensorboard and what-if tool. Next, we
will build the dataset for training by splitting the datasets.

X

y
from sklearn.model selection import train_test_split

Raw_Data.drop(["is_canceled"], axis=1)

Raw_Data["is_canceled"]

XTrain, xTest, yTrain, yTest = train_test split(X, y, test_size = 0.2,
random_state = 0)

XTrain['is_canceled' ]=yTrain
XTrain.reset_index(inplace=True,drop=True)

xTrain.head()

ead_time arrival date week nusber arrival date day of month stays_in weekend nights stays_in week nights adults children babies is_repeated guest previous_cancellations previous bookings not_canceled agent cospany requi
0 3 2 6 2 2 3 00 o 90 00

st E3 31 1 4 2 00
2
3

" ” 2 3 2 20

&

°

°

g
N o Bl o S
o o o o o

o
o
o
o

4 " ” 2 ° 4 2 20

Figure 5.15: Table of House Booking Dataset

Next, we will create some Utility Function which we will use for the TensorFlow
Estimator Model Building.
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Here, it will create a tf feature spec from the dataframe and columns specified.

def create_feature_spec(df, columns=None):
feature_spec = {}
if columns == None:
columns = df.columns.values.tolist()
for f in columns:
if df[f].dtype is np.dtype(np.int64):
feature_spec[f] = tf.io.FixedLenFeature(shape=(), dtype=tf.

inte4)
elif df[f].dtype is np.dtype(np.float64):
feature_spec[f] = tf.io.FixedLenFeature(shape=(), dtype=tf.
float32)
else:
feature_spec[f] = tf.io.FixedLenFeature(shape=(), dtype=tf.
string)

return feature_spec

Create simple numeric and categorical feature columns from a feature spec and a list
of columns from that spec to use. The models might perform better with some feature
engineering such as the bucketed numeric columns and hash-bucket/embedding
columns for the categorical features.

def create_feature_columns(columns, feature spec):
ret = []
for col in columns:

if feature_spec[col].dtype is tf.int64 or feature_spec[col].
dtype is tf.float32:

ret.append(tf.feature _column.numeric_column(col))
else:
ret.append(tf.feature_column.indicator_column(

tf.feature_column.categorical column_with_vocabulary
list(col, list(xTrain[col].unique()))))

return ret
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The following is an input function for providing the input to a model from
tf.Examples.

def tfexamples_input_fn(examples, feature_spec, label, mode=tf.
estimator.ModeKeys.EVAL,

num_epochs=None, batch_size=64):

def ex_generator():

for i in range(len(examples)):

yield examples[i].SerializeToString()
dataset = tf.data.Dataset.from_generator(
ex_generator, tf.dtypes.string, tf.TensorShape([]))

if mode == tf.estimator.ModeKeys.TRAIN:

dataset = dataset.shuffle(buffer_size=2 * batch_size + 1)
dataset = dataset.batch(batch_size)

dataset = dataset.map(lambda tf_example: parse_tf_example(tf_
example, label, feature_spec))

dataset = dataset.repeat(num_epochs)

return dataset

Next, we will parse Tf.Example protos into the features for the input function.

def parse_tf_example(example_proto, label, feature_spec):

parsed_features = tf.io.parse_example(serialized=example_proto,
features=feature_spec)

target = parsed_features.pop(label)

return parsed_features, target

Here, it will convert a dataframe into a list of tf.Example protos.
def df_to_examples(df, columns=None):
examples = []
if columns == None:
columns = df.columns.values.tolist()
for index, row in df.iterrows():
example = tf.train.Example()
for col in columns:
if df[col].dtype is np.dtype(np.int64):

example.features.feature[col].int64 list.value.
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append(int(row[col]))
elif df[col].dtype is np.dtype(np.float64):

example.features.feature[col].float_list.value.
append(row[col])

elif row[col] == row[col]:

example.features.feature[col].bytes_list.value.
append(row[col].encode('utf-8"'))

examples.append(example)

return examples

Next, this function converts a dataframe column into a column of 0's and 1's based
on the provided test. It is used to force the label columns to be numeric for the binary
classification using a TF estimator.

def make_label column_numeric(df, label column, test):
df[label column] = np.where(test(df[label column]), 1, ©)

The following are the steps which we will perform prior to the training:

e Specify the input columns and target predictor and set the column in the
dataset that you wish for the model to predict:

label_column = 'is_canceled’

input_features = [ ‘lead_time', 'arrival_date_week_number’,
'arrival_date_day_of _month',

"stays_in_weekend_nights', 'stays_in_week_nights’,
'adults', 'children', 'babies', 'is_repeated_guest', 'previous_
cancellations', 'previous_bookings not_canceled', 'agent',
"company', 'required_car_parking_spaces', 'total_of_special_
requests', 'adr',hotel', 'arrival _date_month', 'meal’', 'market_
segment', 'distribution_channel’, 'reserved_room_type', 'deposit_
type', 'customer_type']

# Create a list containing all input features and the label
column

features_and_labels = input_features + [label_column]
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e Convert the dataset to tf.Example protos:

examples = df_to_examples(xTrain)

¢ Create and train the linear classifier and a feature spec for the classifier:
num_steps = 2000
feature_spec = create_feature_spec(xTrain, features_and_labels)

feature_spec

{'adr': FixedLenFeature(shape=(), dtype=tf.float32, default_value=None),
‘adults': FixedLenFeature(shape=(), dtype=tf.int64, default_value=None),
'agent': FixedLenFeature(shape=(), dtype=tf.float32, default_value=None),
‘arrival_date_day_of_month': FixedLenFeature(shape=(), dtype=tf.int64, default_value=None),
‘arrival_date_month': FixedLenFeature(shape=(), dtype=tf.string, default_ value=None),
‘arrival_date_week_number': FixedLenFeature(shape=(), dtype=tf.int64, default_value=None),
'babies': FixedLenFeature(shape=(), dtype=tf.int64, default_ value=None),
‘children': FixedLenFeature(shape=(), dtype=tf.float32, default_value=None),
'company': FixedLenFeature(shape=(), dtype=tf.float32, default_value=None),
'customer_type': FixedLenFeature(shape=(), dtype=tf.string, default_value=None),
'deposit_type': FixedLenFeature(shape=(), dtype=tf.string, default_value=None),
'distribution_channel': FixedLenFeature(shape=(), dtype=tf.string, default_value=None),
'hotel': FixedLenFeature(shape=(), dtype=tf.string, default_value=None),
'is_canceled': FixedLenFeature(shape=(), dtype=tf.int64, default_value=None),
'is_repeated guest': FixedLenFeature(shape=(), dtype=tf.int64, default_value=None),
'lead_time': FixedLenFeature(shape=(), dtype=tf.int64, default_value=None),
'market_segment': FixedLenFeature(shape=(), dtype=tf.string, default_value=None),
'meal': FixedLenFeature(shape=(), dtype=tf.string, default_value=None),
'previous_bookings_not_canceled': FixedLenFeature(shape=(), dtype=tf.int64, default_value=None),
'previous_cancellations': FixedLenFeature(shape=(), dtype=tf.int64, default_value=None),
'required_car_parking_spaces': FixedLenFeature(shape=(), dtype=tf.int64, default_value=None),
'reserved_room_type': FixedLenFeature(shape=(), dtype=tf.string, default_value=None),
'stays_in_week nights': FixedLenFeature(shape=(), dtype=tf.inté64, default_value=None),
'stays_in_weekend_nights': FixedLenFeature(shape=(), dtype=tf.int64, default_value=None),
'total_of_special_requests': FixedLenFeature(shape=(), dtype=tf.int64, default_value=None)}

Figure 5.16: Feature Columns Tensors and datatypes

train_inpf = functools.partial(tfexamples_input_ fn, examples,
feature_spec, label column)

5.7.1 TensorFlow Estimator Model

Here, we will build the Model with the two estimators, Model Linear Classifier and
DNN Classifier. For further reading, check out the following link:

https://www.tensorflow.org/api_docs/python/tf/estimator
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Now, we trained the Model first with the Linear Model Classifier estimator.

classifier = tf.estimator.LinearClassifier(

feature_columns=create_feature_columns(input_features, feature_
spec))
classifier.train(train_inpf, steps=num_steps)

INFO:tensorflow:global_step/sec: 42.7867

INFO:tensorflow:loss = 0.4609873, step = 1400 (2.337 sec)
INFO:tensorflow:global_step/sec: 44.1391

INFO:tensorflow:loss = 0.3516879, step = 1500 (2.269 sec)
INFO:tensorflow:global_step/sec: 43.212

INFO:tensorflow:loss = 0.5797381, step = 1600 (2.315 sec)
INFO:tensorflow:global_step/sec: 43.3536

INFO:tensorflow:loss = 0.6372526, step = 1700 (2.305 sec)
INFO:tensorflow:global_step/sec: 42.7713

INFO:tensorflow:loss = 0.42908752, step = 1800 (2.337 sec)
INFO:tensorflow:global_step/sec: 44.9273

INFO:tensorflow:loss = 0.5124675, step = 1900 (2.227 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2000...
INFO:tensorflow:Saving checkpoints for 2000 into /tmp/tmplmg3f504/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2000...
INFO:tensorflow:Loss for final step: 0.5286524.

<tensorflow estimator.python.estimator.canned.linear.LinearClassifierV2 at 0x7fb06287£f££60>

Figure 5.17: Estimator Output Result for Linear Classifier

Next, we will train our second model DNN Classifier as follows:

#title Create and train the DNN classifier {display-mode: "form"}
num_steps_2 = 2000
classifierl = tf.estimator.DNNClassifier(

feature_columns=create_feature_columns(input_features, feature_
spec),
hidden_units=[128, 64, 32])

classifierl.train(train_inpf, steps=num_steps_2)

INFO:tensorflow:global_ step/sec: 44.8722

INFO:tensorflow:loss = 0.6890626, step = 1600 (2.227 sec)
INFO:tensorflow:global_step/sec: 45.8162

INFO:tensorflow:loss = 0.49594885, step = 1700 (2.184 sec)
INFO:tensorflow:global_step/sec: 45.3199

INFO:tensorflow:loss = 0.52540064, step = 1800 (2.206 sec)
INFO:tensorflow:global_step/sec: 43.919

INFO:tensorflow:loss = 0.5785385, step = 1900 (2.280 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2000...
INFO:tensorflow:Saving checkpoints for 2000 into /tmp/tmpdsixjgdc/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2000...
INFO:tensorflow:Loss for final step: 0.6581625.
<tensorflow_estimator.python.estimator.canned.dnn.DNNClassifierV2 at 0x7fb057f2fef0>

Figure 5.18: Estimator Output Result for DNN Classifier
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In the preceding example, we trained both our TensorFlow Estimator Model Linear
Classifier and DNN classifier; next, we will check out some cool Model evaluation
products to analyse our results.

5.8 Advance Visualization for TensorFlow
Model with Tensorboard & What-IF Tool

In this section, we will conduct the TensorFlow Model evaluation with what-if and
tensorboard tools.

5.8.1 Tensorboard

Now, we will visualize our Model results and logs in Tensorboard for the DNN
classifier.

%load_ext tensorboard
%tensorboard --logdir=/tmp/

TensorBoard SCALARS ~ GRAPHS  DISTRIBUTIONS ~ HISTOGRAMS ~ PROJECTOR INACTIVE A - O)

[ show data download links bias ~
Ignore outliers in chart scaling

Tooltip sorting method: default -

Smoothing

Horizontal Axis

BN RELATIVE  WALL

Smoothed Value Step Time Relative
401  SunMay24,21:07:37 9s

Runs

Write a regex to filter runs

O tmpimg3fsos hiddenlayer_0/fraction_of zero_values hiddenlayer_1/fraction_of zero_values hiddenlayer_2/fraction_of zero_values
© e tag: dnn/hiddenlayer_0/fraction_of_zero_values tag: dnn/hiddenlayer_1/fraction_of_zero_values tag: dnn/hiddenlayer_2/fraction_of_zero_valu

TOGGLE ALL RUNS
nmp/

Figure 5.19: DNN Estimator Model Evaluation scaler results
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Here, this Scaler Tab will tell us the model evaluation results like the accuracy, bias,
Global step, Loss and so on.

TensorBoard SCALARS ~ GRAPHS  DISTRIBUTIONS  HISTOGRAMS ~ PROJECTOR INACTIVE

Search nodes. Regexes supported. Main Graph Auxiliary Nodes ~ Functions

[3) FittoScreen

¥ Download PNG

Run(2) tmpdsixjqdc

Tag (1) Default

Upload Choose File

@ Greph
O Conceptual Graph

O Profile

_J® Trace inputs
_J® Show health pills
Color @ stucture

O Device

 Close legend.
Graph  (*= expandable)

14=e000p
|
!

Figure 5.20: DNN Estimator Model Evaluation graphs

The preceding screenshot shows us the model graphs and computation of matrix
multiplication in tensors in a graphical visualisation.

TensorBoard SCALARS ~ GRAPHS  DISTRIBUTIONS  HISTOGRAMS  PROJECTOR INACTIVE - C * @
Horizontal axis QFilter tags (regular expressions supported)
Ul RELATIVE  WALL
dnn an
Runs dnn/hiddenlayer_0/activation dnn/hiddenlayer_1/activation dnn/hiddenlayer_2/activation
Write a regex to filter runs
O tmpimg3fsod
O tmpdsixjqde
TOGGLE ALL RUNS
1mp/

Figure 5.21: DNN Estimator Model Layer weights
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In this preceding model, the layer activation function and weights are projected in
dense plots in the distribution tab.

TensorBoard SCALARS ~ GRAPHS  DISTRIBUTIONS ~ HISTOGRAMS  PROJECTOR INACTIVE MR - O

Histogram mode Q_ Filter tags (regular expressions supported)

OVERLAY
dnn an
O e dnn/hiddenlayer_0/activation dnn/hiddenlayer_1/activation dnn/hiddenlayer_2/activation
STEP RELATIVE WALL
§ |

Runs ¢

w0 =
Write a regex to filter runs 800 =

1200
O tmpimg3fso4 1000
O tmpdsixjade 2 & 00 140 0 % s

TOGGLE ALL RUNS o

mp/ dnn/logits/activation

Figure 5.22: DNN Estimator Model Histograms

Here, the frequency in epochs at which the activation will compute the histograms
for the layers of the model is shown in the HISTOGRAMS tab.

5.8.2 What-If Tool

Now, we will prepare the test dataset with the Model evaluation before the
deployment of how the Model is performing.

xTest['is_canceled']=yTest

xTest.reset_index(inplace=True,drop=True)

Next, we will import our library and transform or pre-process our test dataset
with the help of our util function df_to_examples, and set the pixel and height of
dynamic Visualization.

# title Invoke What-If Tool for test data and the trained models
{display-mode: "form"}

num_datapoints = 2000
tool height_in_px = 1000

from witwidget.notebook.visualization import WitConfigBuilder

from witwidget.notebook.visualization import WitWidget

# Load up the test dataset
test_examples = df_to_examples(xTest[:2000])
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Next, set up the tool with the test examples and the trained classifier for the what-if
visualization.

config_builder = WitConfigBuilder(test_examples).set_estimator_and_
feature_spec(

classifier, feature_spec).set_compare_estimator_and_feature_spec(
classifierl, feature_spec).set_label vocab(['Check-Out', 'Canceled'])

a = WitWidget(config_builder, height=tool height in_px)
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Figure 5.23: Dynamic Datapoint editor for prediction dataset

Now, the preceding screenshot shows the dynamic datapoint editor and all its
information and we can play around to check our data analysis.

~ | Explore overall performance O
Foture Vaive Count Model Threshoid @ Faise Postves (%)

- Aigstaponts 200 1 -

‘cost ratowilrovet i sratogy o Custom thresholds: Prscun puscnate
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- 215% 4%0) T8S% (1570)

@ Cusom preshots ©

Threshold TPR FPR Model

Figure 5.24: Performance and fairness for all features
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Next, from the tab in the Performance and Fairness, we can have a look at the model
evaluation and compare the study between the two classifier models and its PR
curve and ROC with the Confusion Matrix.

~  Custom thresholds for 2 values of hotel © Count
Foato Vo ot Tresrad © FusoPostves (%) Fata Nogates () J—— "
pS— 1550 —e 5 s e - o
EANLIAL o 10 0 e o000
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i E . . lao% (39 851% (1326)
H v e -
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Figure 5.25: Multi-slicing ROC/PR curve for two features

We can slice the datapoints and create some buckets to see the interdependent
feature’s evaluation. In the preceding screenshot, we used the multi-slicing strategy,
its analysis on the two features, and its definition on the Confusion matrix and

Fairness stud.
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Figure 5.26: Features Statistics of Categorical and Numerical
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At last, in the preceding screenshot, we can see the feature distribution for both the
numerical and the categorical values and its statistical nature and behaviour.

5.9 Conclusion

In this chapter, we learned about the end-to-end advance visualization for our
TensorFlow model evaluation with the various tools like Tensorboard and what-if.

We also learned how to build the advance Boosting algorithm LightGBM and use
the model endpoint to work on the feature analysis with the advance Visualization
technique to explain the decision plots for our Model, like Feature plot, summary
plots, Expected Shap plots and Misclassified plots, and so on. Furthermore, we have
built a TensorFlow estimator models, like the DNN Classifier and visualized our
Dense layers and evaluated the histogram and Logs with Tensorboard. We also
learned how to use the what-if tool to visualise the dynamic comparative study
between the two TensorFlow models prior to the deployment on the test data, which
includes the Datapoint editor, Performance with Fairness (ROC Curve, Confusion
matrix, and so on), and finally the feature distribution analysis tab.

5.10 References

e https://shap.readthedocs.io/en/latest/example_notebooks/plots/decision_
plot.html

e https://christophm.github.io/interpretable-ml-book/preface-by-the-
author.html

e https://www.tensorflow.org/tutorials/estimator/premade
e https://pair-code.github.io/what-if-tool/
e https://www.tensorflow.org/tensorboard/get_started

e https://lightgbm.readthedocs.io/en/latest/Features.html



CHAPTER 6

Building Weights &
Biases Pipeline
Development

n this chapter, we will build an end-to-end LightGBM Model framework, and

will monitor the model performance in the Weight & Biases (Wandb) tool. Inside
Weights & Biases, we will see the live model RMSE graphs and parallel coordinates’
hyper parameter performance graphs for each iteration. Next, we will deploy the
model with the KF serving in our Kubernetes Cluster inside Google Cloud Platform.
Then, we will be serving model endpoint which will be used for prediction and
monitored in the Grafana Dashboard, such as Model Rate request with respect to the
time and CPU and GPU consumption.

Structure

In this chapter, we will cover the following topics:
e Problem statement
e Setup of project requirements in GCP & Wandb
¢ Introduction on the Weight & Biases usage
e Modelling and training the LightGBM Model for Equity Stocks Data
e Serving the Model with KF Serving in Kubernetes Cluster

¢ Monitoring the Performance with Grafana Dashboard
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Objectives
After studying this chapter, we will be able to understand the following:
e How to set use Docker and Kubernetes.

e How to build the individual pipeline components like training and model
evaluation with Hyperparameter in the Weights & Biases tool.

e How to serve the Model with KF serving and predict the model request and
monitor with the Grafana Dashboard.

¢ How to use Kubernetes and many other Google Cloud Platform to leverage
the power of Machine learning with DevOps Knowledge.

6.1 Problem statement

The data is cleaned, regularized, and encrypted in global equity data. The first 21
columns (featurel - feature21) are features, and target is the binary class you're
trying to predict.

Intheprovided training_data, eachid correspondstoastock with asetof obfuscated
features. The target represents future performance. The rows are grouped into eras
that represent different points in time. Your goal is to train a machine learning model
to predict the target, given new features, and we will tell whether the equity is good
or bad. Let’s take a glimpse at the dataset:

featurel feature3 0 1 featurel2 featureld featurel4 featurel5 feature:

0 0.137662 0445825 0.471079 0279196 0.275892 0.861967 0.305975 0.222414  0.893704 0.475781 0.071068 0.640546 0.024044 0.703299 0.128572 0.0834
1 0651766 0.242053 0.720764 0.784000 0.685828 0.345841  0.038447 0.326108  0.760536 0.741738 0.741064 0.607355 0.544590 0.449178 0.547613 0.8631

Figure 6.1: Stocks feature data

NOTE Rest all the imports I have showed in my Colab Notebook, for which the
hyperlink of GitHub Account of this chapter is given below. Note Colab
platform Python 3.x. RUN IN GOOGLE COLAB

CODE https://github.com/bpbpublications/Continuous-Machine-Learning-
with-Kubeflow/tree/main/Chapter6

6.2 Setup of project requirements in GCP
& Wandb

Prerequisites: You must have an active GCP account, and while you practice this
chapter, it might charge for running the Kubernetes cluster. I am running all the
codes in MacOS.
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I think some basic Kubernetes and Docker knowledge is a must.

