

 i

 i

Continuous
Machine Learning with

Kubeflow
Performing Reliable MLOps with Capabilities of

TFX, Sagemaker and Kubernetes

Aniruddha Choudhury

www.bpbonline.com

ii

FIRST EDITION 2022
Copyright © BPB Publications, India
ISBN: 978-93-89898-507

All Rights Reserved. No part of this publication may be reproduced, distributed or
transmitted in any form or by any means or stored in a database or retrieval system,
without the prior written permission of the publisher with the exception to the program
listings which may be entered, stored and executed in a computer system, but they
can not be reproduced by the means of publication, photocopy, recording, or by any
electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and
publisher’s knowledge. The author has made every effort to ensure the accuracy of these
publications, but publisher cannot be held responsible for any loss or damage arising
from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

 iii

Dedicated to

My beloved parents and family

iv

About the Author

Aniruddha Choudhury has 5 years of IT professional experience in providing
Artificial Intelligence development solutions, MLOPS Kubeflow, Multi Cloud GCP,
AWS, Azure and is passionate about providing Data Science and Data Engineering
complex solutions in machine learning and deep learning. He is always looking
for new opportunities for a new dimensional challenge for high impact business
problems to become a valuable contributor for his future employers.

Presently he is working in Publicis Sapient as Senior Data scientist (Full stack
MLOPS) for the last 2 year. Previously he worked with Incture technology and
before that he has worked at Wells Fargo Bank on diverse financial products’ AI
solutions on various lines of business.

As a tech geek, Aniruddha is always enthusiastic about working in cross-
dimensional knowledge. He is working on Kaggle and Google data projects
building a statistical and machine learning NLP model with an end-to-end
data wrangling and preparation, building model framework with visualization
and predictive/text/image analytics and Amazon AWS and Microsoft Azure
DataBricks Cloud with Apache scala and spark and finding patterns in all forms
of data. He has a passion to break complex problems in data science field and
find resolutions with deep learning and machine learning . He is also working on
deep learning frameworks like Tensorflow, Keras, and Pytorch. As an individual,
Aniruddha always believes in constantly learning new skills and taking the road
less travelled. He likes to keep himself updated about the technological world and
is always toying with some new innovation.

He has mastered in building Artificial Intelligence solutions and finding complex
patterns from research papers to gain optimal solution to current product
development and possesses a self-innovative mind alongside.

 v

About the Reviewer

Rajdeep Kumar is a lead data scientist at one of the top consulting companies. He
has a Post Graduate Degree in Data Science from BITS Pilani, and is an alumni of
IIIT Bangalore. He has more than 11 years of work experience in the IT industry.
In his capacity, he drives and contributes to the Data Science activities along with
defining the road map, scoping and mentoring the team members. He is an expert
in deriving and productionizing end-to-end ML solutions to grow business and
have a positive impact on the key business KPIs.

vi

Acknowledgement

There are a few people I want to thank for the continued and ongoing support they
have given me during the writing of this book. First and foremost, I would like to
thank my parents for continuously encouraging me for writing the book — I could
have never completed this book without their support. I would like to thank my
friend Dr. Someswar Deb, who is working as MSL in Novartis, for his constant
support and motivation.

I am grateful to the journey provided from my companies who gave me support
throughout the learning process of my career.

Thank you for all the hidden support provided. I gratefully acknowledge
Mr. Abhishek Kumar, Senior Director of Public is Sapient for his kind technical
help for deployment related stuffs which was helpful for this book. I would like
to thank Sivaram Annadurai Senior Manager at Publicis Sapient for his constant
motivation in technical and business aspects in machine learning real-time projects.

My gratitude also goes to the team at BPB Publications for being supportive
enough to provide me quite a long time to finish the first part of the book and also
allow me to publish the book in multiple parts. Since image processing being a
vast and very active area of research, it was impossible to deep-dive into different
classes of problems in a single book, especially by not making it too voluminous.

 vii

Preface

This book focuses on the DevOps and MLOps of deploying and productionising
machine learning projects with Kubeflow in Google Cloud platform. The
authors feel that in this era of machine learning, lot of companies failed to make
production of AI/ML projects in real time which was also a study from Forbes. It
is compelling and relevant content for today’s practicing DevOps/MLOps teams
as this sector is still changing. So, many machine learning platforms today take
different approaches to the architecture and solution space of managing machine
learning workflows. The core concepts of Kubernetes and Kubeflow and its
architecture alongside teaches us how to approach and make your AI/ML projects
from training to serving with scale in production with Kubeflow.

This book starts by taking you through today’s machine learning infrastructure
of Kubernetes and Kubeflow architecture. We then go on to outline the core
principles of deploying various AI/ML use cases with TensorFlow training serving
with Kubeflow and explain how Kubernetes solves some of the issues that arise.
We further show how to use TFX with Kubeflow alongside Explainable AI for
determining fairness and biasness with What-if Tool. We learn various serving
techniques framework for different use cases with Kubeflow KF serving. After that
we look at building sample computer vision based UI in streamlit and deploying
that in Google cloud platform Kubernetes and Heroku deployment.

This book is divided into 8 chapters. They cover Kubernetes, Kubeflow basics,
advance deployment projects with Kubeflow, AWS Sagemaker deployment and
explainable AI with real time examples for deployment and container creation
with Docker and building pipeline in Kubeflow. More interest will arise among
learners in Machine learning deployment with Kubeflow.

The details are listed as follows:

Chapter 1: In this chapter, we will learn about the complete features of Kubeflow,
how it works and its need. We will also learn about the architecture functionality
of Kubernetes such as service, pod, Ingress, and so on. We will learn to build
the docker image and learn it’s working. Here, we will see the components of
Kubeflow advantage, which we will be using in the upcoming chapters. Then,
we will proceed towards the complete setup of Kubeflow in the Google Cloud

viii

platform and Jupyter notebook setup. We have an optional item – how to create
the persistent volume claim and attach it to the file store to save your codes and
data.

Chapter 2: In this chapter, we will build an end-to-end TensorFlow classification
model deployment with Kubeflow orchestration which includes deploying
Kubeflow in Kubernetes Cluster in GCP, building the pipeline components for
the model with Docker and Kubeflow SDK, and then serving the model with KF
serving to have an endpoint for prediction. We will also track the monitoring and
performance for our serving traffic endpoint in Grafana dashboard.

Chapter 3: In this chapter, we will build an end-to-end TensorFlow computer vision
model with OpenCV operation and deploy that with the Kubeflow orchestration,
which includes deploying Kubeflow in Kubernetes cluster in GCP, building the
pipeline components for the model with Docker and Kubeflow SDK and then
serving the model with KF serving to have an endpoint for prediction. We will
then track the monitoring and performance in Grafana dashboard.

Chapter 4: In this chapter, we will build an end-to-end structured data classification
model and make it ready for production with the help of TFX, and serve the
model outputs with TF serving to get the prediction. We will also be building the
TensorFlow ecosystem model and visualizing the evaluation with Tensorboard
and Fairness. Then, we will learn about the various TFX components like TFT,
TFMA, TFDV, and so on. Later on, we will create a Kubeflow Pipeline on Google
Cloud.

Chapter 5: In this chapter, we will work on a classification model with the hotel
booking dataset, train the TensorFlow and boosting models, and visualize the
advanced explanation of our model results with Tensorboard, Shap, and What-if
products.

Chapter 6: In this chapter, we will build an end-to-end Light Model framework
and will monitor the model performance in the Weights and Biases (Wandb) tool.
Within Weights and Biases, we will see the live model RMSE graphs and parallel
coordinates’ hyper parameter performance graphs for each iteration. Next, we
will deploy the model with the KF serving in our Kubernetes Cluster inside
Google Cloud platform. We will be serving model endpoint which will be used for
prediction and monitored in the Grafana Dashboard, such as model rate request
with respect to the time and CPU and GPU consumption.

 ix

Chapter 7: In this chapter, we will work on the Housing Price Sales dataset
project, where we will completely run, evaluate, and deploy the model in the
Amazon SageMaker Cloud environment and use S3 for data storage. We will also
be using the in-built container algorithm XG-Boost for model building so that we
are able to understand the architecture of SageMaker model building framework
end to end.

Chapter 8: In this chapter, we will build an end-to-end web application for the
computer vision models, and build the UI with Streamlit. We will be learning
about many Open CV models for image like cropping, changing pixels, and so
on. Next, we will host the web application with the Heroku Container Registry or
Kubernetes Cluster as a service application in Google Cloud.

x

Downloading the code
bundle and coloured images:

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/bfbaf6

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

 xi

BPB is searching for authors like you
If you're interested in becoming an author for BPB, please visit
www.bpbonline.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit
your own idea.

The code bundle for the book is also hosted on GitHub at https://github.
com/bpbpublications/Continuous-Machine-Learning-with-Kubeflow. In
case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/bpbpublications. Check them out!

PIRACY
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com.

REVIEWS
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions, we at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

xii

Table of Contents

 1. Introduction to Kubeflow & Kubernetes Cloud Architecture 1
 Structure .. 1
 Objectives .. 2
 1.1 Docker understanding .. 2
	 1.1.1	Dockerfile .. 4
 1.2 Kubernetes Architecture ... 5
 1.2.1 What is Kubernetes? ... 5
 1.2.2 Why do we need Kubernetes? ... 6
 1.2.3 What are the Advantages of Kubernetes? ... 6
 1.2.4 How do Kubernetes work? .. 8
 1.3 Kubernetes components ... 9
 1.3.1 Types of Services ... 15
 1.4 Introduction on Kubeflow Orchestration for ML Deployment 18
 1.5 Components of Kubeflow... 20
 1.5.1 Central Dashboard .. 21
 1.5.2 Registration Flow ... 21
 1.5.3 Metadata ... 22
 1.5.4 Jupyter Notebook server .. 23
 1.5.5 Katib .. 24
 1.6 Getting Started in GCP Kubeflow setup .. 24
 1.6.1 Install and Set Up kubectl .. 26
 1.6.2 Install and Set Up gcloudsdk .. 26
 1.6.3 Set Up OAuth from Cloud IAP .. 27
 1.6.4 Set Up Docker ... 29
	 1.6.5	Set	Up	Kubeflow	in	Kubernetes	Cluster	in	GCP 30
	 1.6.6	Connect	to	cluster	and	Deploy	Grafana ... 34
	 1.6.7	Jupyter	Notebook	server	setup	in	Kubeflow .. 35
 1.7 Optional: PVC setup for Jupyter Notebook ... 39
 1.8 Conclusion .. 43
 1.9 Reference ... 43

 xiii

 2. Developing Kubeflow Pipeline in GCP.. 45
 Structure .. 45
 Objectives .. 46
 2.1 Problem statement ... 46
 2.2 Getting started in GCP Kubeflow setup ... 46
 2.3 Breakdown technique to build production pipeline 46
 2.4 Building the Kubeflow Pipeline components for TensorFlow model 49
 2.3.1 Data Extraction or Ingestion Component .. 50
 2.3.2 Data pre-processing component .. 54
 2.3.3 Training model component ... 60
 2.3.4 Evaluation component .. 65
 2.5 Serving the Model with KF Serving .. 65
 2.6 Building the pipeline end to end ... 73
 2.7 Monitoring the performance with Grafana dashboard 81
 2.8 Conclusion .. 84
 2.9 Reference ... 84

 3. Designing Computer Vision Model in Kubeflow... 85
 Structure .. 85
 Objectives .. 86
 3.1 Problem statement ... 86
 3.2 Getting started in GCP Kubeflow setup ... 86
 3.3 Analytics behind the problem statement ... 87
 3.4. Building the Kubeflow pipeline components for
 Computer Vision (CNN) TensorFlow model ... 90
 3.4.1 Data extraction or Ingestion component .. 91
 3.4.2 Data pre-processing component .. 95
 3.4.3 Training model component ... 101
 3.3.4 Evaluation component .. 106
 3.5. Serving the Model with KF Serving ... 106
 3.6 Building the pipeline end to end ... 114
 3.7. Auto-Scaling of the Serving Endpoint ... 124
 3.8 Conclusion .. 129
 3.9 Reference ... 130

xiv

 4. Building TFX Pipeline .. 131
 Structure .. 131
 Objective.. 132
 4.1 Problem statement ... 132
 4.2 Architecture of TFX components ... 132
 4.3 TFX environment setup .. 134
 4.4 TFX pipeline components ... 136
	 4.4.1	ExampleGen .. 137
	 4.4.2	StatisticsGen ... 139
	 4.4.3	SchemaGen ... 140
 4.4.4 ExampleValidator ... 142
 4.4.5 Transform .. 143
 4.4.6 Tuner and Trainer ... 149
 4.4.7 Evaluator .. 157
 4.4.7.1 Fairness and TFMA Visualization .. 158
 4.4.8 Pusher ... 159
 4.5 Serve the Model with TF Serving .. 161
 4.6 Building Kubeflow Pipeline Orchestrator .. 164
 4.7 Conclusion .. 173
 4.8 Reference ... 174

 5. ML Model Explainability & Interpretability .. 175
 Structure .. 175
 Objectives .. 176
 5.1 Problem ... 176
 5.2 General idea and concept behind Shap .. 176
 5.3 Getting Started with Python library Installation and
 Data loading in Colab ... 179
 5.4 Feature transformation for Training Model ... 180
 5.5 LightGBM Model training .. 182
 5.6 Model Analysis with advance Visualization along Shap Tool 183
 5.6.1 Basic decision plot features ... 184
 5.6.2 Force Plots Analysis ... 186
 5.7 TensorFlow Estimator Model Framework Building 189
 5.7.1 TensorFlow Estimator Model .. 193

 xv

 5.8 Advance Visualization for TensorFlow Model with
 Tensorboard & What-IF Tool .. 195
 5.8.1 Tensorboard ... 195
 5.8.2 What-If Tool .. 197
 5.9 Conclusion .. 200
 5.10 References ... 200

 6. Building Weights & Biases Pipeline Development .. 201
 Structure .. 201
 Objectives .. 202
 6.1 Problem statement ... 202
 6.2 Setup of project requirements in GCP & Wandb 202
	 6.2.1	Kubeflow	Cluster	in	GCP	and	Docker	setup .. 203
 6.2.2 Kaggle API setup for downloading data ... 203
 6.2.3 Weights & Biases API Key ... 204
 6.3 Introduction on how to use Weights & Biases ... 206
 6.4 Modeling and training the LightGBM Model for Equity Data 208
	 6.4.1	Get	the	latest	version	of	Weights	&	Biases	Dependency	&	
 Kaggle Setup .. 209
 6.4.2 Weights & Biases Dependency & Kaggle API Setup 210
 6.4.3 Loading and Extracting of Data ... 213
 6.4.4 Exploratory Data Analysis ... 213
 6.4.4 Utility Metrics Function .. 215
 6.4.5 Training model (using Weights & Biases) with
	 LightGBM	Framework .. 217
 6.5 Serving the model with KF Serving .. 226
 6.6 Monitoring the performance with Grafana Dashboard 231
 6.7 Conclusion .. 233
 6.8 References ... 233

 7. Applied ML with AWS SageMaker ... 235
 Structure .. 235
 Objectives .. 236
 7.1 Problem ... 236
 7.2 Getting started in AWS SageMaker setup .. 236
 7.3 Getting Started with JupyterLab Notebook Instances and SDK & S3 Bucker241

xvi

 7.3.1 Create an S3 Bucket .. 241
 7.3.2 Create an Amazon SageMaker Notebook Instance 242
 7.4 Getting Started by Launching Notebook and loading data to S3 245
 7.5 Load, Analyse, and Transform the Training Data 247
 7.5.1 Data Loading from S3 and Library ... 247
 7.5.2 Feature Engineering ... 248
 7.5.2.1 Finding Categorical & Numerical Columns ... 248
 7.5.2.2 Checking the missing values sum .. 249
 7.5.2.3 Log transformation of dependent feature .. 250
 7.5.2.4 Correlation & Scatter Plots ... 251
 7.5.2.5 Outlier Detection .. 254
 7.5.3 Feature Transformation .. 257
 7.6 Amazon SageMaker Training Model .. 261
 7.6.1 Splitting Data into Train/Validation and push to S3 262
	 7.6.2	Train	with	SageMaker	API	XG-Boost	which	maintains	
 the algorithm container .. 264
 7.7 Amazon SageMaker model deployment .. 267
 7.8 Conclusion .. 271
 7.9 References ... 271

 8. Web App Development with Streamlit & Heroku .. 273
 Structure .. 273
 Objectives .. 274
 8.1 Problem statement ... 274
 8.2 Setup of project requirements in GCP & Heroku 274
 8.3 Introduction on components of Streamlit .. 275
 8.3.1 Main concepts ... 277
 8.4 Building the Framework for Streamlit for OpenCV models 285
 8.5 Creating the components for Heroku Deployment 295
 8.6 Deploying the Streamlit code by containerizing in Kubernetes cluster301
 8.7 Summary ... 305
 8.8 References ... 306

 Index ...307-313

Introduction to Kubeflow & Kubernetes Cloud Architecture 1

Chapter 1
Introduction to

Kubeflow &
Kubernetes Cloud

Architecture
In this chapter, we will learn about the complete features of Kubeflow, how it works,

and why we need Kubeflow. We will also learn about the architecture functionality
of Kubernetes, like service, pod, Ingress, and so on, and how to build the docker
image, and how it works. Here, we will see the components of Kubeflow advantage,
which we will be using in the upcoming chapters. Then, we will proceed towards
the complete setup of Kubeflow in the Google Cloud Platform and Jupyter notebook
setup. We have an optional item – how to create the Persistent Volume Claim, and
attach it to the File store to save your codes and data.

Structure
In this chapter, we will cover the following topics:

•	 Docker understanding

•	 Kubernetes concepts and architecture

•	 Kubernetes components

•	 Introduction on Kubeflow Orchestration for ML Deployment

•	 Components of Kubeflow

•	 Setting Up for Kubeflow in GCP

2 Continuous Machine Learning with Kubeflow

•	 Jupyter Notebook setup

•	 Optional: PVC setup for Jupyter Notebook

Objectives
This chapter will help you learn the following:

•	 The core understanding of Docker and Kubernetes, and its application to be
used in Cloud.

•	 Kubernetes and Kubeflow Architecture and its functionality and advantages.

•	 The components of Kubeflow and how to setup Kubeflow IAP Cluster in
Google Cloud Platform.

•	 Docker image of CPU for setting up the Jupyter notebook, alongside the
PVC Setup in Cloud.

NOTE Rest all the imports I have showed in my Colab Notebook, for which the
hyperlink of GitHub account of this chapter is given below. Note Colab
platform Python 3.x. RUN IN GOOGLE COLAB

CODE https://github.com/bpbpublications/Continuous-Machine-Learning-
with-Kubeflow/tree/main/Chapter1

1.1 Docker understanding
Docker is a platform for the developers and system admins to build, run, and share
the applications with the containers. The containers used to deploy the applications
is called containerization. To deploy the applications, the containers are making
things easier and flexible.

Containerization is increasingly becoming popular because the containers have the
following features:

•	 Flexible: We can containerize the most complex applications as well.

•	 Scalable: We can distribute the container replica’s process across a data
center automatically.

•	 Lightweight: The containers make things more efficient than the Virtual
machines by sharing and leveraging the host kernel.

•	 Portable: Due it’s portable nature, we can build them locally, deploy to the
cloud, and run it from anywhere.

Introduction to Kubeflow & Kubernetes Cloud Architecture 3

•	 Loosely coupled: They are highly independent and encapsulated, which
allows us to replace or upgrade anyone without disrupting others.

•	 Secure: Without any required configuration on the part of the user, it applies
aggressive isolations and constraints to the processes.

Images and containers:
Logically, a container is a running process, with some added encapsulated features
which applies for the Host to be isolated from it and from the other containers.
The most important aspects is that each container interacts with its own private
file system, which is called container isolation; the Docker image provides this
file system. So, an image includes most of the things which are needed to run an
application – the code, runtimes, dependencies, and any other file system objects
required.

Figure 1.1: Docker Architecture

The Docker has two concepts which are almost the same with its VM containers as
the idea of an image and a container. An image, which is the definition of that will be
executed, just like an operating system image, and for a given image, the container
is the running instance.

4 Continuous Machine Learning with Kubeflow

1.1.1 Dockerfile
To get our Python or any language code running in a container is to warp it in a
package as a Docker image, after that run a container based on it. The steps are
sketched as follows:

Figure 1.2: Docker file process

Next, for generating a Docker image, we need to create a Dockerfile which contains
some set of instructions needed to build the image. The Dockerfile is then processed
by the Docker builder which generates the Docker image. At last, with a simple
Docker run command, we can create and run a container with the Python service.

Figure 1.3: Dockerfile code

Let’s split this file into the following lines:

•	 It uses the Python base image with the tag Python:3.8, which is a specific
version of Python.

Introduction to Kubeflow & Kubernetes Cloud Architecture 5

•	 Then, it creates a working directory, where we will copy our local files to that
directory; here we have created an app folder and copied the requirements
file which contains the Python library.

•	 Then, we have installed all the Python libraries with the pip command.

•	 Next, we use CMD, which is a command to run the Python file whenever the
container gets started.

Figure 1.4: Dockerfile command

Now, run the preceding code in the terminal to push the image, which you have
built in local to cloud (GCP/AWS/AZURE) and Docker hub.

1.2 Kubernetes Architecture
In this section, we will see how the Kubernetes work, and learn about its architecture.

1.2.1 What is Kubernetes?
Kubernetes is an open-source container management system used in large-scale
enterprises in several dynamic industries to perform a mission-critical task or any
orchestration task. Some of its capabilities include the following:

•	 It manages the containers inside cluster.

•	 It deploys applications to which it provides tools.

•	 It scales the applications as per requirement.

6 Continuous Machine Learning with Kubeflow

•	 It manages the existing containerized application changes.

•	 It optimizes the use of the underlying hardware complexity beneath our
container.

•	 It enables an application component to restart and move across multiple
systems as per need.

1.2.2 Why do we need Kubernetes?
We need Kubernetes to manage the containers when we run our production grade
environments using a pattern of microservice with many containers. We need to
track features such as health check, version control, scaling, and rollback mechanism
among other things. It can be quite challenging and frustrating to make sure that
all of these things are running alright. Kubernetes gives us the orchestration and
management capabilities required to deploy the containers at scale. To build the
application services with the Kubernetes orchestration allows us to span multiple
containers and timely schedule those containers across a cluster, scale those
containers when it’s not in use, and manage the health of those containers from
time to time. In a nutshell, Kubernetes is more like a Master manager that has many
subordinates (containers). What a manager does is maintain what the subordinates
need to do.

1.2.3 What are the Advantages of Kubernetes?
The following are the advantages of Kubernetes:

Portable and Open-Source:
Kubernetes can run the containers on one or more public cloud environments, virtual
machines, or bare metal, which means it can be deployed on any infrastructure.
Moreover, Kubernetes is compatible across multiple platforms, making a multi-
cloud strategy a highly flexible and usable component.

Workload Scalability:

Kubernetes course offers the following useful features for scaling purpose:

•	 Horizontal Infrastructure Scaling: Operates on the individual server level to
implement horizontal scaling. New servers can be added or removed easily.

•	 Auto-Scaling: We can alter the number of containers running, based on the
usage of CPU resources or other application-metrics.

•	 Manual Scaling: The number of running containers through a command or
the interface can be manually scaled.

Introduction to Kubeflow & Kubernetes Cloud Architecture 7

•	 Replication Controller: The replication controller makes sure that the cluster
has a specified number of equivalent pods in a running condition. If there
are too many pods, the replication controller can remove the extra pods or
vice-versa.

High Availability:
Kubernetes can handle the availability of both the applications and the infrastructure.
It tackles the following:

•	 Health Checks: The application doesn’t fail by constantly checking with
the health of modes and containers. Kubernetes offers self-healing and auto
replacement if a pod crashes due to an error.

•	 Traffic Routing and Load Balancing: Kubernetes’ load balancer distributes
the load across multiple loads, enabling us to balance the resources quickly
during incidental traffic or batch processing.

Designed for Deployment:
Containerization has an ability to speed up the process of building, testing, and
releasing the software, and the useful features include the following:

•	 Automated Rollouts and Rollbacks: It can handle the new version and
update our app without any downtime, while we monitor the health
during the roll-out process. If any failure occurs during the process, it can
automatically roll back to the previous version.

•	 Canary Deployments: So, the production of the new deployment and the
previous version can be tested in parallel, that is, before scaling up the new
deployment and parallelly scaling down the previous deployment.

•	 Programming Language and Framework Support: Most of the programming
languages and frameworks like Java, Python, and so on, are supported by
Kubernetes. If an application has the ability to run in a container, it can run
in Kubernetes as well.

Kubernetes and Stateful Containers:
Kubernetes’ Stateful Sets provides resources like volumes, stable network ids, and
ordinal indexes from 0 to N, and so on, to deal with the stateful containers. Volume
is one such key feature that enables us to run the stateful application. The two main
types of volume supported are as follows:

•	 Ephermal Storage Volume: Ephermal data storage is different from Docker.
In Kubernetes, the volume is taken into account in any containers that run
within the pod, and the data is stored across the container. But, if the pods
get killed, the volume is automatically removed.

8 Continuous Machine Learning with Kubeflow

•	 Persistent Storage: The data remains for the lifetime. So, when the pod dies
or it is moved to another node, that data will still remain until it is deleted by
the user. Hence, the data is stored remotely.

1.2.4 How do Kubernetes work?
A cluster is the foundation of Google Kubernetes Engine (GKE); the Kubernetes
objects that represent your containerized applications all run on top of a cluster. In
GKE, a cluster consists of at least one control plane and multiple worker machines,
called nodes. These control plane and node machines run the Kubernetes cluster
orchestration system.

Figure 1.5: Kubernetes Architecture

Master:

The master is the controlling element of the cluster. The master has the following
three parts:

•	 API Server: The application that serves Kubernetes’ functionality through a
RESTful interface and stores the state of the cluster.

Introduction to Kubeflow & Kubernetes Cloud Architecture 9

•	 Scheduler: The scheduler watches the API server for the new Pod requests.
It communicates with the Nodes to create the new pods and assign work to
the nodes while allocating the resources or imposing constraints.

•	 Controller Manager: The component on the master runs the controllers. It
includes the Node controller, Endpoint Controller, Namespace Controller,
and so on.

Slave (Nodes):
These machines perform the requested, assigned tasks. The Kubernetes master
controls them. There are the following four components inside the Nodes:

•	 Pod: All containers will run in a pod. Pods abstract the network and storage
away from the underlying containers. Your app will run here.

•	 Kubelet: The Kubectl registering the nodes with the cluster, watches for
work assignments from the scheduler, instantiates new Pods, and reports
back to the master.

•	 Container Engine: It is responsible for managing the containers, image
pulling, stopping the container, starting the container, destroying the
container, and so on.

•	 Kube Proxy: It is responsible for forwarding the app user requests to the
right pod.

1.3 Kubernetes components
In this section, let’s understand the deep concept behind the functionality of
Kubernetes’ each and every important components.