6.2.1 Kubeflow Cluster in GCP and Docker
setup

We have already deployed Kubeflow in the Kubernetes Cluster inside the Google
Cloud Platform and installed the Docker in Local in previous chapters.

6.2.2 Kaggle API setup for downloading data

In this section, we will see how to get the Kaggle API, and use that to download the
data directly from the Kaggle website. So, a user must have a Kaggle account; if not,
please create an account by clicking on the following link:

https://www.kaggle.com/
Kaggle competions oasets Coto  DicussiorsCouser o Q s o QD

Start with more than
a blinking cursor

Register with Email

Inside Kaggle you'll find all the code & data you need to do your data science work: Use over
50,000 public datasets and 400,000 public notebooks to conquer any analysis in no time.

Figure 6.2: Kaggle website

¢ Installing Kaggle API:

You can run pip install Kaggle to install the API You might need to run
pip install --user Kaggle on Linux or Mac if you are encountering
issues with the installation.

https://github.com/Kaggle/kaggle-api

e Setting up API Key:

Now, go to your Kaggle account tab https://www.kaggle.com/<username>/
account and click on ‘Create API Token’. A file named kaggle.json will
be downloaded.



204 Continuous Machine Learning with Kubeflow

Next, move the file into the ~/.kaggle/ folder in Mac or Linux and to C:\
Users\.kaggle\ for Windows.

Alternatively, you can populate the KAGGLE_USERNAME and KAGGLE_KEY
environment variables with the values from kaggle.json to get the API to
authenticate. Here, we will be using the Google Colab for training the model;
now we will upload the Kaggle.json there.

Y
Phone Verification
ﬁ Verified
<>
@ Email Preferences
Your email preferences can now be controlled on the Notification settings page.
©
@ API|
v Using Kaggle's beta API, you can interact with Competitions and Datasets to download data, make submissions, and more via the

command line. Read the docs

Create New API Token Expire API Token

Figure 6.3: Kaggle Account API

In this preceding screenshot, you can see that after login, you can click on Create
New API Token and it will download a Kaggle.json, as shown in the following
screenshot:

| kaggle.json

<) kaggle.json

{"username":"aniruddhachoudhury","key":"dnei39hdkdbksbkdbdkd7da"}

Figure 6.4: Kaggle Json API key

Keep this json file, which we will be using later.

6.2.3 Weights & Biases API Key

Weights & Biases will help you keep track of your machine learning projects. You
can use this tool to log the hyperparameters and output metrics from your runs,
then visualize and compare the results, and quickly share the findings with your
colleagues. The following is the website for Weights & Biases:
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Developer tools for machine learning

Experiment tracking, model optimization, and dataset versioning

Request a demo

Central dashboard Central dashboard
A system of record for your model results
Fast integration
Add a few lines to your script, and each time you train a new version of your

model, you'll see a new experiment stream live to your dashboard.
Collaborative reports

Sweeps ]
Reproducible models

System metrics

Figure 6.5: Weights & Biases Website

It offers the following Framework and Integration in the On premise and Cloud
Setup:

MODULAR TOOLS

experiment dataset model collaboration + production
tracking versioning optimization reproducibility monitoring
Dashboard Artifacts Sweeps Reports

FRAMEWORK AGNOSTIC

- .

Jupyter fast.ai | W
Sl © learn 1ast.al |jgyGayv  XGBoost
Q

Jupyter PyTorch TensorFlow Keras Scikit fast.ai LightGBM XGBoost

ENVIRONMENT AGNOSTIC

e | WS A €Y

private cloud
AWS Azure Google Cloud Kubernetes

Figure 6.6: Framework and Cloud Support
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Next, let’s see how to create an API; so a user must have an account or they can
create an account by clicking on the following link: https://docs.wandb.com/

Next, go to the user settings and create an API and copy and paste it somewhere in
the notes.

€ - C (O @ app.wandb.ai/settings

N I YT YV M e

Events Email Slack
Run finished
Run crashed after minutes ~

Configure a Slack integration so we can send you alerts.

Connect Slack

Personal GitHub integration

Connect a personal GitHub for submitting benchmark runs.

Connect GitHub

APl keys

A abdabB3ed7545b9007e5f77eeb681ae530c0376c (L

New key

Claimed Accounts

Claim your anonymous accounts to assume ownership of all their projects and runs.

AP| key of an anonymous account Claim

Figure 6.7: Wandb User settings for API

The preceding screenshot shows the API Key, which we will use later for the
Integration of the Machine Learning Training Logs and Evaluation graphs.

6.3 Introduction on how to use Weights &
Biases

So, What-if offers some features, which are as follows:

1. Dashboard: It helps to track the experiments and visualize our training
results.

2. Reports: It saves and shares reproducible findings.

3. Sweeps: It optimizes the models with the hyperparameter tuning.
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4. Artifacts: Dataset and model versioning, pipeline tracking.

Now, install our library in an environment using Python 3, run the following
command pip install wandb, and then run the command wandb login.

wandb: You can fihd your API ke;'l in your Erowser here: https://app.wandb.ai/authorize
wandb: Paste an API key from your profile and hit enter:

Figure 6.8: Wandb Login from CLI

Modify your training script: We can add a few lines to our script to log the
hyperparameters and evaluation metrics.

Initialize Wandb: Next, Initialize Wandb at the beginning of your script,
right after the imports.

# Inside my model training code
import wandb
wandb.init(project="my-project")

The preceding command will automatically create a project for you, if it
doesn't exist in the Home. It will capture each run of the preceding training
script, and sync to that project, named "my-project".

Declare Hyperparameters:
Here, it's easy to save the hyperparameters with the wandb . config object.

wandb.config.learningrate = 0.2

wandb.config.hidden_layer_size = 64

Log Metrics:

Wandb offers to log the metrics for our training loss or accuracy as your
model trains (in many cases, we provide the framework-specific defaults). It
logs more complicated output or results like histograms, graphs, or images
with wandb. log.

def train_logs():
for epoch in range(20):
loss = ©
wandb.log({'epoch': epoch, 'loss': loss})
Save Files:

Anything which was saved in thewandb. run.dir directory, will be uploaded
to Weight & Biases and saved along with our run when it completes training,
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which is convenient for saving the literal Weights & Biases for our trained
model. By default, this will save to a new subfolder for the files associated
with your run, created in wandb.run.dir (which is . /wandb by default).

wandb.save("mymodel.h5")

We can pass the full path to the Keras or Tensorflow model APL

model.save(os.path.join(wandb.run.dir, "mymodel.h5"))

Awesome! Next, run your script normally and it will sync the logs in a
backend process. This will be your terminal output, metrics, logs and files,
and will be synced to the cloud, alongside the record of our git state if we are
running from a git repo.

Training Loss vs. Validation Loss (10 epochs of SWAV training) Training Accuracy vs. Validation Accuracy (10 epochs of SWAV training)

= LE-10-with-augmentation loss == LE-10-with-augmentation val_loss = LE-10-with-augmentation acc == LE-10-with-augmentation val_acc
— LE-10-without-augmentation loss == LE-10-without-augmentation val_loss — LE-10-without-augmentation acc == LE-10-without-augmentation val_acc

05
0.4

03

Step

Figure 6.9: Sample Capture of Training Logs

In the preceding screenshot, you can see in one sample Graph of training and
Validation accuracy.

6.4 Modeling and training the LightGBM
Model for Equity Data

The dataset for equity has 21 features which are time-related. We have 96320 rows of
data structure which will be used by your model evaluation. Your goal is to predict
the test and live data. Here, the features in the dataset are regularized; there are no
categorical features.

The features and the target variable talks about the encrypted stock market data and
the target variable is converted into a positive trend of hedge fund versus negative.
No domain finance knowledge is required.



Building Weights & Biases Pipeline Development 209

6.4.1 Get the latest version of Weights & Biases
Dependency & Kaggle Setup

Here, we will run the entire platform in Colab.

(o

Figure 6.10: Colab Logo

Now, run the following command in Colab:
from tqdm import tqdm

for i in tqgdm(range(2)):

Ipip install -q -r requirements.txt --upgrade
> 100% || 2/2 [00:05<00:00, 2.94s/it]

Figure 6.11: Library Installation Output

The following is to run the requirements.txt which contains the library:

[ NON | requirements.txt
Wandb
kaggale

Figure 6.12: Python Library Name

Next, import the following library for the Notebook:
import wandb

import logging

import kaggle

import os

import numpy as np

import random as rn

import pandas as pd

import seaborn as sns

import lightgbm as lgb

import matplotlib.pyplot as plt

from scipy.stats import spearmanr
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from sklearn.metrics import mean_absolute_error, mean_squared_error
from wandb.lightgbm import wandb_callback

from sklearn.model selection import train_test split
import warnings

warnings.filterwarnings("ignore");

import plotly.offline as py
py.init_notebook_mode(connected=True)

import plotly.graph_objs as go

import plotly.tools as tls

import plotly.figure_factory as ff

# Set seed for reproducability

seed = 1234

rn.seed(seed)

np.random.seed(seed)

os.environ[ 'PYTHONHASHSEED'] = str(seed)

# Surpress Pandas warnings
pd.set_option('chained_assignment', None)

Now, we have imported the required library; next, let’s see how to setup the Wandb
API, which we created earlier, so that we can save our runs in the Wandb project.

6.4.2 Weights & Biases Dependency & Kaggle
API Setup

Copy the key and paste it in the Notebook and store the object in WANDB_KEY as a
string and run the Wandb login with API.

Weights and Biases:

# Obfuscated WANDB API Key
WANDB_KEY = "ab@ab83e47545b9007e5f77eeb681ae530c0376¢"
!lwandb login ab@ab83e47545b9007e5f77eeb681ae530c0376¢

[»> wandb: Appending key for api.wandb.ai to your netrc file: /root/.netrc
Successfully logged in to Weights & Biases!

Figure 6.13: Wandb Configuration Message
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The following is the successful message for the Wandb, and it configured our
connection.

Kaggle API Setup:

Now, upload the Kaggle.json file in the Colab, and it will be saved, by default, in
the contents folder in Colab. The following is the screenshot for the folder in Colab.

& Wandb_LightGBM.ipynb

i
File Edit View Insert Runtime Tools
= Files X
£y E'c =
5
= » @ sample_data
» @@ wandb

B kaggle.json

B 'gb_classifier.txt

‘ numerai_training_data.csv
B requirements.txt

Figure 6.14: Folder structure in Colab

Move this file into ~/ .kaggle/, which is inside the root folder in the environment.
This is required for authentication and Chmod will give the required permission to
have that key to be used everywhere in the Notebook.

I'mkdir ~/.kaggle

Itouch ~/.kaggle/kaggle.json

import json

api=json.load(open("/content/kaggle.json"))

with open('/root/.kaggle/kaggle.json', 'w') as file:
json.dump(api, file)

Ichmod 600 ~/.kaggle/kaggle.json

In the preceding command, we created an empty json file Kaggle.json inside
root./kaggle and copied the content from /content/kaggle.json and gave the
required access with chmod and changed the access permissions of the file system
objects.
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Next, we will download the data from Kaggle. The following is the screenshot of the
data which we will use:

@ kaggle. i/encrypt k-market-data-fi o

Encrypted Stock Market Data from Numerai

~100,000 rows of cleaned, regularized and encrypted equities data.

[] Numerai « updated ago
Data Tasks Notebooks (8) Discussion (1) Activity Metadata Download (35 MB) H

I8 Copy APl command

</> New Starter Notebook

& Usability 71 & License CCO: Public Domain @ Tags business, computer scien
 Social share...
A Report issue...
Description
Context

This is a sample of the training data used in the Numerai machine learning competition. https://numer.ai/about

Content

The data is cleaned, regularized and encrypted global equity data. The first 21 columns (feature? - feature21) are features, and target is the binary class you're trying
to predict.

Goal

We want to see what the Kaggle community will produce with this dataset using Kernels.

Figure 6.15: Kaggle Dataset URL

Click on the right side, copy the API command and paste it in a cell copy numerai/
encrypted-stock-market-data-from-numerai

kaggle datasets download -d numerai/encrypted—stock—market—data—from—numeraj.l

Figure 6.16: API of Data

The following is the format for Kaggle APL run the following commands which
unzip that file as the numerai_training.csv file:

Signature: filename: [owner]/[dataset-name]

dataset_download_file(dataset, file_name, path=None, force=False,
quiet=True)

logging.info(kaggle.api.authenticate())

kaggle.api.dataset_download_files('numerai/encrypted-stock-market-data-
from-numerai', path='/content', unzip=True)

logging.info("Downloaded Data")
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6.4.3 Loading and Extracting of Data
Now, we will load the data with the Pandas library.

data=pd.read_csv("/content/numerai_training_data.csv")
import numpy as np

data[ 'target']=np.random.uniform(0,1,size=data.shape[0])
data.head(5)

iture? featurell featurel2 featurel3 featureld featurel5 featurelé featurel7 featurel8 featurel9 feature20 feature2l target

305975 0.222414  0.893704 0.475781 0.071068 0.640546 0.024044 0.703299 0.128572 0.083492 0.639390 0.299443 0.055273 0.000308 0.784610 0.191519
138447  0.326108  0.760536 0.741738 0.741064 0.607355 0.544590 0.449178 0.547613 0.863165 0.832559 0.682060 0.009634 0.829331 0.969233 0.622109
592084  0.439066  0.442903 0.404538 0.368161 0.472579 0.796002 0.361473 0.395270 0.390462 0.086536 0.578854 0.603345 0.265151 0.052699 0.437728
443542 0.728365 0.573129 0.603860 0.543855 0.679266 0.190886 0.553522 0.403684 0.827155 0.102396 0.323720 0.656344 0.704652 0.152971 0.785359
747788  0.975318  0.338439 0.406945 0.552693 0.436036 0.440494 0.141096 0.613245 0.508625 0.315753 0.397510 0.111777 0.473443 0.259582 0.779976

Figure 6.17: Features Table

Next, we will prepare the data for training; let’s split the data with 60/20/20
percentage for training, validation, and test respectively.

train, test = train_test_split(data, test_size=0.2)
train, val = train_test_split(train, test_size=0.2)
print(len(train), 'train examples')

print(len(val), 'validation examples')

print(len(test), 'test examples')

61644 train examples
15412 validation examples
19264 test examples

Figure 6.18: Train-Test split size

Now that we have spit our data, let's do some EDA.

6.4.4 Exploratory Data Analysis

Let’s see the correlation matrix among the encrypted data with respect to the target
columns. The term positive correlation depicts that both the features will move in
the same direction, and negative correlation depicts that when one of the variable’s
value increases, the other variable’s values decrease. So, correlation with neural/
zero depicts that the variables are not related.

def correlation_plot(data):
correlation = data.corr()

matrix_cols = correlation.columns.tolist()
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corr_array = np.array(correlation)
trace = go.Heatmap(z = corr_array,x = matrix_cols,y = matrix_
cols,xgap = 2,ygap = 2, colorscale='Plasma',colorbar = dict())
layout = go.lLayout(dict(title = 'Correlation Matrix for variables',
autosize = False, height = 900,width = 1000,margin = dict(r =0 ,1
210, t = 25,b = 210), yaxis = dict(tickfont = dict(size = 9)),xaxis

dict(tickfont = dict(size = 9))))
fig = go.Figure(data = [trace],layout = layout)
py.iplot(fig)

Now, let’s check the plot on the following page.

e .. .. .

0.8

feegie . ... ...

featl“rez- -.........- -.-. --.

G 8 9
9% Uy t‘ t 1‘ 9y t t‘ t‘ g
Ungy gy gy "u "z/ u,,s U, Mgy Clre, %‘Ja Ly, o7, Q”'@Je ,.81 l/ U N @16 “u,.s]) "u,.% q”‘tvg "’1"3 g, e, log

Figure 6.19: Correlation Plot

So, here the features are having a remarkably low correlation to the target variable.
Even the most correlated features only have around 1.5% correlation with the target
variable.
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Next, we have noticed that the importance of features may change over time. So, by
selecting a minimum number of features, we risk having a high "feature exposure." So,
the feature exposure can be quantified as a standard deviation of all your predictions'
correlations with respect to each and every feature. We can mitigate the risk by using
the dimensionality reduction techniques, such as Principal Component Analysis
(PCA) to integrate almost all the features into your model.

Next, let’s see the Distribution of the Train, Test, and Validation Data.

feats = [f for f in train.columns if "feature" in f]
plt.figure(figsize=(16, 5))
sns.distplot(pd.DataFrame(train[feats].std()), bins=50)
sns.distplot(pd.DataFrame(val[feats].std()), bins=50)
sns.distplot(pd.DataFrame(test[feats].std()), bins=50)
plt.legend(["Train", "val", "Test"], fontsize=20)

plt.title("Standard deviations over all features in the data",
fontsize=20);

Standard deviations over all features in the data
600

L Train
500 Va|
Test

300

| [ |

0 1
0.275 0.280 0.285 0.290 0.295 0.300 0.305

100 I

Figure 6.20: Distribution Plot

Now, we can see that all the train, validation, and test dataset’s standard deviation
among the features are widely spread in the breadth in its normal distribution,
between ranges 0.275 and 0.295.

feature_list = list(train.columns)
feature_list.remove("target")

Now, graph the feature column names inside a list feature_list for further
operations.

6.4.4 Utility Metrics Function

We will evaluate our training LightGBM Regressor with the following three metrics:
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Spearman Correlation: Statistically, this method will quantify the degree
to rank the variables which are associated by a monotonic function, that
represents as an increasing or decreasing relationship behaviour. The
method does a hypothesis test, and tells that the samples are uncorrelated
(fail to reject HO). The function next takes the two real-valued data as args
and returns both the correlation coefficient in the range between -1 and 1,
and also the p-value which will interpret the coefficient significance.

For a sample of size n, the n raw scores X;, ¥; are converted to ranks rgy, , I8y, , and r, is computed as

Ts

where

cov(rgy,gy)

= Prgyrgy = -

Orgx Trgy

p denotes the usual Pearson correlation coefficient, but applied to the rank variables,

cov(rg ¥ rgy) is the covariance of the rank variables,
Orgy and oy, are the standard deviations of the rank variables.

Only if all nranks are distinct integers, it can be computed using the popular formula

rs=1-—

where

oy

n(n? —1)’

d; = rg(X;) — rg(Y;) is the difference between the two ranks of each observation,

nis the number of observations.

Figure 6.21: Spearman Correlation (Source Credit: Wiki)

Mean Absolute Error: The average of the absolute differences between the
actual and predictions values. It tells how wrong the predictions were. It also
measures the magnitude error, and gives an idea direction, so a value of 0
indicates no error or perfect predictions.

Root Mean Square Error: The R*2 (or R Squared) metric talks about an
indication of the goodness of fit for our predictions with respect to the
original values. In statistical terminology, it is also known as the coefficient
of determination. Its value lies in between 0 and 1 for no-fit and perfect fit
respectively.

def evaluate(df: pd.DataFrame) -> tuple:
def _score(sub_df: pd.DataFrame) -> np.float32:

Calculates Spearman correlation

return spearmanr(sub_df["target"], sub_df["prediction"])

[e]
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mae = mean_absolute_error(df["target"], df["prediction"]).
round(4)

RMSE=mean_squared_error(df["target"], df["prediction"])** 0.5
spearman=spearmanr(df["target"], df["prediction"])[0]

# Display metrics

print(f"Spearman Correlation: {spearman}")

print (f"RMSE Score: {RMSE}")

print(f"Mean Absolute Error (MAE): {mae}")

return spearman,RMSE, mae

So, we will use the preceding function in our Model of LightGBM.

6.4.5 Training model (using Weights & Biases)
with LightGBM Framework

In this section, let’s see how we will build our LightGBM framework with Weights
& Biases.

How does LightGBM work?

LightGBM uses the histogram-based algorithm, which buckets the continuous
feature (attribute) values into discrete bins. This speeds up the training and reduces
the memory usage.

LightGBM
Framework
el —lp — el
Level-wise Tree Leaf-wise (Best-first)
Growth Tree Growth

Figure 6.22: Light GBM Architecture

LightGBM grows its trees in a leaf-wise manner for the best-first. Next, it takes the
leaf with the maximum delta loss for growing. The leaf-wise algorithms tend to
achieve lower loss than the level-wise algorithms by holding the leaf fixed.
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The leaf-wise algorithm may cause over-fitting with a small set of data, so Light GBM
includes a parameter to limit the tree depth which is max_depth. However, the
leaf-wise trees still grow even when the max_depth is specified.