NODE:
A node is the smallest unit of the computing hardware in Kubernetes. It is a
representation of a single machine in your cluster. In most production systems, a
node will likely be either a physical machine in a datacenter, or a virtual machine

10 Continuous Machine Learning with Kubeflow

hosted on a cloud provider, like the Google Cloud Platform. Don’t let conventions
limit you; however, in theory, you can make a node out of almost anything.

Figure 1.6: Node Concept

Thinking of a machine as a “node” allows us to insert a layer of abstraction. Now,
instead of worrying about the unique characteristics of any individual machine, we
can instead simply view each machine as a set of CPU and RAM resources that
can be utilized. In this way, any machine can substitute any other machine in a
Kubernetes cluster.

CLUSTER:
Although working with the individual nodes can be useful, it’s not the Kubernetes
way. In general, you should think about the cluster as a whole, instead of worrying
about the state of individual nodes.

Figure 1.7: Cluster Concept

Introduction to Kubeflow & Kubernetes Cloud Architecture 11

POD:
Unlike the other systems that you may have used in the past, Kubernetes doesn’t run
the containers directly; instead it wraps one or more containers into a higher-level
structure called a pod. Any containers in the same pod will share the same resources
and local network. The containers can easily communicate with the other containers
in the same pod, as though they were on the same machine while maintaining a
degree of isolation from the others.

Pods are used as the unit of replication in Kubernetes. If your application becomes too
popular and a single pod instance can’t carry the load, Kubernetes can be configured
to deploy the new replicas of your pod to the cluster as necessary. Even when not
under the heavy load, it is standard to have multiple copies of a pod running at any
time in a production system to allow the load balancing and failure resistance.

Figure 1.8: Pod Concept

The Pods contain one or more containers, such as the Docker containers. When a
Pod runs multiple containers, the containers are managed as a single entity, and
share the Pod's resources. Generally, running multiple containers in a single Pod is
an advanced use case.

Pods also contain shared networking and storage resources for their containers:
Network: Pods are automatically assigned unique IP addresses. Pod containers
share the same network namespace, including the IP address and network ports.
Containers in a Pod communicate with each other inside the Pod on localhost.

12 Continuous Machine Learning with Kubeflow

Storage: Pods can specify a set of shared storage volumes that can be shared among
the containers.

 Figure 1.9: Pod creation yaml

Deployment:
Although the pods are the basic unit of computation in Kubernetes, they are not
typically directly launched on a cluster. Instead, the pods are usually managed by
one more layer of abstraction – the deployment.

A deployment’s primary purpose is to declare how many replicas of a pod should be
running at a time. When a deployment is added to the cluster, it will automatically
spin up the requested number of pods, and then monitor them. If a pod dies, the
deployment will automatically re-create it.

Figure 1.10: Deployment concept

Introduction to Kubeflow & Kubernetes Cloud Architecture 13

Using a deployment, you don’t have to deal with the pods manually. You can just
declare the desired state of the system, and it will be managed for you automatically.

Figure 1.11: Deployment yaml file

In the preceding figure, you can see that it was the template for Deployment and it
was the format for each container deployment.

14 Continuous Machine Learning with Kubeflow

Service:
A service in Kubernetes is a REST object, similar to a Pod. Like all of the REST objects,
you can POST a Service definition to the API server to create a new instance. The
name of a Service object must be a valid DNS label name.

Figure 1.12: Service Concept

For example, suppose you have a set of Pods that each listen on TCP port 9376 and
carry a label app=MyApp – this specification creates a new Service object named
"my-service", which targets the TCP port 9376 on any Pod with the app=MyApp
label.

Kubernetes assigns this Service an IP address (sometimes called the "cluster IP"),
which is used by the Service proxies. Port definitions in Pods have names, and you
can reference these names in the targetPort attribute of a Service.

Why use a Service?
In a Kubernetes cluster, each Pod has an internal IP address. But the Pods in a
Deployment come and go, and their IP addresses change. So, it doesn't make sense
to use the Pod IP addresses directly. With a Service, you get a stable IP address that
lasts for the life of the Service, even as the IP addresses of the member Pods change.

A Service also provides load balancing. Clients call a single, stable IP address, and
their requests are balanced across the Pods that are members of the Service.

Introduction to Kubeflow & Kubernetes Cloud Architecture 15

1.3.1 Types of Services
There are the following five types of Services:

•	 ClusterIP (default): Internal clients send requests to a stable internal IP
address.

•	 NodePort: Clients send requests to the IP address of a node on one or more
nodePort values that are specified by the Service.

•	 LoadBalancer: Clients send requests to the IP address of a network load
balancer.

•	 ExternalName: Internal clients use the DNS name of a Service as an alias for
an external DNS name.

•	 Headless: You can use a headless service in situations where you want a Pod
grouping, but don't need a stable IP address.

Figure 1.13: Service yaml file

Ingress:
Using the concepts described earlier, you can create a cluster of nodes, and launch
deployments of pods onto the cluster. There is one last problem to solve, however –
allowing external traffic to your application.

16 Continuous Machine Learning with Kubeflow

By default, Kubernetes provides isolation between pods and the outside world. If
you want to communicate with a service running in a pod, you have to open up a
channel for communication. This is referred to as Ingress. There are multiple ways to
add ingress to your cluster. The most common ways are by adding either an Ingress
controller, or a LoadBalancer. The exact trade-offs between these two options are out
of scope for this post, but you must be aware that ingress is something you need to
handle before you can experiment with Kubernetes.

What is Ingress?
Ingress exposes HTTP and HTTPS routes from outside the cluster to the services
within the cluster. Traffic routing is controlled by the rules defined on the Ingress
resource. The following is a simple example where an Ingress sends all its traffic to
one Service.

An Ingress may be configured to give the Services externally-reachable URLs,
load balance traffic, terminate SSL/TLS, and offer name-based virtual hosting.
An Ingress controller is responsible for fulfilling the Ingress, usually with a load
balancer, though it may also configure your edge router or additional frontends to
help handle the traffic.

An Ingress does not expose the arbitrary ports or protocols. Exposing the services
other than the HTTP and HTTPS to the internet, typically uses a service of type
Service.Type=NodePort or Service.Type=LoadBalancer.

Figure 1.14: Ingress architecture

Introduction to Kubeflow & Kubernetes Cloud Architecture 17

A fanout configuration routes traffic from a single IP address to more than one
Service, based on the HTTP URL being requested. An Ingress allows you to keep
the number of load balancers down to a minimum. For example, a setup like the
following:

The Ingress controller provisions an implementation-specific load balancer that
satisfies the Ingress, as long as the Services (service1, service2) exist. When it has
done so, you can see the address of the load balancer at the Address field.

Figure 1.15: Ingress yaml file

Namespace:

When to Use Multiple Namespaces?
Namespaces are intended for use in environments with many users spread across
multiple teams, or projects. For clusters with a few to tens of users, you should not
need to create or think about namespaces at all. Start using namespaces when you
need the features they provide. Namespaces provide a scope for the names. The
names of resources need to be unique within a namespace, but not across namespaces.
Namespaces cannot be nested inside one another and each Kubernetes resource can
only be in one namespace.

18 Continuous Machine Learning with Kubeflow

Kubernetes starts with the four initial namespaces:

•	 default: The default namespace for objects with no other namespace.

•	 kube-system: The namespace for objects created by the Kubernetes system.

•	 kube-public: This namespace is created automatically and is readable by all
users (including those not authenticated). This namespace is mostly reserved
for cluster usage, in case some resources should be visible and readable
publicly throughout the whole cluster. The public aspect of this namespace
is only a convention, not a requirement.

•	 kube-node-lease: This namespace for the lease objects associates with each
node which improves the performance of the node heartbeats as the cluster
scales.

Figure 1.16: Namespace Concept

1.4 Introduction on Kubeflow
Orchestration for ML Deployment
Kubeflow is an open source Kubernetes-native platform for developing,
orchestrating, deploying, and running scalable and portable ML workloads. It helps
support the reproducibility and collaboration in ML workflow lifecycles, allowing
you to manage the end-to-end orchestration of ML pipelines, to run your workflow
in multiple or hybrid environments, and to help you reuse the building blocks across
different workflows.

Introduction to Kubeflow & Kubernetes Cloud Architecture 19

Figure 1.17: Kubeflow Architecture

Kubeflow also provides support for the visualisation and collaboration in your ML
workflow.

1. Kubernetes resources: The Pipeline Service calls the Kubernetes API server
to create the necessary Kubernetes resources (CRDs) to run the pipeline.

2. Python SDK: You create the components or specify a pipeline using the
Kubeflow Pipelines domain-specific language (DSL).

3. DSL compiler: The DSL compiler transforms your pipeline’s Python code
into a static configuration (YAML).

4. Pipeline Service: You call the Pipeline Service to create a pipeline run from
the static configuration.

5. Orchestration controllers: A set of orchestration controllers execute the
containers needed to complete the pipeline. The containers execute within
the Kubernetes Pods on virtual machines. An example controller is the Argo
Workflow controller, which orchestrates the task-driven workflows.

6. Pipeline web server: The Pipeline web server gathers data from various
services to display relevant views – the list of pipelines currently running,
the history of pipeline execution, the list of data artifacts, debugging
information about individual pipeline runs, and execution status about
individual pipeline runs.

20 Continuous Machine Learning with Kubeflow

7. Pipeline Service: You call the Pipeline Service to create a pipeline run from
the static configuration.

8. Persistence agent and ML metadata: The Pipeline Persistence Agent watches
the Kubernetes resources created by the Pipeline Service and persists the
state of these resources in the ML Metadata Service.

9. Artifact storage: The Pods store the following two kinds of data:
 ● Metadata: Experiments, jobs, pipeline runs, and single scalar metrics.

Metric data is aggregated for the purpose of sorting and filtering.
Kubeflow Pipelines store the metadata in a MySQL database.

 ● Artifacts: Pipeline packages, views, and large-scale metrics (time
series). Use large-scale metrics to debug a pipeline run or investigate an
individual run’s performance. Kubeflow Pipelines stores the artifacts
in an artifact store like Minio server or Cloud Storage.

Conceptual Overview of Kubeflow: You can deploy the workflow to various clouds,
local, and on-premises platforms for experimentation and production use.

Figure 1.18: Kubeflow Overview features

Kubeflow is the ML toolkit for Kubernetes. The preceding diagram shows Kubeflow
as a platform for arranging the components of your ML system on top of Kubernetes.

1.5 Components of Kubeflow
In this section, let’s explore some of the components for the introduction of Kubeflow,
which we will be using in the upcoming chapters in details.

Introduction to Kubeflow & Kubernetes Cloud Architecture 21

1.5.1 Central Dashboard
The Kubeflow UIs include the following:

•	 Home, a central dashboard for navigation between the Kubeflow components.

•	 Pipelines for a Kubeflow Pipelines dashboard.

•	 Notebook Servers for Jupyter notebooks.

•	 Katib for hyperparameter tuning.

•	 Artifact Store for tracking of artifact metadata.

•	 Manage Contributors for sharing the user access across namespaces in the
Kubeflow deployment.

Kubeflow central UI is accessible at the following URL:
https://<application-name>.endpoints.<project-id>.cloud.goog/

Figure 1.19: Kubeflow Dashboard

1.5.2 Registration Flow
Depending upon the setup of your Kubeflow cluster, you may need to create a
namespace when you first log in to Kubeflow. Namespaces are sometimes called
profiles or workgroups.

22 Continuous Machine Learning with Kubeflow

For Kubeflow deployments that support single-user isolation, the Kubeflow cluster
has no namespace role bindings.

Figure 1.20: Kubeflow Profile Setup

Click on the Start Setup button and follow the instructions on the screen to set up
your namespace. The default name for your namespace is your username.

Figure 1.21: Kubeflow Namespace

1.5.3 Metadata
The goal of the Metadata project is to help the Kubeflow users understand and
manage their machine learning (ML) workflows by tracking and managing the
metadata that the workflows produce. Complete the following steps:

•	 Go to Kubeflow in your browser.
•	 Click on Artifact Store on the left-hand navigation panel.

Introduction to Kubeflow & Kubernetes Cloud Architecture 23

•	 The Artifacts screen opens and displays a list of items for all the metadata
events that your workflows have logged. You can click on the name of each
item to view the details.

Figure 1.22: Kubeflow Metadata

1.5.4 Jupyter Notebook server
Click on Notebook Servers on the left-hand panel of the Kubeflow UI to access the
Jupyter notebook services deployed with Kubeflow:

Figure 1.23: Kubeflow Jupyter Notebook

Figure 1.24: Kubeflow Jupyter Notebook dashboard

24 Continuous Machine Learning with Kubeflow

1.5.5 Katib
Use Katib for automated tuning of your ML model’s hyper parameters and
architecture. For more information, go to the following link: https://www.Kubeflow.
org/docs/components/hyperparameter-tuning/overview/

Figure 1.25: Kubeflow katib dashboard

1.6 Getting Started in GCP Kubeflow setup
Prerequisites: You must have an active GCP account and while you practice this
chapter, as it might charge for running the Kubernetes cluster.

I assume some basic Kubernetes and Docker knowledge is a must.

If you are using the GCP Free Tier or the 12-month trial period with $300 credit, note that
you can’t run the default GCP installation of Kubeflow, because the free tier does not offer
enough resources. You need to upgrade to a paid account.

Please follow the following link to set up the GCP project and make sure it will
charge you once after the free credits from your credit card, and enable all the API
required for our work: https://v1-0-branch.Kubeflow.org/docs/gke/deploy/project-
setup/

•	 Creating a Google Cloud Platform (GCP) project for your Kubeflow
deployment.

•	 Making sure that you have the owner role for the project.

•	 Making sure that billing is enabled for your project.

•	 Going to the GCP Console will ensure specified APIs are enabled:

Introduction to Kubeflow & Kubernetes Cloud Architecture 25

 o Compute Engine API
 o Kubernetes Engine API
 o Identity and Access Management (IAM) API
 o Deployment Manager API
 o Cloud Resource Manager API
 o Cloud Filestore API
 o AI Platform Training and Prediction API
 o Cloud Build API

Figure 1.26: GCP API & Service Dashboard

The following are to be installed for Kubeflow on the command line:

• Ensure you have installed the following tools:

1. kubectl.

2. gcloud

26 Continuous Machine Learning with Kubeflow

• If you’re using Cloud Shell, enable boost mode.

• Next, please make sure that your GCP project meets the minimum
 requirements described in the project setup guide.

• Follow the guide setting up the OAuth credentials. To create the OAuth
 credentials for Cloud Identity-Aware Proxy (Cloud IAP), click on the
 following link:

 https://v1-0-branch.Kubeflow.org/docs/gke/deploy/

1.6.1 Install and Set Up kubectl
Now, let’s first install kubectl gcloud sdk, which will be used for connecting
Kubernetes.

Install with Homebrew on macOS:

If you are on macOS and using the Homebrew package manager, you can install
kubectl with Homebrew:

1. Run the installation command:
$ brew install kubectl

2. Test to ensure the version you installed is up-to-date:
$ kubectl version --client

For the other OS, follow the link for Linux or Windows or MacOs:
https://kubernetes.io/docs/tasks/tools/install-kubectl/

1.6.2 Install and Set Up gcloudsdk
Check which version (64-bit or 32-bit) your OS is running on.
Linux / macOS: Run getconf LONG_BIT from your command line.
Windows: Control Panel | System | System Type

Run the following command:

```bash

$ curl -O https://dl.google.com/dl/cloudsdk/channels/rapid/downloads/
google-cloud-sdk-302.0.0-linux-x86_64.tar.gz

$ tar zxvf google-cloud-sdk-302.0.0-linux-x86_64.tar.gz

$/google-cloud-sdk/install.sh

$ gcloud version

 ```


Introduction to Kubeflow & Kubernetes Cloud Architecture 27

Figure 1.27: Gcloud version

Now, to install the google cloud sdk, please click on the following link:
https://cloud.google.com/sdk/docs/downloads-versioned-archives

1.6.3 Set Up OAuth from Cloud IAP
In this section, we will set up the OAuth for Cloud IAP to get the secret key. So, the
OAuth set up requires a few steps.

First create the OAuth Consent screen from the APIs and Service in GCP, and
complete the following steps:

•	 In the Application name box, enter the name of your application. The
following example uses the name “Kubeflow”.

•	 Under Support email, select the email address that you want to display as
a public contact. You must use either your email address or a Google Group
that you own.

•	 If you see Authorized domains, enter the following:
<project>.cloud.goog

Here, <project> is your GCP project ID.

If you are using your own domain, such as acme.com, you should add that
as well.

The Authorized domains option appears only for certain project
configurations. If you don’t see the option, then there’s nothing you need to
set.

•	 Click on Save.

28 Continuous Machine Learning with Kubeflow

Please go to the following link and do the same that was provided: https://v1-0-
branch.Kubeflow.org/docs/gke/deploy/oauth-setup/

Step: Go to APIs & Service | OAuth consent screen | Credentials

Figure 1.28: GCP APIs & Service

Please note: Copy the few important points after the preceding steps, which will be
required for the Kubeflow Deployment later.

To do that, complete the following steps:

1. Copy the CLIENT ID and CLIENT_SECRET in a note for future use.

Figure 1.29: OAuth ID & Secret Key

2. Change the Authorized redirect URIs in OAuth consent screen.
https://iap.googleapis.com/v1/oauth/clientIds/<CLIENT_
ID>:handleRedirect

3. Paste the CLIENT_ID in this URL and paste in the Authorized redirect URIs
in OAuth consent screen.

 Please click on the following link for a detailed understanding:
 https://www.Kubeflow.org/docs/gke/deploy/oauth-setup/

Introduction to Kubeflow & Kubernetes Cloud Architecture 29

1.6.4 Set Up Docker
Now, we will set up the Docker which is important to build the container Image.

Pre-requisites:
You should have the Docker Hub account https://hub.Docker.com/

Figure 1.30: Docker Hub Sign hub page

Once you install the Docker for MacOS, Linux, or Windows, you have to login to the
application with the same credentials of the Docker hub with the DOCKER_ID and
PASSWORD.

Please click on the following link for the installation for Docker:
https://docs.Docker.com/Docker-for-mac/install/

30 Continuous Machine Learning with Kubeflow

1.6.5 Set Up Kubeflow in Kubernetes Cluster in
GCP
To setup Kubeflow in Kubernetes cluster, either you use the Google cloud shell or
Microsoft Visual Studio Terminal of your system. Here, we will use the Google cloud
shell.

Figure 1.31: Activate cloud shell

Now, we will activate the boost shell.

Figure 1.32: Activate cloud shell Boost Mode

Please complete the following steps in cloud shell.

The only thing which we need to give is CLIENT_ID, CLIENT_SECRET, PROJECT_
ID, ZONE, CLUSTER_NAME and change the CONFIG_URI according to the version of
Kubeflow release yaml file.

And you have this below code yaml file in GitHub. Please run the step 5 after all the
activities of the chapter to incur cost in google cloud.

Introduction to Kubeflow & Kubernetes Cloud Architecture 31

Deploy using CLI: This guide describes how to use the kfctl command line
interface (CLI) to deploy Kubeflow on GCP. The command line deployment gives
you more control over the deployment process.
Setting Up Kubeflow on Google Cloud Platform

Note: Use latest official Kubeflow documentation available at ** https://v1-
0-branch.Kubeflow.org/docs/gke/deploy/deploy-cli/** to install the latest
release and config files.

latest release are available at **https://github.com/Kubeflow/kfctl/
releases**

Step 1 : Setup GCP

```bash

# login to gcloud for authentication : done once

gcloud auth login

# create application default credentials : done once

gcloud auth application-default login

# GCP Project ID

export PROJECT=<PROJECT_ID>

gcloud config set project ${PROJECT}

# GCP Zone (use us-east1-c)

export ZONE=<ZONE>

gcloud config set compute/zone ${ZONE}

```

Step 2 : download the release based on your Operating system

```bash

# KFCTL file url : Get the latest file from 

# https://github.com/Kubeflow/kfctl/releases  based on the operating system

KFCTL_FILE_PATH="https://github.com/Kubeflow/kfctl/releases/download/
v1.0.2/kfctl_v1.0.2-0-ga476281_linux.tar.gz"

KFCTL_FILE="kfctl.tar.gz"

# download KFCTL compressed file

wget $KFCTL_FILE_PATH -O $KFCTL_FILE

# extract KFCTL

tar -xvf${KFCTL_FILE}

#mv kfctl-${PLATFORM} kfctl



32      Continuous Machine Learning with Kubeflow

# add kFCTL to path

PATH=${PATH}:$(pwd)

```

Step 3: setup the deployment

Copy and paste the Client ID and the secret in step C (OAuth Setup Cloud).

```bash

# Deployment Name e.g. 

export KF_NAME=<CLUSTER_NAME>

# set client ID and client secret 

export CLIENT_ID=<CLIENT_ID>

export CLIENT_SECRET=<CLIENT_SECRET>

# set the config URI : use the official documentation to use the latest 
config file

# get latest config URI from official Kubeflow documentation : https://v1-0-
branch.Kubeflow.org/docs/gke/deploy/deploy-cli/

#export CONFIG_URI=https://raw.githubusercontent.com/Kubeflow/manifests/
v1.0-branch/kfdef/kfctl_gcp_iap.v1.0.2.yaml

Copy the preceding URL to the following command in bash:

export CONFIG_URI="<CONFIG_URI>"

# set the base directory    

BASE_DIR=$(pwd)

# set the directory for deployment

KF_DIR=${BASE_DIR}/${KF_NAME}

# create the directory

mkdir -p ${KF_DIR}

# navigate to the directory

cd${KF_DIR}

# build deployment using the config file. Make changes in your configuration 
if needed

kfctl build -V -f ${CONFIG_URI}

```


Introduction to Kubeflow & Kubernetes Cloud Architecture 33

Step 4: Deploy

```bash

# setup the config file

Now, that you are in the present folder ${KF_DIR}, run the following command to 
check files:

```bash

ls

```

Figure 1.33: Kubeflow installation yaml files

Now, from preceding figure, we can copy the kfctl_gcp_iap.v1.0.2.yaml and 
paste in the following <CONFIG_FILE_NAME> to set the environment variables to 
deploy that yaml.

Next, go to the gcp_config folder from earlier, and run vim cluster-Kubeflow.yaml 
and change the cluster-version to “1.19” and save the file, and go back to the root 
folder of {KF_DIR}.

export CONFIG_FILE=${KF_DIR}/<CONFIG_FILE_NAME>

# apply changes

kfctl apply -V -f ${CONFIG_FILE}

gcloud container clusters get-credentials ${KF_NAME} --zone ${ZONE} 
--project ${PROJECT}

```

Please use run the step 5 after all the activities to delete everything at the end of the
project to incur cost in google cloud.

Step 5 : Delete

```bash

# If you want to delete all the resources, including storage:

kfctl delete -f ${CONFIG_FILE} --delete_storage

```

Now, wait for 15-20 minutes for the Ingress to be ready. Let’s open the Ingress to
check; click on Kubernetes Engine | Service & Ingress, and in the name, find

34 Continuous Machine Learning with Kubeflow

the envoy-ingress; see the following example as the URL where the Kubeflow is
hosted; click to open the Kubeflow dashboard.

Figure 1.34: Kubeflow Service & Ingress URL

Click on the following URL which is shown in the preceding figure:
https://<application-name>.endpoints.<project-id>.cloud.goog/

If you want to run Kubeflow 1.3 please check below link:

https://github.com/aniruddhachoudhury/mlopsworld

1.6.6 Connect to cluster and Deploy Grafana
Setup knative-monitoring

```bash

##RUN THE COMMAND IN GOOGLE SHELL

# Connect to cluster

gcloud container clusters get-credentials <$ClusterName> --zone 

<$ZONE> --project <$PROJECTID>

#create namespace

kubectl create namespace knative-monitoring

#setup monitoring components

kubectl apply --filename https://github.com/knative/serving/releases/
download/v0.17.2/monitoring-metrics-prometheus.yaml```



Introduction to Kubeflow & Kubernetes Cloud Architecture      35

1.6.7 Jupyter Notebook server setup in 
Kubeflow
Let’s create a custom Jupyter lab or Notebook for all the operations and projects in 
this book.

Figure 1.35: Custom Docker image Jupyter NB

Now, we will build the custom Docker image; for that, make sure that you start the 
Docker. You will see the Docker is activated on top, as we can see the first icon in the 
following figure, which indicates that the Docker is started:

Figure 1.36: Docker Activation in your system

```bash

PROJECT_ID=$(gcloud config get-value core/project)

IMAGE_NAME=custom-image-1

IMAGE_NAME=gcr.io/$PROJECT_ID/$IMAGE_NAME

IMAGE_TAG=latest

build image

Docker build -t $IMAGE_NAME:$IMAGE_TAG .

run locally to test

Docker run -it --rm -p 8888:8888 -p 6006:6006 -v $(pwd):/home/jovyan
$IMAGE_NAME:$IMAGE_TAG

authorize Docker

gcloud auth configure-Docker --quiet

push image

36 Continuous Machine Learning with Kubeflow

Docker push $IMAGE_NAME:$IMAGE_TAG

```

So, we will use the custom Docker image in the Jupyter Notebook.
gcr.io/custom-image-1:latest

Complete the following steps:
1. Click on Notebook Servers on the left-hand panel of the Kubeflow UI to 

access the Jupyter notebook services deployed with Kubeflow:

Figure 1.37: Kubeflow NB Dashboard

2. Now click on the NEW SERVER to create a new Jupyter Notebook.

Figure 1.38: Click New server

3. Enter a name of your choice for the notebook server. The name can include 
the letters and numbers, but no spaces. For example, my-first-notebook.

Kubeflow automatically updates the value in the namespace field to be the 
same as the namespace that you selected in a previous step. This ensures that 
the new notebook server is in a namespace that you can access.

Figure 1.39: Configuration Name for Notebook



Introduction to Kubeflow & Kubernetes Cloud Architecture      37

4. Select a Docker image for the baseline deployment of your notebook server. 
You can specify a custom image or choose from a range of standard images. 
Here, we will use Custom Image. Paste the preceding Docker Image: gcr.
io/custom-image-1:latest. Specify the total amount of CPU that your 
notebook server should reserve. The default is 0.5. For the CPU-intensive 
jobs, you can choose more than one CPU (for example, 1.5). Specify the total 
amount of memory (RAM) that your notebook server should reserve. The 
default is 1.0Gi.

Figure 1.40: Configuration image and CPU & Memory

5. Specify a workspace volume to hold your personal workspace for this 
notebook server. Kubeflow provisions a Kubernetes persistent volume (PV) 
for your workspace volume. The PV ensures that you can retain the data 
even if you destroy your notebook server.

The default is to create a new volume for your workspace with the following 
configuration:

Name: The volume name is synced with the name of the notebook server, 
and has the form workspace-<server-name>. When you start typing the 
notebook server name, the volume name appears. You can edit the volume 
name, but if you later edit the notebook server name, the volume name 
changes to match the notebook server name.

Size: 10Gi

Access mode: ReadWriteOnce. This setting means that the volume can be 
mounted as read-write by a single node.

Mount point: /home/jovyan

Alternatively, you can point the notebook server to an existing volume by 
specifying the name of the existing volume.



38      Continuous Machine Learning with Kubeflow

(Optional) Specify one or more data volumes if you want to store and access 
data from the notebooks on this notebook server. You can add new volumes 
or specify the existing volumes. Kubeflow provisions a Kubernetes persistent 
volume (PV) for each of your data volumes.

Figure 1.41: Configuration PVC & Volume

6. Select add gcp credentials from the drop down. Similarly, to use the GPU 
image, we have to give a custom GPU Image which will be there in GitHub. 
But, as we will work on CPU, as of now, we will not provide any GPU here.

Figure 1.42: Configuration/GPU/Launch



Introduction to Kubeflow & Kubernetes Cloud Architecture      39

7. Click on LAUNCH. You should see an entry for your new notebook server on 
the Notebook Servers page, with a spinning indicator in the Status column. 
The following is the sample Notebook which we have created:

Figure 1.43: Notebook ready

8. When the notebook server is running, you should see the Jupyter dashboard 
interface. If you requested a new workspace, the dashboard should be empty 
of notebooks.

1.7 Optional: PVC setup for Jupyter 
Notebook
If you want to attach your PVC to the file store, so that you can save your data 
or codes in the Jupyter Notebook to external storage, then we can complete the 
following steps:

Optional: (Cost will be applied for 1TB storage)

Step 1: Create a Filestore instance with 1 TB of storage capacity.

```bash

FS=[NAME FOR THE FILESTORE YOU WILL CREATE]

gcloud beta filestore instances create ${FS} \

 --project=${PROJECT} \

 --zone=${ZONE} \

 --tier=STANDARD \

 --file-share=name="volumes",capacity=1TB \

 --network=name="default"

```

Step 2: Retrieve the IP address of the Filestore instance.

```bash

FSADDR=$(gcloud beta filestore instances describe ${FS} \

 --project=${PROJECT} \

40 Continuous Machine Learning with Kubeflow

 --zone=${ZONE} \

 --format="value(networks.ipAddresses[0])")

```

Step 3: Connect to the cluster which you have created.

```bash

export ZONE=us-east1-c

export CLUSTER_NAME= {Your-cluster name}

gcloud container clusters get-credentials <CLUSTER_NAME>--zone <ZONE>
--project <PROJECT>

```

Step 4: Grant yourself the cluster-admin privileges.

```bash

ACCOUNT=$(gcloud config get-value core/account)

kubectl create clusterrolebinding core-cluster-admin-binding \

 --user ${ACCOUNT} \

 --clusterrole cluster-admin

 ```  

Step 5: Download Helm.

```bash

wget https://storage.googleapis.com/kubernetes-helm/helm-v2.11.0-linux-
amd64.tar.gz

tar xf helm-v2.11.0-linux-amd64.tar.gz

sudo ln -s $PWD/linux-amd64/helm /usr/local/bin/helm

```

Step 6: Create a file named rbac-config.yaml containing the following:

apiVersion: v1

kind: ServiceAccount

metadata:

        name: tiller

        namespace: kube-system

---

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: ClusterRoleBinding



Introduction to Kubeflow & Kubernetes Cloud Architecture      41

metadata:

        name: tiller

roleRef:

        apiGroup: rbac.authorization.k8s.io

        kind: ClusterRole

        name: cluster-admin

subjects:

      - kind: ServiceAccount

        name: tiller

        namespace: kube-system

Step 7: Create the tiller service account and cluster-admin role binding.

```bash

kubectl apply -f rbac-config.yaml

```

Step 8: Initialize Helm.

```bash

helm init --service-account tiller

```

Step 9: Copy the namespace that you can find by either running the following 
command which will give a list of namespace, or from the UI.

```bash

kubectl get namespace

```

Otherwise, copy the drop down and paste in the Notepad example here: aniruddha-
choudhury.

Figure 1.44: Namespace



42      Continuous Machine Learning with Kubeflow

Step 10: Deploy the NFS-Client Provisioner.

Create an instance of NFS-Client Provisioner connected to the Filestore instance 
that you created earlier via its IP address (${FSADDR}). The NFS-Client Provisioner 
creates a new storage class: nfs-client. Persistent volume claims against that storage 
class will be fulfilled by creating persistent volumes backed by directories under the 
/volumes directory on the Filestore instance's managed storage.

```bash

helm install stable/nfs-client-provisioner --name nfs-cp --set nfs.
server=${FSADDR} --set nfs.path=/volumes

watch kubectl get po -l app=nfs-client-provisioner

```

Figure 1.45: FileStore

Step 11: Make a Persistent Volume Claim.

Create a Kubernetes Persistent Volume Claim specification. This is a .yaml file that 
allows a Kubernetes pod to access the storage resources of a Persistent Volume. The 
specification looks similar to the following example:

Figure 1.46: PVC yaml

Here, storage is the size of the Persistent Volume Claim that you want to make 
available to the Kubernetes objects.



Introduction to Kubeflow & Kubernetes Cloud Architecture      43

You must specify the storage value in one of the supported units described in the 
Resource quantities. The value you specify must be equal to or less than the storage 
you specified for the Persistent Volume.

Deploy the Persistent Volume Claim specification:
kubectl create -f  persistent-volume-claim-file-name.yaml

Here, persistent-volume-file-name is the name of the Kubernetes Persistent Volume 
specification file that you created in the previous step.

Step 12: Copy the PVC name from above and paste it in the Jupyter Notebook in 
Kubeflow Workspace Volume Name.

```bash

paste the namespace here to get the name

kubectl get pvc -n {namespace}

```

1.8 Conclusion
In this chapter, we learned about the Kubernetes Orchestration concepts and 
architecture, and how it works in deployment level and scaling our application, 
alongside exposing to the outer world with the Network & Service.; and how the 
Docker makes it easy for a developer to containerize applications.

Then, we saw how to set up the Jupyter Notebook with CPU and GPU with the PVC 
attached and how to setup the PVC to store our required data for lifetime. We also 
learned more about deployment, service, and the ingress framework structure in 
Google Cloud. Finally, we learned how to setup Kubeflow in Google Cloud Platform 
for our following chapters.

In this chapter, we have gained how to leverage the power of Google Cloud Platform, 
and how to use your Devops knowledge with Machine Learning to become a MLops.

1.9 Reference
 ● https://kubernetes.io/docs/tutorials/kubernetes-basics/

 ● https://kubernetes.io/docs/reference/

 ● https://github.com/kubernetes/kubernetes

 ● https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/



44      Continuous Machine Learning with Kubeflow



Developing Kubeflow Pipeline in GCP      45

Chapter 2
Developing 

Kubeflow 
Pipeline in GCP

In this chapter, we will build an end-to-end TensorFlow classification Model 
deployment with Kubeflow Orchestration, which includes deploying Kubeflow 

in Kubernetes Cluster in GCP, building the pipeline components for the model with 
Docker and Kubeflow SDK, and then serving the Model with KF serving to have an 
endpoint for prediction. We will also track the monitoring and performance for our 
serving traffic endpoint  in Grafana Dashboard.

Structure
In this chapter, we will cover the following topics:

•	 Problem statement

•	 Getting started in GCP Kubeflow and Docker setup

•	 Breakdown technique to build the production pipeline

•	 Building the Kubeflow Pipeline components for TensorFlow model

•	 Serving the Model with KF Serving

•	 Building the pipeline end to end

•	 Monitoring the performance with Grafana dashboard



46      Continuous Machine Learning with Kubeflow

Objectives
In this chapter, we will learn the following:

•	 How to use Docker and Kubernetes to build the Kubeflow Pipeline.

•	 How to build the individual pipeline components like the training and 
model evaluation.

•	 How to serve the Model with KF serving and predict the model request, and 
monitor with the Grafana Dashboard.

•	 How to use Kubernetes, and many Google Cloud Platform to leverage the 
power of Machine learning with Devops Knowledge.

2.1 Problem statement
In this example, we have a classification dataset of breast cancer, and it will have 30 
attributes. We have to classify the Malignant and Benign.

NOTE Rest all the imports I have showed in my Colab Notebook, for which 
the hyperlink of GitHub Account of this chapter is given below. Note 
Colab platform Python 3.x. RUN IN GOOGLE COLAB.

CODE https://github.com/bpbpublications/Continuous-Machine-
Learning-with-Kubeflow/tree/main/Chapter2

2.2 Getting started in GCP Kubeflow setup
So, before we begin, we must setup the Kubeflow Cluster in GCP; please refer to 
Chapter 1: Introduction to Kubeflow & Kubernetes Cloud Architecture, section 1.6 (Getting 
Started in GCP Kubeflow setup).

2.3 Breakdown technique to build 
production pipeline
In this section, we will see how to frame your business problem, so that we can break 
down the Machine learning life cycle components, and build each component, so 
that we can build the Kubeflow pipeline.



Developing Kubeflow Pipeline in GCP      47

The following is the high level framework from the Jupyter Notebook code to the 
Pipeline components, and serving and hosting that in Cloud.

Figure 2.1: Pipeline Components E2E Architecture 

We will Dockerize each and every component, and push to the container registry 
of any Cloud, like for AWS, GCP, Azure, so that we can use that in the Kubeflow 
pipeline.

Steps to perform:
Data Extraction or Ingestion: Let’s say we have our machine learning; the first 
component is to extract the data from any sources like S3 bucket, Cloud Storage, 
and so on. Now, we will write the single component of the Input data sources and 
connection between Kubeflow components to all the data sources in the Python 
code.

And a next a service account in json format  will be used so that we can connect to 
external source. Then, we will Dockerize the component.

Figure 2.2: Pipeline Component 1: Data Ingestion



48      Continuous Machine Learning with Kubeflow

Data Pre-processing: The next component in our machine learning project is to 
pre-process or feature the engineering step. Here, we will build or transform all 
the incoming data which will be required for the training, according to all the use 
case like Computer vision, NLP, Structured data with the respective business pre-
processing logic, and we will save the artifacts or the transformed data back to the 
Storage bucket for future reference.

Figure 2.3: Pipeline Component 2: Data Pre-processing

Training: So, here we will train the model it can any TensorFlow or Sklearn, and 
so on with our pre-process data, and will save the model artifacts and logs in the 
external storage and internally in the native Kubernetes’ Persistent Volume Claim 
(PVC).

Figure 2.4: Pipeline Component 3: Training

Similarly, like the preceding step, we will build the evaluator component for the 
Kubeflow pipeline and then we will serve the model by loading the model from any 
storage like S3, Cloud Bucket, and so on.

Serving: Next, we will keep our pre-process logic inside the serving Python code 
to the incoming data which will be transformed automatically prior to prediction. 
Then, we will load our trained model which is saved in S3, Bucket, and so on for 
prediction. Simultaneously, if we have any other pre-process model, let’s say for 
example, the label-encoder in Sckit-learn, we can load that when we saved the 



Developing Kubeflow Pipeline in GCP      49

artifacts in our data pre-processing step 2, so that it can transform the incoming data, 
and predict with our loaded model.

Figure 2.5: Pipeline Component 4:serving

Next, we will start to build a TensorFlow Model pipeline from scratch.

2.4 Building the Kubeflow Pipeline 
components for TensorFlow model
In this section, we will not show how we will build the training classifier with 
TensorFlow; the main focus here is how we build the pipeline in Kubeflow to 
structure that into the pipeline end-to-end. You can use Microsoft Visual Studio and 
install the Docker and configure in Visual Studio.

So, the folder structure for our pipeline would be like the following format:

Figure 2.6: Pipeline folder Structure 

Below we going to see the Breakdown Architecture for our Pipeline and what each 
component compromises to build a pipeline end to end.



50      Continuous Machine Learning with Kubeflow

Here, we have KF-serving which is deployed in Kubernetes and running, and we 
can hit the endpoint for prediction.

Similar to this step, all of the other steps can be found in the pipeline/folder, and all 
have the following structure:

•	 Pipeline.py which exposes the functionality through a CLI.

•	 requirements.txt which states the Python dependencies to run.

•	 Dockerfile which uses the requirements to build the image with one line.

2.3.1 Data Extraction or Ingestion Component
Let’s see how we will build the component Data extraction Python file, which is 
given as follows:

dataextraction.py:

from __future__import absolute_import, division, print_function, 
unicode_literals

import click, json, os, dill , argparse

import numpy as np 

import pandas as pd

from sklearn.datasets import load_breast_cancer

@click.command()

@click.option('--data-file', default="/mnt/breast.data")

def get_data(data_file):

cancer = load_breast_cancer()

df_cancer = pd.DataFrame(np.c_[cancer['data'], cancer['target']], 
columns =         np.append(cancer['feature_names'], ['target']))

print(df_cancer.head(3))

print(df_cancer.describe())

with open(data_file,"wb") as f:

  dill.dump(df_cancer,f)

return

if__name__ == "__main__": 

get_data()



Developing Kubeflow Pipeline in GCP      51

Let’s breakdown the code as follows:
•	 First we will load the data from Sklearn datasets. Then, import all the 

required datasets.

•	 Then the @click command will be passing the argument in the function 
get_data().

•	 Then the dill command will be helping to save the data in pvc.

•	 So, as we can see “data-file” is “/mnt”, so mnt is the mount point; we will 
use mnt every time; after that we can give a file name with .data extension; 
it will save the data in any format like csv, txt, numpy, dataframe, and so on.

•	 So, whatever data we save with dill.dump, it will be used for the next 
pipeline data pre-processing, where with @click, we will input the saved 
data.

Next, let’s see how we will build the component Dockerfile for the data extraction. 
The following screenshot shows the requirements file where each library will be 
used inside the pipeline.py and we will need to load the requirements.txt file 
as an environment to run the Python function inside Docker:

Figure 2.7: Pipeline Requirements.txt 

Docker:
FROM python:3.7-slim-stretch
ENV DEBIAN_FRONTEND noninteractive
RUN apt-get update&& \
apt-get-y install gcc mono-mcs g++ git curl && \
rm-rf /var/lib/apt/lists/*
RUN mkdir/app
WORKDIR /app
ADD requirements.txt  /app/requirements.txt

RUN pip3 install -r requirements.txt



52      Continuous Machine Learning with Kubeflow

#  copy python

ADD dataextract.py. /app/dataextract.py

RUN chmod +x /app/dataextract.py

ENTRYPOINT ["python"]

CMD["/app/dataextract.py"]

So let’s break the Docker file code as follows:

•	 Loading the Python image as base Image to run the pipeline code of 3.7 
version.

•	 RUN function will run whenever the Docker image will start and create a /
app folder first with mkdir command.

•	 Next, we will redirect our command to WORKDIR where all the files and 
dependencies will be installed.

•	 Next, we will ADD the requirements file in the /app folder, and then run the 
pip command to install the Python libraries.

•	 Next, we will copy our pipeline.py Python code and give an administrative 
access to run the file whenever the Docker image will run with chmod 
command.

•	 Next, we will set our entry point as Python and CMD as “/app/dataextract.
py” to run this first.

Now, we will build the Docker image; for that, make sure you start the Docker, after 
which you will see the Docker is activated on the top. As we can see in the following 
screenshot, the first icon is the Docker, which is started.

Figure 2.8: Docker Activation 

Next, we can redirect to our visual studio code, and open the terminal from the 
visual studio by right clicking on the Docker file inside the dataextraction folder:



Developing Kubeflow Pipeline in GCP      53

Figure 2.9: Open terminal from Visual Studio

Run all the following commands by connecting to GCP via Local:

```bash

gcloud init

#Select the Email/Project associated with GCP

```

Build the container for Data Extraction:

```bash

cd /pipeline/dataextraction

PROJECT_ID=$(gcloud config get-value core/project)

IMAGE_NAME=breast_cancer/step1_loadingdata

IMAGE_VERSION=v1

IMAGE_NAME=gcr.io/$PROJECT_ID/$IMAGE_NAME

```

Building Docker image:

```

Docker build -t $IMAGE_NAME:$IMAGE_VERSION .

```



54      Continuous Machine Learning with Kubeflow

Push training image to Google container registry (GCR):

```

Docker push $IMAGE_NAME:$IMAGE_VERSION

```

The following is the screenshot where your image will be stored:

Figure 2.10: Docker Container Registry in GCR

Next, we will see how to build the training component, and as shown earlier, we will 
build pre-processing.

2.3.2 Data pre-processing component
Now, we will build the pre-processing step, and assume that the input will come 
from the previous data ingestion component. So, whatever data we have dumped 
with @dill command, we will load it first and will do the necessary pre-processing 
step.

In this part of the code, let’s import all the dependency, and create the utility 
correlation plot function. preprocessing.py:

from __future__ import absolute_import, division, print_function, 
unicode_literals

import os, argparse, json, click, dill



Developing Kubeflow Pipeline in GCP      55

from tensorflow.python.lib.io import file_io

import pandas as pd

from sklearn.model_selection import train_test_split

from google.cloud import storage

from plotly.subplots import make_subplots

import plotly.graph_objects as go

import numpy as np

os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = "service_account_iam.
json"

def correlation_plotting(data,s,correlation_plot):    

    correlation = data.corr()

    matrix_cols = correlation.columns.tolist()

    corr_array  = np.array(correlation)

    trace = go.Heatmap(z = corr_array, x = matrix_cols, y = matrix_cols, 
xgap = 2, ygap = 2, colorscale='Viridis', colorbar   = dict() 

    layout = go.Layout(dict(title = 'Correlation Matrix' +s, autosize 
= False, height  = 720, width   = 800, margin  = dict(r = 0 ,l = 
210, t = 25,b = 210,), yaxis   = dict(tickfont = dict(size = 9)),                             
xaxis   = dict(tickfont = dict(size = 9)),))

    fig = go.Figure(data = [trace],layout = layout)

    fig.update_layout(title={'y':1, 'x':0.6, 'xanchor': 'center', 
'yanchor': 'top'})

    fig.write_image(correlation_plot)

@click.command()

@click.option('--data-file', default="/mnt/breast.data")

@click.option('--train-file', default="/mnt/training.data")

@click.option('--test-file', default="/mnt/test.data")

@click.option('--validation-file', default="/mnt/validation.data")

@click.option('--train-target', default="/mnt/trainingtarget.data")

@click.option('--test-target', default="/mnt/testtarget.data")

@click.option('--validation-target', default="/mnt/validationtarget.
data")

@click.option('--split-size', default=0.1)



56      Continuous Machine Learning with Kubeflow

@click.option('--bucket-data', default="gs://kubeflowusecases/breast/
data.csv")

@click.option('--bucket-name', default="gs://kubeflowusecases")

@click.option('--commit-sha', default="breast/visualize")

@click.option('--metrics-plot', default="/mnt/correlation.png")

def training_data_processing(data_file,train_file,test_file,metrics_
plot,validation_file,split_size,train_target,test_target,validation_
target,bucket_data,bucket_name,commit_sha):

    with open(data_file, 'rb') as in_f:

        data= dill.load(in_f)

        

    data=data.fillna(data.mean())

    correlation_plotting(data,"for the Breast Cancer Dataset",metrics_
plot)

In continuation to the previous page of pre-processing code, here we will upload the 
correlation image which we saved with plotly for Kubeflow Python Visualization, 
in the following section. Then, we will dump the metadata for the image and table 
in the run time pipeline to visualize that.

    image_path = os.path.join(bucket_name, commit_sha, 'correlation.
png')

    image_url = os.path.join('https://storage.cloud.google.com', bucket_
name.lstrip('gs://'), commit_sha, 'correlation.png?authuser=0')

    html_path = os.path.join(bucket_name, commit_sha,'correlation.html')

    data.to_csv(bucket_data) 

    header = data.columns.tolist()

    file_io.copy(metrics_plot, image_path)

    rendered_template = """

        <html>

            <head>

                <title>Correlation</title>

            </head>

            <body>

                <img src={}>

            </body>

        </html>""".format(image_url)



Developing Kubeflow Pipeline in GCP      57

    file_io.write_string_to_file(html_path, rendered_template)

    metadata = {'outputs' : [{'type': 'table', 'storage': 'gcs', 
'format': 'csv','header': header, 'source': bucket_data }, { 'type': 
'web-app', 'storage': 'gcs', 'source': html_path,}]}}

    with open('/mlpipeline-ui-metadata.json', 'w') as f:

        json.dump(metadata, f)

    target_name = 'target'

    data_target = data[target_name]

    data = data.drop([target_name], axis=1)

     #%% split training set to validation set

    train, test, target, target_test = train_test_split(data, data_
target,  test_size=split_size, random_state=0)

    Xtrain, Xval, Ztrain, Zval = train_test_split(train, target, test_
size=split_size, random_state=0)    

   with open(train_file,"wb") as f:

        dill.dump(Xtrain,f) 

    with open(test_file,"wb") as f:

        dill.dump(test,f)   

    with open(validation_file,"wb") as f:

        dill.dump(Xval,f) 

    with open(train_target,"wb") as f:

        dill.dump(Ztrain,f) 

    

    with open(test_target,"wb") as f:

        dill.dump(target_test,f) 

        

    with open(validation_target,"wb") as f:

        dill.dump(Zval,f) 

    return

Let’s breakdown the code for pre-processing as follows:
•	 First, we will import all the libraries, and create the utility plotly correlation 

function, which will save an image of the plot. Then we will save that in 
the GCS bucket, so that we can visualize that in static HTML format in the 
Kubeflow Dashboard.



58      Continuous Machine Learning with Kubeflow

•	 Then we will add the service account .json file in the environment, so that 
it can give access to the push data or artifacts in the GCP Bucket.

•	 Next, the @click option will input all the required dumps which we have 
done in the data ingestion step, so that we can use it here, after which we 
will load those first and use those for the pre-processing steps for training 
the data.

•	 Then, we will authorise and push the artifacts image in the GCS bucket 
by TensorFlow file.io function, and after that, we will create a static 
HTML to publish in the Kubeflow dashboard. It is pulling the image from 
storage bucket location, which we saved earlier in following path  gs://
Kubeflowusecase/breast/visualize/correlation.html and dumped 
the metadata as json format. We have split the data and dumped the data for 
the next training step.

Before creating the Docker file, make sure we have the service service_account_
iam.json file which will be used for the cloud storage bucket access.

Please click on the following link to download the json key, and paste it in the 
preprocessing folder:
https://cloud.google.com/iam/docs/creating-managing-service-account-keys

The JSON File will look like the following:

{"type": "service_account",

"project_id": "project-id",

"private_key_id": "key-id",

"private_key": "-----BEGIN PRIVATE KEY-----\nprivate-key\n-----END 
PRIVATE KEY-----\n",

"client_email": "service-account-email",

"client_id": "client-id",

"auth_uri": "https://accounts.google.com/o/oauth2/auth",

"token_uri": "https://accounts.google.com/o/oauth2/token",

"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/
certs",

"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/
x509/service-account-email"}



Developing Kubeflow Pipeline in GCP      59

While creating the Service account, search Cloud Storage, and then select Storage 
Admin.

Figure 2.11: Service account cloud  storage selection

The preceding screenshot shows the role we will give for the service account.

Similarly, we will create the Docker Image, and add the service account json key.

Docker:

FROM python:3.7-slim-stretch

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update && apt-get-y install gcc mono-mcs g++ git curl && \

rm-rf /var/lib/apt/lists/*

RUN mkdir/app

WORKDIR /app

COPY service_account_iam.json

ENV GOOGLE_APPLICATION_CREDENTIALS="service_account_iam.json"

ADD requirements.txt  /app/requirements.txt

RUN pip3 install -r requirements.txt

ADD dataextract.py. /app/preprocessing.py

RUN chmod +x /app/preprocessing.py

ENTRYPOINT ["python"]

CMD["/app/processing.py"]



60      Continuous Machine Learning with Kubeflow

Similar to the preceding step, in the data ingestion step, we will build the Docker 
image.

Now, from the Dockerfile location, we will build the Docker image, and push that 
in the GCS Container registry. You can get the entire folder in the GCP Bucket, and 
all you need is to rename the Docker image name, and run those Docker build and 
push command.

2.3.3 Training model component
In this section, we will build a TensorFlow model, and then we will build a distributed 
model strategy, save the model in the GCP bucket, and push the Tensorboard logs in 
the Bucket for the Kubeflow Dashboard Tensorboard Visualization.

Let’s see how we will build the component pipeline.py file.

  train.py:

from__future__import absolute_import, division, print_function, unicode_
literals

import click, dill, json, logging,os

import pandas as pd

import tensorflowas tf

from storage import Storage

def model_build(Xtrain):

    model = tf.keras.models.Sequential([

tf.keras.layers.Dense(units=32, kernel_initializer='glorot_
uniform',activation='relu', input_shape=(len(Xtrain.columns),)),

tf.keras.layers.Dense(units=64, kernel_initializer='glorot_
uniform',activation='relu'),

tf.keras.layers.Dropout(0.5),

tf.keras.layers.Dense(units=64, kernel_initializer='glorot_
uniform',activation='relu'),

tf.keras.layers.Dropout(0.5),

tf.keras.layers.Dense(units=1, kernel_initializer='glorot_uniform', 
activation='sigmoid')])

return model

def get_callbacks(path):

checkpointdir = path



Developing Kubeflow Pipeline in GCP      61

classcustomLog(tf.keras.callbacks.Callback):

def on_epoch_end(self, epoch, logs={}):

            logging.info('epoch: {}'.format(epoch + 1))

            logging.info('loss={}'.format(logs['loss']))

            logging.info('accuracy={}'.format(logs['accuracy']))

            logging.info('val_loss={}'.format(logs['val_loss']))

            logging.info('val_accuracy={}'.format(logs['val_accuracy']))

callbacks = [tf.keras.callbacks.
ModelCheckpoint(filepath=checkpointdir),customLog()]

              return callbacks

@click.command()

@click.option('--epochs', default=100)

@click.option('--batch-size', default=4)

@click.option('--learning-rate', default=0.001)

@click.option('--tensorboard-logs', default='/mnt/logs/')

@click.option('--tensorboard-gcs-logs', default='gs://kubeflowusecases/
breast/logs')

@click.option('--model-output-base-path', default="/mnt/saved_model")

@click.option('--gcs-path', default="gs://kubeflowusecases/breast/model")

@click.option('--mode', default="local")

def train_model(train_file,test_file,validation_file,train_target,test_
target,validation_target, ,batch_size,learning_rate,tensorboard_
logs,tensorboard_gcs_logs,model_output_base_path,gcs_path,mode,epochs):

with open(train_file, 'rb') asin_f:

               train= dill.load(in_f)

So, this a continuation of the train.py, as we declared the utility function for the 
callback and model building function, alongside the @click to input the previous 
pipeline outputs, which will be used as an input here, alongside the new input for 
these pipeline parameters like epoch, learning rate, and so on.

with open(test_file, 'rb') asin_f:

                test= dill.load(in_f)

with open(validation_file, 'rb') asin_f:

                validation= dill.load(in_f)

with open(train_target, 'rb') asin_f:



62      Continuous Machine Learning with Kubeflow

train_tar= dill.load(in_f)

with open(test_target, 'rb') asin_f:

test_tar= dill.load(in_f)

with open(validation_target, 'rb') asin_f:

  validation_tar= dill.load(in_f)

              strategy = tf.distribute.experimental.
MultiWorkerMirroredStrategy()

              logging.info("Number of devices: {0}".format(strategy.
num_replicas_in_sync))

with strategy.scope():

                  optimizer = tf.keras.optimizers.Adam(learning_rate)

                  model = model_build(train)

    model.compile(optimizer=optimizer, loss=tf.keras.losses.binary_
crossentropy,metrics=['accuracy'])

                  TF_STEPS_PER_EPOCHS=5

                  BATCH_SIZE = batch_size * strategy.num_replicas_in_
sync

    tensorboard_callback = tf.keras.callbacks.TensorBoard(log_
dir=tensorboard_logs, histogram_freq=1)

     logging.info("Training starting...")

    model.fit(train,train_tar, epochs=epochs, batch_size=BATCH_SIZE,

    validation_data=(validation,       validation_
tar),callbacks=[tensorboard_callback])

                  logging.info("Training completed.")

    model.save(model_output_base_path) 

              new_model = tf.keras.models.load_model(model_output_base_
path)

# Check its architecture

print(new_model.summary())

Storage.upload(tensorboard_logs,tensorboard_gcs_logs)

    metadata = {

'outputs': [{'type': 'tensorboard','source': tensorboard_gcs_logs, }]}

with open("/mlpipeline-ui-metadata.json", 'w') as f:

json.dump(metadata,f)



Developing Kubeflow Pipeline in GCP      63

if mode!= 'local':

print("uploading to {0}".format(gcs_path))

Storage.upload(model_output_base_path,gcs_path)

else:

print("Model will not be uploaded")

pass

if__name__ == "__main__":

train_model()

So, the preceding is the train.py file,; let’s break the pipeline code as follows:

•	 First we import all the required datasets.

•	 Them the @click command will be passing the argument in the function 
train_model().

•	 Then the dill command will help save or load the data from pvc.

•	 Next, we will pass all the arguments like epochs and batch size, learning rate 
from the outside and train our model.

•	 We will push the model train output to we will push Google Storage Bucket. 
We have imported the Storage.py file to the Storage class to save our model 
artifacts.

•	 Next, we will visualize the Tensorboard and follow the same metadata json 
format with “/mpipeline-ui-metadata.json” and give the GCS bucket 
path, where you save your model artifacts.

For Python visualization, you can visit the following link:
https://www.Kubeflow.org/docs/pipelines/sdk/output-viewer/

Docker:
Before creating the Docker file, make sure you copy the service service_account_
iam.json file which we created earlier and which will be used for we will push cloud 



64      Continuous Machine Learning with Kubeflow

storage bucket access, and the storage.py Python file will be there for uploading 
the data to GCS bucket.

Figure 2.12: Training Folder structure

Similarly, we will create the Docker Image and add the service account json key.

Docker:
FROM python:3.7-slim-stretch

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update && \apt-get-y install gcc mono-mcs g++ git curl && \

rm-rf /var/lib/apt/lists/*

RUN mkdir/app

WORKDIR /app

ADD requirements.txt /app/requirements.txt

RUN pip3 install -r requirements.txt

COPY service_account_iam.jsonservice_account_iam.json

ENV GOOGLE_APPLICATION_CREDENTIALS="service_account_iam.json"

ADD train.py /app/train.py

ADD storage.py /app/storage.py

RUN chmod +x /app/train.py



Developing Kubeflow Pipeline in GCP      65

ENTRYPOINT["python"]

CMD["/app/train.py"]

Next we will create the Docker image and will push the image similarly what we did 
above on Data Extraction.

2.3.4 Evaluation component
Similarly, we will create the evaluation component. Please have a look at the GitHub 
steps.md file.

The following are a few important highlights on what we did in the evaluation 
component:

We have dumped the confusion Matrix and ROC Curve as a csv in the GCP bucket 
and gave the path a storage location of those in the metadata, and dumped that as 
json, so that the Kubeflow pipeline will take that and visualize the ROC & Confusion 
Matrix.

2.5 Serving the Model with KF Serving
In this section, we will build our serving for our model. In the following screenshot, 
we can see the three major components for our model serving Dockerfile is the model 
folder, Dockerfile, servebreast.py.

So, here we kept the saved trained model from the local to the root of the Docker file 
or the Cloud Storage bucket.

Figure 2.13: KF – Serving Component Folder Structure



66      Continuous Machine Learning with Kubeflow

Architecture of KF-Serving:

The InferenceService Data Plane architecture consists of a static graph of components 
which coordinates the requests for a single model.

Figure 2.14: KF – Serving Architecture

Endpoint: InferenceServers are divided into two endpoints – “default" and "canary". 
The endpoints allow the users to safely make the changes using the Pinned and 
Canary rollout strategies. Canarying is completely optional, enabling the users to 
simply deploy with a BlueGreen deployment strategy on the "default" endpoint.

Component: Each endpoint is composed of multiple components – "predictor", 
"explainer", and "transformer". The only required component is the predictor, which 
is the core of the system. As KFServing evolves, we plan to increase the number of 
supported components to enable the use cases like Outlier Detection.

Predictor: The predictor component is the workhorse of the InferenceService. It is 
simply a model and a model server that makes it available at a network endpoint.

Explainer: It enables an optional alternate data plane that provides our model 
explanations, in addition to the predictions. So the users may also define their own 
explanation container, which KFServing will configure with the relevant environment 
variables like prediction endpoint. For the common scenario, KFServing provides 
out-of-the-box explainers like Alibi.

Transformer: The transformer enables the users to define a pre and post processing 
step before the prediction and explanation workflows. Like the explainer, it also 
configures with the relevant environment variables. For the common use cases, 
KFServing provides the out-of-the-box transformers like Feast.



Developing Kubeflow Pipeline in GCP      67

Here, we will use the custom image serving because of the following reason:

The goal of the custom image support is to allow the users to bring their own wrapped 
model inside a container and serve it with KFServing. Here, in this example, located 
in the model-server directory extends the kfserving. KFModel uses the tornado web 
server.

You can use KFServing to do the following:

•	 Provide a Kubernetes Custom Resource Definition for serving the ML models 
on the arbitrary frameworks.

•	 Encapsulate the complexity of autoscaling, networking, health checking, 
and server configuration to bring cutting edge serving features like GPU 
autoscaling, scale to zero, and canary rollouts to your ML deployments.

•	 Enable a simple, pluggable, and complete story for your production ML 
inference server by providing prediction, pre-processing, post-processing 
and explainability out of the box.

Let’s see how we will build the serving component Transformer.py file.
Transformer.py:

import tensorflow as tf

import sys,os,json,kfserving

import numpyas np 

import kfserving

from typing import List, Dict

os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = "service_account_iam.
json"

class KFServingSampleModel(kfserving.KFModel):

       def  __init__(self, name: str):

          super().__init__(name)

          self.name = name

         self.ready = False

 self.model_output_base_path = "gs://kubeflowusecases/breast/model/"

def  load(self):

          model = tf.keras.models.load_model(self.model_
output_base_path)



68      Continuous Machine Learning with Kubeflow

        self.model = model

        self.ready = True

def   predict(self, request: Dict) ->Dict:

          inputs = np.array(request["instances"])

        reshaped_to_2d = np.reshape(inputs, (-1, len(inputs)))

          results = self.model.predict(reshaped_to_2d)

        result = (results >0.5)*1

        if result==1:

              result="malignant" 

        else:

             result="Benign"

        print("result : {0}".format(result))

        return {"predictions": result}

if__name__ == "__main__":

     model = KFServingSampleModel("kfserving-breast-model")

model.load()

kfserving.KFServer(workers=1).start([model])

So let’s break the transformer predictor code as follows:

•	 We kept the service account which has the storage bucket in the Docker root 
and then declared that folder as an environment variable to an object model_
output_base_path for gcp bucket path.

•	 Next, in the Load function, we loaded the model in from the TensorFlow 
library.

•	 Then, in the predict method, the incoming data will come as a json format 
which we need to extract as a key-value pair and do the necessary prediction 
and return as a dictionary.

•	 So, in the “main” function, the KFServingSampleModel class takes the name 
of that deployment; keep a note of that and apply to the yaml file; here it is 
”kfserving-breast-model”

Next, we will build the Docker image for our serving model.

Docker:
FROM python:3.7-slim-stretch



Developing Kubeflow Pipeline in GCP      69

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update && \

apt-get-y install gcc mono-mcs g++ git curl bash && \

rm-rf /var/lib/apt/lists/*

RUN mkdir /app

WORKDIR /app

ADD requirements.txt /app/requirements.txt

RUN pip install -r /app/requirements.txt

ADD servebreast.py /app/servebreast.py

COPY service.json

ENV GOOGLE_APPLICATION_CREDENTIALS="service.json"

CMD ["python","servebreast.py"]

Now, in the preceding Docker code, we have copied the service account for the 
storage bucket access and saved it in /app. Then, we copied the Python serving 
file in the same location and kept the working directory as /app. Then, we built the 
image using the following code. Similarly, we created the Docker image; please have 
a look at the GitHub steps.md file.

To deploy the model server using the kubectl command line, or using the KFServing 
client SDK, complete the following steps:

•	 Deploy using the command line.

•	 Deploy using the KFServing client SDK.

Deploy using the command line:
Now, let’s deploy it with the command line, but first let’s fill the yaml file.
Custom_KFServing.yaml:

apiVersion: serving.kubeflow.org/v1alpha2

kind: InferenceService

metadata:

    annotations:

     sidecar.istio.io/inject: "false"

    name: kfserving-breast-model

    namespace: kubeflow

spec:

  default:



70      Continuous Machine Learning with Kubeflow

   predictor:

     custom:

      container:

        image: gcr.io/<PROJECT_ID>/breast_cancer/custom_serving:v1

Here, in the preceding yaml file, we will give the same name which we have provided 
in the Transformer.py file, having the model name (“Kfserving-breast-model”), and 
then we will provide the namespace “Kubeflow”, where it will be deployed. Next, 
we will give the Docker image a name for our Transformer model, which we have 
created.

Figure 2.15: KF – Serving Model name match 

As we can see in the preceding screenshot, line number 38 from the left image and 6 
from the right should be always the same.

Next, run the following command from bash where the files are kept in Visual Studio.

•	 Connect to the GCP cluster using the following command:
gcloud container clusters get-credentials <$ClusterName> --zone 

<$ZONE> --project <$PROJECTID>

•	 Create the inference service by deploying it in the cluster:
kubectl apply -f custom_breast_model.yaml



Developing Kubeflow Pipeline in GCP      71

•	 Check the inference service. Try it after some interval to check if it has been 
created:
kubectl get inferenceservice -n Kubeflow

Figure 2.16: KF – Serving Inference Output

Sample Prediction: 

•	 Run the following command in Bash from the serving folder:

```bash

MODEL_NAME=kfserving-braintumor

HOST=$(kubectl get inferenceservice -n Kubeflow$MODEL_NAME -o
jsonpath='{.status.url}' | cut -d "/" -f 3)

INPUT_PATH=@./data.json

CLUSTER_IP=$(kubectl -n istio-system get service kfserving-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

curl -v -H "Host: ${HOST}" http://${CLUSTER_IP}/v1/models/${MODEL_
NAME}:predict -d $INPUT_PATH

```

Now, the following is the Response prediction request:

Figure 2.17: KF – Serving Prediction Output



72      Continuous Machine Learning with Kubeflow

•	 Run the following command in Python from the serving folder:

Now, we will create some sample data to predict the results from the 
preceding URL. The following is the code to create the sample data:

import base64,json,requests

from sklearn.datasets import load_breast_cancer

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

cancer = load_breast_cancer()

df_cancer = pd.DataFrame(np.c_[cancer['data'], cancer['target']], 
columns = np.append(cancer['feature_names'], ['target']))

X = df_cancer.drop(['target'],axis=1)

y = df_cancer['target']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size = 0.1, random_state = 0)

data = json.dumps({"instances": X_test.iloc[7].to_list()})

data

Figure 2.18: Sample Data

MODEL_NAME="kfserving-breast-model" 

cluster_ip = <COPY YOUR CLUSTER IP HERE>

headers={"Host": "{0}.Kubeflow.example.com".format(MODEL_NAME)}

response = requests.post("http://{0}/v1/models/{1}:predict".
format(cluster_ip, MODEL_NAME), data = data,headers = headers)

response.json()

Figure 2.19: Prediction output

As we can see in the preceding screenshot, our prediction output is malignant.



Developing Kubeflow Pipeline in GCP      73

2.6 Building the pipeline end to end
Now, let’s see how we build the Pipeline, and we will run this platform in the 
Kubeflow Notebook server.

Open the URL: GCP Kubernetes > Service & ingress > Click on the URL.

Figure 2.20: Ingress URL

As in Chapter 1, Introduction to Kubeflow & Kubernetes Cloud Architecture already in 
section 1.6, we have created a Jupyter notebook that we will use.

Figure 2.21: Notebook Server output

Now, paste the following code and run the pipeline; before that replace the PROJECT_
ID and bucket name from the following code, and it will dump a zip file:

import kfp.dsl as dsl

import yaml

from kubernetes import client as k8s

import kfp.gcp as gcp

from kfp import components

from string import Template

import json

from kubernetes import client as k8s_client

@dsl.pipeline(

  name='breast cancer pipeline',

  description='End to End pipeline for Tensorflow Breast Cancer')

def breast_cancer_tensorflow_pipeline(



74      Continuous Machine Learning with Kubeflow

        dataextraction_step_image="gcr.io/<$PROJECT_ID>/breast_cancer/
step1_loadingdata",

        dataprocessing_step_image="gcr.io/<$PROJECT_ID>/breast_cancer/
step2_dataprocessing",

        trainmodel_step_image="gcr.io/<$PROJECT_ID>/breast_cancer/step3_
training_model",

        evaluator_step_image="gcr.io/<$PROJECT_ID>/breast_cancer/step4_
evaluation_model",

        train_file='/mnt/training.data',

        data_file="/mnt/breast.data",

        test_file='/mnt/test.data',

        validation_file="/mnt/validation.data",

        split_size=0.2,

        train_target="/mnt/trainingtarget.data",

        test_target="/mnt/testtarget.data",

        validation_target="/mnt/validationtarget.data",

        epochs=5,

        learning_rate=.001,

        batch_size=64,

        shuffle_size=1000,

        tensorboard_logs="/mnt/logs/",

        tensorboard_gcs_logs="gs://<$YOUR_BUCKET>/breast/logs",

        model_output_base_path="/mnt/saved_model",

        gcs_path="gs://<$YOUR_BUCKET>/breast/model",

        gcs_path_confusion="gs://<$YOUR_BUCKET>/breast",

        mode="gcs",

        probability=0.5,

        serving_name="kfserving-breast-model",

        serving_namespace="Kubeflow",

        image="gcr.io/<$PROJECT_ID>/breast_cancer/custom_serving_
nermodel"):

    """

    Pipeline

    """

    # PVC : PersistentVolumeClaim volume



Developing Kubeflow Pipeline in GCP      75

    vop = dsl.VolumeOp(

      name='my-pvc',

      resource_name="my-pvc",

      modes=dsl.VOLUME_MODE_RWO,

      size="1Gi"

    )

    # data extraction

    data_extraction_step = dsl.ContainerOp(

        name='data_extraction',

        image=dataextraction_step_image,

        command="python",

        arguments=[

            "/app/dataextract.py",

            "--data-file", data_file],

        pvolumes={"/mnt": vop.volume})

    # processing

    data_processing_step = dsl.ContainerOp(

        name='data_processing',

        image=dataprocessing_step_image,

        command="python",

        arguments=[

            "/app/preprocessing.py",

            "--train-file", train_file,

            "--test-file", test_file,

            "--validation-file", validation_file,

            "--data-file",data_file,

            "--split-size",split_size,

            "--train-target",train_target,

            "--test-target",test_target,

            "--validation-target",validation_target],

        pvolumes={"/mnt": data_extraction_step.pvolume})

   #trainmodel



76      Continuous Machine Learning with Kubeflow

    train_model_step = dsl.ContainerOp(

        name='train_model',

        image=trainmodel_step_image,

        command="python",

        arguments=[

            "/app/train.py",

            "--train-file", train_file,

            "--test-file", test_file,

            "--validation-file", validation_file,

            "--train-target",train_target,

            "--test-target",test_target,

            "--validation-target",validation_target,

            "--epochs",epochs,

            "--batch-size",batch_size,

            "--learning-rate",learning_rate,

            "--tensorboard-logs",tensorboard_logs,

            "--tensorboard-gcs-logs",tensorboard_gcs_logs,

            "--model-output-base-path",model_output_base_path,

            "--gcs-path", gcs_path,

            "--mode", mode],

        pvolumes={"/mnt": data_processing_step.pvolume}) 
   

    #evaluationmodel

    evaluation_model_step = dsl.ContainerOp(

        name='evaluation_model',

        image=evaluator_step_image,

        command="python",

        arguments=[

            "/app/evaluator.py",

            "--test-file", test_file,

            "--test-target",test_target,

            "--probability",probability,

            "--model-output-base-path",model_output_base_path,

            "--gcs-path", gcs_path,



Developing Kubeflow Pipeline in GCP      77

            "--gcs-path-confusion", gcs_path_confusion],

        pvolumes={"/mnt": train_model_step.pvolume) 

 

    kfserving_template = Template("""{

                              "apiVersion": "serving.Kubeflow.org/v1alpha2",

                              "kind": "InferenceService",

                              "metadata": {

                                "labels": {

                                  "controller-tools.k8s.io": "1.0"},

                                "name": "$name",

                                "namespace": "$namespace"},

                              "spec": {

                                "default": {

                                  "predictor": {

                                    "custom": {

                                      "container": {

                                        "image": "$image"}}}}}}""")

    kfservingjson = kfserving_template.substitute({ 'name': str(serving_
name),

                                'namespace': str(serving_namespace),

                                'image': str(image)})

    kfservingdeployment = json.loads(kfservingjson)

serve = dsl.ResourceOp(

        name="serve",

        k8s_resource=kfservingdeployment,

        action="apply",

        success_condition="status.url")

    serve.after(evaluation_model_step)
      

if __name__ == '__main__':

    import kfp.compiler as compiler

    pipeline_func = breast_cancer_tensorflow_pipeline

    pipeline_filename = pipeline_func.__name__ + '.pipeline.zip'

    compiler.Compiler().compile(pipeline_func,pipeline_filename)



78      Continuous Machine Learning with Kubeflow

Now, let’s break the pipeline code as follows:

•	 Pipelines are expected to include a @dsl.pipeline decorator to provide the 
metadata about the pipeline.

•	 The pipeline is defined in the breast_cancer_tensorflow_pipeline 
function. It includes a number of arguments, which are exposed in the 
Kubeflow Pipelines UI when creating a new Run. Although passed as strings, 
these arguments are of type kfp.dsl.PipelineParam.

•	 Each individual block defines one component like ‘train’, ‘evaluation’, and 
so on. A component is made up of a kfp.dsl.ContainerOp object with the 
container path and a specified name. The container image used is defined as 
the Docker file which we have created.

•	 After defining the train component, we also set a number of environment 
variables for the training script.

•	 At the bottom of the script is the main function. This is used to compile the 
pipeline when the script is run; next, the .after method will trigger the 
pipeline one after the other.

When you run the preceding code, it will dump a zip like the following:

Figure 2.22: Pipeline zip



Developing Kubeflow Pipeline in GCP      79

Next, we will create an experiment; under that, we can create multiple runs of a 
pipeline. The following code is for creating the experiment:

import kfp

from kfp import compiler

import kfp.components as comp

import kfp.dsl as dsl

from kfp import gcp

EXPERIMENT_NAME = 'Breast'

client = kfp.Client()

try:

    experiment = client.get_experiment(experiment_name=EXPERIMENT_NAME)

except:

    experiment = client.create_experiment(EXPERIMENT_NAME)

print(experiment)

The following snippet will create a run for the zip that we have dumped in that 
location:

arguments = {}

run_name = pipeline_func.__name__ + 'breast_run'

run_result = client.run_pipeline(experiment.id, run_name, pipeline_
filename, arguments)

print(experiment.id)

print(run_name)

print(pipeline_filename)

print(arguments)



80      Continuous Machine Learning with Kubeflow

Click on the run link, once the pipeline is ready. The following is how our pipeline 
training looks:

Figure 2.23: Training pipeline  output

The following is how our pipeline Serving looks:

Figure 2.24: Serving pipeline output



Developing Kubeflow Pipeline in GCP      81

The following screenshot is of the pipeline which we have created and the Python 
visualizations, tables and static HTML plots:

Figure 2.25: Serving pipeline output

Next, let’s find out how to Monitor an endpoint in Grafana.

2.7 Monitoring the performance with 
Grafana dashboard
Run the command in the Google Cloud shell after connecting the Cluster and then 
Create Namespace.



82      Continuous Machine Learning with Kubeflow

```bash

gcloud container clusters get-credentials <$ClusterName> --zone

<$ZONE> --project <$PROJECTID>

#create namespace

kubectl create namespace knative-monitoring

#setup monitoring components

kubectl apply --filename https://github.com/knative/serving/releases/
download/v0.177.20/monitoring-metrics-prometheus.yaml

```

Figure 2.26: Prometheus deploye

Next, run from the Local Terminal and open the `grafana` dashboard by using 
`localhost:8080` on the browser. Explore the different components of the grafana 
dashboard.