The advantages of the histogram-based algorithms include the following:
¢ Reduced cost of calculating the gain for each split.
e Uses histogram subtraction for further speedup.
¢ Reduces memory usage.
e Reduces communication cost for parallel learning.
For further reading, please go to the following link:
https://lightgbm.readthedocs.io/en/latest/Features.html
Sweeps:

We will train the LightGBM model to get a first good model, and then we will use
Weights & Biases to do the hyperparameter sweep. Here, in this example, we will
do a grid search for the LightGBM Framework algorithm over some of the most
important hyperparameters. First, we will define the configuration of the sweep.

The common use cases are as follows:

1. Explore: It efficiently discovers the promising region’s sample space of
hyperparameter combinations; nex,t it builds an intuition about your model.

2. Optimize: It helps to find the set of hyperparameter’s optimal performance
for our model.

3. K-fold cross validation: Here's a brief example below of k-fold cross
validation with W&B Sweeps.

Approach:

1. Add Wandb: Write a couple of lines of code to log the hyperparameters and
evaluation output metrics in our Python script.

2. Write config: Next, for the sweep over, we will define the variables and
ranges as well. We will choose a search strategy — it supports random, grid,
and Bayesian search, alongside early stopping.

3. Initialize sweep: Now, start the sweep server. It hosts the central controller
and will coordinate between the multiple agents which will execute the
sweep.
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WANDB BACKEND MACHINES

YOUR MACHINES

Figure 6.23: Wandb Sweep Architecture

4. Launch agent: To use the train models in the sweep, run the command on
each machine, then the agents ask the backend central sweep server about
what hyperparameters to try next, and it will execute the runs.

5. Visualize results: Click on the link, which will be generated and open our
live dashboard to see all our results in one central place. Check the following
link for configuration: https://docs.wandb.com/sweeps/configuration

Run the following configuration in our notebook:

# Configuration for hyperparameter sweep
sweep_config = {
'method’': 'grid’,
"metric': {
'name’': 'mse’,
'goal': 'minimize' },
'parameters’': {
"num_leaves": {'values': [30, 40, 50]},
"max_depth": {'values': [4, 5, 6, 7]},
"learning_rate": {'values': [0.1, 0.05, 0.01]},
"bagging freq": {'values': [7]},
"bagging fraction": {'values': [0.6, 0.7, 0.8]},
"feature_fraction": {'values': [0.85, 0.75, 0.65]},})
sweep_id = wandb.sweep(sweep_config, project="simpletransformers")

[> Create sweep with ID: d3b061m9

Figure 6.24: Sweep Configuration Link
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Let’s break the preceding configuration for the sweep metric method and also we
will talk about LightGBM parameters.
Metric:

Here, specify the metric to optimize. This metric will log explicitly to Wandb while
in our training script. In this example, we want to minimize the validation loss for
our LightGBM model:

name: Name of the metric to optimize  goal: minimize or maximize (Default is minimize)
Method:
Next, we will specify the search strategy from the grid, random search, and bayes:

e Grid: It iterates over all the possible combinations to find the parameter
values.

e Random: It chooses the random sets of values.

¢ Bayes: It uses a gaussian process to model our function and then chooses
the parameters which will optimize the probability of improvement into our
model. It is also called Bayesian Optimization.

Parameters:

Next, check out the following links for the parameter’s description:
https://lightgbm.readthedocs.io/en/latest/Parameters.html

The last code line from the preceding sweep_id will store the project name and
configuration setup which we will be providing during LightGBM Model Training.

e Prepare Data for LightGBM:

Now, we will be creating the data preparation for the LightGBM model.
dtrain = lgb.Dataset(train[feature_list], label=train["target"])
dvalid = 1lgb.Dataset(val[feature_list], label=val["target"])
watchlist = [dtrain, dvalid]

¢ Train the Model Integration Wandb:

Next, let’s see how to build the LightGBM regressor and build a train()
method as a utility function:
def _train():
# Configure and train model
wandb.init(name="LightGBM_sweep")

1gbm_config = {"num_leaves"”: wandb.config.num_leaves, "max_
depth"”: wandb.config.max_depth, "learning rate": wandb.config.
learning_rate, "bagging freq": wandb.config.bagging freq,
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"bagging fraction": wandb.config.bagging fraction, "feature_
fraction": wandb.config.feature_fraction, "metric": 'mse’,
"random_state": seed }

lgbm_model = lgb.train(lgbm_config, train_
set=dtrain, num_boost_round=750, valid_sets=watchlist,
callbacks=[wandb_callback()], verbose_eval=100, early stopping_
rounds=50)

# Create predictions for evaluation

val preds = 1lgbm _model.predict(val[feature list], num_
iteration=1gbm_model.best_iteration)

print(val_preds)
print(type(val_preds))

val.loc[:, "prediction"] = val_preds
# W&B log metrics

spearman,RMSE, mae = evaluate(val)

wandb.log({"Spearman": spearman, "RMSE": RMSE, "Mean Absolute
Error": mae})

#lgb_path = '/content/'
save_to = "/content/lgb_classifier.txt"

lgbm_model.save_model(save_to)

Now, let’s break down the preceding train() method:

We will be initiating the training of our model in Wandb with the name
LightGBM _sweep which will save all the runs in that name.

Th

(@) | Runs (311) =]
[";‘ swee K I
i = B8 o

9] < Name (308 visualized
@® @ LightGBM_sweep
@® @ LightGBM_sweep
S @® @ LightGBM_sweep
® @ LightGBM_sweep

@ @ LightGBM_sweep

Figure 6.25: Run Name in Wandb
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So, here we will set wandb. config in our script to save our training config,
hyperparameters, and input the settings like the dataset name or model type,
and any other independent variables or parameters, such as the learning rate,
max depth, and so on, for the LightGBM model experiments. It is very useful
for analyzing our experiments and reproducing our work for the future. We
will be able to group by the configuration values in our web interface and
compare the different runs and see how these affect the output. Let’s set the
object in 1gbm_config.

Format: wandb. config. [PARAMETER]

Next, we will train our LightGBM model with early_stopping_rounds
which will stop the training if one metric of one validation data doesn’t
improve in the end. Then both, the train and the validation data which we
created, will pass 1gbm_config, which we created earlier.

Then, we will evaluate our model with the test dataset and evaluate the
prediction with the original dataset to calculate MAE, RMSE, and Correlation.

The output metrics or the dependent variables RMSE, MAE, and Spearman
should be saved with wandb.log instead. We have saved the LightGBM
model with the best iteration in the /content/1gb_classifier.txt folder
which we will be using for the KF Serving production in the Kubeflow
Kubernetes cluster in Goggle Cloud Platform.

Now, run the following command with the sweep_id configuration which we have
done earlier, and pass the preceding train() function.

# Run hyperparameter sweep (grid search)

wandb.agent(sweep_id, function=_train)

INFO:wandb.wandb_agent:Running runs: ['u5n9ep55']
INFO:wandb.wandb_agent:Cleaning up finished run: u5n9ep55
INFO:wandb.wandb_agent:Agent received command: run
INFO:wandb.wandb_agent:Agent starting run with config:
bagging_fraction: 0.6
bagging_freq: 7
feature_fraction: 0.85
learning_rate: 0.1
max_depth: 4
num_leaves: 40
wandb: Agent Starting Run: b9ml3fz3 with config:
bagging_fraction: 0.6
bagging_freq: 7
feature_fraction: 0.85
learning_rate: 0.1
max_depth: 4
num_leaves: 40
wandb: Agent Started Run: b9ml3fz3
Logging results to Weights & Biases (Documentation).

Training until validation scores don't improve for 50 rounds.
Early stopping, best iteration is:

31 training's 12: 0.0835953 valid 1's 12: 0.0827124
[0.5026042 0.5016406 0.5016406 ... 0.5016406 0.5026042 0.5016406]
<class 'numpy.ndarray'>

Spearman Correlation: 0.004787618906806593

RMSE Score: 0.2875976805060863

Mean Absolute Error (MAE): 0.2481

wandb: Agent Finished Run: b9ml3fz3

Figure 6.26: Output of Each Run
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The preceding example is one run output logs in Notebook; it talks about the
model performance and each run is saving in the Blue Hyperlink URL where we
can navigate and see the performance and the Model Hyperparameters’ Parallel
Coordinates. For example, check the following link:

http://app.wandb.ai/aniruddha/simpletransformers/sweeps/03edx2p8
e  Wandb Dashboard

In the preceding training logs, we got 3 URLs. Let’s navigate to the PROJECT
URL and check one sample Run performance.

Runs (311) =) Search pan X 2 .-

P T @

Charts 5 +

RMSE Spearman
< Name (308 visualize

® @ LightGBM_sweep
® @ LightGBM_sweep
® @ LightGBM_sweep

® @ LightGBM_sweep

8 |“‘III|I
H
H
H

® @ LightGBM_sweep 0000020.040.060.08 0100.120.140160.18 00022024026 028 oo

® @ LightGBM_sweep

vali

It
® @ LightGBM_sweep 2 B tean Absolute Error

® @ LightGBM_sweep
® @ LightGBM_sweep
® @ LightGBM_sweep

® @ LightGBM_sweep

® ® LightGBM_sweep

® @ LightGBM_sweep :

Figure 6.27: Dashboard of one Run

Now, in the preceding screenshot, we can see that there are a total of 311 Runs, as
it was mentioned on the top left, next, the Dashboard consists of RMSE, Spearman,
Training Loss, and Validation Loss, and the Mean Absolute Error for each Run in a
single axis, and it tells which run is the best by comparing each other; let’s take one
example Spearman and train/validation loss.

Spearman training_(2 valid_1_(2
ns sh 10

Showing first 10 ru
LightGBM_sweep — LightGBM_sweep = LightGBM_sweep = LightGBM_sweep
LightGeM_sweep < e - ] = LightGBM_sweep

LightGBM_sweep - -
LightGBM_sweep 36: 0.08322 (=) $— | 0.0831
LightGoM_sw
ightGBM_sweep 0083 e cep 36: 0.08322 (-) LightGBM_sweep 36: 0.08298 (-)
LightSBM_sweep < Qi Lights 36: 0.08281 (-)
\ 0.083 3
Lightau_sweep 0082 : 3 e

sweep = LightGBM_sweep
= LightGBM_sweep

- - 36 0.0829 ()
LightGBM_sweep - & i - 5: 008279 €
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| =i 36: 0.08246 (-) = LightGBM_sweep 36: 0.08277 (-) w—‘é—‘
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Figure 6.28: Multiple Run Comparison
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Now, in the preceding screenshot, in the first Bar plot, we can see the 3 top most
correlation run purple, green, and light pink bars. Similarly, we can analyse the
multiple scores for each run in train and test, which it trained in the number steps or
epochs, and we can take the best run for the Model Deployment. Next, click on RUN
URL; on the individual run, you will get the following report charts:

. Charts 5 a

training_12 valid_1_12 RMSE
>. 00836 | o ightoam_sweep training.12 32: 0.88287 (- 828e2 = LightGEM_sw al ; 0.08283 (- = LIghtGEM_sweep RISE S3: 02876 (=
os
. - s
©

Figure 6.29: Multiple Run Comparison
So, the preceding screenshot talks about the individual run, as we can see the
validation loss is low with respect to the train loss.

Next, we can see the GPU or CPU consumption with respect to the various
parameters:

@' Runs (311) =]
= T ® & Network Traffic (bytes) Disk /0 Utilization (%) Process CPU Theuads ta lise

2) | < Name (308 visualiz

® @ LightGBM_sweep

® @ LightGBM_sweep

® @ LightGBM_sweep

@ @ LightGBM_sweep

% 0 @ % w o 12 3 4
® @ LightGBM_sweep
® @ LightGBM_sweep Process Memory Available (non-swap) (MB) Process Memory In Use (non-swap) (%)
® @ LightGBM_sweep
® @ LightGBM_sweep
® ® LightGBM_sweep

® @ LightGBM_sweep

® @ LightGBM_sweep

0 1,0002,0003,0004,0005,0006,0007,0008,0009,00010,0001,000 LU I R I

® @ LightGBM_sweep

Figure 6.30: Model Machine performance

The preceding screenshot talks about the Memory Utilization for each run while
training the model and how much network traffic in bytes are consumed for pushing
the logs, and what's the CPU consumption for the various runs.
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Let’s navigate to the SWEEP URL to visualize the sweep results:

Parameter importance with respectto il RMSE M Parameter importance with respectto il Spearman

num_leaves num_leaves

Search Page1of1 = | | 45 Parameters | B Q Search Page1of1 = | 45% Parameters | A
Config ORd Correlation Config parameter Importance () ¥ Correlation
feature_fraction - max_depth L -
bagging_fraction 0 bagging_fraction (=] -
learning_rate a feature_fraction - -
bagging_freq learning_rate L (
( - a
(

max_depth bagging_freq

Figure 6.31: Hyperparameter Importance Plot

So, the hyperparameter importance plot surfaces tell which hyperparameters are the
best predictors and highly correlated to that desirable values for your dataframe.

Here, the correlation represents a linear correlation between the hyperparameter
and the chosen metric, in this case, the Validation Loss. So, here the high correlation
tells that the hyperparameter has a higher value, and the metric also has higher
values and vice versa. Next, the correlation is also an awesome metric to look at,
but it can’t capture the second order interactions between the inputs, and it can get
messy to compare the inputs with the different range metrics.

Let’ go down a bit to check the parallel coordinate for hyperparameters to find out
the metric’s performance. It plots the map hyperparameter values to model the
metrics which is useful for honing in on combinations of hyperparameters that led
to the best model performance.

bagging fraction bagging_freq feature_fraction leaming_rate max_depth num_leaves mse
0.80 086 7 j

078 08
076 98

074

0m2

070

068

066

064 068
062 066

0560 064

Figure 6.32: Hyperparameter Parallel Coordinate
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In the preceding screenshot, each axis represents a different parameter range values,
in this case, we have 7 vertical axes such as bagging_fraction, learning_rate,
max_depth, _num_leaves, and so on. Next, visualize the relationship between the
different hyperparameters and the final mean square error of my model, which we
will be minimizing.

e Axes: It represents the different hyperparameters from wandb.config,
which T have mentioned earlier and all the metrics from wandb.log().

¢ Lines: Here, a single line represents a single run. Hover the mouse over a
line to see a tooltip with all the details about each run.

6.5 Serving the model with KF Serving

In this section, we will build our serving model. In the following screenshot, we can
see the three major components for our model serving below screenshot.

So, here we kept the saved trained model from the local to the root of the Docker file,
or we can call it from the Cloud Storage bucket.

v LightGBM

Vv serving

& Dockerfile

{} input.json
lgb_classifier.txt

@ lightgbm_wandb.py
requirements.txt

! wanbd.yaml
Figure 6.33: Folder Structure

In previous chapters, we have covered the KF Serving Architecture; so you can refer
Let’s see how we will build the serving component 1ightgbm_wandb. py file:
import os

import sys

import json

import numpy as np

import kfserving

import lightgbm as 1lgb
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from typing import List, Dict

class KFServingSampleModel (kfserving.KFModel):
def __init_ (self, name: str):
super().__init_ (name)
self.name = name
self.ready = False

self.model_output_base path = "lgb classifier.txt"

def load(self):
model = lgb.Booster(model_file=self.model_output_base_path)
self.model = model

self.ready = True

def predict(self, request: Dict) -> Dict:
inputs = np.array(request["instances"])
reshaped_to_2d = np.reshape(inputs, (-1, len(inputs)))
results = self.model.predict(reshaped_to_2d)
result = (results > 0.5)*1
if result==1:
result="Positive Equity"
else:
result="Negative Equity"
print("result : {@}".format(result))

return {"predictions": result}

if __name__ == "__main__":
model = KFServingSampleModel("kfserving-wandb-1lightgbm-model")
model.load()

kfserving.KFServer(workers=1).start([model])

So, let’s break the transformer predictor code as follows:

e We kept the save model file 1gb_classifier.txt in the Docker root, and
here we declared that file as an environment variable to an object model_
output_base_path.

e Next, in the Load function, we loaded the model in from the LightGBM
library.
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} steps.n

md use-cases - breast_cance

e Then, in the predict method, the incoming data came as a json format, which
we needed to extract as a key-value pair and do the necessary prediction and

return as a dictionary.

e So, in the “main” function, the KFServingSampleModel Class took the name
of that deployment; keep a note of that and apply to the yaml file; here it is

" kfserving-wandb-lightgbm-model” .

use-cases > LightGBM > serving > @ lightgbm_wandb.py

import os

import sys

import json

import numpy as np

import kfserving

import lightgbm as lgb

from typing import List, Dict

class KFServingSampleModel(kfserving.KFModel):
def __init__(self, name: str):
super().__init__(name)
self.name = name
self.ready = False
self.model_output_base_path = "1gb_classifier.txt"

def load(self):
model = 1gb.Booster(model_file=self.model_output_base_path)
self.model = model
self.ready = True

def predict(self, request: Dict) -> Dict:
inputs = np.array(request["instances"])
reshaped_to_2d = np.reshape(inputs, (-1, len(inputs)))
results = self.model.predict(reshaped_to_2d)
result = (results > 0.5)%1
if result==1:
result="Positive Equity"
else:
result="Negative Equity"

print("result : {0}".format(result))
return {"predictions": result}

if _name__ == "_main__":
model = KFServingSampleModel("kfserving-wandb-1ightgbm-model")
model. load()

kfserving.KFServer(workers=1).start([model])

{} input.json ! wanbdyaml ® @ lightgbm_wandb.py X

! wanbdyaml| ®

use-cases > LightGBM > serving > ! wanbdyaml > {} spec > {} default > {

1

apiVersion: serving.kubeflow.org/vlalpha2
kind: InferenceService
metadata:
labels:
controller-tools.k8s.io: "1.0"
mame: kfserving-wandb-lightgbm-model
namespace: kubeflow
spec:
default:
predictor:
custom:
container:
image: gcr.io/<PROJECT_ID>/<IMAGE_NAME:<TAG=|
imagePullPolicy: Always
name: user-container

Make Sure the KF Serving inference
name in line 38th what we provided
in 1ightgbm_wandb.py here it is
kfserving-wandb-lightgbm-model it
should be place to left side
wandb . yaml1 file 6th line as beside

name

Figure 6.34: kf Serving python code left & Deployment yaml right

Let’s say after building the image, the name is gcr.io/<PROJECT_ID> /<IMAGE_
NAME > : <TAG>

Now, let’s understand the KF serving transformer code here. From above screenshot
on the left side of the Python file, the KFServingsampleModel class will always have
one Load() method where we can load our trained model from the docker path or
from the Google Bucket; then we can load there for the prediction and predict()
method which will be used to take the incoming json request as an input. Then, we
can do our necessary operations prior to the model prediction of either the text or
the image data case.
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Let’s see how we will build the serving component Dockerfile:

FROM python:3.7-slim-stretch
ENV DEBIAN_FRONTEND noninteractive
RUN apt-get update && \

apt-get -y install gcc mono-mcs g++ git curl bash && \
rm -rf /var/lib/apt/lists/*

ADD requirements.txt /app/requirements.txt

RUN pip install -r /app/requirements.txt

ADD lightgbm_wandb.py /app/lightgbm_wandb.py
ADD lgb_classifier.txt /app/lgb_classifier.txt

# COPY .

/app

WORKDIR /app
CMD ["python","lightgbm_wandb.py"]

So from the above dockerfile we have the following steps:

The first line of our Dockerfile begins with FROM. This is where we import
our OS or programming language.

The next two lines involve setting up the environment and executing it on
the server. The ADD line makes the local file, requirements.txt, available
in the Docker container. The RUN command can be followed with any bash
code that you would like being executed.

We use RUN to install our dependencies. Then ENV sets our environment
variable.

The WORKDIR line sets our working directory to the app. Then, the ADD
line makes the remaining local files available in the Docker container. Next,
CMD will run the command when the Docker file will execute each time.

Now, let’s deploy it with the command line; and first let’s fill the yaml file:

apiVersion: serving.kubeflow.org/vlalpha2

kind:

InferenceService

metadata:
labels:

controller-tools.k8s.io: "1.0"

name: kfserving-wandb-lightgbm-model

namespace: kubeflow
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spec:
default:
predictor:
custom:
container:
image: gcr.io/<PROJECT_ID>/<IMAGE_NAME:<TAG>
imagePullPolicy: Always
name: user-container
Here, in the preceding yaml file, we gave the same name which we had provided
in the lightgbm_wandb.py file; it will be (“kfserving-wandb-1ightgbm-model”),

and then we provided the namespace “kubeflow” where it is deployed. Next, we
gave the Docker image a name for our Transformer model which we had created.