```bash

kubectl port-forward --namespace knative-monitoring $(kubectl get
pod --namespace knative-monitoring --selector="app=grafana" --output
jsonpath='{.items[0].metadata.name}') 8080:3000

```



Developing Kubeflow Pipeline in GCP      83

Hit the Curl request from bash and see the output in the Dashboard.

curl -v -H "Host: ${HOST}" http://${CLUSTER_IP}/v1/models/${MODEL_
NAME}:predict -d $INPUT_PATH

Figure 2.27: Grafana Dashboard Contents

The preceding dashboard is for the contents of Grafana; we can click on the individual 
section and see the reports there.

The following Dashboard talks about the HTTP requests for Knative Serving 
Visualization which we serve per/sec request.

Figure 2.28: Grafana Dashboard HTTP Request



84      Continuous Machine Learning with Kubeflow

So, the following is the Dashboard for the Control Plane which shows the CPU Usage 
and memory usage efficiency.

Figure 2.29: Prometheus Dashboard

2.8 Conclusion
In this chapter, we learned how to build end-to-end Kubeflow Orchestrator Pipeline 
for a TensorFlow Model and how to Dockerize each component and build it in 
Google Platform.

Then, we learned how to build the pipeline with the kfp library package and 
triggered the pipeline from the Kubeflow Dashboard. We have now deployed the 
Kubeflow on the Kubernetes Platform and learned how to trigger the pipeline from 
the Notebook. We have also deployed the model in the Kubernetes cluster with the 
KF serving and monitored our prediction results in the Grafana Dashboard.

We have also learned how to leverage the power of Google Cloud Platform, and use 
our Devops knowledge with Machine Learning to become an MLops.

2.9 Reference
 ● https://knative.dev/docs/serving/autoscaling/autoscaling-concepts/
 ● https://v1-1-branch.Kubeflow.org/docs/
 ● https://v1-1-branch.Kubeflow.org/docs/gke/
 ● https://v1-1-branch.Kubeflow.org/docs/gke/monitoring/



Designing Computer Vision Model  in Kubeflow      85

Chapter 3
Designing 

Computer Vision 
Model in Kubeflow

In this chapter, we will build an end-to-end TensorFlow Computer Vision Model 
with OpenCV operation and deploy that with the Kubeflow Orchestration, which 

includes deploying Kubeflow in Kubernetes Cluster in GCP, building the pipeline 
components for the model with Docker and Kubeflow SDK, and then serving the 
Model with KF serving to have an endpoint for prediction.  We will then perform the 
monitor and performance in Grafana Dashboard.

Structure
In this chapter, we will cover the following topics:

•	 Problem statement

•	 Getting started in GCP Kubeflow and Docker setup

•	 Analytics behind the problem statement

•	 Building the Kubeflow Pipeline components for Computer Vision (CNN) 
TensorFlow model

•	 Serving the Model with KF Serving

•	 Building the pipeline end to end

•	 Auto-Scaling of the serving endpoint



86      Continuous Machine Learning with Kubeflow

Objectives
In this chapter, we will learn the following:

•	 How to set Docker and Kubernetes to build the Kubeflow Pipeline.

•	 How to pre-process Image with OpenCV library, and build our data for the 
training model, and how it will be used for Kubeflow pipeline.

•	 How to do Ingestion of data from an external source like Kaggle and how to 
do Batch-Prediction.

•	 How to build the individual pipeline components like training and model 
evaluation.

•	 How to serve the Model with KF serving, and predict the model request and 
monitor with the Grafana Dashboard.

•	 How to use Kubernetes and many Google Cloud Platform to leverage the 
power of Machine learning with Devops Knowledge.

•	 How to use pre-trained model weights of TensorFlow and use that for Model 
building.

•	 How to autoscale a kf-serving inference service with concurrent request and 
target concurrency.

3.1 Problem statement
Here, we have a classification dataset of the brain cancer X-ray images, and it has 
a two-class folder, one having Brain Tumor and the other not; we will publish the 
data from Kaggle and build an end to end classification model; after that we have to 
deploy the same.

•	 NO: No tumor, encoded as 0

•	 YES: Tumor, encoded as 1

NOTE Rest all the imports I have showed in my Notebook, which we 
gave hyperlink of my Github Account of this chapter.

CODE https://github.com/bpbpublications/Continuous-Machine-Learn-
ing-with-Kubeflow/tree/main/Chapter3

3.2 Getting started in GCP Kubeflow setup
Before we start with this chapter, we must set up the Kubeflow Cluster in GCP; 
please refer to Chapter 1, Introduction to Kubeflow & Kubernetes Cloud Architecture, 
Section 1.6 (Getting Started in GCP Kubeflow setup).



Designing Computer Vision Model  in Kubeflow      87

3.3 Analytics behind the problem 
statement
The main purpose of this project was to build a CNN model that would classify if 
the subject has a tumor or not, based on an MRI scan. We used the VGG-16 model 
architecture and weights to train the model for this binary problem. We used accuracy 
as a metric to justify the model performance which can be defined as follows:

What is brain tumor?
A cancerous or non-cancerous mass or growth of abnormal cells in the brain. Tumors 
can start in the brain, or the cancer from elsewhere in the body can spread to the brain. 
These symptoms may include headaches, seizures, problems with vision, vomiting, 
and mental changes. The headache is classically worse in the morning and goes 
away with vomiting. Other symptoms may include difficulty in walking, speaking 
or difficulty with other sensations. As the disease progresses, unconsciousness may 
occur.

Here, our goal is to compute the extreme points along the contour of the brain scan 
in the image; find the extreme north, south, east, and west (x, y)-coordinates along a 
given contour. This method can be used on both raw contours and rotated bounding 
boxes.

Let’s import the required libraries.
from IPython.display import clear_output

!pip install imutils

clear_output()

import numpy as np 

from tqdm import tqdm

import cv2,os, shutil, itertools, imutils

import plotly.express as px

from skimage import io

import plotly.graph_objs as go

from plotly.offline import init_notebook_mode, iplot

from plotly import tools

from plotly.subplots import make_subplots

The following function performs thresholding the image and a series of erosions and 
dilations to remove any small regions of noise; next it finds contours in the threshold 
image, then grabs the largest one. At last, it finds extreme points to crop the image, 
and return all the steps array, so that we can plot them.



88      Continuous Machine Learning with Kubeflow

def analytics(filepath):

        IMG_SIZE = (224,224)

        img = cv2.imread(filepath)

        img = cv2.resize(img, dsize=IMG_SIZE, interpolation=cv2.INTER_
CUBIC)

        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

        gray = cv2.GaussianBlur(gray, (5, 5), 0)

        # threshold the image, then perform a series of erosions +

        # dilations to remove any small regions of noise

        thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1]

        thresh = cv2.erode(thresh, None, iterations=2)

        thresh = cv2.dilate(thresh, None, iterations=2)

        # find contours in thresholded image, then grab the largest one

        cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.
CHAIN_APPROX_SIMPLE)

        cnts = imutils.grab_contours(cnts)

        c = max(cnts, key=cv2.contourArea)

        # find the extreme points

        extLeft = tuple(c[c[:, :, 0].argmin()][0])

        extRight = tuple(c[c[:, :, 0].argmax()][0])

        extTop = tuple(c[c[:, :, 1].argmin()][0])

        extBot = tuple(c[c[:, :, 1].argmax()][0])

        # add contour on the image

        img_cnt = cv2.drawContours(img.copy(), [c], -1, (0, 255, 255), 4)

        # add extreme points

        img_pnt = cv2.circle(img_cnt.copy(), extLeft, 8, (0, 0, 255), -1)

        img_pnt = cv2.circle(img_pnt, extRight, 8, (0, 255, 0), -1)

        img_pnt = cv2.circle(img_pnt, extTop, 8, (255, 0, 0), -1)

        img_pnt = cv2.circle(img_pnt, extBot, 8, (255, 255, 0), -1)

        # crop

        ADD_PIXELS = 0

        new_img = img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS, 
extLeft[0]-ADD_PIXELS:extRight[0]+ADD_PIXELS].copy()

        return img,img_cnt,img_pnt,new_img



Designing Computer Vision Model  in Kubeflow      89

Here, we can call the function by downloading the sample data folder from the 
GitHub link.
img,img_cnt,img_pnt,new_img=analytics('/<YOUR_LOCATION>/Sample_Tumor_
Data/Y2.jpg')

Next, we will create a utility plotly function to plot the extreme points of the original 
and cropped image with the help of plotly.

def make_subplots_image(img,img_cnt,img_pnt,new_img):

    fig = make_subplots(1, 4, horizontal_spacing=0.08)

    fig.add_trace(go.Image(z=img), 1, 1)

    fig.add_trace(go.Image(z=img_cnt), 1, 2)

    fig.add_trace(go.Image(z=img_pnt), 1, 3)

    fig.add_trace(go.Image(z=new_img), 1, 4)

    fig['layout']['xaxis1'].update(showgrid=False, title= 'Original 
image')

    fig['layout']['xaxis2'].update(showgrid=False, title='Find the 
biggest contour')

    fig['layout']['xaxis3'].update(showgrid=False, title='Find the 
extreme points')

    fig['layout']['xaxis4'].update(showgrid=False, title='Crop the 
image')

    fig.update_layout(height=400, width=1500)

    fig.show()

Call the preceding function:
make_subplots_image(img,img_cnt,img_pnt,new_img)

Figure 3.1: Extreme Points of Brain Scan

Now, we will apply the transformation for all the images for our training data during 
our Pipeline building phase.



90      Continuous Machine Learning with Kubeflow

3.4. Building the Kubeflow pipeline 
components for Computer Vision (CNN) 
TensorFlow model
In this section, we will see the complete Architecture that we will be using to build 
the individual components.

Figure 3.2: Architecture of CNN Kubeflow Pipeline

From the preceding diagram, let’s breakdown the component’s overview as follows:

•	 The data ingestion will be provided by Kaggle connector API, and we will 
download that inside PVC. It will be used for further pipeline components.



Designing Computer Vision Model  in Kubeflow      91

•	 Next, we will train our CNN TensorFlow model, and save that in the GCP 
bucket.

•	 After that, we will evaluate our model performance and visualize that in 
the Kubeflow Dashboard with the ROC and Confusion Matrix for that 
experiment Run.

•	 At last, we will deploy the model for serving and loading that model from 
the bucket which we saved during the training phase, and then check the 
model endpoint performance traffic in the Grafana dashboard.

•	 We will see how to autoscale a kf-serving InferenceService with the concurrent 
request and target concurrency, and here we will build a Batch-Prediction of 
KF serving.

3.4.1 Data extraction or Ingestion component
Now, let’s build the Data ingestion component; here we will get the data from 
Kaggle, and we will extract that with the help of Kaggle API.

dataextraction.py:

from __future__ import absolute_import, division, print_function, 
unicode_literals

import click,json,os,dill,argparse,logging,shutil,itertools,Kaggle

@click.command()

@click.option('--data-file', default="/mnt/BrainScan_Data/")

@click.option('--root',default="/mnt/")

@click.option('--kaggle-api-data',default="navoneel/brain-mri-images-
for-brain-tumor-detection")

def download_data(root,data_file,kaggle_api_data):

    logging.info(kaggle.api.authenticate())

    kaggle.api.dataset_download_files(kaggle_api_data, path=data_file, 
unzip=True)

    logging.info("Downloaded Data")

    print(len(os.listdir( data_file +"brain_tumor_dataset/no")))

    print(len(os.listdir(data_file +"brain_tumor_dataset/yes")))

    directory=["TRAIN" ,"TEST" ,"VAL" ,"TRAIN/YES" ,"TRAIN/NO" ,"TEST/
YES"   , "TEST/NO" ,"VAL/YES" ,"VAL/NO"]

    for i in directory:



92      Continuous Machine Learning with Kubeflow

        path = os.path.join(root, i)

        try:  

            os.mkdir(path)  

        except OSError as error:  

            print(error)

    for CLASS in os.listdir(data_file):

        logging.info(CLASS)

        print(CLASS)

        if not CLASS.startswith('.'):

            IMG_NUM = len(os.listdir(data_file + CLASS))

            logging.info(IMG_NUM)

            print(IMG_NUM)

            for (n, FILE_NAME) in enumerate(os.listdir(data_file + CLASS)):

                img = data_file + CLASS + '/' + FILE_NAME

                if n < 5:

                    try:  

                        shutil.copy(img, '/mnt/TEST/' + CLASS.upper() + 
'/' + FILE_NAME)

                    except OSError as error:  

                        print(error)

                elif n < 0.8*IMG_NUM:

                    try:

                        shutil.copy(img, '/mnt/TRAIN/'+ CLASS.upper() + 
'/' + FILE_NAME)

                    except OSError as error:

                         print(error)  

                else:

                    try:

                        shutil.copy(img, '/mnt/VAL/'+ CLASS.upper() + 
'/' + FILE_NAME)

                    except OSError as error:

                         print(error)

    return

if __name__ == "__main__":

    download_data()



Designing Computer Vision Model  in Kubeflow      93

Let’s breakdown the code as follows:

•	 Load the data from Kaggle DB with Kaggle API, and give it a particular 
project name.

•	 Import all the required datasets.

•	 The @click command is a passing argument in the function get_data().

•	 Next, we will create individual folders for Train, Test, Validation, and we will 
shuffle the raw data to fill all the folders inside Tumour Yes or No Tumour 
sub-folders.

•	 All the folders saved and stored inside the PVC which will be used after 
pipeline.

Next, see how we will build the component Dockerfile for the data ingestion and we 
will keep the requirements.txt file in the root of the dockerfile, which we will be 
needing as an environment to run the Python function inside Docker. Then, we will 
place the kaggle api json file in the root of Docker for authentication to Kaggle to 
download the data from the Kaggle projects.

To get the Kaggle API json file, please look into Chapter 6, Building Weights & Biases 
Pipeline Development, Section 6.2.2 ( Kaggle API Setup).

Figure 3.3: dataextraction folder

Now, we will build the Docker image; for that make sure you start the Docker, and 
you will see the Docker is activated on the top. As we can see, the first icon Docker 
is started.

Docker:
FROM python:3.7-slim-stretch

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update && \

    apt-get -y install gcc mono-mcs g++ git curl && \

    rm -rf /var/lib/apt/lists/*

RUN mkdir /app



94      Continuous Machine Learning with Kubeflow

RUN mkdir ~/.kaggle

WORKDIR /app

ADD requirements.txt /app/requirements.txt

RUN pip3 install -r requirements.txt

ADD dataextract.py /app/dataextract.py

ADD kaggle.json /app/kaggle.json

RUN chmod +x /app/dataextract.py

RUN cp /app/kaggle.json  ~/.kaggle

RUN  chmod 600 ~/.kaggle/kaggle.json

ENTRYPOINT ["python"]

CMD ["/app/dataextract.py"]

So let’s break the Docker file code as follows:

•	 Load the Python image as the base Image to run the pipeline code of 3.7 
version.

•	 The RUN function will run whenever the Docker image will start and create 
a /app folder first with the mkdir command, and another one for the ./
kaggle folder for storing kaggle API json file.

•	 Next, we will redirect our command to WORKDIR where all the files and 
dependencies will be installed.

•	 Next, we will ADD the requirements file in the /app folder, and run the pip 
command to install the Python libraries.

•	 Then we will copy our pipeline.py Python code and kaggle.json giving 
an administrative access to run the file whenever the Docker image will run 
with the chmod command.

•	 Next, we will set our entry point as Python and CMD as “/app/dataextract.
py” to run this first.

Now, we will build the Docker image; for that, make sure you start the Docker, and 
you will see the Docker is activated on top. As we can see, the first icon Docker is 
started.

Run all the following commands by connecting to GCP via Local:

```bash

gcloud init

#Select the Email/Project associated with GCP

```



Designing Computer Vision Model  in Kubeflow      95

Build the container for Data Extraction.

```bash

cd $WORKDIR/pipeline/dataextraction

PROJECT_ID=$(gcloud config get-value core/project)

IMAGE_NAME=brain_tumor_scan/step1_download_data

IMAGE_VERSION=v1

IMAGE_NAME=gcr.io/$PROJECT_ID/$IMAGE_NAME

```

Building Docker image:

```

docker build -t $IMAGE_NAME:$IMAGE_VERSION .

``` 

Push training image to Google container registry (GCR):

```

docker push $IMAGE_NAME:$IMAGE_VERSION

```

Next, we will see how to build the training component and similarly as the above, 
after that we going to build the  pre-processing step for our Kubeflow pipeline.

3.4.2 Data pre-processing component
Now, we will build the pre-processing step, assuming the input will come from the  
previous data ingestion component. So, whatever data we have dumped with the 
@dill command, we will load first and will do the necessary pre-processing step.

In this part of the code, let’s import all the dependency and create the utility 
correlation plot function.

Preprocessing.py

from __future__ import absolute_import, division, print_function, 
unicode_literals

import click,json,os,argparse,dill,cv2,imutils

from tqdm import tqdm

import numpy as np

import tensorflow as tf

def load_data_array(dir_path, img_size=(100,100)):



96      Continuous Machine Learning with Kubeflow

    X = []

    y = []

    i = 0

    labels = dict()

    for path in tqdm(sorted(os.listdir(dir_path))):

        if not path.startswith('.'):

            labels[i] = path

            for file in os.listdir(dir_path + path):

                if not file.startswith('.'):

                    img = cv2.imread(dir_path + path + '/' + file)

                    X.append(img)

                    y.append(i)

            i += 1

    X = np.array(X)

    y = np.array(y)

    print(f'{len(X)} images loaded from {dir_path} directory.')

    return X, y, labels

def crop_imgs(set_name, add_pixels_value=0):

    set_new = []

    for img in set_name:

        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

        gray = cv2.GaussianBlur(gray, (5, 5), 0)

        thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1]

        thresh = cv2.erode(thresh, None, iterations=2)

        thresh = cv2.dilate(thresh, None, iterations=2)

        cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.
CHAIN_APPROX_SIMPLE)

        cnts = imutils.grab_contours(cnts)

        c = max(cnts, key=cv2.contourArea)

        extLeft = tuple(c[c[:, :, 0].argmin()][0])

        extRight = tuple(c[c[:, :, 0].argmax()][0])

        extTop = tuple(c[c[:, :, 1].argmin()][0])

        extBot = tuple(c[c[:, :, 1].argmax()][0])



Designing Computer Vision Model  in Kubeflow      97

        ADD_PIXELS = add_pixels_value

        new_img = img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS, 
extLeft[0]-ADD_PIXELS:extRight[0]+ADD_PIXELS].copy()

        set_new.append(new_img)

    return np.array(set_new)

The code is continued to next page here; in the preceding code, we have imported 
the required libraries and built some utility functions like crop_img() and load_
data_array().

In continuation, the pre-processing code is as follows:

def save_new_images(x_set, y_set, folder_name):

    i = 0

    for (img, imclass) in zip(x_set, y_set):

        if imclass == 0:

            cv2.imwrite(folder_name+'NO/'+str(i)+'.jpg', img)

        else:

            cv2.imwrite(folder_name+'YES/'+str(i)+'.jpg', img)

        i += 1

def preprocess_images(set_name, img_size):

    set_new = []

    for img in set_name:

        img = cv2.resize(img,dsize=img_size, interpolation=cv2.INTER_
CUBIC)

        set_new.append(tf.keras.applications.vgg16.preprocess_
input(img))

    return np.array(set_new)

@click.command()

@click.option('--root',default="/mnt/")

@click.option('--train-file', default="/mnt/training.data")

@click.option('--test-file', default="/mnt/test.data")

@click.option('--validation-file', default="/mnt/validation.data")

@click.option('--train-target', default="/mnt/trainingtarget.data")

@click.option('--test-target', default="/mnt/testtarget.data")

@click.option('--validation-target', default="/mnt/validationtarget.data")



98      Continuous Machine Learning with Kubeflow

@click.option('--label', default="/mnt/labels.data")

@click.option('--image-size', default=224)

deftraining_data_processing(root,train_file,label,test_file,validation_
file,image_size,train_target,test_target,validation_target):

    TRAIN_DIR = root + 'TRAIN/'

    TEST_DIR = root + 'TEST/'

    VAL_DIR = root + 'VAL/'

    IMG_SIZE = (image_size,image_size)

    X_train, y_train, labels = load_data_array(TRAIN_DIR, IMG_SIZE)

    X_test, y_test, _ = load_data_array(TEST_DIR, IMG_SIZE)

    X_val, y_val, _ = load_data_array(VAL_DIR, IMG_SIZE)

    X_train_crop = crop_imgs(set_name=X_train)

    X_val_crop = crop_imgs(set_name=X_val)

    X_test_crop = crop_imgs(set_name=X_test)

    directory=["TRAIN_CROP" ,"TEST_CROP" ,"VAL_CROP" ,"TRAIN_CROP/
YES" ,"TRAIN_CROP/NO" ,"TEST_CROP/YES" , "TEST_CROP/NO" ,"VAL_CROP/YES" 
,"VAL_CROP/NO"]

    for i in directory:

        path = os.path.join(root, i)

        try:  

            os.mkdir(path)  

        except OSError as error:  

            print(error)

      save_new_images(X_train_crop, y_train, folder_name='/mnt/TRAIN_
CROP/')

    save_new_images(X_val_crop, y_val, folder_name='/mnt/VAL_CROP/')

    save_new_images(X_test_crop, y_test, folder_name='/mnt/TEST_CROP/')

The code is continued to the next page; in the preceding section of the code, we 
are inputting the files from the previous pipeline component, after which we will 
transform the images into an array, and crop those images; after that we will be 
creating some new folders for those cropped images and save those images.

    with open(label,"wb") as f:

        dill.dump(labels,f) 



Designing Computer Vision Model  in Kubeflow      99

    with open(train_file,"wb") as f:

        dill.dump(X_train_prep,f) 

    with open(test_file,"wb") as f:

        dill.dump(X_test_prep,f)     

    with open(validation_file,"wb") as f:

        dill.dump(X_val_prep,f) 

    with open(train_target,"wb") as f:

        dill.dump(y_train,f) 

    with open(test_target,"wb") as f:

        dill.dump(y_test,f)   

    with open(validation_target,"wb") as f:

        dill.dump(y_val,f) 

    return

if __name__ == "__main__":

    training_data_processing()

Let’s breakdown the code for pre-processing as follows:

•	 First of all, we will import all the libraries and create the utility function like 
crop_img() which will crop an original image, and load_data_array() 
will help to transform the images into arrays X, y and labels.

•	 Next, the save_new_images() will save those cropped images into new 
folders and the pre_process_images() function will pre-process those 
cropped images with the help of the vgg16 applications of keras and save 
those in the new array sets.

•	 Next, the @click.option will input all the required dumps which we have 
done in the data ingestion step, so that we can use here, and load those first 
and use those for the pre-processing steps for training the data.

•	 Then, the @dill.dump will dump the pre-process arrays for training for the 
next pipeline components.

Docker:
FROM python:3.7-slim-stretch

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update && \

    apt-get -y install gcc mono-mcs g++ git curl && \

    rm -rf /var/lib/apt/lists/*



100      Continuous Machine Learning with Kubeflow

RUN mkdir /app

WORKDIR /app

RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

RUN python get-pip.py

RUN rm get-pip.py

RUN pip install --upgrade pip

RUN apt-get update && yes | apt-get upgrade

RUN apt-get install -y libsm6 libxext6 libxrender-dev

RUN apt-get install -y protobuf-compiler python-pil python-lxml python-
pip python-dev git

RUN apt-get update && apt-get install -y protobuf-compiler python-pil 
python-lxml

ADD requirements.txt /app/requirements.txt

RUN pip3 install -r requirements.txt

ADD preprocessing.py /app/preprocessing.py

RUN chmod +x /app/preprocessing.py

ENTRYPOINT ["python"]

CMD ["/app/preprocessing.py"]

Similarly like the preceding data ingestion step, we will build the Docker image. As 
we can see in the preceding Docker images, we have installed the required libraries 
to run any computer vision Docker image.
```bash
PROJECT_ID=$(gcloud config get-value core/project)
IMAGE_NAME=brain_tumor_scan/step2_dataprocessing
IMAGE_VERSION=v1
IMAGE_NAME=gcr.io/$PROJECT_ID/$IMAGE_NAME
```

Building Docker image.
```
docker build -t $IMAGE_NAME:$IMAGE_VERSION .
```

Push training image to GCR.
```
docker push $IMAGE_NAME:$IMAGE_VERSION
```



Designing Computer Vision Model  in Kubeflow      101

3.4.3 Training model component
In this section, we will build a TensorFlow CNN model, and download the pre-
trained VGG-16 weights and keep that in the path of the train folder. So, go to the 
following link and download the file:
https://www.kaggle.com/gaborfodor/keras-pretrained-models?select=vgg16_
weights_tf_dim_ordering_tf_kernels_notop.h5

Figure 3.4: VGG16 download location

This is how our train folder looks, and we will keep the storage bucket service 
account and Storage.py to upload to the bucket.

Figure 3.5: train folder

Next, we will find out how we built the Train Component.

Train.py

from __future__ import absolute_import, division, print_function, 
unicode_literals

import click,dill,json,loggig,os,PIL

import pandas as pd



102      Continuous Machine Learning with Kubeflow

import tensorflow as tf

from storage import Storage

from sklearn.metrics import accuracy_score

def model_build(base_model,NUM_CLASSES,activation):

    model = tf.keras.models.Sequential([base_model,tf.keras.layers.
Flatten(),

         tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(NUM_
CLASSES,activation=activation)])

    model.layers[0].trainable = False

    return model

@click.command()

@click.option('--train-file', default="/mnt/training.data")

@click.option('--test-file', default="/mnt/test.data")

@click.option('--validation-file', default="/mnt/validation.data")

@click.option('--train-target', default="/mnt/trainingtarget.data")

@click.option('--test-target', default="/mnt/testtarget.data")

@click.option('--validation-target', default="/mnt/validationtarget.
data")

@click.option('--epochs', default=100)

@click.option('--activation', default="sigmoid")

@click.option('--learning-rate', default=0.001)

@click.option('--tensorboard-logs', default='/mnt/logs/')

@click.option('--tensorboard-gcs-logs', default='gs://kubeflowusecases/
brain/logs')

@click.option('--model-output-base-path', default="/mnt/saved_model")

@click.option('--gcs-path', default="gs://kubeflowusecases/brain/model")

@click.option('--mode', default="local")

@click.option('--image-size', default=224)

@click.option('--label', default="/mnt/labels.data")

deftrain_model(train_file,test_file,validation_file,train_target,test_
target,validation_target,

label,epochs,activation,image_size,learning_rate,tensorboard_
logs,tensorboard_gcs_logs,model_output_base_path,gcs_path,mode):



Designing Computer Vision Model  in Kubeflow      103

        with open(label, 'rb') as in_f:

                labels= dill.load(in_f)

        with open(train_file, 'rb') as in_f:

                train= dill.load(in_f)

        with open(test_file, 'rb') as in_f:

                test= dill.load(in_f)

        with open(validation_file, 'rb') as in_f:

                validation= dill.load(in_f)

        with open(train_target, 'rb') as in_f:

                train_tar= dill.load(in_f)

        with open(test_target, 'rb') as in_f:

                test_tar= dill.load(in_f)

        with open(validation_target, 'rb') as in_f:

                validation_tar= dill.load(in_f) 

The code is continued to the next page, here in preceding section, we have imported 
the required libraries and we have all the input from the previous pipeline; we have 
imported them with @dill load. And we have created one utility function model_
build() for building layers for TensorFlow model.

In continuation to the preceding snippet code, the train.py Python file contains the 
following section:

   IMG_SIZE = (image_size,image_size)

        RANDOM_SEED = 123

        TRAIN_DIR = '/mnt/TRAIN_CROP/'

        VAL_DIR = '/mnt/VAL_CROP/'

        

        train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(

                rotation_range=15,width_shift_range=0.1,height_
shift_range=0.1,shear_range=0.1,brightness_range=[0.5, 1.5],                 
horizontal_flip=True,vertical_flip=True, preprocessing_function=tf.keras.
applications.vgg16.preprocess_input)
               

        train_generator = train_datagen.flow_from_directory(TRAIN_
DIR,color_mode='rgb', target_size=IMG_SIZE,batch_size=32,class_
mode='binary', seed=RANDOM_SEED)



104      Continuous Machine Learning with Kubeflow

        val_datagen = tf.keras.preprocessing.image.ImageDataGenerator(

        preprocessing_function=tf.keras.applications.vgg16.preprocess_
input)

        validation_generator = val_datagen.flow_from_directory(

                                VAL_DIR,color_mode='rgb',target_
size=IMG_SIZE, batch_size=16,class_mode='binary',seed=RANDOM_SEED)

 vgg16_weight_path="/app/vgg16_weights_tf_dim_ordering_tf_kernels_notop.
h5"

        base_model=tf.keras.applications.VGG16(

          include_top=False, weights=vgg16_weight_path, input_shape=IMG_
SIZE + (3,))

        NUM_CLASSES=1

        model=model_build(base_model,NUM_CLASSES,activation)

        optimizer=tf.keras.optimizers.RMSprop(learning_rate=learning_
rate)

        model.compile(loss=tf.keras.losses.binary_
crossentropy,optimizer=optimizer, metrics=['accuracy'])

        tensorboard_callback = tf.keras.callbacks.TensorBoard(log_
dir=tensorboard_logs, histogram_freq=1)

        earlystopping = tf.keras.callbacks.EarlyStopping(monitor='val_
loss', mode='max',patience=6)           

        logging.info("Training starting...")

        model.fit_generator(train_generator,epochs=epochs,

                validation_data=validation_generator,validation_
steps=25, callbacks=[earlystopping,tensorboard_callback])
  

  logging.info("Training completed.")

        model.save(model_output_base_path)

        new_model = tf.keras.models.load_model(model_output_base_path)

        print(new_model.summary())

        predictions = new_model.predict(validation)

        predictions = [1 if x>0.5 else 0 for x in predictions]

 accuracy = accuracy_score(validation_tar, predictions)

        print('Val Accuracy = %.2f' % accuracy)

        logging.info(('Val Accuracy = %.2f' % accuracy))

        Storage.upload(tensorboard_logs,tensorboard_gcs_logs)



Designing Computer Vision Model  in Kubeflow      105

        metadata = {'outputs': [{'type': 'tensorboard',

                        'source': tensorboard_gcs_logs,}]}     

So, the preceding code contains the training and pre-processing with Image Data 
Generator after that we trained the model with preprocessed images in pipeline and 
the trained artifacts are saved as tensorflow models in GCP Bucket.

        with open("/mlpipeline-ui-metadata.json", 'w') as f:

                json.dump(metadata,f)

        if mode!= 'local':

                print("uploading to {0}".format(gcs_path))

                Storage.upload(model_output_base_path,gcs_path)

        else:

                print("Model will not be uploaded")

                pass

if __name__ == "__main__":

    train_model()

So, the preceding code is the train.py file; lets break the pipeline code as follows:

•	 Import all the required datasets.

•	 The @click command is passing the argument in the function train_
model().

•	 Here, we load the VGG16 model from the Docker root in the train Python 
code, so that we can import that with TensorFlow for our model training, 
Then, the dill command will be helping to save or load the data from pvc. 
Next, we will pass all the arguments like epochs and batch size, learning rate 
from the outside and will train our model.

•	 We will then push the model train output to the Google Storage Bucket. 
Then, we will import the Storage.py file to the imported storage class to 
save our model artifacts.

•	 And to visualize, the Tensorboard will follow the same metadata json format 
with “/mpipeline-ui-metadata.json” and will give the gcs bucket path 
where you saved your model artifacts.

Similarly, we will create the Docker Image, and add the service account json key. 
Please have a look at the GitHub steps.md file.



106      Continuous Machine Learning with Kubeflow

3.3.4 Evaluation component
Similarly, we will create the evaluation component. Please have a look at the GitHub 
steps.md file. We have dumped the confusion Matrix and ROC Curve as a csv 
in GCP bucket and gave the path a storage location of those in the metadata and 
dumped that as json.

Figure 3.6: Evaluator Component

3.5. Serving the Model with KF Serving
In this section, we will build our serving model. As shown in the following section, 
there are three major components for the service account with the storage bucket 
access json file, requirements.txt, Dockerfile, brainserving.py.

We will build a custom endpoint serving, and we will see how we can do a Batch 
prediction of multiple test input images.



Designing Computer Vision Model  in Kubeflow      107

brainserving.py

import kfserving, argparse, json, cv2, logging,os,base64,io,imutils

from typing import List, Dict

import numpy as np

from PIL import Image

import tensorflow as tf

os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = "service_account_iam.
json"
 

def crop_imgs(set_name, add_pixels_value=0):

    set_new = []

    for img in set_name:

        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

        gray = cv2.GaussianBlur(gray, (5, 5), 0)

        thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1]

        thresh = cv2.erode(thresh, None, iterations=2)

        thresh = cv2.dilate(thresh, None, iterations=2)

        cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.
CHAIN_APPROX_SIMPLE)

        cnts = imutils.grab_contours(cnts)

        c = max(cnts, key=cv2.contourArea)

        extLeft = tuple(c[c[:, :, 0].argmin()][0])

        extRight = tuple(c[c[:, :, 0].argmax()][0])

        extTop = tuple(c[c[:, :, 1].argmin()][0])

        extBot = tuple(c[c[:, :, 1].argmax()][0])

        ADD_PIXELS = add_pixels_value

        new_img = img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS, 
extLeft[0]-ADD_PIXELS:extRight[0]+ADD_PIXELS].copy()

        set_new.append(new_img)

    return np.array(set_new)

def preprocess_imgs(set_name, img_size):

    set_new = []

    for img in set_name:

        img = cv2.resize(img,dsize=img_size,interpolation=cv2.INTER_CUBIC)



108      Continuous Machine Learning with Kubeflow

        set_new.append(tf.keras.applications.vgg16.preprocess_
input(img))

    return np.array(set_new)

def image_transform(instance):

    logging.info("Inside Image Transform")

    originalimage = base64.b64decode(instance)

    jpg_as_np = np.frombuffer(originalimage, dtype=np.uint8)

    img = cv2.imdecode(jpg_as_np, flags=1)

    image_expanded = np.expand_dims(img, axis=0)

    crop_image = crop_imgs(set_name=image_expanded)

    IMG_SIZE=(224,224)

    prep_image = preprocess_imgs(set_name=crop_image, img_size=IMG_SIZE)

    return prep_image

class Transformer(kfserving.KFModel):

    def __init__(self, name: str):

        super().__init__(name)

        self.name = name

        self.ready = False

        self.model_output_base_path='gs://kubeflowusecases/brain/model/'

    def load(self):

        self.model = tf.keras.models.load_model(self.model_output_base_
path)

        self.ready = True

    def predict(self, request: Dict) -> Dict:

        data={'instances': [image_transform(request['instances'][i]) for 
i in  range(len(request['instances']))]}        

        transformdata=[]

        for i in data['instances']:

            logging.info("Inside transform data")

            arraydata=self.model.predict(i)

            logging.info(self.model.predict(i))

            transformdata.append(arraydata)



Designing Computer Vision Model  in Kubeflow      109

        result=[]

        Predict=0   

        predictions = [1 if x>0.5 else 0 for x in transformdata]    

        for i in predictions:

            if i == Predict:

                    result.append("No tumor inside Brain")

            else:

                    result.append("Tumor inside Brain")

        return json.dumps({"predictions" :  result})

if __name__ == "__main__":

    model = Transformer("kfserving-braintumor")

    model.load()

    kfserving.KFServer(workers=1).start([model])

So, let’s break the transformer predictor code as follows:

•	 We kept the service account, which has the storage bucket in the Docker 
root, and here we have declared that folder as an environment variable to an 
object model_output_base_path for the gcp bucket path.

•	 Next, in the load function, we loaded the model in from the TensorFlow 
library.

•	 Here, the incoming data is an encoded string of Image; then we transformed 
the image with the following functions image_transform(), which will 
change the encoded strings to the decoded one; next we will crop the image 
with the crop_imgs() function, after which, we will pre-process the array of 
the image with the preprocess_image() and return that array.

•	 Then, in the predict method, the incoming data will come as a json format 
which we need to extract as a key-value pair and do the necessary prediction 
and return as a dictionary.

•	 So, in the “main” function, the KFServingSampleModel Class will take the 
name of that deployment; keep a note of that and apply to the yaml file; here 
it is ”kfserving-breast-model”.

Docker:
FROM python:3.7-slim-stretch

ENV DEBIAN_FRONTEND noninteractive



110      Continuous Machine Learning with Kubeflow

RUN apt-get update && apt-get -y install gcc mono-mcs g++ git curl bash 
&& \

    rm -rf /var/lib/apt/lists/*

RUN mkdir /app

WORKDIR /app

RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

RUN python get-pip.py && rm get-pip.py && pip install --upgrade pip

RUN apt-get update && yes | apt-get upgrade

RUN apt-get install -y libsm6 libxext6 libxrender-dev protobuf-compiler 
python-pil python-lxml python-pip python-dev git protobuf-compiler 
python-pil python-lxml

ADD requirements.txt /app/requirements.txt

RUN pip3 install -r requirements.txt

ADD brainserving.py /app/brainserving.py

COPY service_account_iam.json service_account_iam.json

ENV GOOGLE_APPLICATION_CREDENTIALS="service_account_iam.json"

CMD ["python","brainserving.py"]

Now, in the preceding Docker code, we have copied the service account for the 
storage bucket access, and saved it in /app. Then, we copied the Python serving 
file in the same location and kept the working directory as /app. Then, we build the 
image by using the above code. Similarly, we created the Docker image; please have 
a look at the GitHub steps.md file.

To deploy the model server using the kubectl command line, or using the KFServing 
client SDK, you can do either of the following:

•	 Deploy using the command line

•	 Deploy using the KFServing client SDK

Deploy using the command line:

Now, let’s deploy it with the command line, and first let’s fill the yaml file:
Custom_KFServing.yaml:

apiVersion: serving.kubeflow.org/v1alpha2

kind: InferenceService

metadata:

    annotations:

     sidecar.istio.io/inject: "false"



Designing Computer Vision Model  in Kubeflow      111

    name: kfserving-braintumor

    namespace: kubeflow

spec:

  default:

   predictor:

     custom:

      container:

        image: gcr.io/<PROJECT_ID>/brain_tumor_scan/ kf_serving_
braintest:v1

Here, in the preceding yaml file, we will give the same name which we have provided 
in the serving.py file having the model name (“kfserving-braintumor”), and then 
we will provide the namespace “kubeflow” where it will be deployed. Next, we will 
give the Docker image name.

Figure 3.7: KF – Serving Model name match

As we can see, the 121st line number from the left image and the 6th from the right 
should always be the same.

Next, run the following command from the bash where the files are kept in the 
Visual Studio:

•	 Connect to the GCP cluster by using the following command:
gcloud container clusters get-credentials <$ClusterName> --zone 

<$ZONE> --project <$PROJECTID>

•	 Create the inference service by deploying it in the cluster:
kubectl apply -f custom_brain_model.yaml



112      Continuous Machine Learning with Kubeflow

•	 Check the inference service. Try it after some interval to check if it has been 
created:

 kubectl get inferenceservice -n kubeflow

Figure 3.8: KF – Serving Inference service ready

Sample Prediction: 

•	 Run the following command in Bash from the serving folder:

```bash

MODEL_NAME=kfserving-breast-model

HOST=$(kubectl get inferenceservice -n kubeflow$MODEL_NAME -o
jsonpath='{.status.url}' | cut -d "/" -f 3)

INPUT_PATH=@./breast.json

CLUSTER_IP=$(kubectl -n istio-system get service kfserving-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].
ip}')

curl -v -H "Host: ${HOST}" http://${CLUSTER_IP}/v1/
models/${MODEL_NAME}:predict -d $INPUT_PATH

```

Now, the following is the response prediction request:

Figure 3.9: KF – Serving Prediction Output

•	 Run the following command in Python from the serving folder.

Now we create some sample data to predict the results from the preceding 
URL. To create the sample data, the code is as follows: 

import json

import base64



Designing Computer Vision Model  in Kubeflow      113

import requests

samples=[]

NUM_SAMPLES=4

for index in range(NUM_SAMPLES):

    with open("Brain_{0}.jpg".format(index + 1), "rb") as image_file:

        encoded_bytes = base64.b64encode(image_file.read())

        # result: string (in utf-8)

        encoded_string = encoded_bytes.decode('utf-8')

        samples.append(encoded_string)
        

# prepare test data

data = json.dumps({"instances": samples})

data_read = json.loads(data)

with open('data.json','w') as out:

    json.dump(data_read, out)

%%bash

gcloud container clusters get-credentials <CLUSTER_NAME> --zone 
us-east1-d --project <PROJECT_ID>

CLUSTER_IP=$(kubectl -n istio-system get service kfserving-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].
ip}')

echo $CLUSTER_IP

MODEL_NAME="kfserving-braintumor" 

#Replace the cluster IP

cluster_ip = "COPY YOUR IP FROM ABOVE"

headers={"Host": "{0}.kubeflow.example.com".format(MODEL_
NAME),"Content-Type": "application/json"}

response = requests.post("http://{0}/v1/models/{1}:predict".
format(cluster_ip, MODEL_NAME), data = data,headers = headers)

print(response.json())

Figure 3.10: Prediction output

In the preceding screenshot, we can see our prediction output of Batch predictions.



114      Continuous Machine Learning with Kubeflow

3.6 Building the pipeline end to end
Now, let’s see how we will build the Pipeline, and run this platform in Kubeflow 
Notebook server.

Open the URL: GCP Kubernetes > Service & ingress > Click the URL

As shown in Chapter 1, Introduction to Kubeflow & Kubernetes Cloud Architecture, 
already in section 1.6, we have created a Jupyter notebook that we will be using.

Now, paste the following code and run the pipeline; before that, replace the 
PROJECT_ID and bucket name from the following code and it will dump a zip file:

import kfp.dsl as dsl

import yaml

from kubernetes import client as k8s

import kfp.gcp as gcp

from kfp import components

from string import Template

import json

from kubernetes import client as k8s_client

@dsl.pipeline(

  name='',

  description='End to End pipeline for Tensorflow Brain MRI '

)

def brain_tensorflow_pipeline(

    dataextraction_step_image="gcr.io/<PROJECT_ID>/brain_tumor_scan1/
step1_download_data:v1",

    dataprocessing_step_image="gcr.io/<PROJECT_ID>/brain_tumor_scan4/
step2_dataprocessing:v1",

    trainmodel_step_image="gcr.io/<PROJECT_ID>/brain_tumor_scan1/step3_
training_model:v1",

    evaluator_step_image="gcr.io/<PROJECT_ID>/brain_tumor_scan1/step4_
evaluation_model:V1",

    root="/mnt/",data_file="/mnt/BrainScan_Data/",

    kaggle_api_data="navoneel/brain-mri-images-for-brain-tumor-
detection",

    train_file='/mnt/training.data',test_file='/mnt/test.data',



Designing Computer Vision Model  in Kubeflow      115

    validation_file="/mnt/validation.data",label="/mnt/labels.data",

    activation="sigmoid",image_size=224,train_target="/mnt/
trainingtarget.data",

    test_target="/mnt/testtarget.data",validation_target="/mnt/
validationtarget.data",

    epochs=10,learning_rate=.001,shuffle_size=1000,tensorboard_logs="/
mnt/logs/",

    tensorboard_gcs_logs="gs://<BUCKET_NAME>/brain/logs",

    model_output_base_path="/mnt/saved_model",gcs_path="gs://<BUCKET_
NAME>/brain/model",

    gcs_path_confusion="gs://<BUCKET_NAME>/brain", 
mode="gcs",probability=0.5,

    serving_name="kfserving-braintumor",serving_namespace="kubeflow",

    image="gcr.io/<PROJECT_ID>/brain_tumor_scan/kf_serving_
braintest:v1"):

    """

    Pipeline

    """

    # PVC : PersistentVolumeClaim volume

    vop = dsl.VolumeOp(

      name='my-pvc', resource_name="my-pvc",modes=dsl.VOLUME_MODE_
RWO,size="1Gi")

    # data extraction

    data_extraction_step = dsl.ContainerOp(

        name='data_extraction',image=dataextraction_step_
image,command="python",

        arguments=[

            "/app/dataextract.py",

            "--root",root,

            "--data-file", data_file,

            "--kaggle-api-data", kaggle_api_data,

        ],pvolumes={"/mnt": vop.volume}).apply(gcp.use_gcp_secret("user-
gcp-sa"))



116      Continuous Machine Learning with Kubeflow

    # processing

    data_processing_step = dsl.ContainerOp(

        name='data_processing',image=dataprocessing_step_
image,command="python",

        arguments=[

            "/app/preprocessing.py",

            "--train-file", train_file,

            "--test-file", test_file,

            "--validation-file", validation_file,

            "--root",root,

            "--image-size",image_size,

            "--train-target",train_target,

            "--test-target",test_target,

            "--validation-target",validation_target,

            "--label",label],pvolumes={"/mnt": data_extraction_step.
pvolume}

    ).apply(gcp.use_gcp_secret("user-gcp-sa"))

   #trainmodel

    train_model_step = dsl.ContainerOp(

        name='train_model', image=trainmodel_step_image, 
command="python",

        arguments=[

            "/app/train.py",

            "--train-file", train_file,

            "--test-file", test_file,

            "--label",label,

            "--activation",activation,

            "--validation-file", validation_file,

            "--train-target",train_target,

            "--test-target",test_target,

            "--validation-target",validation_target,

            "--epochs",epochs,

            "--image-size",image_size,



Designing Computer Vision Model  in Kubeflow      117

            "--learning-rate",learning_rate,

            "--tensorboard-logs",tensorboard_logs,

            "--tensorboard-gcs-logs",tensorboard_gcs_logs,

            "--model-output-base-path",model_output_base_path,

            "--gcs-path", gcs_path,

            "--mode", mode,

     ],file_outputs={"mlpipeline-ui-metadata": "/mlpipeline-ui-metadata.
json"},

     pvolumes={"/mnt": data_processing_step.pvolume}).apply(gcp.use_gcp_
secret("user-gcp-sa")) 

    #evaluation

    evaluation_model_step = dsl.ContainerOp(

        name='evaluation_model',image=evaluator_step_
image,command="python",

        arguments=[

            "/app/evaluator.py",

            "--test-file", test_file,

            "--test-target",test_target,

            "--probability",probability,

            "--model-output-base-path",model_output_base_path,

            "--gcs-path", gcs_path,

            "--label",label,

            "--gcs-path-confusion", gcs_path_confusion,

          

        ],file_outputs={"mlpipeline-metrics":"/mlpipeline-metrics.
json","mlpipeline-ui-   metadata": "/mlpipeline-ui-metadata.json"},

 pvolumes={"/mnt": train_model_step.pvolume}).apply(gcp.use_gcp_
secret("user-gcp-sa")) 

    kfserving_template = Template("""{

                              "apiVersion": "serving.kubeflow.org/
v1alpha2",

                              "kind": "InferenceService",

                              "metadata": {



118      Continuous Machine Learning with Kubeflow

                                "labels": {

                                  "controller-tools.k8s.io": "1.0"

                                },

                                "name": "$name",

                                "namespace": "$namespace"

                              },

                              "spec": {

                                "default": {

                                  "predictor": {

                                    "custom": {

                                      "container": {

                                        "image": "$image"

                                      }

                                    }

                                  }

                                }

                              }

                            }""")

    kfservingjson = kfserving_template.substitute({ 'name': str(serving_
name),

                                'namespace': str(serving_namespace),

                                'image': str(image)})

    kfservingdeployment = json.loads(kfservingjson)

    serve = dsl.ResourceOp(

        name="serve",k8s_resource=kfservingdeployment,

        action="apply",success_condition="status.url)

    serve.after(evaluation_model_step)
    

if __name__ == '__main__':

    import kfp.compiler as compiler

    pipeline_func = brain_tensorflow_pipeline

    pipeline_filename = pipeline_func.__name__ + '.pipeline.yaml'

    compiler.Compiler().compile(pipeline_func,pipeline_filename)



Designing Computer Vision Model  in Kubeflow      119

So, let’s break the pipeline code as follows:

•	 Pipelines are expected to include a @dsl.pipeline decorator to provide 
metadata about the pipeline.

•	 The pipeline is defined in the brain_tensorflow_pipeline function. 
It includes a number of arguments, which are exposed in the Kubeflow 
Pipelines UI when creating a new Run. Although passed as strings, these 
arguments are of type kfp.dsl.PipelineParam.

•	 Each individual block defines one component like ‘train’, ‘evaluation’, etc. A 
component is made up of a kfp.dsl.ContainerOp object with the container 
path and a name specified. The container image used is defined as Dockerfile 
which we have created.

•	 After defining the train component, we also set a number of environment 
variables for the training script.

•	 At the bottom of the script is the main function. This is used to compile the 
pipeline when the script is run; then the .after method will trigger the 
pipeline one after the other.

Next, we will create an experiment; under that, we can create multiple runs of a 
pipeline. The following code is for creating the experiment:

EXPERIMENT_NAME = 'Brain_experiment'

client = kfp.Client()

try:

    experiment = client.get_experiment(experiment_name=EXPERIMENT_NAME)

except:

    experiment = client.create_experiment(EXPERIMENT_NAME)

    

print(experiment)

This following snippet will create a run for the zip that we had dumped in that 
location:
arguments = {}

run_name = pipeline_func.__name__ + 'heart_run'

run_result = client.run_pipeline(experiment.id, run_name, pipeline_
filename,arguments)

print(experiment.id)

print(run_name)



120      Continuous Machine Learning with Kubeflow

print(pipeline_filename)

print(arguments)

Click on the run link once the pipeline is ready. The following is how our pipeline 
training looks:

Figure 3.11: Pipeline Kubeflow e2e

The following image is the pipeline which we have created, and the Python 
visualizations, ROC Curve & Confusion Matrix & Tensorboard:



Designing Computer Vision Model  in Kubeflow      121

Figure 3.12: Pipeline Visualization

Another way to run the pipeline from UI is as follows:

•	 Create a new experiment button after clicking on that it will redirect to a new 
screen for experiment creation page.

Figure 3.13: Create experiment



122      Continuous Machine Learning with Kubeflow

•	 Provide an experiment name.

Figure 3.14: Create experiment and provide name

•	 Click on Skip this step.

Figure 3.15: Create experiment skip step

•	 Now, the experiment is ready; now click on Run.

Figure 3.16: Create run



Designing Computer Vision Model  in Kubeflow      123

•	 Next, upload the zip which we have created during the pipeline building 
earlier.

Figure 3.17: Upload Pipeline tar or yaml file



124      Continuous Machine Learning with Kubeflow

•	 Now, create a run of that Pipeline, which you have uploaded, and choose the 
experiment which we have created earlier.

Figure 3.18: Start Run with choosing experiment

Next, let’s see how to autoscale the KF-Serving endpoint and monitor that in the 
Grafana Dashboard.

3.7. Auto-Scaling of the Serving Endpoint
One of the main features of Knative is the automatic scaling of the replicas for an 
application to closely match the incoming demand, including the scaling applications 
to zero, if no traffic is being received. Knative Serving enables this by default, using 



Designing Computer Vision Model  in Kubeflow      125

the Knative Pod Autoscaler (KPA). The Autoscaler component watches the traffic 
flow to the application, and scales the replicas up or down, based on the configured 
metrics.

Deploy the kf-serving Knative Service:
Custom_auto_scale.yaml:

apiVersion: serving.kubeflow.org/v1alpha2

kind: InferenceService

metadata:

  annotations:

    sidecar.istio.io/inject: "false"

    autoscaling.knative.dev/target: "10"

  labels:

    controller-tools.k8s.io: "1.0"

  name: <SERVING_MODEL_NAME>

  namespace: kubeflow

spec:

  default:

    predictor:

      minReplicas: 1

      custom:

        container:

          image: gcr.io/<PROJECT_ID>/brain_tumor_scan/kf_serving_
braintest:v1

          imagePullPolicy: Always

          name: user-container

        imagePullSecrets:

          - name: user-gcp-sa

•	 Connect to the GCP cluster by using the following command:
gcloud container clusters get-credentials <$ClusterName> --zone 

<$ZONE> --project <$PROJECTID>

•	 Create the inference service by deploying it in the cluster:
kubectl apply -f custom_autoscale.yaml



126      Continuous Machine Learning with Kubeflow

•	 Check the inference service. Try it after some interval to check if it has been 
created:

 kubectl get inferenceservice -n kubeflow

Figure 3.19: KF – Serving autoscale Inferenceservice ready

We can use any load testing tool to simulate the load. Here, we will be using 
the Hey (https://github.com/rakyll/hey) tool to test the autoscaling:

```bash

on macOS

brew install hey

```

We have already installed Prometheus in Chapter 1, Introduction to Kubeflow 
& Kubernetes Cloud Architecture, section 1.6.6; if you haven’t, please refer to 
that chapter.

•	 Send 30 seconds of traffic, maintaining 50 in-flight requests:

```bash

MODEL_NAME=kfserving-braintumor

HOST=$(kubectl get inferenceservice -n kubeflow $MODEL_NAME -o
jsonpath='{.status.url}' | cut -d "/" -f 3)

INPUT_PATH=@./data.json

CLUSTER_IP=$(kubectl -n istio-system get service kfserving-
ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].
ip}')

hey -z 30s -c 100 -m POST -H "Host: ${HOST}" -d $INPUT_PATH
http://${CLUSTER_IP}/v1/models/${MODEL_NAME}:predict

Designing Computer Vision Model in Kubeflow 127

Figure 3.20: Hey Traffic Report

•	 Check out the pods that it was running.
```bash

kubectl get pods -n kubeflow | grep kfserving-braintumor

``` 

Figure 3.21: Pods of autoscale

128 Continuous Machine Learning with Kubeflow

•	 Open the Grafana dashboard.

View the Knative Serving Scaling dashboards:

```bash

# use port-forwarding

kubectl port-forward --namespace knative-monitoring $(kubectl 
get pod --namespace knative-monitoring --selector="app=grafana" 
--output jsonpath='{.items[0].metadata.name}') 8080:3000

```

Figure 3.22: Grafana Knative Dashboard autoscale

As we can see, when we sent the traffic of 100 in-flight requests for 30 seconds, it
created 10 pods.

Designing Computer Vision Model in Kubeflow 129

Auto-Scaling explanation: how it works?

Figure 3.23: Auto-scaling Working Concept

Algorithm
Knative Serving autoscaling is based on the average number of in-flight requests per
pod (concurrency). The system has a default target concurrency of 100 (search for the
container-concurrency-target-default), but we used 10 for our service.

We loaded the service with 100 concurrent requests, so the autoscaler created 5 pods.

(100 concurrent requests / target of 10 = 10 pods)

Panic
The autoscaler calculates the average concurrency over a 60-second window, so
it takes a minute for the system to stabilize at the desired level of concurrency.
However, the autoscaler also calculates a 6-second panic window and will enter the
panic mode if that window reached 2x the target concurrency. In the panic mode,
the autoscaler operates on the shorter, more sensitive panic window. Once the panic
conditions are no longer met for 60 seconds, the autoscaler will return to the initial
60 second stable window.

3.8 Conclusion
In this chapter, we learned how to build end-to-end Kubeflow Orchestrator Pipeline
for a TensorFlow CNN Model and how we Dockerized each component and built it
in Google Platform.

Then, we saw how to build the pipeline with the kfp library package and triggered
the pipeline from the Kubflow Dashboard and built a batch prediction serving. Now,
we have deployed Kubeflow on the Kubernetes Platform and learned how to trigger

130 Continuous Machine Learning with Kubeflow

the pipeline from the Notebook. We have also deployed the model in the Kubernetes
cluster with KF serving and Monitored the auto-scaling in Grafana Dashboard.

In this chapter, we have learned how to leverage the power of Google Cloud Platform,
and use our Devops knowledge with Machine Learning to become an MLops.

3.9 Reference
 ● https://knative.dev/docs/serving/autoscaling/autoscaling-concepts/

 ● https://v1-1-branch.kubeflow.org/docs/

 ● https://v1-1-branch.kubeflow.org/docs/gke/

 ● https://v1-1-branch.kubeflow.org/docs/gke/monitoring/

 ● https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/

Building TFX Pipeline 131

Chapter 4
Building TFX

Pipeline

In this chapter, we will build an end-to-end structured data classification model and
make it ready for production with the help of TFX, and serve the model outputs

with TF serving to get the prediction. We also be building the TensorFlow ecosystem
Modelling, and visualizing the evaluation with Tensorboard and Fairness. Then, we
will learn about the various TFX Components like TFT, TFMA, TFDV, and so on.
Later on, we will create a Kubeflow Pipeline in Google cloud.

Structure
In this chapter, we will cover the following topics:

•	 Problem statement

•	 Architecture of TFX components

•	 TFX environment setup

•	 TFX pipeline

•	 Serve the model with TF serving

•	 Building Kubeflow Pipeline Orchestrator

132 Continuous Machine Learning with Kubeflow

Objective
After studying this chapter, we will be able to do the following:

•	 Understand the complete BERT Architecture Model, and it’s tokenization
and pre-processing.

•	 Evaluate the BERT Base Model and creation of Framework for sentiment
Analysis.

•	 Build the TFX Pipeline Components, which provides a configuration
framework and shared library to integrate the common components needed
to define, launch, and monitor your machine learning system.

•	 Pre-process the training data for your BERT model training and validation.

•	 Analyse and review the trained and tuned models, deploying the best model
which will be pushed by the pusher component.

4.1 Problem statement
In this chapter, we will be using Taxi Trips dataset. This is a dataset for the binary
sentiment classification, containing substantially more data than the previous
benchmark datasets. Also, we will be predicting the tips. Here, we will build a
classification model and a Kubeflow pipeline in TFX with various components, so
that it will be ready for production. Also, we will be using the TF-Serving.

NOTE Rest all the imports I have showed in my Google Colab, which I gave
hyperlink of Github Account of this chapter. Note: Package Python 3.x

CODE https://github.com/bpbpublications/Continuous-Machine-Learning-
with-Kubeflow/tree/main/Chapter4

4.2 Architecture of TFX components
The machine learning pipelines can become very complicated and consume a lot of
overhead to manage the task dependencies. At the same time, the machine learning
pipelines can include a variety of tasks, including the tasks for data validation, pre-
processing, model training, and any post-training tasks. The connections between the
tasks are often brittle, and can cause the pipelines to fail. Having brittle connections
ultimately means that the production models will be updated infrequently; the data
scientists or machine learning engineers loathe updating the stale models. Pipelines
also require well-managed distributed processing, which is why the TFX leverages
Apache Beam. This is especially true for large workloads.

Building TFX Pipeline 133

Figure 4.1: TFX Architecture

A TFX pipeline is a sequence of components that implement a machine learning
pipeline, which is specifically designed for scalable, high-performance machine
learning tasks.

•	 ExampleGen is the initial input component of a pipeline that ingests and
optionally splits the input dataset.

•	 StatisticsGen calculates the statistics for the dataset.

•	 SchemaGen examines the statistics and creates a data schema.

•	 ExampleValidator looks for the anomalies and missing values in the dataset.

•	 Transform performs feature engineering on the dataset.

•	 Trainer trains the model.

•	 Tuner tunes the hyper parameters of the model.

•	 Evaluator performs deep analysis of the training results and helps you
validate your exported models, ensuring that they are "good enough" to be
pushed to production.

•	 Pusher deploys the model on a serving infrastructure.

Brief of TFX Components: A component handles a more complex process than just
the execution of a single task. All machine learning pipeline components read from
a Channel to get the input artifacts from the metadata store. The data is then loaded
from the path provided by the metadata store and processed. The output of the
component, the processed data, is then provided to the next pipeline components.

134 Continuous Machine Learning with Kubeflow

The generic internals of a component are always as follows:

•	 Receive some inputs

•	 Perform an action

•	 Store the final result

Figure 4.2: TFX Component Functionality

In TFX terms, the three internal parts of the component are called Driver, Executor,
and Publisher. The driver handles the querying of the metadata store; the executor
performs the actions of the components; and the publisher manages the saving of the
output metadata in the MetadataStore. The driver and the publisher aren’t moving
any data, but instead, they read and write the references from the MetadataStore.