Next, run the following command from bash where the files are kept in the Visual
Studio:

1. Connect to the GCP cluster by using the following command:
gcloud container clusters get-credentials <$ClusterName> --zone
<$ZONE> --project <$PROJECTID>

2. Create the inference service by deploying it in the cluster:
kubectl apply -f wandb.yaml

3. Check the inference service. Try it after some interval to check if it has been
created:

kubectl get inferenceservice -n kubeflow

READY ~ DEFAULT TRAFFIC ~ CANARY TRAFFIC  AGE
531

NAME URL
kfserving-wandb-lightgbm-model  http://kfserving-wandb-lightgbm-model.default.example.com/v1/models/kfserving-wandb-lightgbm-model  True 100 7h53m

Figure 6.35: KF serving Inference

Sample Prediction:

¢ Run the following command in Bash from the serving folder:

MODEL_NAME=kfserving-wandb-1lightgbm-model

HOST=$(kubectl get inferenceservice -n kubeflow$MODEL _NAME -o
jsonpath="{.status.url}' | cut -d "/" -f 3)

INPUT_PATH=@./input.json
CLUSTER_IP=$(kubectl -n istio-system get service kfserving-
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ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}")

curl -v -H "Host: ${HOST}" http://${CLUSTER_IP}/v1/
models/${MODEL_NAME}:pPedict -d $INPUT_PATH

% Irying - _/ .

% TCP_NODELAY set

% Connected to =~ . 2+, (2 __._... ) port 80 (#0)

> POST /v1/models/kfserv1ng—wandb lightgbm-model:predict HTTP/1.1

> Host: kfserving-wandb-lightgbm-model.default.example.com

> User-Agent: curl/7.64.1

> Accept: */%*

> Cookie: authservice_session=MTU50Tkx0TQONXx0d3dBTkZrM1Z6UTBOa3RCV2taYVAWTTFSa3BTVHpKU1dGUk LUMEZ

> Content-Length: 490

> Content-Type: application/x-www-form-urlencoded

>

* upload completely sent off: 490 out of 490 bytes

< HTTP/1.1 200 OK

< content-length: 34

< content-type: application/json; charset=UTF-8

< date: Sat, 12 Sep 2020 14:09:49 GMT

< server: istio-envoy

< Xx-envoy-upstream-service-time: 22

<

*

{

Connection #@ to host Z..._._.o/ left intact
“predictions": "Negative Equity"}x Closing connection @

Figure 6.36: KF serving Prediction Output

Run the following below command in Python from the Colab notebook:

Now, we will create some sample data to predict the results from the preceding
below URL. To create the sample data, the code is as follows:

import requests

MODEL_NAME="kfserving-wandb-1lightgbm-model"

cluster_ip = <COPY YOUR CLUSTER IP HERE>

headers={"Host": "{0@}.kubeflow.example.com".format(MODEL_NAME)}

response = requests.post("http://{0}/v1l/models/{1}:predict”.
format(cluster_ip, MODEL_NAME), data = datal,headers = headers)

response.json()
[» {'predictions': 'Negative Equity'}

Figure 6.37: KT serving Prediction O/P Python

6.6 Monitoring the performance with
Grafana Dashboard

Grafana includes the built-in support for Prometheus. This topic explains the
options, variables, querying, and the other options specific to the Prometheus data
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source. Launch the Grafana dashboard. As shown in Chapter 4, Building TFX Pipeline
in section 4.7, we have already installed Grafana.

Next, run from the Local Terminal and open the ‘grafana’ dashboard by using
“localhost:8080" on the browser. Explore the different components of the Grafana
dashboard.

" “bash

kubectl port-forward --namespace knative-monitoring $(kubectl get
pod --namespace knative-monitoring --selector="app=grafana" --output
jsonpath="{.items[@].metadata.name}') 8080:3000

The following Dashboard talks about the HTTP requests for the Knative Serving
Visualization which we will be serving per/sec request.

Figure 6.38: Grafana Dashboard HI'TP Request

So, the following is the Dashboard for the Control Plane which shows the CPU
Consumption and the memory usage efficiency.

{3 88 Knative Serving - Revision CPU and Memory Usage -

Figure 6.39: Grafana CPU/Memory Dashboard
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6.7 Conclusion

In this chapter, we learned how to build an end-to-end LightGBM framework in
Weights & Biases which captures our model in each run and output metrics. We built
the sweep and Wandb config for the LightGBM algorithm parameters alongside the
parallel coordinates plot for the Hyperparameter search.

We also deployed Kubeflow on the Kubernetes Platform and the model in
Kubernetes cluster with KF serving and monitored our prediction results in the
Grafana Dashboard.

In this chapter, we also gained knowledge on how to leverage the power of Google
Cloud Platform, and use our DevOps knowledge with Machine Learning to become
an MLops.

6.8 References
e https://plotly.com/python/builtin-colorscales/

e https://technowhisp.com/kaggle-api-python-documentation/

e https://www.kaggle.com/numerai/encrypted-stock-market-data-from-
numerai

e https://github.com/Kaggle/kaggle-api
e https://lightgbm.readthedocs.io/en/latest/Parameters.html
e https://www.wandb.com/

e https://github.com/kubeflow/kfserving






CHAPTER 7
Applied

ML with AWS
SageMaker

n this chapter, we will work on the Housing Price Sales Dataset project, where we

will completely run, evaluate, and deploy the model in the Amazon SageMaker
Cloud environment and use S3 for Data Storage. We will also be using the in-built
container algorithm XG-Boost for Model Building, so that we are able to understand
the architecture of SageMaker Model Building framework end to end.

Structure

In this chapter, we will cover the following topics:

Problem statement

Getting started in AWS SageMaker setup

Getting started with JupyterLab Notebook instances and SDK and S3 Bucker
Getting started with launching notebook and loading data to S3

Load, analyse, and transform the training data

Amazon SageMaker training model

Amazon SageMaker model deployment
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Objectives
After studying this chapter, you will be able to understand the following:
e How to load and push data in Amazon S3 which is used for data storage.

e Outlier analysis, feature transformation, and imputation of categorical and
numerical columns.

e How to create notebook in Amazon SageMaker and build a model and
deploy it. Here, we will use XG-Boost in-built algorithm.

¢ Themetrics and performance of our deployed model in Amazon CloudWatch.

7.1 Problem

Here, a home buyer described their dream house, and they probably won't begin
with the height of the basement ceiling or the proximity to an east-west railroad.

So, we have 79 variables describing what covers almost each and every aspect of the
residential homes in Ames, Iowa; this challenges to predict the final price of each
home.

NOTE Rest all the imports I have showed in my Jupyter Notebook, for which
the hyperlink of GitHub Account of this chapter is given. Note to use
Anaconda Package Python 3.x.

CODE https://github.com/bpbpublications/Continuous-Machine-Learning-
with-Kubeflow/tree/main/Chapter7

7.2 Getting started in AWS SageMaker
setup

So, we will start our journey with the AWS Account setup. To complete the setup,
complete the following steps:

1. Create an AWS account email address and password to sign in as the AWS
account root user and navigate to the IAM console at the following link:
https://console.aws.amazon.com/iam/.
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aws
N

Sign in

© Root user
Account owner that performs tasks requiring
unrestricted access. Learn more

IAM user
User within an account that performs daily tasks.
Learn more

Root user email address

username@example.com

New to AWS?

Create a new AWS account

About Amazon.com Sign In

Build highly accurate
training datasets

And reduce data labeling costs by up to 70%
with Amazon SageMaker Ground Truth

y &
=

aWSs machine \O/

~ > learning

SN

Amazon Web Services uses information from your Amazon.com account to identify you and allow access to Amazon Web Services. Your use of this site is governed by our

Terms of Use and Privacy Policy linked below. Your use of Amazon Web Services products and services is governed by the AWS Customer Agreement linked below unless you
have entered into a separate agreement with Amazon Web Services or an AWS Value Added Reseller to purchase these products and services. The AWS Customer Agreement
was updated on March 31, 2017. For more information about these updates, see Recent Changes.

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved. Terms of Use | Privacy Policy | AWS Customer Agreement

Figure 7.1: AWS Sign-in Console

English ¥

2. Next, enable the access of the billing data for the JAM admin user that you

will create:

e Choose My Account on the navigation bar of your account name.

e Choose Edit Next to IAM User and Role Access to Billing

Information.

e Next, select the check box to Activate IAM Access and choose the

Update.

~|AM User and Role Access to Billing Information

You can give IAM users and federated users with roles permissions to access billing information. This includes access to Account

Settings, Payment Methods, and Report pages. You control which users and roles can see billing information by creating IAM policies.
For more information, see Controlling Access to Your Billing Information.

« Activate IAM Access

Update Cancel

Figure 7.2: AWS My account. Dashboard
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3. Choose Services from the navigation bar, and then IAM to go to the IAM

Services v Resource Groups v
Identity and Access .
Management (IAM) « Welcome to Identity and Access Management
1AM users sign-in link:
Dashboard signin.aws.amazon. @& | Customize
v Access management |AM Resources
Qroupe Users: 3 Roles: 10
Users Groups: 0 Identity Providers: 0
Roles Customer Managed Policies: 8
Policies p
Security Status -— 2 out of 5 complete. < ° >
Identity providers
unt settings Delete your root access keys v Additional Information
- 1AM best pract
v Access reports. A\ Activate MFA on your root account v S
1AM documentation
Access analyzer e
N Create individual IAM users 4 Web Identity Federation Playground
fciie ies Policy Simulator
A Use groups to assign permissions v Y
Analyzers Videos, IAM release history and additional
Settings A Apply an IAM password policy v resources
Credential report
Organization activity
Service control policies (SCPs)
Q Search IAM

Figure 7.3: AWS IAM Dashboard

Optional: You can customise the Console Login Link given below, from the Access
management console in IAM, where there is a customise option to change <Alias>.

4. C(Click on Users and add new users:
e Typemyrole.

e Now, select the check box next to the AWS Management Console access;
then select custom password; next, type your own new password in
the text box. So by default, AWS will force the new user to create a new
password when you first log into AWS. So, we can optionally uncheck
the box next to the User, as the user must create a new password at the
next sign-in to allow the new user to reset their password after they sign
in.
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Services v Resource Groups v

Add user o 2) (s) (s) (s

Set user details

You can add multiple users at once with the same access type and permissions. Learn more

Username* | myrole

© Add another user

Select AWS access type
Select how these users will access AWS. Access keys and autogenerated passwords are provided in the last step. Learn more

Access type* Programmatic access
Enables an access key ID and secret access key for the AWS API, CLI, SDK, and
other development tools.

¥/ AWS Management Console access
Enables a password that allows users to sign-in to the AWS Management Console.

Console password* Autogenerated password
@ Custom password

Require password reset User must create a new password at next sign-in
u ically get the IAMUserChang policy to allow them to change
their own password.

* Required Cancel

Figure 7.4: AWS Add User Screen

e Choose Next: Permissions.

e On the Set permissions page, choose Attach existing policies directly.
e C(lick on Next: Review.

e (lick on Create user.

e Download the csv file.

Services v Resource Groups v Q Aniruddha

Add user 12 s« @

© Success
You successfully created the users shown below. You can view and download user security credentials. You can also email users
instructions for signing in to the AWS Management Console. This is the last time these credentials will be available to download. However,
you can create new credentials at any time.

Users with AWS Management Console access can sign-in at: https: I.signin.aws.amazon

& Download .csv

User Email login instructions

» © myrole Send email ('

Figure 7.5: AWS User Creation Last Step Screen
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Next, open the csv file and copy the link to your browser to login as myrole Username
and your Custom Password. Optional: You can customise the Console Login Link
below, from Access management console in IAM where there is a customise option
to change <Alias>.

The following is the screenshot of the csv file which we have downloaded:

MAEwvw-J ~

Insert Page Layout Formulas Data Review View

t —_—
, deu | Calibri (Body) v[[12 v||Aa Ay |= = _| &~ 5P
[ Copy ~
Paste U v v A+ = = = 6= 9= o
<Y Format B I Y R = s
ES v fx
A B C D E F G H |
1 |User name Password |Access key IL Secret acces: Console login link
myrole https://<Accountld/Alias>.signin.aws.amazon.com/console

Figure 7.6: AWS IAM Role Creation csv file credentials

5. Next, login as an IAM User and search for sagemaker.

aws Services v Resource Groups v *

AWS Management Console

AWS services

Find Services
You can enter names, keywords or acronyms.

IQsa| X

Amazon SageMaker
Build, Train, and Deploy Machine Learning Models

Lightsail
Launch and Manage Virtual Private Servers

Managed Cassandra Service
Serverless Cassandra-compatible database

AWS Cost Explorer
Visualize and Explore Your AWS Costs and Usage

Figure 7.7: AWS Service search dashboard

Here, we will search for the AmazonSagemaker
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7.3 Getting Started with JupyterLab
Notebook Instances and SDK & S3 Bucker

7.3.1 Create an S3 Bucket

Now, the training of a model will produce the following:
¢ The model training data which is transformed is stored in S3.
e Model artifacts, which the Amazon SageMaker generates during the model
training.

We can save all these things in the Amazon Simple Storage Service (Amazon S3)
bucket; we can store the datasets that we have used during our training data and
the model artifacts that are the output of a training job in a single bucket or in two
separate buckets.

The following is the screenshot of how the screen will look, once we log in:

aws Services +  Resource Groups v %
Amazon S3 BBl © Were gradually updating the design of the Amazon S3 console. You will notice some updated screens as we improve the perfor
Buckets AmazonS3 ) (Create bucket

Batch operations

Access analyzer for S3 Create bucket

General configuration
Block public access (account
settings)

Bucket name
mysagemakerbucket
Feature spotlight G Bucket name must be unique and must not contain spaces or uppercase letters. See rules for bucket naming [
Region
US East (N. Virginia) us-east-1 v

Bucket settings for Block Public Access

Public access is granted to buckets and objects through access control lists (ACLS), bucket policies, access point policies, or all. In order to
ensure that public access to this bucket and its objects is blocked, turn on Block all public access. These settings apply only to this bucket and
its access points. AWS recommends that you turn on Block all public access, but before applying any of these settings, ensure that your
applications will work correctly without public access. If you require some level of public access to this bucket or objects within, you can
customize the individual settings below to suit your specific storage use cases. Learn more [

Block all public access
Turning this setting on is the same as turning on allfour settings below. Each of the following settings are independent of one another.
Block public access to buckets and objects granted through new access control lists (ACLs)
¥ public a ¥ ke ’
Block public access to buckets and objects granted through any access control lists (ACLs)
5 ’ » <

Block public access to buckets and objects granted through new public bucket or access point policies
ill block a acce kets and ob ting d ha

Block public and cross-account access to buckets and objects through any public bucket or access point
policies

» Advanced settings

Figure 7.8: AWS S3 Create Bucket Screen
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Now, your Bucket (mysagemakerbucket) has been created.

Amazon S3

Buckets (3)

Q Find bucket by name

Name

v Region Access Bucket created v

mysagemkaerbucket US East (N. Virginia) us-east-1 Not Public 2020-04-05T08:26:56.000Z

Figure 7.9: AWS S3 Bucket Dashboard

7.3.2 Create an Amazon SageMaker Notebook
Instance

Navigate to the Amazon SageMaker console > Notebook instances > create notebook
instance. The steps are as follows:

1. On the Create notebook instance page, provide the following information (if
a field is not mentioned, leave the default values):

In the Notebook instance name section, type a name for your notebook
instance.

Then, for the Instance type, choose ml.t2.medium. This is the least
expensive instance type and is the recommended type for the notebook
instances support.

Create notebook instance

A Sag provides pre-built fully managed notebook instances that run Jupyter notebooks. The notebook
instances include example code for common model training and hosting exercises. Learn more [

Notebook instance settings

Notebook instance name

myfirstnotebook|

Maximum of 63 alphanumeric characters. Can include hyphens (-), but not spaces. Must be unique within your account in an AWS Region
Notebook instance type

mlt2.medium v
Elastic Inference Learn more [

none v

» Additional configuration

Figure 7.10: AWS SageMaker Create Notebook Screen

e For the IAM role, choose Create a new role, then choose Create role.

e Choose Create notebook instance.
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Create an IAM role X
Passing an IAM role gives Amazon SageMaker permission to perform actions in other AWS services on your behalf. Creating a role here will grant
permissions described by the AmazonSageMakerFullAccess [ 1AM policy to the role you create.
The IAM role you create will provide access to:
© S3 buckets you specify - optional

© Specific $3 buckets

mysagemakerbucketl

Comma delimited. ARNS, **" and */* are not supported.

) Any S3 bucket
Allow users that have access to your notebook instance access to any bucket and its contents in your
account.

O None

© Any S3 bucket with "sagemaker” in the name
© Any S3 object with "sagemaker” in the name
© Any S3 object with the tag "sagemaker” and value "true" See Object tagging [4

© 53 bucket with a Bucket Policy allowing access to SageMaker See 53 bucket policies [

Figure 7.11: Create IAM Role screen

Notebook instance settings

Notebook instance name
[ myfirstnotebook ]

Maximum of 63 Can (2, but not spaces. your account in an AWS Region.

Notebook instance type

[ mit2.medium v |

Elastic Inference Learn more [

[rone 7]

» Additional configuration

Permissions and encryption

1AM role
Notebook instances require permissions to call other services including SageMaker and 53. Choose a role or let us create a role with the
AmazonSageMakerFullAccess 1AM policy attached.

[ 141399 v

©success! You created an 1AM role. X
141399 [4

Root access - optional
© Enable - Give users root access to the notebook

() Disable - Don't give users root access to the notebook
Lifecycle configurations always have root access

Encryption key - optional
Encrypt your notebook data. Choose an existing KMS key or enter a key's ARN.

No Custom Encryption v

» Network - optional
» Git repositories - optional

» Tags - optional

o
Figure 7.12: Create Notebook Screen
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Wait for a few minutes, the Amazon SageMaker will launch an ML compute instance
— in this case, it will be the notebook instance — and it attaches an ML storage
volume to it. The notebook instance has a preconfigured Jupyter notebook server /
JupyerLab and a set of Anaconda libraries.

2. Launch the JupyterLab. The following screenshot shows how the deck will
look like:

@© Success! Your notebook instance is being created. View details

Open the notebook instance when status is InService and open a template notebook to get started.

Amazon SageMaker > Notebook instances

Q Search notebook instances <1 > ®
Name v Instance Creation time v status v Actions
myfirstnotebook mlt2.medium Apr 05, 2020 08:47 UTC @ nservice Open Jupyter | Open JupyterLab

Figure 7.13: AWS Notebook Instances Dashboard

3. Next, we have to add a few IAM polices, so click on the Notebook instance
name myfirstnotebook, as shown in the following screenshot:

Amazon SageMaker

Amazon SageMaker Studio

Dashboard
Search

v Ground Truth
Labeling jobs
Labeling datasets
Labeling workforces
v Notebook
Notebook instances
Lifecycle configurations
Git repositories
v Training
Algorithms
Training jobs
Hyperparameter tuning jobs
v Inference
Compilation jobs.
Model packages
Models
Endpoint configurations
Endpoints
Batch transform jobs.
v Augmented Al
Human review workflows
Worker task templates

Human review workforces

v AWS Marketplace
Model packages
Algorithms.

AWS Data Exchange
All products

SageMakerCourse

Notebook instance settings

Name statws
SageMakerCourse @nservice
AN Creation time

Toxt Feb 22,2020 1816 UTC

Ufecycle configuration Last updated
s Mar 31,2020 0510 UTC

Git repositories

Name Repository URL

Permissions and encryption

1AM role ARN Root access.
amawsiam:2  ToXl role/service-role/AmazonSageMaker-ExecutionRole|  Enabled
20200223T004685 [

Ciick the Red Box

Network

Nocustom VPC settings applied.

Direct internet access.
Enabled: Learn more (4

edit

Notebook instance type
mle2medium

ElasticInference

Volume Size
sGaEBS

Encryption key

Figure 7.14: AWS Notebook Dashboard which we created
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4. And then click on the IAM role with ARN; it will redirect to a new page.
Now, if the following policy is not there, then click on attach policy, and

search those policy names and click on the check box.