4.3 TFX environment setup
Now, we will install each and every dependency with respect to our projects.

try:

 import colab

 !pip install --upgrade pip

except:

 pass

!pip install -q -U --use-feature=2020-resolver tfx

Next, we have to restart the kernel and we will import each and every dependency.

from tfx.components.base import executor_spec

from tfx.components.trainer.executor import GenericExecutor

Building TFX Pipeline 135

from tfx.dsl.experimental import latest_blessed_model_resolver

from tfx.proto import evaluator_pb2, example_gen_pb2, pusher_pb2,
trainer_pb2

from tfx.types import Channel

from tfx.types.standard_artifacts import Model, ModelBlessing

from tfx.utils.dsl_utils import external_input

from tfx.components import (Evaluator, ExampleValidator,
ImportExampleGen,ModelValidator, Pusher, ResolverNode,
SchemaGen,StatisticsGen, Trainer, Transform,Tuner)

from tfx.orchestration import (metadata, pipeline)

from tfx.orchestration.experimental.interactive.interactive_context
import InteractiveContext

from tfx.proto import (pusher_pb2, trainer_pb2)

from tfx.proto.evaluator_pb2 import SingleSlicingSpec

from tfx.utils.dsl_utils import external_input

from tfx.types.standard_artifacts import (Model, ModelBlessing)

tf.get_logger().propagate = False

pp = pprint.PrettyPrinter()

%load_ext tfx.orchestration.experimental.interactive.notebook_
extensions.skip

Setting Directory and Download Data
Steps for Setting the Root directory are as follows:

Step 1: This is the root directory for your TFX pip package installation.

Step 2: This is the directory containing the TFX Chicago Taxi Pipeline example.

Step 3: This is the path where your model will be pushed for serving.

Step 4: Set up logging.

def setting_directory():

 #step1

 _tfx_root = tfx.__path__[0]

 print(_tfx_root)

 #step2

 _taxi_root = os.path.join(_tfx_root, 'examples/chicago_taxi_
pipeline')

 print(_taxi_root)

136 Continuous Machine Learning with Kubeflow

 #step3

 _serving_model_dir = os.path.join(tempfile.mkdtemp(), 'serving_model/
taxi_simple')

 print(_serving_model_dir)

 #step4

 absl.logging.set_verbosity(absl.logging.INFO)

 return _tfx_root,_taxi_root,_serving_model_dir

Now, we call the preceding function to set the directory:

_tfx_root,_taxi_root,_serving_model_dir=setting_directory()

def download_data():

 _data_root = tempfile.mkdtemp(prefix='tfx-data')

 DATA_PATH = 'https://raw.githubusercontent.com/tensorflow/tfx/master/
tfx/examples/chicago_taxi_pipeline/data/simple/data.csv'

 _data_filepath = os.path.join(_data_root, "data.csv")

 urllib.request.urlretrieve(DATA_PATH, _data_filepath)

 return _data_root,_data_filepath

Now let’s call the preceding function to download the data in the directory:
_data_root,_data_filepath = download_data()

Let’s check a glimpse on our dataset:

Figure 4.3: Chicago Dataset

In the preceding screenshot, we can see the features in our dataset; we will be using
that for the classification model building with TensorFlow.

4.4 TFX pipeline components
TFX provides several Python package libraries which will be used here to create the
pipeline components.

Building TFX Pipeline 137

In this section, we have created the Interactive Context using the default parameters,
which will help to create the ephemeral ML Metadata database instance.
context = InteractiveContext()

Figure 4.4: Initializing interactive Context

Next, we will build the pipeline.

4.4.1 ExampleGen
The ExampleGen component is usually at the start of a TFX pipeline. TFX examplegen
will customize the train/eval split ratio, which the ExampleGen will output, set
the output_config; for example, Gen component. Each Version within a Span can
further be subdivided into multiple Splits. The most common use-case for splitting
a Span is to split it into the training and eval data.

The hash_buckets were set in this example.

Figure 4.5: Example Gen

138 Continuous Machine Learning with Kubeflow

The preceding diagram is the example gen component, which will split the dataset
in that manner. So, this is the architecture of the ExampleGen.

Figure 4.6: Example Gen Architecture

The ExampleGen TFX Pipeline component ingests the data into TFX pipelines.

def examplegen(_data_root):

 example_gen = CsvExampleGen(input=external_input(_data_root))

 return example_gen

Define the path where we downloaded the data:

example_gen= examplegen(_data_root)

context.run(example_gen)

Figure 4.7: Example Gen Output

The preceding screenshot is the output for the ExampleGen where we split the data
into train and evaluation and stored the path as shown.

Building TFX Pipeline 139

4.4.2 StatisticsGen
The StatisticsGen component computes the statistics over your dataset for the data
analysis, as well as for use in the downstream components. It uses the TensorFlow
Data Validation library.

Figure 4.8: Statistics Gen Architecture

StatisticsGen takes as input, the dataset that we just ingested using ExampleGen:

def statisticsgen(example_gen):

 statistics_gen = StatisticsGen(examples=example_gen.
outputs['examples'])

 return statistics_gen

statistics_gen=statisticsgen(example_gen)

context.run(statistics_gen)

Figure 4.9: Statistics Gen Output

Visualize the outputted statistics of our training data and evaluation data:

%%skip_for_export

context.show(statistics_gen.outputs['statistics'])

140 Continuous Machine Learning with Kubeflow

The StatisticsGen will give us the distribution of all the features and stats of the
categorical and numerical columns, from which we can analyse the skewness and
missing value analysis.

Figure 4.10: Statistics Gen Output Visualization

The StatisticsGen TFX pipeline component generates the feature statistics over
both the training and the serving data, which can be used by the other pipeline
components. StatisticsGen uses Beam to scale to large datasets.

4.4.3 SchemaGen
The SchemaGen component generates a schema based on your data statistics. (A
schema defines the expected bounds, types, and properties of the features in your
dataset.) It also uses the TensorFlow Data Validation library.

Figure 4.11: Schema Gen Architecture

Building TFX Pipeline 141

SchemaGen will take as input, the statistics that we generated with StatisticsGen,
looking at the training split by default.

def schemagen(statistics_gen):

 schema_gen = SchemaGen(statistics=statistics_gen.
outputs['statistics'],infer_feature_shape=False)

 return schema_gen

Let’s generate the schema table:

schema_gen=schemagen(statistics_gen)

%%skip_for_export

context.show(schema_gen.outputs['schema'])

Data schema for the type of input tensors is as follows:

Figure 4.12: Schema Gen Output Visualization

142 Continuous Machine Learning with Kubeflow

So, schema is a part of schema.proto. It will specify the data types for the feature
values, whether that feature has to be present in all the examples, value ranges, and
other properties. The SchemaGen component will generate that schema by inferring
the types, categories, and ranges from the training data automatically.

4.4.4 ExampleValidator
The ExampleValidator component detects the anomalies in your data, based on the
expectations defined by the schema. It also uses the TensorFlow Data Validation
library.

Figure 4.13: ExampleValidator Architecture

ExampleValidator will take as input, the statistics from StatisticsGen, and the schema
from SchemaGen. By default, it compares the statistics from the evaluation split to
the schema from the training split.

def examplevalidator(statistics_gen,schema_gen):

example_validator = ExampleValidator(statistics=statistics_gen.
outputs['statistics'],schema=schema_gen.outputs['schema'])

 return example_validator

Let’s call the function to check the anomaly report.

example_validator =examplevalidator(statistics_gen,schema_gen)

context.run(example_validator)

Building TFX Pipeline 143

Visualize the anomalies table:

%%skip_for_export

context.show(example_validator.outputs['anomalies'])

Figure 4.14: ExampleValidator Anomaly Table

So, the ExampleValidator pipeline component finds the anomalies in the training
and serving data. It helps to detect the different anomaly classes in our data. Take a
look at the following:

•	 It does a validity check that compares the data statistics against a schema,
which will codifie the expectations of a user.

•	 Next, it helps to detect a training-serving skew by checking the comparison
between the training and serving data.

•	 It helps to detect the data drift by looking at a series of data.

4.4.5 Transform
The Transform component performs the feature engineering for both the training
and the serving. The Transform component processes the data that we ingested into
our pipeline, together with the earlier generated data set schema, and it outputs the
following two artifacts:

•	 Pre-processed training and evaluation datasets in the TFRecords format. The
produced datasets can be consumed downstream in a Trainer component of
our pipeline.

144 Continuous Machine Learning with Kubeflow

•	 Exported preprocessing graph (with assets) which will be used when we’ll
export our machine learning model.

Figure 4.15: Transform Architecture

Steps for Transformation: The Transform is used to transform the numerical
and categorical one-hot encoded features, bucketized features, and raw string
representation data by completing the following steps:

Step 1: Categorical features are assumed to each have a maximum value in the
dataset and dense float features, and the categorical is distributed in a list.

Step 2: Number of buckets used by tf.transform for encoding each feature.

Step 3: Number of vocabulary terms used for encoding VOCAB_FEATURES by
tf.transform.

Step 4: Count of out-of-vocab buckets in which the unrecognized VOCAB_FEATURES
are hashed.

Step 5: Designating the target Feature columns.

Step 6: It is a good practice to rename the features by appending a suffix to the feature
name (for example, _xf). The suffix will help to distinguish whether the errors are
originating from the input or output features and it prevents us from accidently
using a non-transformed feature in our actual model.

%%skip_for_export

%%writefile {_taxi_constants_module_file}

Step1

MAX_CATEGORICAL_FEATURE_VALUES = [24, 31, 12]

Building TFX Pipeline 145

CATEGORICAL_FEATURE_KEYS = ['trip_start_hour', 'trip_start_day', 'trip_
start_month',

'pickup_census_tract', 'dropoff_census_tract', 'pickup_community_area',
'dropoff_community_area']

DENSE_FLOAT_FEATURE_KEYS = ['trip_miles', 'fare', 'trip_seconds']

Step2

FEATURE_BUCKET_COUNT = 10

BUCKET_FEATURE_KEYS = ['pickup_latitude', 'pickup_longitude', 'dropoff_
latitude', 'dropoff_longitude']

Step3

VOCAB_SIZE = 1000

Step4

OOV_SIZE = 10

VOCAB_FEATURE_KEYS = ['payment_type','company']

Step5

LABEL_KEY = 'tips'

FARE_KEY = 'fare'

#Step6

def transformed_name(key):

 return key + '_xf'

The Transform component from TFX in our pipeline, expects the transformation
code to be provided in a separate Python file. The name of the module file can be
set by the user (for example, in our case taxi_transform.py), but the entry point
preprocessing_fn() needs to be contained in the module file and the function
can’t be renamed. Import the preceding Python code in the following transform file:

The Transformation code for the pre-processing steps and filling missing values are
as follows:

Step 1: Importing the Features from the Python file.

Step 2: tf.transform's callback function for preprocessing inputs of the artifacts data
for training.

Step 3: TensorFlow Transform expects the transformation outputs to be dense,
therefore we are using the following helper function to convert the sparse to dense
features:
%%skip_for_export

%%writefile {_taxi_transform_module_file}

146 Continuous Machine Learning with Kubeflow

#Step1

import tensorflow as tf

import tensorflow_transform as tft

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS

_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS

_VOCAB_SIZE = taxi_constants.VOCAB_SIZE

_OOV_SIZE = taxi_constants.OOV_SIZE

_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT

_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS

_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS

_FARE_KEY = taxi_constants.FARE_KEY

_LABEL_KEY = taxi_constants.LABEL_KEY

_transformed_name = taxi_constants.transformed_name

#Step2

def preprocessing_fn(inputs):

 outputs = {}

 for key in _DENSE_FLOAT_FEATURE_KEYS:

 # Preserve this feature as a dense float, setting nan's to the mean.

 outputs[_transformed_name(key)] = tft.scale_to_z_score(_fill_in_
missing(inputs[key]))

 for key in _VOCAB_FEATURE_KEYS:

 # Build a vocabulary for this feature.

 outputs[_transformed_name(key)] = tft.compute_and_apply_vocabulary(

 _fill_in_missing(inputs[key]),top_k=_VOCAB_SIZE,num_oov_buckets=_
OOV_SIZE)

 for key in _BUCKET_FEATURE_KEYS:

 outputs[_transformed_name(key)] = tft.bucketize(_fill_in_
missing(inputs[key]), _FEATURE_BUCKET_COUNT,always_return_num_
quantiles=False)

 for key in _CATEGORICAL_FEATURE_KEYS:

Building TFX Pipeline 147

 outputs[_transformed_name(key)] = _fill_in_missing(inputs[key])

 # Was this passenger a big tipper?

 taxi_fare = _fill_in_missing(inputs[_FARE_KEY])

 tips = _fill_in_missing(inputs[_LABEL_KEY])

 outputs[_transformed_name(_LABEL_KEY)] = tf.where(tf.math.is_nan(taxi_
fare),

 tf.cast(tf.zeros_like(taxi_fare), tf.int64),

 # Test if the tip was > 20% of the fare.

 tf.cast(tf.greater(tips, tf.multiply(taxi_fare,
tf.constant(0.2))), tf.int64))

 return outputs

#step3

def _fill_in_missing(x):

 default_value = '' if x.dtype == tf.string else 0

 return tf.squeeze(tf.sparse.to_dense(tf.SparseTensor(x.indices,
x.values, [x.dense_shape[0], 1]),default_value),axis=1)

The following function is the transformation function for our Transform function for
all the features:

def transformation(example_gen,schema_gen):

 transform = Transform(examples=example_gen.
outputs['examples'],schema=schema_gen.outputs['schema'],module_file=os.
path.abspath(_taxi_transform_module_file))

 return transform

When we execute the transform component, TensorFlow Extended will apply the
transformations, defined in our taxi_transform.py module file, and apply those
to the loaded input data, loaded to TFRecords during the data ingestion step. The
component will then output our transformed data, a transform graph, and the
required metadata.

148 Continuous Machine Learning with Kubeflow

transform=transformation(example_gen,schema_gen)

context.run(transform)

Figure 4.16: Transform Output

The output data structure for the transformation structure is shown in the preceding
screenshot.

Figure 4.17: Transform Serialized json output

preprocessing_fn function, as shown in the preceding function defines all the
transformations that we want to apply to the raw data. When we execute the
transform component, the preprocessing_fn function will receive the raw data,
applying the transformation and returning the processed data.

Building TFX Pipeline 149

4.4.6 Tuner and Trainer
The Trainer component will train a model that you define in TensorFlow (either
using the Estimator API or the Keras API with model_to_estimator).

Now, first the Model will be trained with the hyperparameter, and then it will
train the model with the Trainer component which takes as input the schema from
SchemaGen, the transformed data and graph from Transform, training parameters,
as well as a module that contains the user-defined model code.

Figure 4.18: Trainer Architecture

The Trainer component requires the following inputs:

•	 The previously generated data schema, generated by the data validation.

•	 The transformed data and its preprocessing graph.

•	 The training parameters (for example, number of training steps).

150 Continuous Machine Learning with Kubeflow

•	 A module file containing a run_fn() function which defines the training
process.

Figure 4.19: Transform Features

PRE-PROCESSING FUNCTION()

1: tft.scale_to_z_score(): If you want to normalize a feature with a mean of 0
and standard deviation of 1, you can use this useful TFT function.

2: tft.bucketize(): This useful function lets us bucketize a feature into bins. It
returns the bin or bucket index. You can specify the argument num_buckets to set
the number of buckets. TFT will then divide the equal sized buckets.

3: tft.compute_and_apply_vocabulary(): This is one of the most amazing
TensorFlow Transform functions. It computes all the unique values of a feature
column and then maps the most frequent values to an index. This index mapping
is then used to convert the feature to a numerical representation. The function
generates all the assets for your graph behind the scenes.

The Trainer file will train an estimator model by completing the following steps:

Step 1: Import the features in a list.

Step 2: Suffix will help to distinguish whether the errors are originating from the input
or the output features and it prevent us from accidently using a non-transformed
feature in our actual model.

Step 3: Tf.Transform considers these features as "raw".

Building TFX Pipeline 151

Step 4: Small utility returning a record reader that can read gzip'ed files.

Step 5: _build_estimator() function will create Wide and Deep model architecture
with the estimator.

Step 6: Build the serving in inputs.

Step 7: Build the tf-model-analysis to run the model.

Step 8: Generate the features and labels for training or evaluation by the data
generators.

Step 9: TFX will call this function as the main function to execute all the utility
function.
%%skip_for_export

%%writefile {_taxi_trainer_module_file}

#Step1

import tensorflow as tf

import tensorflow_model_analysis as tfma

import tensorflow_transform as tft

from tensorflow_transform.tf_metadata import schema_utils

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS

_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS

_VOCAB_SIZE = taxi_constants.VOCAB_SIZE

_OOV_SIZE = taxi_constants.OOV_SIZE

_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT

_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS

_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS

_MAX_CATEGORICAL_FEATURE_VALUES = taxi_constants.MAX_CATEGORICAL_
FEATURE_VALUES

_LABEL_KEY = taxi_constants.LABEL_KEY

_transformed_name = taxi_constants.transformed_name

#Step2

def _transformed_names(keys):

 return [_transformed_name(key) for key in keys]

152 Continuous Machine Learning with Kubeflow

#Step3

def _get_raw_feature_spec(schema):

 return schema_utils.schema_as_feature_spec(schema).feature_spec

#Step4

def _gzip_reader_fn(filenames):

 return tf.data.TFRecordDataset(filenames,compression_type='GZIP')

#Step5

def _build_estimator(config, hidden_units=None, warm_start_from=None):

 real_valued_columns = [tf.feature_column.numeric_column(key, shape=())

 for key in _transformed_names(_DENSE_FLOAT_FEATURE_KEYS)]

 categorical_columns = [tf.feature_column.categorical_column_with_
identity(

 key, num_buckets=_VOCAB_SIZE + _OOV_SIZE, default_value=0)

 for key in _transformed_names(_VOCAB_FEATURE_KEYS)]

 categorical_columns += [tf.feature_column.categorical_column_with_
identity(

 key, num_buckets=_FEATURE_BUCKET_COUNT, default_value=0)

 for key in _transformed_names(_BUCKET_FEATURE_KEYS)]

 categorical_columns += [tf.feature_column.categorical_column_with_
identity(key,

 num_buckets=num_buckets,default_value=0) for key, num_buckets in zip(

 _transformed_names(_CATEGORICAL_FEATURE_KEYS),_MAX_CATEGORICAL_
FEATURE_VALUES)]

 return tf.estimator.DNNLinearCombinedClassifier(config=config,

 linear_feature_columns=categorical_columns,dnn_feature_columns=real_
valued_columns,

 dnn_hidden_units=hidden_units or [100, 70, 50, 25],warm_start_
from=warm_start_from)

#Step6

def _example_serving_receiver_fn(tf_transform_graph, schema):

 raw_feature_spec = _get_raw_feature_spec(schema)

 raw_feature_spec.pop(_LABEL_KEY)

 raw_input_fn = tf.estimator.export.build_parsing_serving_input_
receiver_fn(

 raw_feature_spec, default_batch_size=None)serving_input_receiver =

Building TFX Pipeline 153

raw_input_fn()

 transformed_features = tf_transform_graph.transform_raw_features(

 serving_input_receiver.features)

 return tf.estimator.export.ServingInputReceiver(

 transformed_features, serving_input_receiver.receiver_tensors)

#Step7

def _eval_input_receiver_fn(tf_transform_graph, schema):

 # Notice that the inputs are raw features, not transformed features
here.

 raw_feature_spec = _get_raw_feature_spec(schema)

 serialized_tf_example = tf.compat.v1.placeholder(

 dtype=tf.string, shape=[None], name='input_example_tensor')

 # Add a parse_example operator to the tensorflow graph, which will
parse raw, untransformed, tf examples.

 features = tf.io.parse_example(serialized_tf_example, raw_feature_
spec)

 # Now that we have our raw examples, process them through the tf-
transform function computed during the preprocessing step.

 transformed_features = tf_transform_graph.transform_raw_features(

 features)

 # The key name MUST be 'examples'.

 receiver_tensors = {'examples': serialized_tf_example

 # NOTE: Model is driven by transformed features (since training works
on the materialized output of TFT, but slicing will happen on raw
features.

 features.update(transformed_features)

 return tfma.export.EvalInputReceiver(features=features,receiver_
tensors=receiver_tensors,

 labels=transformed_features[_transformed_name(_LABEL_KEY)])

#Step8

def _input_fn(filenames, tf_transform_graph, batch_size=200):

 transformed_feature_spec = (tf_transform_graph.transformed_feature_
spec().copy())

 dataset = tf.data.experimental.make_batched_features_dataset(

 filenames, batch_size, transformed_feature_spec, reader=_gzip_
reader_fn)

154 Continuous Machine Learning with Kubeflow

 transformed_features = (tf.compat.v1.data.make_one_shot_
iterator(dataset).get_next())

 # We pop the label because we do not want to use it as a feature while
we're training.

 return transformed_features, transformed_features.pop(_transformed_
name(_LABEL_KEY))

#Step9

def trainer_fn(trainer_fn_args, schema):

 # Number of nodes in the first layer of the DNN

 first_dnn_layer_size = 100

 num_dnn_layers = 4

 dnn_decay_factor = 0.7

 train_batch_size = 40

 eval_batch_size = 40

 tf_transform_graph = tft.TFTransformOutput(trainer_fn_args.transform_
output)

 train_input_fn = lambda: _input_fn(trainer_fn_args.train_files,tf_
transform_graph,

 batch_size=train_batch_size)

 eval_input_fn = lambda: _input_fn(trainer_fn_args.eval_files,tf_
transform_graph,

 batch_size=eval_batch_size)

 train_spec = tf.estimator.TrainSpec(train_input_fn,max_steps=trainer_
fn_args.train_steps)

 serving_receiver_fn = lambda: _example_serving_receiver_fn(tf_
transform_graph, schema)

 exporter = tf.estimator.FinalExporter('chicago-taxi', serving_
receiver_fn)

 eval_spec = tf.estimator.EvalSpec(eval_input_fn,steps=trainer_fn_args.
eval_steps,

 exporters=[exporter],name='chicago-taxi-eval')

 run_config = tf.estimator.RunConfig(save_checkpoints_steps=999, keep_
checkpoint_max=1)

 run_config = run_config.replace(model_dir=trainer_fn_args.serving_model_
dir)

 estimator = _build_estimator(hidden_units=[max(2, int(first_dnn_layer_
size * dnn_decay_factor**i))for i in range(num_dnn_layers)],config=run_

Building TFX Pipeline 155

config, warm_start_from=trainer_fn_args.base_model)

 # Create an input receiver for TFMA processing

 receiver_fn = lambda: _eval_input_receiver_fn(# pylint: disable=g-
long-lambda

 tf_transform_graph, schema)

 return {'estimator': estimator,'train_spec': train_spec,'eval_spec':
eval_spec,

 'eval_input_receiver_fn': receiver_fn}

Let’s build the Tuner function with the train and eval parameters steps:

def tuner_model(transform):

 tuner = Tuner(module_file=os.path.abspath(_taxi_trainer_module_file),

 examples=transform.outputs['transformed_examples'],

 transform_graph=transform.outputs['transform_graph'],

 train_args=trainer_pb2.TrainArgs(num_steps=20),

 eval_args=trainer_pb2.EvalArgs(num_steps=50))

 return tuner

Next, we will create a Trainer function which will take the Tuner, Transform, Schema
as the input for the model training:

def trainer_model(transform,schema_gen,tuner):

 trainer = Trainer(module_file=os.path.abspath(_taxi_trainer_module_
file), transformed_examples=transform.outputs['transformed_examples'],

 schema=schema_gen.outputs['schema'],

transform_graph=transform.outputs['transform_graph'],

 hyperparameters=tuner.outputs['best_hyperparameters'],

 train_args=trainer_pb2.TrainArgs(num_steps=10000),

 eval_args=trainer_pb2.EvalArgs(num_steps=5000))

 return trainer

156 Continuous Machine Learning with Kubeflow

Let’s call the Tuner component and pass it to the trainer function:

tuner=tuner_model(transform)

trainer=trainer_model(transform,schema_gen)

context.run(trainer)

Figure 4.20: Trainer Output

Analyze the Training with TensorBoard
Optionally, we can connect the TensorBoard to the Trainer to analyze our model's
training curves. Get the URI of the output artifact representing the training logs,
which is a directory:
model_dir = trainer.outputs['model'].get()[0].uri

%load_ext tensorboard

%tensorboard --logdir {model_dir}

Figure 4.21: Tensorboard Output

Building TFX Pipeline 157

Here, we will visualize the Batch Accuracy and Batch loss and Epoch Loss and epoch
accuracy in our TensorBoard.

4.4.7 Evaluator
The Evaluator component computes the model performance metrics over the
evaluation set. So, the Evaluator component automatically evaluates the sentiment
as the probability.

Figure 4.22: Evaluator Architecture

Let’s build the Evaluation Component which will evaluate the Model performance:

def evaluation_configuration():

 eval_config = tfma.EvalConfig(

 model_specs=[tfma.ModelSpec(signature_name='eval')],

 metrics_specs=tfma.MetricsSpec(metrics=[tfma.MetricConfig(class_
name='ExampleCount')],

 thresholds = {'accuracy': tfma.MetricThreshold(

 value_threshold=tfma.GenericValueThreshold(lower_
bound={'value': 0.5}),

 change_threshold=tfma.GenericChangeThreshold(

 direction=tfma.MetricDirection.HIGHER_IS_
BETTER,absolute={'value': -1e-10}))})],

 slicing_specs=[tfma.SlicingSpec(),tfma.SlicingSpec(feature_
keys=['trip_start_hour'])])

 return eval_config

Here, we will return the metrics which we will define for our evaluator model:

eval_config = evaluation_configuration()

158 Continuous Machine Learning with Kubeflow

The Resolver component is required if we want to compare a new model against a
previous model. It checks for the last blessed model and returns this as a baseline,
so it can be passed on to the Evaluator component with the new candidate model.
model_resolver = ResolverNode(instance_name='latest_blessed_model_
resolver',

resolver_class=latest_blessed_model_resolver.LatestBlessedModelResolver,

 model=Channel(type=Model),model_
blessing=Channel(type=ModelBlessing))

The Evaluator component uses the TFMA library to evaluate a model’s predictions
on a validation dataset. It takes as input the data from the ExampleGen component,
the trained model from the Trainer component, and an EvalConfig for TFMA.
def evaluator_component(model_resolver):
 evaluator = Evaluator(examples=example_gen.
outputs['examples'],model=trainer.outputs['model'],
 baseline_model=model_resolver.outputs['model'],eval_
config=eval_config)
 return evaluator
evaluator=evaluator_component(model_resolver)

The Evaluator helps to validate our exported models, confirming that they are "good
enough" to be pushed for production.