Identity and Access
Management (IAM)

Dashboard
~ Access management
Groups
Users
Roles
Policies
Identity providers
Account settings
v Access reports
Access analyzer
Avchive rules
Analyzers
Settings
Credential report
‘Organization activity
Service control policies (SCPs)

Role

ARN

‘SageMaker from the SageMaker AWS Console. | Edit

Instance Profile ARNs 2]

Creation

Path  /service-role/

time  2020-02-23 00:46 UTC+0530

Lastactivity  2020-04-05 12:47 UTC+0530 (Today)

Maximum CLUAPI session duration 1 hour Edit

Permissions  Trustrelationships  Tags
~ Permissions policies (4 policies

> below polcy
Attach policies bych

Access Advisor  Revoke sessions

Policy name +
» 8 AWSCodeCommitPowerUser
» i AmazonS3ReadOnlyAccess

» i AmazonSageMakerFullAccess

» Permissions boundary (not set)

Make Sure you have this

pokcy

Policy type ~
AWS managed policy
AWS managed policy
AWS managed policy

Managed policy

© Add inline policy

x %X x X

Figure 7.15: AWS Notebook IAM Role Policy Dashboard

Make sure all the red-boxed policies are attached in our IAM or else search and
attach those policies.

7.4 Getting Started by Launching
Notebook and loading data to S3

To get started for launching the Jupyter Notebook server, complete the following

steps:

1. Now, we will create a notebook.

When we open the notebook in the JupyterLab classic view, on the
Files tab, choose New, and conda_python3. Here, the preinstalled
environment includes the default Anaconda installation and Python 3.

2. Inthe Jupyter notebook, choose File and Save as, and name the notebook.
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Next, we will have a look at the Notebook options which will come across once we
click on that.

|E| Notebook

A

A

A

A

A

A A

A A

conda_mxnet_p conda_: conda_s conda_s conda_s conda_chainer_ conda_chainer_ conda_mxnet_p conda_python2
36 i_mxnet_p27 i_mxnet_p36 i_tensorflow_p2 i_tensorflow_p3 p27 p36 ar
conda_python3 conda_pytorch_ conda_pytorch_ conda_tensorflo conda_tensorflo R Sparkmagic Sparkmagic Sparkmagic
p27 p36 w_p:! W_p: (PySpark) (Spark) (SparkR)

Console

A

A

A

A

e | e

A A

conda_mxnet_p conda, conda, conda_: conda_: conda_chainer_ conda_chainer_ conda_mxnet_p conda_python2
36 i_mxnet_p27 i_mxnet_p36 i_tensorflow_p2 i_tensorflow_p3 p27 p36 27
conda_python3 conda_pytorch_ conda_pytorch_ conda_tensorflo conda_tensorflo R Sparkmagic Sparkmagic Sparkmagic
p27 p36 w_p27 w_p36 (PySpark) (Spark) (SparkR)
Other
= M
s B
—
— A 4
Terminal Text File Markdown File Show

Contextual Help

Figure 7.16: [upyterLab default Screen

3. Load the data into the S3 Bucket (mysagemaker) by creating a folder
(houseprice), then in another folder (rawdata), upload the train.csv file.

Amazon S3> /mysagemakerbucket >/houseprice >/rawdata >train.csv

| o |
[(@ Typo n prfic an pross Eors
=1 x desinis g
Viewing 1801
Name v Last modified v Size v Storage class v
D waincor Mar 25, 2020 8:06:23 PM GMT+0830 wooke Standard
Viewing 1t 1

Figure 7.17: Amazon S3 Bucket file path

So, the preceding example is the S3 bucket location and file.
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7.5 Load, Analyse, and Transform the
Training Data

Here we will complete some of the following steps:
e Load the data from S3 and Python library.
o Feature Engineering of the raw data like Imputation and Outlier Detection.

e Then, log Transform our Target feature and check the correlation and Normal
distribution plots.

e Transform the categorical features with the Label Encoding and Dummies.

7.5.1 Data Loading from S3 and Library

Now we will load all the required Python Library for our model building and
deployment.

import numpy as np

import pandas as pd

import boto3

import re

import sagemaker

from sagemaker import get_execution_role
import matplotlib.pyplot as plt

import seaborn as sns

from scipy import stats

from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.base import TransformerMixin
from warnings import filterwarnings
filterwarnings('ignore")

from sklearn.base import BaseEstimator, TransformerMixin,
RegressorMixin, clone

from sklearn.neighbors import LocalOutlierFactor
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Load the IAM Role which has been created during the notebook instance.
role = get_execution_role()

role

2]1: ‘'arn:aws:iam: JNNESSSNENEENE role/service-role/AmazonSageMaker-ExecutionRole-20200223T004685"
Figure 7.18: AWS-ARN-IAM path

Now, load the raw data from the S3 bucket, and give the address where it’s located

in the houseprice folder.

bucket_name = 'mysagemakerbucket'. # Your Bucket name
raw_folder=r'houseprice/rawdata/train.csv'’
s3_raw_file location =r's3://{0}/{1}"'.format(bucket_name,raw_folder)

Now, load the file as a pandas dataframe; it will access the S3 location.

raw_data=pd.read_csv(s3_raw_file_location)
raw_data.head()

[5]: Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal
o 1 60 RL 65.0 8450 Pave NaN Reg vl AllPub ... [ NaN NaN NaN [
1 2 20 RL 80.0 9600 Pave NaN Reg Lvi  AllPub ... 0 NaN NaN NaN 0
2 3 60 RL 68.0 11250 Pave NaN IR1 vl AllPub ... 0 NaN NaN NaN 0
3 4 70 RL 60.0 9550 Pave NaN IR1 vl AllPub ... 0 NaN  NaN NaN 0
4 5 60 RL 84.0 14260 Pave NaN IR1 vl AllPub ... 0 NaN NaN NaN 0

5 rows x 81 columns

Figure 7.19: Raw DataFrame

7.5.2 Feature Engineering

Now, we will complete the feature engineering steps, prior to our model training
process.

7.5.2.1 Finding Categorical & Numerical Columns

Here, we will find out the numerical and categorical columns by Object type
including and excluding all the features.

num_cols = raw_data.select_dtypes(exclude="'object"').columns
print('{} Numeric columns \n{}'.format(len(num_cols), num_cols))
categ_cols = raw_data.select_dtypes(include="'object"').columns

print('\n{} Categorical columns \n{}'.format(len(categ_cols), categ_cols))
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38 Numeric columns

Index(['Id', 'MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual’,
'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1',
'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndF1lrSF',
'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath',
'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd',
'Fireplaces', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF',
'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea’,
'Miscval', 'MoSold', 'YrSold', 'SalePrice'l,

dtype='object')

43 Categorical columns

Index(['MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities',
'LotConfig', 'LandSlope', 'Neighborhood', 'Conditionl', 'Condition2',
'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exteriorlst',
'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation’,
'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinTypel', 'BsmtFinType2',
'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'KitchenQual',
'Functional’, 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual',
'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature’,
'SaleType', 'SaleCondition'l],

dtype='object')

Figure 7.20: Output Numerical & Categorical Features

Now, we have a total of 38 Numeric Columns and 43 Categorical Columns out of
the 81 columns.

7.5.2.2 Checking the missing values sum

Now, we will check the missing values from the table and then we will prepare for
the different imputation technique.

df _na = (raw_data.isnull().sum()) / len(raw_data) * 100

df _na = df_na.drop(df_na[df_na==0].index).sort_values(ascending=False)

We will plot the missing values count or sum in a bar plot.
with plt.rc_context(rc={"font.size':14}):
fig, ax = plt.subplots(figsize=(16, 6))

sns.barplot(df_na.index, df _na, palette="pastel", ax=ax)
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ax.set(xlabel="'Features', ylabel='Missing values percentages')

ax.tick_params(axis='x"', rotation=55)
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Features

Figure 7.21: Missing Values Bar plot of Features

In the preceding screenshot, we can see the order from the most number of Missing
values with PoolQC, Alley, and so on; now we have to fill those columns for our
model building.

7.5.2.3 Log transformation of dependent feature

Now, we will transform our model dependent column to reduce the skewness and
maintain normal distribution across the mean.

def skew_distribution(data, col='SalePrice'):
fig, ax1 = plt.subplots()
sns.distplot(data[col], ax=axl, fit=stats.norm)
(mu, sigma) = stats.norm.fit(data[col])

axl.set(title="Normal distribution ($\mu=$ {:.2f} and $\sigma=$%
{:.2f} )'.format(mu, sigma))

fig, ax2 = plt.subplots()
stats.probplot(data[col], plot=plt)

print('The {} skewness is {:.2f}'.format(col, stats.
skew(data[col])))

The distribution of the price and fit of normal distribution:

skew_distribution(raw_data, 'SalePrice’)
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So, the distribution plots will look like the following;:

The SalePrice skewness is 1.88 Probability Plot
Normal distribution (u = 180921.20 and 0= 79415.29) o®
0.000008
600000
0.000007
0.000006 g
S 400000
0.000005 %
0.000004 g
200000
0.000003
0.000002 s
0.000001 0
0.000000 _ _ . 0 1 2 3
200000 400000 800000 B ¢ el s 2 -
SalePrice Theoretical quantiles
Figure 7.22: Normal Distribution Plot Figure 7.23: Probability plot

Therefore, we need to transform it into a more normal distribution, since the linear
models will perform better. So, after the Log Transformation, the Normal distribution
and P-P plot is as follows:

raw_data[ 'SalePrice']=np.loglp(raw_data[ 'SalePrice’'])

skew_distribution(raw_data, 'SalePrice')

The SalePrice skewness is 0.12

Normal distribution (u= 12.02 and 0= 0.40) Probability Plot
121 135 .o
10 1 130
08 1 g s
s
>
120
06 - B
§ s
04 1
1.0
02 .
004 3 =2 a1 o0 1 2 3
10.0 10.5 1.0 ns 120 125 13.0 135 140 Theoretical quantiles
| SalePrice
Figure 7.24: Normal Distribution Plot Figure 7.25: Probability plot

SalePrice is now more Gaussian, and the second plot which represents the probability
plot shows that the distribution follows almost a normal distribution.

7.5.2.4 Correlation & Scatter Plots

Here, we will plot the correlation to check the relation between the variables and
scatter the plots to check the outlier analysis with respect to the dependent feature
House price.
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corr = raw_data.corr()

top_correlation = corr['SalePrice’'].sort_values(ascending=False)[:25]
threshold = 0.51

top_corr = corr.index[np.abs(corr["SalePrice"]) > threshold]

plt.figure(figsize=(10,8))
sns.heatmap(raw_data[top_corr].corr(),annot=True,cmap="RdBu_r")
So, the correlation plot will look like the following:

<matplotlib.axes._subplots.AxesSubplot at 0x7f29c57b0c88>

10
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GrLivArea - 059 07 -06
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Figure 7.26: Top correlation Plot

Now, in the preceding screenshot, we can see that we plotted the top correlated
features with the 0.51 threshold value and figured out a few columns which are very
important with respect to the dependent columns.

We will find the mean correlation of the top numeric correlated features.
for col in top_correlation.index[:15]:

print('{} - unique values: {} - mean: {:.2f}'.format(col, raw_
data[col].unique()[:5], np.mean(raw_data[col])))
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SalePrice - unique values: [12.24769912 12.10901644 12.31717117 11.84940484 12.4292202 ] - mean: 12.02

OverallQual - unique values: [7 6 8 5 9] - mean: 6.10

GrLivArea - unique values: [1710 1262 1786 1717 2198] - mean: 1515.46
GarageCars - unique values: [2 3 1 @ 4] - mean: 1.77

GarageArea - unique values: [548 460 608 642 836] - mean: 472.98
TotalBsmtSF - unique values: [ 856 1262 920 756 1145] - mean: 1057.43
1stFlrSF - unique values: [ 856 1262 920 961 1145] - mean: 1162.63
FullBath - unique values: [2 1 3 @] - mean: 1.57

YearBuilt - unique values: [2003 1976 2001 1915 2000] - mean: 1971.27
YearRemodAdd - unique values: [2003 1976 2002 1970 2000] - mean: 1984.87
GarageYrBlt - unique values: [2003. 1976. 2001. 1998. 2000.] - mean: 1978.51
TotRmsAbvGrd - unique values: [8 6 7 9 5] - mean: 6.52

Fireplaces - unique values: [0 1 2 3] - mean: 0.61

MasVnrArea - unique values: [196. 0. 162. 350. 186.] - mean: 103.69
BsmtFinSF1 - unique values: [706 978 486 216 655] - mean: 443.64

Figure 7.27: Correlated Mean wrt. Target feature

So, the following columns are the important columns which we figured out for

further analysis through the scatter plot.

cols = 'SalePrice GrLivArea GarageArea TotalBsmtSF YearBuilt 1stF1lrSF

MasVnrArea TotRmsAbvGrd'.split()

with plt.rc_context(rc={"'font.size':14}):

fig, ax = plt.subplots(figsize=(16,13), tight_layout=True)

pd.plotting.scatter matrix(raw_data[cols], ax=ax, diagonal='kde', alpha=0.8)
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Figure 7.28: Scatter Plot
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These scatter plots will give us some insight into a few outliers, that is, the values
which resemble some incoherent/huge values, which will now impact the models.
Thus, we will only remove a few of them since these ones are really important. We
will remove the principal outliers in the scatter plots of (GrLivRea - GarageArea -
TotalBsmtSF - 1stFIrSF - MasVnrArea - TotRmsAbvGrd) vs SalePrice).

7.5.2.5 Outlier Detection
Now, wewillremovethe outliers from our Dataset with Sckit-Learn LocalOutlierFactor
Method.
def detect_outliers_plots(x, y,name,top=5, plot=True):
lof = LocalOutlierFactor(n_neighbors=40, contamination=0.1)
X_ =np.array(x).reshape(-1,1)
preds = lof.fit_predict(x )
lof_scr = lof.negative_outlier_ factor_
out_idx
if plot:
f, ax = plt.subplots(figsize=(9, 6))
plt.scatter(x=x, y=y, c=np.exp(lof_scr), cmap="'RdBu')

pd.Series(lof_scr).sort_values()[:top].index

ax.set(ylabel="'SalePrice', xlabel=name)
return out_idx

Extract the 8 columns in a separate table and list and drop the null values.

outlier_ana_data=raw_data[[ 'SalePrice’, 'GarageArea’, 'TotalBsmtSF',
'YearBuilt' , '1stF1lrSF', 'MasVnrArea', 'TotRmsAbvGrd', 'GrLivArea']]

outlier_ana_data.dropna(inplace=True)

cols out = ['GarageArea','TotalBsmtSF', 'YearBuilt'
, '1stF1rSF', '"MasVnrArea', 'TotRmsAbvGrd', 'GrLivArea']

for i in cols_out:

outs = detect outliers plots(outlier ana data[i], outlier_ana_
data[ 'SalePrice'],i,top=5) #got 1298,523

print(outs)

Int64Index([540, 515, 1364, 318, 1158], dtype='int64')
Int64Index([1290, 331, 495, 522, 439], dtype='int64')
Int64Index([1429, 802, 800, 282, 7621, dtype='int64')
Int64Index([1290, 495, 522, 1018, 1365], dtype='int64')
Int64Index([1017, 1353, 976, 378, 384], dtype='int64')
Int64Index([531, 633, 203, 1094, 612], dtype='int64')
Int64Index([1290, 522, 1176, 688, 531], dtype='int64')

Figure 7.29: Output of Index Outlier
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So, it will return the index of all the outliers in those 7 columns.
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Figure 7.30: Normal Distribution Plot
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Figure 7.31: Probability plot

We have created a function and called it here to detect the outliers; you can find
the code in GitHub, so don’t get confused if you see this method in the following
section.
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We extracted the most common outliers from the dataset and found out the outliers.

outliers = [30, 88, 462, 523, 632, 1298, 1324]
from collections import Counter
all_outliers=[]
numeric_features = raw_data.dtypes[raw_data.dtypes != 'object'].index
for feature in numeric_features:
try:

outs = detect_outliers(raw_data[feature], raw_
data[ 'SalePrice'],top=5, plot=False)

except:
continue

all outliers.extend(outs)

print(Counter(all_outliers).most_common())
for i in outliers:
if i in all_outliers:
print(i)

[(o, 4), (533, 4), (1298, 4), (127@, 3), (375, 3), (523, 3), (635, 3), (634, 3), (976, 3), (975, 3), (978, 3), (977, 3), (313,
2), (335, 2), (916, 2), (1213, 2), (812, 2), (77, 2), (7, 2), (953, 2), (496, 2), (1182, 2), (954, 2), (597, 2), (1163, 2), (13
50, 2), (1328, 2), (495, 2), (1459, 1), (1, 1), (1458, 1), (1457, 1), (164, 1), (873, 1), (589, 1), (555, 1), (249, 1), (706, 1
), (451, 1), (636, 1), (1100, 1), (304, 1), (508, 1), (218, 1), (1442, 1), (158, 1), (240, 1), (1166, 1), (591, 1), (277, 1),
(771, 1), (1140, 1), (1223, 1), (699, 1), (219, 1), (229, 1), (790, 1), (930, 1), (1028, 1), (695, 1), (645, 1), (1149, 1), (12
5, 1), (599, 1), (574, 1), (332, 1), (440, 1), (1024, 1), (1373, 1), (431, 1), (1400, 1), (185, 1), (170, 1), (109, 1), (88, 1
), (691, 1), (738, 1), (188, 1), (326, 1), (624, 1), (298, 1), (1283, 1), (53, 1), (189, 1), (809, 1), (48, 1), (203, 1), (434,
1), (1218, 1), (642, 1), (166, 1), (309, 1), (605, 1), (119, 1), (747, 1), (420, 1), (1340, 1), (542, 1), (1372, 1), (516, 1),
(351, 1), (1060, 1), (499, 1), (63, 1), (1397, 1), (131, 1), (874, 1), (155, 1), (9, 1), (297, 1), (1059, 1), (341, 1), (1349,
1), (198, 1), (935, 1), (205, 1), (55, 1), (5, 1), (1437, 1), (1346, 1), (1012, 1), (1443, 1), (588, 1), (995, 1), (1423, 1), (
810, 1), (117, 1), (1386, 1), (867, 1), (51, 1), (968, 1), (30, 1)]

30

88

523

1298

Figure 7.32: Outlier Index Count Dictionary

Outliers_table=raw_data.loc[outliers]
Outliers_table=Outliers_table[cols_out]
Outliers_table
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GarageArea TotalBsmtSF YearBuilt 1stFIrSF MasVnrArea TotRmsAbvGrd GrLivArea

30 250 649 1920 649 0.0 6 1317
88 0 1013 1915 1013 0.0 6 1526
462 360 864 1965 864 0.0 5 864
523 884 3138 2007 3138 762.0 1 4676
632 544 1386 1977 141 209.0 6 141
1298 1418 6110 2008 4692 796.0 12 5642
1324 895 1795 2006 1795 428.0 7 1795

Figure 7.33: Outlier Table

Now we will delete the outliers via the index lists.

raw_data = raw_data.drop(raw_data.index[outliers])
raw_data.reset_index(drop=True, inplace=True)

raw_data.shape()

(1453, 81)

Figure 7.34: New Data shape

So, we have removed 7 rows of outliers which were most common.

7.5.3 Feature Transformation

Here, group the columns into numerical, categorical, Label Encoder columns, and
changing datatype of columns.

N= ['GarageYrBlt', 'MasVnrArea', 'GarageArea', 'GarageCars', 'BsmtFinSF1',
'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath',
'BsmtHalfBath', '"MasVnrArea']

M= ['MSZoning', 'Electrical’, 'KitchenQual', 'Exteriorlst’,
"Exterior2nd’', 'SaleType']

S=['OverallCond', 'YrSold', 'MoSold', 'MSSubClass', 'GarageCars"',
'Fireplaces', 'HalfBath', 'OverallQual’]

L= ['PoolQC', "MSSubClass', '"MasVnrType', 'Alley’', 'MiscFeature',
'Fence', 'FireplaceQu', 'BsmtQual’, 'BsmtCond’,

'BsmtExposure', 'BsmtFinTypel', 'BsmtFinType2', 'GarageType',
'GarageFinish', 'GarageQual', 'GarageCond']

cols= ['BsmtExposure', 'BsmtFinTypel', 'BsmtFinType2', 'BsmtQual’,
'BsmtCond', 'GarageQual', 'GarageCond', 'GarageFinish', 'GarageType',
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'FireplaceQu', 'ExterQual', 'ExterCond',
"HeatingQC', 'PoolQC', 'KitchenQual',
'"Functional', 'Fence', 'LandSlope',
'LotShape', 'PavedDrive', 'Street', 'Alley', 'CentralAir’,
'MSSubClass', 'OverallCond', 'GarageCars', 'YrSold',
'MoSold', 'Fireplaces', 'HalfBath']
So, the following transformation() function is used for the imputation of the

numerical columns:

def transformation(data) -> pd.DataFrame:

for i in N:

data[i] = data[i].fillna(@)
for i in M:

data[i] = data[i].fillna(data[i].mode()[0])
for i in L:

data[i] = data[i].fillna("None")

for i in S:
data[i] = data[i].astype(str)

data["LotFrontage"] = data.groupby("Neighborhood")["LotFrontage"].
transform(lambda x: x.fillna(x.median()))

data["Functional"] = data["Functional”].fillna("Typ")
data = data.drop(['Utilities'], axis=1)

return data

Here cat_transform() is used for the categorical label encoding and dummies
transformation:

def cat_transform(data)-> pd.DataFrame():
le = LabelEncoder()
for col in cols:
data[col] = le.fit_transform(data[col])
data = pd.get_dummies(data)

return data

Here, the add_features() will add some important features which will help with
our prediction:

def add_features(data)-> pd.DataFrame():
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data[ 'TotalSF'] = data[ 'TotalBsmtSF'] + data['lstFlrSF'] +
data['2ndF1rSF'] + data['GrLivArea'] + data['GarageArea']

# Combine the bathrooms
data[ 'Bathrooms'] = data['FullBath'] + data['HalfBath']* ©.5
# Combine Year built, Garage Year Built and Year Remod

# (with a coeff 0.5 since it's less correlated to Year Built than
the Garage year built).

data[ 'YearMean'] = data['YearBuilt'] + data['YearRemodAdd'] * 0.5 +
data[ 'GarageYrBlt']

return data

Now, we have loaded the test dataset without the target columns and here we have
pre-processed together with the train data.

# We don't need the Id column so we save it
df_train_id = raw_data['Id']

df_test id = test_data['Id']
raw_data.drop("Id", axis=1, inplace=True)

test_data.drop("Id", axis=1, inplace=True)

# same transformation to the train / test datasets to avoid
irregularities

size_train = len(raw_data.index)
size_test = len(test_data.index)

print((size_train),(size_test))

(1453, 81) (1459, 80)

Figure 7.35: Raw Data [Test Data shape

Now, we merged the Raw data and Test data and prepared for the data transformation.

df_tot = pd.concat([raw_data, test_data], sort=False).reset_
index(drop=True)

df_tot.drop(['SalePrice'], axis=1, inplace=True)
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print(df_tot.shape)
df_tot.head()

(2912, 79)

[82]: MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities LotConfig ... ScreenPorch
V] 60 RL 65.0 8450 Pave NaN Reg Lvl  AllPub Inside ... 0
i 20 RL 80.0 9600 Pave NaN Reg Lvl AllPub ER25 0
2 60 RL 68.0 11250 Pave NaN IR1 Lvl AllPub Inside ... 0
3 70 RL 60.0 9550 Pave NaN IR1 Lvi  AllPub Corner ... 0
4 60 RL 84.0 14260 Pave NaN IR1 Lvi AllPub FR2 .. 0

5 rows x 79 columns

Figure 7.36: Merged Table

Let’s print the shape of the table.

print (df_tot.shape)

df_tot = transformation(df_tot)

print(df_tot. shape)

df _tot = cat_transform(df_tot)

print(df_tot.shape)

Now, we will transform the categorical and impute the missing values, both the
train and the test dataset; following which, we will just separate out our train data

from the merged data and then add features. The following is the process for the
train data:

x = df_tot[:size_train]
x=add_features(x)

print (x.shape)

x.head()
(2912, 79)
(2912, 78)
(2912, 222)
(1453, 225)

[84]: MSSubClass LotFrontage LotArea Street Alley L h L ilt  Year dd ... SaleType WD SaleCondition_Abnorn
o 10 65.0 8450 1 1 3 o 4 2003 2003 ... 1
1 5 80.0 9600 1 1 3 0 7 1976 1976 ... 1
2 10 68.0 11250 1 1 0 0 4 2001 2002 .. 1
3 n 60.0 9550 1 1 0 0 a4 19156 1970 ... 1
4 10 84.0 14260 1 1 ) ) 4 2000 2000 ... 1

5 rows x 225 columns

Figure 7.37: Raw Train Data after transformation then separating from merge data

In the preceding screenshot, you can see the shape of the train data changed to
(1453,225) after transformation. After that, we checked the Null values in our data
train which is zero for all columns.
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logSalesPrice=raw_data[ 'SalePrice’]
x.reset_index(drop=True, inplace=True

x.insert(loc=0, column='SalePrice', value=logSalesPrice)
x.head()

[48]1: SalePrice  MSSubClass LotFrontage LotArea Street Alley LotShape LandSlope OverallCond YearBuilt ... SaleType WD SaleCondition_Abnorml Sz
0 12.247699 10 65.0 8450 1 1 3 0 a4 2003 .. 1 0
1 12109016 5 80.0 9600 1 1l 3 0 7 1976 .. 1 0
2 12317171 10 68.0 11250 1 1 o ) 4 2001 .. 1 [}
3 11.849405 n 60.0 9550 1 1 0 0 4 1915 ... 1 q
4 12.429220 10 84.0 14260 1 1 0 0 a4 2000 ... 1 0

5 rows x 226 columns

Figure 7.38: Now the Final table with target column in first

Now, we will add our independent feature in the first column because we will use
the in-built SageMaker algorithm XG-boost, and it will automatically take the first
column as the target column and rest as the independent features.

7.6 Amazon SageMaker Training Model

Now, for our consideration, our transformed raw data into Dataframe (x)/ train.
csv file is our master table and we will split this into Train/Validation file. We will
evaluate in the Validation dataset, and the test data which we will predict the Target
feature sales price.

Client

Inference
(response)

T

] TR
E Helper code Inference code J Inference code image

Input data
(request)

( Ground truth
I

A

$3 bucket Deployment / hosting
on ML compute instances

Model artifacts. \
y
E
$3 bucket
Training data Helper code Training code Training code image
Model training

on ML compute instances

Amazon SageMaker EC2 Container Registry

Figure 7.39: Amazon SageMaker Train & Deploy (Credit: AWS Docs)
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7.6.1 Splitting Data into Train/Validation and
push to S3

We will specify your bucket name and then give the path and folder a name, which
we will create in S3.

bucket_name = ‘mysagemakerbucket’ # your bucket name

training_folder = r'houseprice/training/’
validation_folder = r'houseprice/validation/"’

test_folder = r'houseprice/test/’

s3_model output_location
name)

r's3://{0}/houseprice/model"’.format(bucket_

s3_training file_location
folder)

s3_validation_file location = r's3://{0}/{1}"'.format(bucket_
name,validation_folder)

s3_test_file location = r's3://{0}/{1}'.format(bucket_name,test_folder)

r's3://{0}/{1}"'.format(bucket_name,training_

So, the model output and artifacts will store in the model output location, and the
training of the model will store in the training location, the evaluation of model will
be done from the validation data and we will predict our test data from the test file
location.

Overview

l Q  Type a prefix and press Enter to search. Press ESC to clear.

ctons | US East (N. Virginia) &

Viewing 10 8

[J Name~ Last modified v Size v Storage class v
. Text

[) & model

[J & rawdata

[ & test

[ & training

[) & validation N =

[) B data_description.txt Mar 25, 2020 7:46:30 PM GMT+0530 13.1KB Standard

( [ sample_submission.csv Mar 25, 2020 7:46:32 PM GMT+0530 31.2KB Standard

Figure 7.40: Amazon S3 Folder Structure
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The structure will look like the preceding screenshot in your S3 bucket. The following
function will be used to push the data to S3 by converting to binary:

def write_to_s3(filename, bucket, key):
with open(filename, 'rb') as f: # Read in binary mode
return boto3.Session().resource('s3"').Bucket(bucket).
Object(key).upload_fileobj(f)

We will split our train data into 80-20 percentage into the train set and validation set
randomly.

df=x.copy()
np.random.seed(5)

1 = list(df.index)
np.random.shuffle(l)

df = df.loc[1]

rows = df.shape[@]
train = int(.20 * rows)

test = rows-train

Saving the train/validation/test dataset local path:
# Write Training Set

df.iloc[:train].to_csv('house_train_final.csv',index=False,header=False)
# Write Validation Set

df.iloc[train:].to_csv('house_validation_final.csv'
,index=False, header=False)

# Write test Set

test_csv.to_csv('house_test_final.csv')

Here, we will be pushing out the train/validation/test dataset into S3 by calling the
write_to_s3 function:

write_to_s3('house_train_final.csv', bucket_name, training_folder +
"train.csv')

write_to_s3('house_validation_final.csv',bucket_name, validation_folder +
'validation.csv')

write_to_s3('house_test final.csv',bucket_name, test_folder + 'test_tran.
csv')
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So, we have pushed our data to S3.

7.6.2 Train with SageMaker API XG-Boost
which maintains the algorithm container

Now, we will establish a session with AWS by calling the session from SageMaker
SDK

sess = sagemaker.Session()

Here, we will import the Amazon SageMaker Python SDK and get the XGBoost
container default version. Now, SageMaker API maintains the algorithm container
mapping for us specifying the region, algorithm, and version.
container = sagemaker.amazon.amazon_estimator.get_image_uri(
sess.boto_region_name,
"xgboost")

print('Using SageMaker XGBoost container:\n{} ({})'.format(container,
sess.boto_region_name))

Using SageMaker XGBoost container:
683313688378.dkr.ecr.us—east-1.amazonaws.com/sagemaker-xgboost:0.90-2-cpu-py3 (us-east-1)

Figure 7.41: XG-Boost Container Location in AWS Cloud and Version

Next, we will configure the training job, and then we will specify the type and
number of instances to use; then we will specify the S3 location where the final
artifacts need to be stored. We will create an instance of the sagemaker.estimator.
Estimator class.

#  Reference: http://sagemaker.readthedocs.io/en/latest/estimators.html
estimator = sagemaker.estimator.Estimator(

container,

role,

train_instance_count=1,

train_instance_type='ml.m4.xlarge"',

output_path=s3_model_ output_location,

sagemaker_session=sess,

base_job_name ='xgboost-Model")
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In the constructor, you can specify the following parameters:

¢ role: The AWS Identity and Access Management (IAM) role that Amazon
SageMaker can assume to perform tasks on our behalf (for example: it can
read the training results, it can call the model artifacts from our S3 bucket,
and it can write the training results to Amazon S3). This is the role that we
got in during the creation of Notebook instance.

e train_instance_count and train_instance_type: So, think of the type
and number of ML compute instances that we use for the model training;
here, we have to use only a single training instance.

e train_volume_size: This is the size, in GB, of the Amazon Elastic Block
Store (Amazon EBS) storage volume which will attach to the training
instance. It must be large enough to store our training data if you use the file
mode, which is default.

e output_path: Thisis the path to the S3 bucket where the Amazon SageMaker
stores our training results as a default extension file.

e sagemaker_session: This is the session object that will manage the
interactions with SageMaker APIs and for any other AWS service that our
training job will use.

So, we will set the hyperparameter values for our XGBoost training job by calling the
sdk method set_hyperparametersmethod of the estimator class.

estimator.set_hyperparameters(base_score=0.5, colsample_bylevel=1,num_
round=150,

colsample_bynode=1, colsample_bytree=0.5,
learning_rate=0.02, gamma=0.025,

max_depth=4, n_estimators=1500, min_child_weight=2,
nthread=1, reg _alpha=0., reg_lambda=1, subsample=0.5,
objective="'reg:linear', random_state=28)

Here, we have to create the training channels which will be used for the training job.
We use both the train and the validation channels.

# content type can be libsvm or csv for XGBoost

training input_config = sagemaker.session.s3_input(
s3_data=s3_training_file_location,
content_type='csv',

s3 _data_type='S3Prefix')
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validation_input_config = sagemaker.session.s3 input(
s3 _data=s3_validation_file _location,
content_type='csv',
s3_data_type='S3Prefix’

data_channels = {'train': training_input_config, 'validation':
validation_input_config}

Now, to start the model training, we will call the estimator's fit method. XGBoost
supports "train", "validation" channels.

#Reference: Supported channels by algorithm

#  https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-
docker-registry-paths.html

estimator.fit(data_channels)

2020-04-05 16:
2020-04-05 16:
2020-04-05 16:
2020-04-05 16:
2020-04-05 16:
2020-04-05 16:
2020-04-05 16:
Arguments: train

[2020-04-05:16:44:58:INFO] Running standalone xgboost training.

[2020-04-05:16:44:58:INFO] File size need to be processed in the node: @.74mb. Available memory size in the node: 8508.11mb
[2020-04-05:16:44:58:INFO] Determined delimiter of CSV input is ',"'

[16:44:58] S3DistributionType set as FullyReplicated

[16:44:58] 1235x225 matrix with 277875 entries loaded from /opt/ml/input/data/train?format=csv&label_column=0&delimiter=,
[2020-04-05:16:44:58:INFO] Determined delimiter of CSV input is ',"'

[16:44:58] S3DistributionType set as FullyReplicated

[16:44:58] 218x225 matrix with 49050 entries loaded from /opt/ml/input/data/validation?format=csv&label_column=0&delimiter=,
[16:44:58] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, @ pruned nodes, max_depth=4
[@]#011train-rmse:5.41071#011validation-rmse:5.58529

[16:44:58] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, @ pruned nodes, max_depth=4
[1]#011train-rmse:4.03268#011validation-rmse:4.23648

[16:44:58] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, @ pruned nodes, max_depth=4
[2]#011train-rmse:2.98134#011validation-rmse:3.15959

[16:44:58] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 2 pruned nodes, max_depth=4
[3]#011train-rmse:2.26828#011validation-rmse:2.4225

[16:44:58] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, @ pruned nodes, max_depth=4
[4]#011train-rmse:1.67801#011validation-rmse:1.83374

[16:44:58] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 20 extra nodes, @ pruned nodes, max_depth=4
[5]#011train-rmse:1.33205#011validation-rmse:1.48437

[16:44:58] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 12 extra nodes, @ pruned nodes, max_depth=4
[6]1#011train-rmse:1.10017#011validation-rmse:1.23461

[16:44:58] src/tree/updater_prune.cc:74: tree pruning end, roots, 24 extra nodes, @ pruned nodes, max_depth=4

[16:44:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 22 extra nodes, 6 pruned nodes, max_depth=4
[148]#011train-rmse:0.095235#011validation-rmse:0.693852

[16:44:59] src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 18 extra nodes, 4 pruned nodes, max_depth=4
[149]#011train-rmse:0.094575#011validation-rmse:0.694274

Training seconds: 63

Billable seconds: 63

Starting - Starting the training job...
Starting - Launching requested ML instances......
Starting - Preparing the instances for training...
Downloading — Downloading input data...

Training - Downloading the training image...
Uploading - Uploading generated training model
Completed - Training job completed

[

Figure 7.42: XG-Boost Model Fit Logs of RMSE of 0.6942 which is minimum
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It is a synchronous operation. The method will display the progress logs and it waits
until the training completes before returning.

Go to the training Jobs and Model in Amazon SageMaker service and you can check
all the details of the model hyperparameter and the output artifacts location.

x Trainingjobs

Ama sotter st xgboost-Model-2020-04-05-16-42-08-353 =3

o Job settings

v Notebook

vvvvvvvvv

Agarith ARN

Figure 7.43: XG-Boost Model Training Job Dashboard

Now, the preceding screenshot is of the dashboard of the model which we have

fitted; we will get all the output location and instance type and required information
in the dashboard.

7.7 Amazon SageMaker model deployment

Now, we will deploy from the training job which was fitted earlier and give an
endpoint name and instance type.

# Ref: http://sagemaker.readthedocs.io/en/latest/estimators.html
predictor = estimator.deploy(initial_instance_count=1,

instance_type="ml.m4.xlarge',endpoint_name
= 'xgboost-house-vl')

Here, we will deploy the model that we have trained in create and run a Training Job
by calling the deploy method of the sagemaker.estimator.Estimator object from
SDK. So, now it is the same object which we have used to train our model. When we
call the deploy method, it will specify the number and type of the ML instances that
we want to use to host the endpoint for deployment.
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Note: If an error comes, please use instance_type="ml.t2.medium’.

Amazon SageMaker X Amazon SageMaker > Endpoints
Amazon SageMaker Studio
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Figure 7.44: XG-Boost Model Deployment Endpoint

In the preceding screenshot, we can see the endpoint deployment name and below
that, we can call the endpoint, with RealTimePredictor API by passing the name.

endpoint_name = 'xgboost-house-v1'’

predictor = sagemaker.predictor.RealTimePredictor(endpoint=endpoint_
name)

x
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Figure 7.45: XG-Boost Model End-Point Cloud-Watch Metrics
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Now, the preceding screenshot shows the model CPU Utilization and its performance
with respect to time and we can see those in CloudWatch and Cloud logs to track all
the model performance.

class sagemaker.predictor.RealTimePredictor(endpoint, sagemaker_session=None, serializer=None,
deserializer=None, content_type=None, accept=None)

Bases: object

Make prediction requests to an Amazon SageMaker endpoint.

Initialize a | RealTimePredictor .

Behavior for serialization of input data and deserialization of result data can be configured
through initializer arguments. If not specified, a sequence of bytes is expected and the API
sends it in the request body without modifications. In response, the API returns the sequence of
bytes from the prediction result without any modifications.

Parameters:

e endpoint (str) - Name of the Amazon SageMaker endpoint to which requests are

sent.

sagemaker_session (sagemaker.session.Session) - A SageMaker Session object, used
for SageMaker interactions (default: None). If not specified, one is created using the
default AWS configuration chain.

serializer (callable) - Accepts a single argument, the input data, and returns a
sequence of bytes. It may provide a content_type attribute that defines the
endpoint request content type. If not specified, a sequence of bytes is expected for
the data.

deserializer (callable) - Accepts two arguments, the result data and the response
content type, and returns a sequence of bytes. It may provide a content_type
attribute that defines the endpoint response’s “Accept” content type. If not
specified, a sequence of bytes is expected for the data.

content_type (str) - The invocation’s “ContentType’, overriding any content_type
from the serializer (default: None).

accept (str) - The invocation’s “Accept”, overriding any accept from the deserializer
(default: None).

predict(data, initial_args=None, target_model=None)

Figure 7.46: SageMaker API Notes( Credit :AWS SageMaker SDK)

Now we will set the environment variables.

from sagemaker.predictor import csv_serializer, json_deserializer

predictor.content_type = 'text/csv’
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predictor.serializer = csv_serializer

predictor.deserializer = None

We need to pass an array; so the prediction can pass a numpy array or a list of values
[[19,1],[20,1]]. Here, we will load the test data and transform the add_features
function, and then we will predict.

t=pd.read_csv("house_test final.csv")

t=add_features(t)

t.shape

arr_test = t[t.columns[1:]].values

For alarge number of predictions, we can split the input data and query the prediction
service. array_split is convenient to specify how many splits are needed.
predictions = []

for arr in np.array_split(arr_test,50):

result = predictor.predict(arr)
result = result.decode("utf-8")
result = result.split(',")

print (arr.shape)

predictions += [float(r) for r in result]

Now, we will reverse and transform our log values. We can evaluate our validation
dataset as well.

pred=np.expml(predictions)
sub=pd.DataFrame()

sub[ 'id']=df_test_id.values
sub[ 'SalePrice’ ]=pred
sub.head()

[130]: id SalePrice

0 1461 10.459867
1 1462 7.723757
2 1463 51.396668
3 1464 68.385400
4

1465 133.739232

Figure 7.47: Prediction results
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So, the preceding table is the prediction output which we have predicted from the
deployed endpoint.

The following is the deployed endpoint:

Amazon SageMaker X Amazon SageMaker > Endpoints

JRRp——
e @ ‘Amazon Elastic Inference X

Lesmmore &
Searcn
v Ground Truh
togits Endpaints (o]
Labeling dutasats Delote the Endpoint 1o avoid — z R
e N - [Eo Masos g
Labeling workforces Endpoint

v Notebook Name. v A Creation time v seus v Lastupdated

o Apr 05,2020 1647 UTC @service Apr 05,2020 16:55 UTC

v inference

Figure 7.48: Model Endpoint Dashboard, Delete the endpoint

To avoid incurring unnecessary charges, use the AWS Management Console,
as shown in the preceding screenshot, to delete the resources, or delete from the
Notebook as follows:

sagemaker.Session().delete_endpoint(predictor.endpoint)

7.8 Conclusion

We have come toward the end of this chapter, and you can run and deploy your own
model in cloud with comfort, and use the power of Cloud.

In this chapter, we learned about outlier analysis, feature transformation, and
the imputation of categorical and numerical columns. Then, we learned how to
create notebook in Amazon SageMaker and build a model and deploy it. We also
learned how to use XG-Boost in-built algorithm. Then, we checked the metrics and
performance of our deployed model in Amazon CloudWatch.

7.9 References

¢ https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html
e https://docs.aws.amazon.com/sagemaker/index.html

¢ https://github.com/awslabs/sagemaker-churn-prediction-text






CHAPTER 8

Web App
Development with
Streamlit &
Heroku

In this chapter, we will build an end-to-end web application for the computer
vision models, and build that UI with Streamlit. We will be learning about the
many Open CV models for Image like cropping, changing pixels, and so on. Next,
we will host the Web application with the Heroku Container Registry or Kubernetes
Cluster as a service application in Google Cloud.

Structure

In this chapter, we will cover the following topics:

Problem statement

Setup of project requirements in GCP & Heroku
Introduction on components of Streamlit

Building the Framework for Streamlit for OpenCV models
Creating the components for Heroku Deployment

Deploying the Streamlit code by containerizing in Kubernetes cluster
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Objectives
After studying this chapter, you will be able to understand the following:
e How to use Docker and Kubernetes.

e How to build the web application in Python Streamlit without any JavaScript
knowledge.

e The various Computer Vision OpenCV models.
e How to construct the framework for the Streamlit and host it to Heroku.

¢ How to use Kubernetes and many Google Cloud Platform to leverage the
power of that to deploy and application to host.

8.1 Problem statement

In this chapter, we will be using OpenCV model’s various image processing
technique applications, for which we will build the framework for UI with Streamlit
Library. So, we will be building the OpenCV models like pencil sketch, cropping
image, sharpening image, and color changing image, and then we will add a comic
reader. Then, we will host the application either in Heroku or in Kubernetes cluster
in GCP.

NOTE Rest all the imports I have showed in my Colab Notebook, for
which the hyperlink of the GitHub Account of this chapter is given.
Note Colab platform Python 3.x. RUN IN GOOGLE COLAB

CODE https://github.com/bpbpublications/Continuous-Machine-
Learning-with-Kubeflow/tree/main/Chapter8

8.2 Setup of project requirements in GCP
& Heroku

Google Cloud Platform: Create an account with your email id and you will be
redirecting to the home page of the cloud account.

You must have an active GCP account, and while you practice this chapter, it might
charge for running the Kubernetes cluster, as I am running all the codes MacOS. I
recommend some basic Kubernetes and Docker knowledge is a must.
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= Google Cloud Platform 8 My Project 79009 + Q_ Search products and res
DASHBOARD ACTIVITY RECOMMENDATIONS # CUSTOMIZE
@  Join us October 12414 or Google Cloud Next. Register here . DISMISS
¢ Project info H I APIs H & Google Cloud Platform status
Project name Requests (requests/sec) Al services normal
My Project 79009
Project number
209423313588 s > 6oto Cloud status dashboard
Project D -
sitverarea 194016 A Nodatais available for the selected time frame. . = Monitoring
ADD PEOPLE TO THIS PROJECT . Crestemy dashboard
> Gotoproject settings — — - - o Set up alertng policies
Creatou
© Resources > GotoAPIs overview
@ BioQuery View alldasnboarcs
Data warehouse/analytics N
g sa - GotoMonitoring
Managed MySQL, PostgreSQL, SQL Server
) Compute Engine
VMs, GPUs, TPUs,Disks W1 Error Reporting
= Storage
B ulticlas object storage No sign of any errors. Have you set up Error Reporting?
() Ce
Event.driven serverless functions > Leam how o set up Error Reporting

& AP Engine
Managed app platform

Figure 8.1: Google Cloud Platform

Heroku: Create an account with your email id.

HEROKU Products Marketplace - Pricing Documentation Support COVID-19 More Login m

MOVE FAST

Unleash your inner startup

Choose Heroku for the same reasons disruptive startups do: it's
the best platform for building with modern architectures,
precisely

SIGN UP FOR FREE

Explore Heroku Customers

OFFICIALLY SUPPORTED LANGUAGES

® & & D@ & ™ @

Node s Ruby Java PHP Python Go Scala Clojure

In addition to our officially supported languages. you can use any language that runs

- AA T 1 T e

Figure 8.2: Heroku Platform
Let’s build the Streamlit component in the following section.

8.3 Introduction on components of Streamlit

Streamlit is an open-source app framework and is the easiest way for the data
scientists and machine learning engineers to create beautiful, performant apps in a
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few hours. The goal of Streamlit is to create an interactive app for our data or model
and, along the way, to use Streamlit to check, debug, perfect, and share our code.

Set up your virtual environment: pip install streamlit==0.71.0
Features:

e We can build an app with a few lines of code and leverage the Streamlit
simple API, which we will automatically update as we can save the source
Python file.

W Basics - Streamlit

> (0 @ localhost

-l :
N : EMBRACE : N =1
Streamlit > Demo > @ Basics.py . PYTHON
1 import streamlit as st
import pandas as pd :
import numpy as np %eesscccccssessnsnest

chart_data = pd.DataFrame(
np. random. randn(20, 3),
columns=['a*, 'b*, 'c'])

©ONOWLEWN

st.line_cha rt(chart_data)l

Figure 8.3: Streamlit Features 1

e We can add the various widgets for the variable declaration in Python like
checkbox, slider, text box, and so on. No need for the hard coding of the
variables from the backend and define routes, which will handle the HTTP
requests and so on.

(] w Basics - Streamlit X +

& C 08 O localhost

- T - - .
’ "5 : This is Slider &
f H H
o L OWERVEIN |,
H H 7
Streamlit > Demo > @ Basics.py : : —_—
1 import streamlit as st : : 0 100
2 import pandas as pd N
3 import numpy as np “eresessensscerssnancae goee 7 squaredis 49
4
5 st.markdown("_This_ _is_ *_Slider__x @") N - l
6 x = st.slider('x') # = this is a widget
7 stuwritefx, ‘squared is', x * xJ

Figure 8.4: Streamlit Features 2
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e Instantly host your application on prem or cloud without much effort and
maintenance.

------------------

- ——

You can now view your Streamlit app in your browser.

"OMPUTER VISION
Local URL: http://localhost:8501
Network URL: http://192.168.29.199:8501

Figure 8.5: Streamlit Features 3

So, these are the most import features for Streamlit.

8.3.1 Main concepts

First, let’s write a few Streamlit commands into a Python script, then we will run it
with the Streamlit run. A new tab will open in your default browser. It'll be blank for
now. That's OK.

" “bash

streamlit run your_script.py
(base) WKMIN9818087:Demo anichoud2$ streamlit run Basics.py
You can now view your Streamlit app in your browser.

Local URL: http://localhost:8501
Network URL: http://192.168.29.199:8501

Figure 8.6: Streamlit Host URL on-prem

Working with Text:
streamlit.write(*args, **kwargs)
“Swiss Army knife”. You can pass almost anything to st.write(): text, data,

Matplotlib figures, Altair charts, and more. Use specific text functions to add content
to your app.

streamlit.title(body)
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It displays the text in the title format.

streamlit.subheader(body)
This API displays the text in the sub-header format.

streamlit.code(body, language='python')
It displays a code block with the optional syntax highlighting.

streamlit.latex(body)

This one displays the mathematical expressions formatted as LaTeX.
import streamlit as st

import pandas as pd

import numpy as np

st.title('My first Web Application')
st.subheader("This is Subheader for Maths Equation™)

st.markdown('Streamlit is ** really cool**.')

st.latex(r'''f(x)=a_0 +\sum_{n=1}"{«}(a_n + b_n)\left(\frac{l1-r*{n}}{1-
r}\right)
cos\left(\frac{nnx/L}{1-r}\right)sin\left(\frac{nnx/L}{1-r}\right)'"'")

st.write('Hello, *World!* :sunglasses:')
code = '''def python():

print("Hello, Streamlit!™)'"’
st.code(code)

Now, open Bash or Terminal, wherever the code is, then run streamlit run
Basics.py:

L w Basics - Streamlit

= C O @ localhost

TITLE oo = My first Web Application
SUBHERDER  ---------oooooeoe- »  This is Subheader for Maths Equation
MARKDOWN oo > Streamlit is really cool.
_________________ _ = 1- nnz/L\ . (nnz/L
LATEX > f(:)—ao+§(a,,+b,.)(l_r)cos(il_r)am<7l_r)
WRITE =~ ceeeeemmmmieeeee > Hello, World! &
CODE == = --cccccmmmceemee- > def python()

print(“Hello, Streamlit!")

Figure 8.7: Streamlit Text Components
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So, the preceding screenshot shows the output for the Text components for the
Streamlit tool.

Working with Media:

streamlit.audio(data, format='audio/wav', start_time=0)

This API displays an audio player.

streamlit.image(image, caption=None, width=None, use_column_width=False,
clamp=False, channels='RGB', output format='auto', **kwargs)

It’s easy to embed images, videos, and audio files directly into your Streamlit apps.

streamlit.video(data, format='video/mp4', start_time=0)

Here, this API displays a video player.

Now, open Bash or Terminal, wherever the code is, then run Streamlit run
Basics.py.

L] w Basics - Streamlit

S C O © localhost

TITLE

IMAGE

Blue eye

=[] ] NN >

» 0:01/1:47 H i

Figure 8.8: Streamlit Media Components

So, the preceding is the output for the media components for Streamlit.
Working with Media :

streamlit.button(label, key=None)

It is used to display a button widget.

streamlit.checkbox(label, value=False, key=None)

This API displays a checkbox widget.

streamlit.selectbox(label, options, index=0, format_func=<class 'str'>,
key=None)
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It displays a select widget.

streamlit.radio(label, options, index=0, format_func=<class 'str'>,
key=None)

It is used to display a radio button widget.

streamlit.multiselect(label, options, default=None, format_func=<class
"str'>, key=None)

This API displays a multiselect widget. The multiselect widget starts as empty.

streamlit.slider(label, min_value=None, max_value=None, value=None,
step=None, format=None)

It displays a slider widget. This supports int, float, date, time, and datetime types.
streamlit.text_input(label, value='"', max_chars=None, key=None,

type="default')

This API displays a single-line text input widget.
streamlit.number_input(label, min_value=None, max_value=None,
value=<streamlit.elements.utils.NoValue object>, step=None, format=None,
key=None)

Display a numeric input widget.

Let’s build the preceding API in our Python script:

import streamlit as st

import pandas as pd

import numpy as np

from PIL import Image

import datetime

st.title('My first Web Application for Widget')
# Button
if st.button('HIT ME'):
st.write('Hello welcome to my world :sunglasses:')
else:
st.write("It's time for GoodBye")
# Checkbox
condition = st.checkbox('Do you want?")

if condition:
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st.write('Welcome to my checkbox world!")

# RadioButton
sport = st.radio(
"What's your favorite sport?",

('Cricket', 'Football', 'Hockey'))

if sport == 'Cricket':
st.write('You selected Cricket.1")
elif sport =='Football':
st.write('You selected Football. &')
elif sport=="Hockey":
st.write('You selected Hockey. ")
else:
st.write("You didn't select anything.")
# SelectBox
option = st.selectbox(
'"Which movie type you want to see?’,
('Romantic', 'Action', 'Horror'))

st.write('You selected:', option)

# Multiselect
options = st.multiselect(
'What are your favorite colors’,
['Green', 'Yellow', 'Red', 'Blue'],
['Yellow', 'Red'])

st.write('You selected:', options)

# Slider
age = st.slider('How old are you?', 0, 130, 25)

st.write("I'm ", age, 'years old')

# Text Input
title = st.text_input('Movie title', 'Dark night Rises')

st.write('The current movie title is', title)



282 Continuous Machine Learning with Kubeflow

# Number Input
number = st.number_input('Insert a number')

st.write('The current number is ', number)

#File Upload
uploaded _file = st.file_uploader("Choose a CSV file", type="csv")
st.set_option('deprecation.showfileUploaderEncoding', False)
if uploaded_file:
text_io = io.TextIOWrapper(uploaded file)
if text_io is not None:
data = pd.read_csv(text_io)
st.write(data)
# Input Date
d = st.date_input(
"When's your birthday",
datetime.date(2019, 7, 6))
st.write('Your birthday is:', d)

Now, open Bash or Terminal, wherever the code is, then there run Streamlit run
Basics.py. And open the link, http://Localhost:8051, in your browser.
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TTLE e * My first Web Application for Widget
BUTTON -o--- HITME

It's time for GoodBye

CHECKBOX ce==gp [ Doyouwant?
What's your favorite sport?

© Cricket
RADIOBUTTON ====4» () Football

) Hockey
You selected Cricket.&

Which movie type you want to see?

SELECTBOX ———— Romantic -

You selected: Romantic

What are your favorite colors

MULTI-SELECTBOX ---- ) i
You selected:
b 3
9 : "Yellow"
1 : "Red*
|
How old are you?

SLIDER i =

[ 130

I'm 25 yearsold

Movie title

-===%  \ifeofBrian

The current movie title is Life of Brian

Insert a number
————
0.00 - +

The current numberis o.0

Choose a CSV file

FILEUPLORDER ———— Drop files here 1o upload
or
browse files
When's your birthday
INFUTDRTE T

2019/07/06

Your birthday is: 2019-07-06

Figure 8.9: Streamlit Media Components
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So, the preceding is the output for the media components for Streamlit.

Working with Data & Chart:

streamlit.dataframe(data=None, width=None, height=None)

It displays a dataframe as an interactive table.

streamlit.line_chart(data=None, width=0, height=0, use_container_
width=True)

It displays a line chart. Similarly, we can plot Bar plot, and Area Chart.

streamlit.plotly chart(figure_or_data, width=0, height=0, use_ container_
width=False, sharing='streamlit', **kwargs)

It displays an interactive Plotly chart. Plotly is a charting library for Python.

import streamlit as st
import pandas as pd

import numpy as np

st.title('My first Web Application for Data & Chart')
# Data Table

df = pd.DataFrame(np.random.randn(4, 2),columns=('col %d' % i for i in
range(2)))
st.dataframe(df) # Same as st.write(df)

# Line Chart

chart_data = pd.DataFrame(np.random.randn(20, 3),columns=['a', 'b',
lcl])
st.line_chart(chart_data)

# plotly
import plotly.express as px
df = px.data.gapminder().query("year == 2007")

fig = px.sunburst(df, path=['continent', 'country'], values='pop',

color="lifeExp', hover_data=["'iso_alpha'],color_
continuous_scale='RdBu’',

color_continuous_midpoint=np.average(df['lifeExp'],
weights=df['pop']))

st.plotly chart(fig, use_container_width=True)
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Now, open Bash or Terminal, wherever the code is, then run Streamlit run
Basics.py. Then, open the following link in your browser: http://Localhost:8051

My first Web Application for Data & Chart

col 8 col 1

DATAFRAME ~ ------ > 0 -0.099 -0.7768
1 0.5709  -0.1807
2 0.8013  2.0109
3 -0.6586 -0.1175
=
—
LINECHART  ------ >
L 2 3 1] & L] L] 10 2 3 5 L] 8 9 20
« [
labels=India
pop=1,110,396,331 lifeExp
parent=Asia
id=Asia/india Docke
iso_alpha=IND 90
lifeExp=64. aisouoooouoom China
PLOTLY ------- »

‘g < .
!7//;, »

Figure 8.10: Streamlit Data & Charts Components

For further API study, please visit the following link: https://docs.streamlit.io/en/
stable/api.html.

8.4 Building the Framework for Streamlit
for OpenCV models

To build a framework for Streamlit for OpenCV models, complete the following
steps:

STEP 1: Load all the Dependency for the Computer Vision Model and Streamlit.
import streamlit as st

import cv2
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import numpy as np

from PIL import Image

from matplotlib import pyplot as plt
import io

import cv2 as cv

import os

import glob

import requests

from bs4 import BeautifulSoup

import urllib.request

import random

import pandas as pd

from io import BytesIO

import ssl

ssl. create_default_https_context = ssl. create_unverified_context

STEP 2: Now we will set some Logo and Title for our application. Then, we can
select the OpenCV model from the dropdown. Then, st.sidebar.selectbox()
will add the widget to the right side of the UL

st.markdown("![Alt Text](https://raw.githubusercontent.com/
aniruddhachoudhury/AR-RL-/master/CoMPUTER%2OVISION.gif)")

st.title("Computer Vision Use Case")
st.sidebar.subheader("Choose Computer Vision Model")

model = st.sidebar.selectbox("Model", ("Pencil Sketch","Crop

Image",

Sharp Image","Color Spacer","Comic Reader"))

Choose Computer Vision Model

Model

Pencil Sketch -

Pencil Sketch
Crop Image
Sharp Image
Color Spacer

Comic Reader

Figure 8.11: Streamlit dropdown of models
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STEP 3: In this step, we will write one heading with the st.write() function, and
we will set some depreciation option. Next, we will upload the image in any format
of jpg, png, and so on, so the st.file_uploader() object will be stored inside file_
image.

st.write("This Web App is to help convert your photos to
realistic images")

st.set_option('deprecation.showfileUploaderEncoding', False)

file_image = st.sidebar.file_uploader("Upload your Photos",
type=["Jjpeg"’, 'jpg", 'png'])

st.set_option('deprecation.showfileUploaderEncoding', False)

w Master - Streamlit

C Y @& boiling-meadow-0705(

Choose Computer Vision Model

Model

Pencil Sketch »

Upload your Photos

photo-1495055154266-57bbdeadad3e.jpeg

browse files
Figure 8.12: Streamlit st.file_uploader()

STEP 4: Now, let’s build the first model for OpenCV Pencil Sketch. If we gave the
condition that if you want to select the model from Step 2 here, it will be the pencil
sketch, and the dodgev2() and pencilsketch() function will do the necessary
pre-processing like transforming and scaling the image, and returning the output.
The st.image() function will show the input and output image in the browser.
The st.write() function shows the text you want in your browser. The st.file_
uploader() function will return a BytesIO object. However, Image.open() accepts
a string to read an image.

def dodgeV2(x, y):
return cv2.divide(x, 255 - y, scale=256)
def pencilsketch(inp_img):
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img_gray = cv2.cvtColor(inp_img, cv2.COLOR_
BGR2GRAY)

img_invert = cv2.bitwise not(img_gray)

img_smoothing = cv2.GaussianBlur(img_invert,
(21, 21),sigmaxX=0, sigmaY=0)

final_img = dodgeV2(img_gray, img_smoothing)
return(final_img)
if model == "Pencil Sketch":
st.subheader("PencilSketcher app to Cartoon Image")
if file_image is None:
st.write("You haven't uploaded any image file")

else:
input_img = Image.open(file_image)
final_sketch = pencilsketch(np.array(input_img))
st.write("**Input Photo**")
st.image(input_img, use_column_width=True)
st.write("**0Output Pencil Sketch**")
st.image(final_sketch, use_column_width=True)

Now, open Bash or Terminal, wherever the code is, and then run Streamlit run
Master.py. Then, open the following link in your browser: http://Localhost:8051.

PencilSketcher app to Cartoon Image
Input Phota

Output Peneil Sketch

Figure 8.13: OpenCV Pencil Sketch Output
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STEP 5: Now, let’s build the second model for the OpenCV cropping and changing
pixel. If we gave the condition that if you want to select the model from Step 2 here,
then it will be the Cropping Image. The st.file_uploader() function will return
a ByteslO object. However, Image.open() accepts a string to read an image. Next,
we will use the st.sidebar.slider () function for selecting the pixel coordinates
from the slider for all the coordinates. We have added one if condition — either you
want to crop or not. After that, we will do the necessary OpenCV image cropping
operations and pixel change. The st.image() will dump the image and show the
input and output image in the browser.

if model == "Crop Image":
st.subheader("Crop your Image app to your size")
if file_image is None:
st.write("You haven't uploaded any image file")
else:
input_img = Image.open(file_image)
image = np.array(input_img)
X, y = image.shape[:2]
height, width = image.shape[:2]
print(height,width)
st.sidebar.subheader("Choose Pixel for image")

# Let's get the starting pixel coordiantes (top
left of cropping rectangle)

startrowper=st.sidebar.slider("Start Row", min_
value=0., max_value=1.0)

startcolper=st.sidebar.slider("Start Column",
min_value=0., max_value=1.0 )

endrowper=st.sidebar.slider("End Row", min_
value=0., max_value=1.0 )

endcolper=st.sidebar.slider("End Column", min_
value=0., max_value=1.0)

Crop = st.sidebar.selectbox("You want to Crop",
("Yes", "NO"))

if Crop=="Yes':

start_row, start_col = int(height * startrowper),
int(width * startcolper)

# Let's get the ending pixel coordinates (bottom
right)
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end_row, end_col = int(height * endrowper), int(width
* endcolper)

# Simply use indexing to crop out the rectangle we desire
cropped = image[start_row:end_row , start_col:end_col]
row, col =1, 2
fig, axs = plt.subplots(row, col, figsize=(15, 10))
fig.tight_layout()

axs[0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
axs[@].set_title('Original Image')
cv2.imwrite('original_image.png', image)

st.image('original image.png', use_column_width=True)

axs[1].imshow(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
axs[1].set_title('Cropped Image')
cv2.imwrite('cropped_image.png', cropped)
st.image('cropped_image.png', use_column_width=True)
else:

st.write("You don't want to crop")

Now, open Bash or Terminal, wherever the code is, and then run Streamlit run
Master.py. Then, open the following link in your browser: http:/ /Localhost:8051.
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Computer Vision Use Case

This Web App s to help convert your photos to realistic images
Choose Computer Vision Model

Modl Crop your Image app 10 your size

Crop Image

Upload your Photes

4950551542665 Tbbdeacaads jpag

NOTE

Choose Pixel for image
e INTIALLY WHEN THE
— PIXEL WILL BE AT
L 2= ZERO IT WILL SHOW
e SOME DEPRECIATION
— .. " _ ERRORPLEASE

' » IGNORE AND CHANGE
. THE PIXEL FROM THE
= SLIDER

Figure 8.14: OpenCV Pixel change Output

So, the preceding is the output for the OpenCV pixel changer model in the Streamlit
app.

STEP 6: Now let’s build the third model for OpenCV sharpening our image. If we
gave the condition that if you want to select the model from Step 2 here, it will be
the Cropping Image. The st.file_uploader() function will return a BytesIO object.
However, Image.open() accepts a string to read an image.

Next, we will use the st.sidebar.slider() function for selecting the pixel
coordinates from the slider for all the coordinates. After that, we will do the necessary
OpenCV image sharpening with the cv2.filter2d kernel and normalization
application. st.image () will dump the image and show the input and output image
in the browser.

if model == "Sharp Image":
st.subheader("Sharpen your Image")
if st.sidebar.button('Changer'):
showpred = 1

if file_image is None:
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BGR2RGB) )

normalize since the

else:

st.write("You haven't uploaded any image file")

input_img = Image.open(file_image)

image = np.array(input_img)

row, col =1, 2

fig, axs = plt.subplots(row, col, figsize=(15, 10))
#ig.tight layout()
axs[@].imshow(cv2.cvtColor(image, cv2.COLOR_

axs[@].set_title('Original Image')

# Create our shapening kernel, we don't

# the values in the matrix sum to 1

kernel_sharpening =

np.array([[—l,—l,—l],[—1,9,—1], ['1)'1)'1]])

image

sharpening)

COLOR_BGR2RGB))

width=True)

# applying different kernels to the input

sharpened = cv2.filter2D(image, -1, kernel_

axs[1].imshow(cv2.cvtColor(sharpened, cv2.

axs[1].set_title('Image Sharpening')
st.image(input_img, use_column_width=True)
cv2.imwrite('sharpen_image.jpg', sharpened)

st.image('sharpen_image.jpg', use_column_

Now, open Bash or Terminal, wherever the code is, and then run Streamlit run
Master.py. Then, open the following link in your browser: http://Localhost:8051.
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Computer Vision Use Case
This Web App is 10 help comert your photas 10 realistic images.
Choose Computer Vision Model
Sharpen your Image
Sharp [mage

Uslaad your Photon

Figure 8.15: OpenCV Sharpening Output

STEP 7: Now, let’s build the fourth model for the OpenCV colour spacer change. If
we gave the condition that if you want to select the model from Step 2 here, it will be
the Cropping Image. The st.file_uploader() function will return a BytesIO object.
However, Image.open() accepts a string to read an image. Next, we have added the
st.sidebar.selectbox() function on the sidebar for UI; here we have different
OpenCV colour changing options like “bw”, “hsv”, and so on. Then, if the condition
matches the option which we chose, it will do the necessary operations, and at last
st.image() will show the image inside the browser.
if model == "Color Spacer":
st.subheader("Sharpen your Image")
CS - ["bw")"hsv","yuv")"lab"]
color_space = st.sidebar.selectbox("Pick a space.", cs)
if st.sidebar.button('Changer'):
showpred = 1
if file_image is None:

st.write("You haven't uploaded any image file")



294 Continuous Machine Learning with Kubeflow

BGR2GRAY )

BGR2HSV )

BGR2YUV )

BGR2LAB )

else:

input_img = Image.open(file_image)
st.write("**Input Photo**")
st.image(input_img, use_column_width=True)
src = np.array(input_img)
if color_space == "bw":

image = cv.cvtColor(src, cv.COLOR_

if color_space == "hsv":
image = cv.cvtColor(src, cv.COLOR_

if color_space == "yuv":
image = cv.cvtColor(src, cv.COLOR_

if color_space == "lab":
image = cv.cvtColor(src, cv.COLOR_

st.write("**Output Pencil Sketch**")
st.image(image,use_column_width=True)

Now, open Bash or Terminal, wherever the code is, and then run Streamlit run
Master.py. Then, open the following link in your browser: http://Localhost:8051.

Choose Computer Vision Model

Color Spacer

Upload your Photos:

-

NOTE

NOW WE CAN
SELECT FROM THE

This

Sharpen your Image
Input Photo

Output Pencil Sketch

Figure 8.16: OpenCV Colour Changer Output
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So, the preceding is the output for the OpenCV model components in Streamlit.

We composed all the models under a function like the following;:
def main():

{
CODE
}
if __name__ == '__main__':
main()

To locally debug the test, we run the command, Streamlit run Basics. py.

You can now view your Streamlit app in your browser.

Local URL: http://localhost:8501
Network URL: http://192.168.29.199:8501

Figure 8.17: Local Host URL for App

8.5 Creating the components for Heroku
Deployment

Y 4
HEROKU
b Architecture

< A -2
999

StreamLit Python Code L Build Container Released App in Heroku Deploy
L L
The build stage is a transform The release stage then takes
which conuerts a code repo the build and combines it with
into an executable bundle the deploy’s current config.
known as a s|u3 by fetching The resulting release contains
and vendoring dependencies both the build and the config
and compiling binaries and and is ready for immediate
assets. execution.

Figure 8.18: Heroku Architecture

7 298 —B—#F
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Now, create the Python Script for your application, containerize your whole
Framework with Docker, release the build to App inside Heroku, and then host the
application inside and deploy it there, which will generate a host URL.

Now, we will build the Docker image; for that, make sure you start the Docker, after
which you will see the Docker is activated on the top. In the following screenshot,
we can see that the first icon Docker is started. You can stop or restart from that icon.

o oo *rD s L = W) 9% %) Sun10:59AM Q=

Figure 8.19: Docker Activation

Heroku provides three ways to deploy your Dockerized app. We will be using the
Container Registry.

Deployment method Heroku Git GitHub &% Container Registry

Use Heroku CLI Connect to GitHub ®®  Use Heroku CLI

Figure 8.20: Heroku Deployment Method
The Heroku Deployment folder consists of the following files:

v Heroku

& Dockerfile

B heroku_startup.sh
I' heroku.yml

@ Master.py

requirements.txt

Figure 8.21: Heroku Deployment Folder

Now, let’s create the Docker file for the Heroku Deployment.

# Dockeftfile:

FROM ubuntu:18.04

# streamlit-specific commands for config
ENV LC_ALL=C.UTF-8

ENV LANG=C.UTF-8

RUN mkdir -p /root/.streamlit

RUN bash -c 'echo -e "\
[general]\n\
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email = \"\"\n\
" > /root/.streamlit/credentials.toml’
RUN bash -c 'echo -e "\

[server]\n\

enableCORS = false\n\

> /root/.streamlit/config.toml’

RUN apt-get update && \
apt-get install -y \
python3.7 python3-pip \
libsm6 libxext6 libxrender-dev
EXPOSE 8501
# make app directiry
WORKDIR /streamlit-docker

1 streamlit
2 black

3 altair

4 pandas

5 pydeck

6 matplotlib
7 numpy

8 Pillow

9 bs4
10 pipenv
| xlrd
12 opencv-python==4.2.0.34
13 gdown

Figure 8.22: Heroku Docker requirements File

COPY requirements.txt ./requirements.txt

RUN pip3 install -r requirements.txt

COPY .

Figure 8.22: Heroku Docker requirements File
RUN chmod +x ./heroku_startup.sh

ENTRYPOINT "./heroku_startup.sh”
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Let’s breakdown the Docker as follows:

FROM: To get a base image. Just like you need an OS as a basis of your
application.

MAINTAINTER: To show the message about the author of this image.
ENV: To set an environment variable to a certain value.

RUN: To execute the command requirements file which contains the Python
libraries.

EXPOSE: To let your container listen on the specific port while running.
WORKDIR/ COPY: To set the working directory, copy new files/directories.
CMD: To provide default actions when executing the container.

Change the permission of heroku_startup.sh or you will receive the
permission denied error while executing heroku_startup.sh.

ENTRYPOINT "./heroku_startup.sh": To tell the Docker to execute heroku_
startup.sh when starting the container.

The purpose of the second and the third RUN Command in the preceding line
is to let OpenCV run normally in Docker to mitigate an issue that if we don’t
install 1ibSM.s0.6 and import OpenCV when building the Docker Image, our
container will silently crash with the following message: segmentation fault
(core dumped) when executing.

| Heroku.yml:
<]

build:

docker:

web: heroku.Dockerfile

run:

web:

./heroku_startup.sh

Heroku needs heroku.yml to build and deploy the Docker images, so we will create
one for the usage. Obviously, the build and run sections indicate what we wanted to
do in build and run in the stage on Heroku, respectively.

Heroku_startup.sh:

echo PORT $PORT

streamlit run --server.port $PORT Master.py
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Heroku uses a $PORT environment variable for the port exposure. We have to set
the $PORT variable to Streamlit or your app will not appear. In this case, we will
expose at 8501.

Installation:

Now download Heroku CLI : https://devcenter.heroku.com/articles/heroku-
cli# download-and-install

Install Brew: https://brew.sh/

’
. brew tap heroku/brew && brew install heroku
4“% . .

wd sudo snap install --classic heroku

The Component Steps are as follows:

e First log in to your Heroku account and follow the prompts to create a new
SSH public key.

$ heroku login

e Signin to the Container Registry:

g

HEROKU

$ heroku container:login

Log into the Heroku CLI

Figure 8.23: Heroku Login for CLI

e Navigate to the app’s directory and create a Heroku app:
$ heroku create

Creating app... done, @ hidden-river-78993
https://hidden-river-78993.herokuapp.com/ | https://git.heroku.com/hidden-river-
78993.¢git

Figure 8.24: Heroku App creation
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e Build the image and push to the Container Registry in one command. Make
sure you started the Docker. And make sure you change the app name below
for your case which will be created above.

$ heroku container:push web -a hidden-river-78993

(base) .Heroku $ heroku container:push web -a hidden-river-]|
78993

=== Building web (/Users/ /Downloads/Streamlit/ComputerVision/Heroku/Doc
kerfile)

Sending build context to Docker daemon 16.38kB
Step 1/14 : FROM ubuntu:18.04

18.04: Pulling from library/ubuntu
5d9821c94847: Downloading 25.57MB/26.7MB
a6él@eae58dfc: Download complete

Eaeeaeb9f1&0: Download complete

Successfully built 68al10f4d1819
Successfully tagged registry.heroku.com/hidden—-river-78993/web:latest

Figure 8.25: Heroku Container Built and Pushed message

¢ Then release the image to our app which we have created; here it will be
hidden-river-78993.

$ heroku container:release web -a hidden-river-78993
Releasing images web to hidden-river-78993... done

Figure 8.26: Heroku Container released to App

Now, open the app in your browser or we can navigate to the website and click on
Open app at the right corner.

$ heroku open-a hidden-river-78993

[B) wevox [ ————

@ Personal ¢ > @ hidden-river-78993 *

Overview  Resources  Deploy ~ Metrics  Activity  Access  Settings

@® Choosea pipeline

Deployment method 0 teroku Git O GitHub &8, Container Registry
" o ©¢ Use Heroku CLI

Figure 8.27: Heroku Website Click Open App
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Now, we can see our web Application hosted in Heroku.

Choose Computer Vision Model

Model

Pencil Sketch

Upload your Photos.

) .

COMPUTER VISION

Computer Vision Use Case

This Web App is to help convert your photos to realistic images

Figure 8.28: Computer Vision App hosted in Heroku

8.6 Deploying the Streamlit code by
containerizing in Kubernetes cluster

I }@ oogle Cloud Platform
Architecture

</>

StreamLit Python Code Dokcerized the Code Deploy as a Service Kubernetes Engine Web Application
on LoadBalancer

Figure 8.29: Architecture for GCP Kubernetes Deployment

Now, create the Python script for your application and containerize your whole
Framework with Docker and deploy the application inside Kubernetes cluster as
a deployment service and the Docker image will be exposed as a Load Balancer
deploy, which will generate a host URL on port 8501:
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¢ A Container is a type of software that packages up an application and all
its dependencies, so the application runs reliably from one computing
environment to another.

e Docker is a software used for building and managing the containers.

e Kubernetes is an open-source system for managing the containerized
applications in a clustered environment.

¢ Google Kubernetes Engine is an implementation of the open source
Kubernetes framework on the Google Cloud Platform.

Let’s build the Docker image with everything being the same from earlier, just
remove the last two lines from the earlier Heroku Dockerfile and add one line of
CMD to run the Streamlit Python script:

FROM ubuntu:18.04

ENV LC_ALL=C.UTF-8

ENV LANG=C.UTF-8

RUN mkdir -p /root/.streamlit

RUN bash -c 'echo -e "\
[general]\n\
email = \"\"\n\

> /root/.streamlit/credentials.toml’

RUN bash -c 'echo -e "\
[server]\n\
enableCORS = false\n\

> /root/.streamlit/config.toml’

RUN apt-get update && \
apt-get install -y \
python3.7 python3-pip \
libsm6 libxext6 libxrender-dev

EXPOSE 8501

WORKDIR /streamlit-docker

COPY requirements.txt ./requirements.txt
RUN pip3 install -r requirements.txt
COPY .

CMD streamlit run Master.py
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Now, run the following commands in Bash to build the Docker image for your GCP
deployment, assuming you have the GCP project as a pre-requisite:

"7 bash

gcloud init

gcloud auth configure-docker

PROJECT_ID=$%$(gcloud config get-value core/project)
IMAGE_NAME=opencv-streamlit
IMAGE_NAME=gcr.io/$PROJECT_ID/$IMAGE_NAME
IMAGE_TAG=v1

# build image

docker build --no-cache -t $IMAGE_NAME:$IMAGE_TAG .
docker push $IMAGE_NAME:$IMAGE_TAG

Let’s say our Docker image will be like the following: gcr.io/<PROJECT_ID>/
opencv-streamlit:vl

Make sure you install kubectl which we have installed in Chapter 1, Introduction
to Kubeflow & Kubernetes Cloud Architecture. Also, go to the following link: https://
kubernetes.io/docs/tasks/tools/install-kubectl/

Create Cluster:

To setup the Kubernetes cluster, either you use Google Cloud Shell or Microsoft
Visual Studio Terminal of your system. Navigate to Google Cloud Platform >
Kubernetes > Cluster.

= Google Cloud Platform 3+

@ Kubernetes Engine Kubernetes clusters 3 CREATE CLUSTER DEPLOY  (C REFRESH DELET SHOWINFOPANEL @) LEARN

Learn more CLOUD SHELL ACTIVATE

Figure 8.30: GCP Cloud Shell
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Now, complete the following steps:
1. Set your project ID and Compute Engine zone options for the gcloud tool.
PROJECT_ID=$(gcloud config get-value core/project)
gcloud config set project $PROJECT_ID

gcloud config set compute/zone us-centrall

2. Create a cluster by executing the following code:

gcloud container clusters create streamlit-computer-vision --num-
nodes=2

kubeconfig entry generated for streamlit-computer-vision.
NAME LOCATION MASTER_VERSION MASTER IP MACHINE_TYPE NODE_VERSION NUM_NODES STATUS

streamlit-computer-vision us-centrall 1A15‘l§fgke.20 34.68.60.2 nl-standard-1 1.15.12-gke.20 6 RUNNING

Figure 8.31: Cluster Creation

3. Connect to cluster by clicking on the Connect button.

gcloud container clusters get-credentials streamlit-computer-
vision --region us-centrall --project <PROJECT_ID>

& Services & Ingress Name ~ Location Cluster size Total cores Total memory Notifications  Labels
Applications (V] streamlit-computer-vision us-centrall 6 6 VCPUs 22.50 GB Connect Pl |

H  Configuration

B  Storage

Figure 8.32: Cluster Connect

4. To deploy and manage the applications on a GKE cluster, you must
communicate with the Kubernetes cluster management system. Execute the
following command to deploy the application:

kubectl create deployment computervision-streamlit --image=gcr.
io/<PROJECT_ID>/opencv-streamlit:vi

deployment.apps/computervision-streamlit created

Figure 8.33: Successful Deployment Message

5. The containers you run on GKE are not accessible from the internet because
they do not have external IP addresses. Execute the following code to expose
the application to the internet:

kubectl expose deployment computervision-streamlit
--type=LoadBalancer --port 80 --target-port 8501
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service/computervision-streamlit exposed

Figure 8.34: Successful LoadBalancer Service Message

6. Execute the following code to get the status of the service. EXTERNAL-IP is
the web address you can use in the browser to view the published app.

kubectl get service

NAME FEYAP CLUSTER-IP EXTERNAL-IP PORT (S) AGE
computervision-streamlit LoadBalancer AL ALAL 2L 255 S 7L 21L8)  (0) 80:30883/TCP 5m24s|

kubernetes ClusterIP 1L0) o 3L 250 Al <none> 443/TCP 22m

Figure 8.35: Successful Service Message

Copy the External IP and paste it in a browser. We will get our application
http://34.71.219.0

Now, we can see our web application hosted in Google Cloud Platform:

Choose Computer Vision Model

Model

Pencil Sketch

Upload your Photos

COMPUTER VISION

Computer Vision Use Case

This Web App is to help convert your photos to realistic images

Figure 8.36: Computer Vision App hosted in Google Kubernetes Engine

8.7 Summary

In this chapter, we learned how to build a web application with the Streamlit tool in
Python without having prior knowledge to any other language. Then, we hosted the
application in the Heroku Platform and Google Kubernetes Engine.

Next, we learned about the various Streamlit components for how to display the
text, image, charts, and so on. Also, we built the framework for our web application
for the various computer vision OpenCV models like Sharpening, Cropping Image,
and so on. After that, we saw the architecture to build the Heroku deployment which
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is a common skeleton to be used for all Skelton Machine Learning web application
deployment alongside Google Kubernetes Engine.

In this chapter, we have gained knowledge on how to leverage the power of Google
Cloud Platform and how to use your Devops knowledge with Machine Learning to
become an MLops. Also, we also learned how to use Streamlit to build Skelton Web
application in just a few hours in Heroku and Cloud.

8.8 References

e https://devcenter.heroku.com/categories/referencehttps://technowhisp.
com/kaggle-api-python-documentation/

e https://docs.streamlit.io/en/stable/api.html

e https://kubernetes.io/docs/tutorials/kubernetes-basics/

e https://cloud.google.com/kubernetes-engine/docs/quickstart
e https://www.pyimagesearch.com/start-here/

e https://docs.docker.com/get-started/overview/

e https://devcenter.heroku.com/articles/container-registry-and-
runtime# unsupported-dockerfile-commands
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Python libraries, installing 179
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persistent storage 8

volume 7
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Streamlit 275
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277
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features 276, 277
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root directory, setting 135, 136
TEX Pipeline
architecture 132
problem statement 132
TFX pipeline components 136, 137
Evaluator, building 157, 158
ExampleGen, building 137, 138
ExampleValidator, building 142, 143



Index 313

Pusher, building 159, 160
SchemaGen, building 140-142
StatisticsGen, building 139, 140
Trainer, building 149-155

training, analyzing with TensorBoard
156

Transform, building 143-148
Tuner, building 156
training model
feature transformation 180-182
types, Services
ClusterIP (default) 15
ExternalName 15
Headless 15
LoadBalancer 15
NodePort 15

U

utility metrics function
mean absolute error 216
root mean square error 216

Spearman correlation 216

W
Wandb sweep architecture 219
Weights & Biases
API, creating 206
API Key 204
features 206
Framework and Cloud support 205
using 207, 208
What-If tool

advanced visualization, for
TensorFlow model 197-199

wit-widget
installation 179

Python libraries, installing 179, 180

workload scalability

auto-scaling 6
horizontal infrastructure scaling 6
manual scaling 6

replication controller 7
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