4.4.7.1 Fairness and TFMA Visualization
TensorFlow Model Analysis (TFMA) helps to get more detailed metrics than just
those used during the model training. TFMA visualizes the metrics as the time series
across the model versions, and it gives us the ability to view the metrics on the slices
of a dataset. It also scales easily to large evaluation sets, thanks to the Apache Beam.
%%skip_for_export

context.show(evaluator.outputs['evaluation'])

Figure 4.23: TFMA Metric Visualization

Building TFX Pipeline 159

TFMA helps to visualize them in the metrics_specs argument to the EvalConfig.

evaluation_uri = evaluator.outputs['output'].get()[0].uri

eval_result = tfma.load_eval_result(evaluation_uri)

tfma.addons.fairness.view.widget_view.render_fairness_indicator(eval_
result)

The Fairness Indicators is a library that enables the easy computation of the
commonly-identified fairness metrics for the binary and multiclass classifiers. With
the Fairness Indicators tool suite, you can do the following:

•	 Compute commonly-identified fairness metrics for the classification models.

•	 Compare the model performance across the subgroups to a baseline, or to
the other models.

•	 Use the confidence intervals to surface the statistically significant disparities.

•	 Perform evaluation over multiple thresholds.

Figure 4.24: Fairness Metric Visualization

The Fairness Indicators is extremely useful tool for model analysis. It helps to some
overlapping capabilities with TFMA, but one particularly useful feature of it is the
ability to view metrics sliced on features at a variety of decision thresholds.

4.4.8 Pusher
The Pusher component is usually at the end of a TFX pipeline. It checks whether a model
has passed the validation, and if so, exports the model to _serving_model_dir.

160 Continuous Machine Learning with Kubeflow

It takes as input a saved model, the output of the Evaluator component and a file
path for the location of our models will be stored for serving.

Figure 4.25: Pusher Architecture

Let’s build the Pusher component, where the model will be pushed automatically
for serving.
def pusher_model(trainer,evaluator):

pusher = Pusher(model=trainer.outputs['model'], model_
blessing=evaluator.outputs['blessing'],

 push_destination=pusher_pb2.PushDestination(

 filesystem=pusher_pb2.PushDestination.Filesystem(base_directory=_
serving_model_dir)))

 return pusher

Next, call the pusher Model for pushing the model for serve ready.
pusher=pusher_model(trainer,evaluator)

context.run(pusher)

Figure 4.26: Pusher Output

The Pusher component is provided with the model evaluator outputs and the serving
destination. It depends on one or more blessing model from the other validation
components to decide whether to push that model or not. The Evaluator blesses that
model if the new trained model is fairly "good enough" to be pushed in production.

Building TFX Pipeline 161

4.5 Serve the Model with TF Serving
Now that we have a trained model that has been blessed by ModelValidator, and
pushed to our deployment target by Pusher, we can load it into the TensorFlow
Serving and start serving the inference requests.

Installation
We're preparing to install the TensorFlow Serving using Aptitude since this Colab
runs in a Debian environment. We'll add the tensorflow-model-server package to
the list of packages that Aptitude knows about. Note that we're running as root.
This example is running the TensorFlow Serving natively, but you can also run it in
a Docker container, which is one of the easiest ways to get started using TensorFlow
Serving.

Step 1:

!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable
tensorflow-model-server tensorflow-model-server-universal" | tee /etc/apt/
sources.list.d/tensorflow-serving.list && \

curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-
serving.release.pub.gpg | apt-key add -

!apt update

Step 2:

Running TensorFlow Serving in a Docker Container:

!apt-get install tensorflow-model-server

Figure 4.27: Installation Output

The next step is to load the Pusher and it will export your model in the SavedModel
format and load the path.
latest_pushed_model = os.path.join(_serving_model_dir, max(os.listdir(_
serving_model_dir)))

162 Continuous Machine Learning with Kubeflow

!saved_model_cli show --dir {latest_pushed_model} --all

Figure 4.28: Show the graphs

Start running the Tensorflow Serving
This is where we start running the TensorFlow Serving and load our model. Once
it loads, we can start making the inference requests using REST. There are some
important parameters, which are as follows:

•	 rest_api_port: The port that you'll use for the REST requests.

•	 model_name: You'll use this in the URL of the REST requests. It can be
anything.

•	 model_base_path: This is the path to the directory where you've saved
your model. Note that this base_path should not include the model version
directory, which is why we split it off as follows:

os.environ["MODEL_DIR"] = os.path.split(latest_pushed_model)[0]

%%bash --bg

nohup tensorflow_model_server \

 --rest_api_port=8501 \

 --model_name=online_news_simple \

 --model_base_path="${MODEL_DIR}" >server.log 2>&1

!tail server.log

Perform Inference on the example data
Let's load some examples from the eval dataset, remove their labels (as the serving
model does not expect labels), and send them to the Tensorflow Serving through a
single REST API call. Note that this will include the labels, but the server will ignore
them.
eval_uri = example_gen.outputs['examples'].get()[0].uri

eval_tfrecord_paths = [os.path.join(eval_uri, name)for name in
os.listdir(eval_uri)]

def strip_label(serialized_example):

Building TFX Pipeline 163

 example = tf.train.Example.FromString(serialized_example.numpy())

 return example.SerializeToString()

dataset = tf.data.TFRecordDataset(eval_tfrecord_paths1,compression_
type="GZIP")

serialized_examples = [strip_label(serialized_example)for serialized_
example in dataset.take(3)]

Here, we serialized the transformed data for evaluation and made a dataset TFRecord.

Send requests to the model, and print the results as follows:

•	 server_addr: Network address of the model server in "host:port" format.

•	 model_name: Name of the model as understood by the model server.

•	 serialized_examples: Serialized examples of the data to do the inference
on.

def do_inference(server_addr, model_name, serialized_examples):

 parsed_server_addr = server_addr.split(':')

 host=parsed_server_addr[0]

 port=parsed_server_addr[1]

 json_examples = []

 for serialized_example in serialized_examples:

 example_bytes = base64.b64encode(serialized_example).
decode('utf-8')

 predict_request = '{ "b64": "%s" }' % example_bytes

 json_examples.append(predict_request)

 json_request = '{ "instances": [' + ','.join(map(str, json_
examples)) + ']}'

 server_url = 'http://' + host + ':' + port + '/v1/models/' +
model_name + ':predict'

 response = requests.post(server_url, data=json_request,
timeout=5.0)

 response.raise_for_status()

 prediction = response.json()

 print(json.dumps(prediction, indent=4))

164 Continuous Machine Learning with Kubeflow

Let’s call the inference function for our prediction of our sample dataset:

do_inference(server_addr='127.0.0.1:8501',

 model_name='online_news_simple',

 serialized_examples=serialized_examples)

Figure 4.29: Test Model Prediction

In the preceding screenshot, we can see the classification output for the batch of 3
records and the probability score for both the Tips greater than Fare by 20% or not.

4.6 Building Kubeflow Pipeline
Orchestrator
Prerequisites: So, before starting this chapter, we must setup the Kubeflow Cluster
in GCP, we have already created a Jupyter notebook; we will use that.

Building TFX Pipeline 165

Open the terminal once after you connect to the Jupyter Notebook from Kubeflow
Dashboard and install the TFX SDK.
```bash
!pip install tfx==0.22.0
```

Optional: If you get a following error run the following commands:

Figure 4.30: Error

Run the following commands:
```bash
PROTOC_ZIP=protoc-3.7.1-osx-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/
v3.7.1/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
pip install –upgrade protobuf
```

Now, please go to the GitHub of this project and download those folders and save
those files in your GCP Bucket, as shown in the following screenshot:

Figure 4.31: Kubeflow Pipeline Folders data & file

166 Continuous Machine Learning with Kubeflow

Now, let’s see the pipeline code and how we can generate the constructive pipeline
for TFX.

Complete the following steps:

1. Define the pipeline parameters used for the pipeline execution. The path to
the module file should be a GCS path, or a module file baked in the Docker
image used by the pipeline.

2. The path to the CSV data file, under which there should be a data.csv file.

3. The path of the pipeline root should be a GCS path.

4. Create a simple Kubeflow-based Chicago Taxi TFX pipeline.

pipeline_root: The root of the pipeline output.

csv_input_location: The location of the input data directory.

taxi_module_file: The location of the module file for Transform/Trainer.

enable_cache: Whether to enable cache or not.

5. A pipeline is a directed acyclic graph (DAG) with a containerized process on
each node, which runs on the top of argo.

A logical TFX pipeline object. After that we going to build KubeflowDagrunner
which will dump a yaml file and it will be used to deploy that in Kubeflow to run
the pipeline.
import os

from typing import Text

import kfp

import tensorflow_model_analysis as tfma

from tfx.components.evaluator.component import Evaluator

from tfx.components.example_gen.csv_example_gen.component import
CsvExampleGen

from tfx.components.example_validator.component import ExampleValidator

from tfx.components.pusher.component import Pusher

from tfx.components.schema_gen.component import SchemaGen

from tfx.components.statistics_gen.component import StatisticsGen

from tfx.components.trainer.component import Trainer

from tfx.components.transform.component import Transform

from tfx.orchestration import data_types

from tfx.orchestration import pipeline

Building TFX Pipeline 167

from tfx.orchestration.kubeflow import kubeflow_dag_runner

from tfx.utils.dsl_utils import external_input

from tfx.proto import pusher_pb2, trainer_pb2

STEP 1:

_taxi_module_file_param = data_types.RuntimeParameter(name='module-file',

 default='gs://<BUCKET_NAME>/tfx_taxi_simple/modules/taxi_utils.
py',ptype=Text)

STEP 2:

_data_root_param = data_types.RuntimeParameter(name='data-root',
ptype=Text

 default='gs://<BUCKET_NAME>//tfx_taxi_simple/data')

STEP 3:

pipeline_root = os.path.join('gs://{{kfp-default-bucket}}', 'tfx_taxi_
simple', kfp.dsl.RUN_ID_PLACEHOLDER)

STEP 4:

def _create_pipeline(pipeline_root: Text, csv_input_location: data_
types.RuntimeParameter,

 taxi_module_file: data_types.RuntimeParameter, enable_cache: bool):

examples = external_input(csv_input_location)

 example_gen = CsvExampleGen(input=examples)

 statistics_gen = StatisticsGen(examples=example_gen.
outputs['examples'])

 infer_schema = SchemaGen(statistics=statistics_gen.
outputs['statistics'],

infer_feature_shape=False)

 validate_stats = ExampleValidator(statistics=statistics_gen.
outputs['statistics'], schema=infer_schema.outputs['schema'],)

 transform = Transform(examples=example_gen.outputs['examples'],

 schema=infer_schema.outputs['schema'],module_file=taxi_module_file)

 trainer = Trainer(module_file=taxi_module_file,

 transformed_examples=transform.outputs['transformed_examples'],

 schema=infer_schema.outputs['schema'],

168 Continuous Machine Learning with Kubeflow

 transform_graph=transform.outputs['transform_graph'],

 train_args=trainer_pb2.TrainArgs(num_steps=10),

 eval_args=trainer_pb2.EvalArgs(num_steps=5))

 eval_config = tfma.EvalConfig(model_specs=[tfma.ModelSpec(signature_
name='eval')], metrics_specs=[tfma.MetricsSpec(metrics=[tfma.
MetricConfig(class_name='ExampleCount')], thresholds={'binary_
accuracy':tfma.MetricThreshold(

 value_threshold=tfma.GenericValueThreshold(lower_
bound={'value': 0.5}), change_threshold=tfma.GenericChangeThreshold(

 direction=tfma.MetricDirection.HIGHER_IS_
BETTER,absolute={'value': -1e-10}))})], slicing_specs=[tfma.
SlicingSpec(),tfma.SlicingSpec(feature_keys=['trip_start_hour'])])

 model_analyzer = Evaluator(examples=example_gen.outputs['examples'],

 model=trainer.outputs['model'],eval_config=eval_config)

 pusher = Pusher(model=trainer.outputs['model'],

 model_blessing=model_analyzer.outputs['blessing'], push_
destination=pusher_pb2.PushDestination(

 filesystem=pusher_pb2.PushDestination.Filesystem(

 base_directory=os.path.join(str(pipeline.ROOT_PARAMETER), 'model_
serving'))),)

 return pipeline.Pipeline(pipeline_name='parameterized_tfx_
oss',pipeline_root=pipeline_root, components=[example_gen, statistics_
gen, infer_schema, validate_stats, transform, trainer, model_analyzer,
pusher],enable_cache=enable_cache)

if __name__ == '__main__':

 enable_cache = True

 pipeline = _create_pipeline(pipeline_root,_data_root_param,_taxi_
module_file_param, enable_cache=enable_cache)

 metadata_config = kubeflow_dag_runner.get_default_kubeflow_metadata_
config()

 config = kubeflow_dag_runner.KubeflowDagRunnerConfig(

 kubeflow_metadata_config=metadata_config,tfx_image='gcr.io/tfx-oss-
public/tfx:0.22.0')

Building TFX Pipeline 169

 kfp_runner = kubeflow_dag_runner.KubeflowDagRunner(output_
filename='pipe9' + '.yaml', config=config)

 kfp_runner.run(pipeline)

After running the preceding code, it will dump a yaml, as shown in the following
screenshot. Before running the file, replace the bucket name here in step1/2.

Figure 4.32: Kubeflow Pipeline yaml

Once we dump the yaml, complete the following steps to run the pipeline in
Kubeflow:

1. Upload the pipeline.yaml file in the Kubeflow pipeline, and click on
Create.

Figure 4.33: Upload pipeline.yaml

170 Continuous Machine Learning with Kubeflow

2. Next, create an experiment if you haven’t yet; we have done so already in
our previous chapters. After that, click on Run and choose that pipeline.

Figure 4.34: Create Run

3. Before starting the pipeline, run ‘choose an experiment’ and then change
the following parameters, like replacing your Bucket name; for example: tfx-
pipeline is my bucket name and tfx is my experiment name.

4. Click on Start.

Figure 4.35: Pipeline parameters

Building TFX Pipeline 171

After that, the pipeline will be ready, as shown in the following screenshot:

Figure 4.36: Pipeline of TFX

Each pipeline component, represented as a block, is a self-contained piece of code,
packaged as a Docker image. It contains the inputs (arguments) and outputs and
performs one step in the pipeline. In the example pipeline, shown earlier, the
transform_data step requires the arguments that are produced as an output of
the extract_data and of the generate_schema steps, and its outputs are the
dependencies for train_model.

Your ML code is wrapped into components, where you can do the following:
•	 Specify parameters – which become available to edit in the dashboard and

configurable for every run.

•	 Attach persistent volumes – without adding persistent volumes, we would
lose all the data if our notebook was terminated for any reason.

•	 Specify artifacts to be generated – graphs, tables, selected images, models –
which end up conveniently stored on the Artifact Store, inside the Kubeflow
dashboard.

172 Continuous Machine Learning with Kubeflow

Finally, when you run the pipeline, each container will now be executed throughout
the cluster, according to the Kubernetes scheduling, taking the dependencies into
consideration. This containerized architecture makes it simple to reuse, share, or
swap out the components as your workflow changes, which tends to happen.

Figure 4.37: Kubeflow pipeline visualization

After running the pipeline, you will be able to explore the results on the pipelines
interfaces, debug, tweak parameters, and run experiments by executing the pipeline
with the different parameters or data sources.

Building TFX Pipeline 173

Now, after the completion of the pipeline, run the model artifacts dumped inside
the GCS bucket. In the following screenshot, we can see the serving model directory:

Figure 4.38: Kubeflow pipeline Artifacts & Model in GCS

4.7 Conclusion
In this chapter, we learned how to build the TFX pipeline for the BERT Model
for production ready with the integration of Visualization Tools like Fairness,
Tensorboard, TFMA.

174 Continuous Machine Learning with Kubeflow

We also learned how to load the BERT Model from TF-HUB and how to use it. Then,
we learned about the transformation pipeline prior to training the Model. We have
also learned how to train our BERT Model with the distributed GPU Node strategy.
Then, we created a pipeline with the TFX Components and visualized and evaluated
the blessed model with the Fairness Indicators and metrics. Then, we loaded the
server model and tested with a sample movie review and checked its sentiment
probability.

4.8 Reference
•	 https://www.tensorflow.org/tfx/tutorials

•	 https://www.tensorflow.org/responsible_ai/fairness_indicators/tutorials/
Fairness_Indicators_Example_Colab

ML Model Explainability & Interpretability 175

Chapter 5
ML Model

Explainability &
Interpretability

In this chapter, we will work for a classification model with the hotel booking
dataset, train the TensorFlow and boosting models, and visualize the advanced

explanation of our model results with Tensorboard, Shap, and What-if products.

Structure
In this chapter, we will cover the following topics:

•	 Problem statement

•	 Getting started with Python library installation and data loading in Colab

•	 Feature transformation for Training Model

•	 LightGBM Model training

•	 Model Analysis with advance visualization along Shap tool

•	 TensorFlow Estimator Model Building Framework

•	 Advance Visualization for TensorFlow Model with Tensorboard, What-IF
Tool and Fairness

176 Continuous Machine Learning with Kubeflow

Objectives
After studying this chapter, we will be able to understand the following:

•	 The implementation of Shapely Additive explanations and how to use it’s
different approach on model evaluation.

•	 How to build LightGBM model building from scratch.

•	 The different Advance Shap plots for model analysis.

•	 How to build the TensorFlow Estimator Framework end to end.

•	 How to evaluate the Model performance with the What-if Tool alongside the
Fairness indicator.

5.1 Problem
The problem statement for this data set contains the booking information for a city
hotel and a resort hotel, which includes some information, such as when the booking
was made, length of stay, and the number of adults, children, or babies, and the
number of available parking spaces, among other things.

Have you ever wondered when the best time is in a year to book a hotel room?
Or wondered about the optimal length of stay in order to get the best daily rate?
Or, what if you wanted to predict whether or not a hotel is familiar to receive a
disproportionately high amount of special requests?

NOTE Rest all the imports I have showed in my Colab Notebook, which I gave
hyperlink of the GitHub Account of this chapter. Note: Colab platform
Python 3.x. RUN IN GOOGLE COLAB

 CODE https://github.com/bpbpublications/Continuous-Machine-Learning-
with-Kubeflow/tree/main/Chapter5

5.2 General idea and concept behind Shap
The goal of SHAP is to explain the prediction of an instance x by computing the
contribution of each feature to the prediction. From the coalitional game theory, the
shapely values were computed from the SHAP explanation methods. Each feature
value instance acts as players in a coalition. How to fairly distribute the prediction
among the features, Shapley values tells us that. A player is an individual feature
value, for example, from a tabular data. A group of feature values can also be a
player.

ML Model Explainability & Interpretability 177

For example, the prediction distribution among the image pixels can also be grouped
to super pixels. One of the innovation that SHAP brought to the table is an additive
feature attribution method, a linear model that explain the Shapley value.

SHAP specifies the explanation as follows:

SHAP describes the following three desirable properties:

•	 Local accuracy

For & set all to 1, it is the efficiency property of Shapley; only with a different
name and by using coalition vector.

•	 Missingness

 XJ' = 0 = > ∅J = 0

It tells that a missing feature gets an attribution of zero. Note that xJ' refers to
the coalitions, where a value of 0 represents the absence of a feature value. In
the coalition notation, all the feature values xJ' of the instance to be explained
should be '1'. The presence of a 0 means that the feature value is missing.

•	 Consistency

Let fx (z')=f(hx (z')) and z(j') indicate that zj' = 0. For any two models, f and
f' that satisfy the following:

f'x (z') - f'x (z\j') ≥ fx (z') - fx (z\j'))

For all inputs z' ∈ {0,1}M, then:

∅j(f',x)≥∅j (f,x)

178 Continuous Machine Learning with Kubeflow

The consistency property tells that if a model changes so that the marginal
contribution of a feature value increases or stays the same irrespective of
other features, then the Shapley value also increases or stays the same.

Figure 5.1: Shap explanation example

For example, for a vector of (1,0,1,0), it represents that the first and third features
have coalitions. The dataset for the regression model became K sampled coalitions.
So, for the regression model, the target became the prediction for a coalition.

We need a function hx (z') = z where hx:{0,1}M → RP to get the data instances which are
valid from the coalitions of the features values. So, maps to 1’s respective value to
the instance x which will we explain here. Now, for a tabular form of data, it maps
0’s to another instance values that we got from the sample data. This says that next
we will equate the "absent feature value" with the "feature value” and will replace
that by the random set of feature values from data.

Now, from figure 5.1, functions maps a valid instance to coalition. Next, the maps
feature values (1) of x to the present features.

For the absent features (0), maps the values of a randomly sampled data instance.
for tabular data treats and as independent and integrates over the marginal
distribution:

f(hx (z')) = EXC [f(x)]

In the game theory, SHAP has a solid theoretical foundation. The fairly distributed
predictions among the feature values compare the prediction with the average
prediction to get the contrastive explanations.

ML Model Explainability & Interpretability 179

5.3 Getting Started with Python library
Installation and Data loading in Colab
Now, we will start with the installation of the Library of Shap and Witwidget.
!pip install shap

Figure 5.2: Installation of Shap
try:
 import google.colab
 !pip install --upgrade witwidget
except:
 pass

Figure 5.3: Installation of wit-widget

We have successfully installed both the wit-widget and the Shap visualization tools.

Now we will be importing the required libraries.
import numpy as np
import tensorflow as tf
from pprint import pprint
import lightgbm as lgb
import shap, warnings, functools
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.preprocessing import LabelEncoder
data=pd.read_csv("hotel_bookings.csv")
data.head()

Figure 5.4: Hotel Booking Dataset Table

180 Continuous Machine Learning with Kubeflow

data.is_canceled.value_counts()

Figure 5.5: Target column distribution

In the preceding screenshots, we can see the value count distribution for the target
predictor column.

Now, according to our domain knowledge and understanding, we choose some
columns manually.

features = ["lead_time","arrival_date_week_number","arrival_date_day_of_
month",

 "stays_in_weekend_nights","stays_in_week_
nights","adults","children",

 "babies","is_repeated_guest", "previous_cancellations",

 "previous_bookings_not_canceled","agent","company",

 "required_car_parking_spaces", "total_of_special_requests",
"adr","hotel","arrival_date_month","meal","market_segment",
"distribution_channel","reserved_room_type","deposit_type","customer_
type",'is_canceled']

Raw_Data=data[features]

5.4 Feature transformation for Training
Model
Now we will be creating some copy for our dataframe and not change the original
dataframe, so that we can use that for further analysis without intervening any
changes to that.

X = Raw_Data.drop(["is_canceled"], axis=1)

y = Raw_Data["is_canceled"]

X_display =X.copy()

y_display = y.copy()

X_new=X.copy()

Next, we will check the data types for our dataset and will do necessary transformation
for our features which is categorical.

ML Model Explainability & Interpretability 181

X.dtypes

Figure 5.6: Data Types for features

In the preceding screenshot, we can see the datatypes object that we need to
transform, as we don’t have any missing values in this dataset. So, we will deal with
all the categorical columns like deposit_type, meal, customer_type, etc.

Here is the function for transformation as we will use label encoder in object data
types columns and will iterate through those and replace the dataset columns.

def transform_categorical():

 s = (X.dtypes == 'object')

 object_cols = list(s[s].index)

 print(object_cols)

 for i in object_cols:

 lb_make = LabelEncoder()

 X[i] = lb_make.fit_transform(X[i])

 #for i in object_cols:

 # X[i] = X[i].astype(float)

 return X

182 Continuous Machine Learning with Kubeflow

X=transform_categorical()

X.head()

Figure 5.7: Transform Table

Now, we have transformed our dataset; next, we will split our dataset for training
and will train our model.
def data_split():

 random_state = 7

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.2, random_state=random_state)

 return X_train, X_test, y_train, y_test

X_train, X_test, y_train, y_test=data_split()

Now, we are ready for training our Model.

5.5 LightGBM Model training
LightGBM uses the histogram-based algorithm which bucket the continuous feature
(attribute) values into discrete bins. This speeds up the training and reduces the
memory usage. For further reading, please go to the following link:
https://lightgbm.readthedocs.io/en/latest/Features.html

Now, we will be creating the data preparation for LightGBM model.

d_train = lgb.Dataset(X_train, label=y_train)

d_test = lgb.Dataset(X_test, label=y_test)

random_state=7

params = {

 "max_bin": 512, "learning_rate": 0.05,"boosting_type": "gbdt",

 "objective": "binary","metric": "binary_logloss", "num_leaves": 10,

 "verbose": -1, "min_data": 100, "boost_from_average": True,

 "random_state": random_state

}

ML Model Explainability & Interpretability 183

Let’s give a brief summary for the Model Parameters:

•	 max_bin default = 255, type = int, constraints: max_bin > 1 so,
the maximum number of bins that feature values will bucket in, and the
small number of bins will reduce the training accuracy but it may increase
the general power (deal with over-fitting).

•	 boosting_type is choosing the algorithm technique traditional Gradient
Boosting Decision Tree.

•	 Num_leaves it is the maximum number of leaves in one tree.

So, there are many parameters which we can learn in detail from the following link:
https://lightgbm.readthedocs.io/en/latest/Parameters.html

Next, we will train our model.
model = lgb.train(params, d_train, 10000, valid_sets=[d_test], early_
stopping_rounds=50, verbose_eval=1000)

Figure 5.8: LightGBM model Output

Next, we will visualise our results with the advanced AI technique with the help of
Shap to have a better visibility.

5.6 Model Analysis with advance
Visualization along Shap Tool
In this section, we will visualize the different patterns and analysis of our model
results. Now, we will compute the SHAP values and the SHAP interaction values for
the first 20 test observations.

explainer = shap.TreeExplainer(model)

expected_value = explainer.expected_value

if isinstance(expected_value, list):

 expected_value = expected_value[1]

184 Continuous Machine Learning with Kubeflow

print(f"Explainer expected value: {expected_value}")

select = range(20)

features = X_test.iloc[select]

features_display = X_display.loc[features.index]

with warnings.catch_warnings():

 warnings.simplefilter("ignore")

 shap_values = explainer.shap_values(features)[1]

 shap_interaction_values = explainer.shap_interaction_
values(features)

if isinstance(shap_interaction_values, list):

 shap_interaction_values = shap_interaction_values[1]

Figure 5.9: Shap calculation Values

So, now the explainer value is -0.22; next, we see the patterns and relation analysis.

5.6.1 Basic decision plot features
Refer to the following decision plot of the 20 test observations; note that this plot
isn't informative by itself; we use it only to illustrate the primary concepts:

•	 The x-axis represents the model's output. In this case, the units are log odds.

•	 The plot is centered on the x-axis at explainer.expected_value. All the
SHAP values are relative to the model's expected value, like a linear model's
effects are relative to the intercept.

•	 The y-axis lists the model's features. By default, the features are ordered by its
descending importance. The importance is calculated over the observations
plotted. This is usually different from the importance ordering for the entire
dataset. In addition to the feature importance ordering, the decision plot
also supports the hierarchical cluster feature ordering and the user-defined
feature ordering.

•	 Each observation's prediction is represented by a colored line. At the top
of the plot, each line strikes the x-axis at its corresponding observation's
predicted value. This value determines the color of the line on a spectrum.

ML Model Explainability & Interpretability 185

•	 Moving from the bottom of the plot to the top, the SHAP values for each
feature are added to the model's base value. This shows how each feature
contributes to the overall prediction.

•	 At the bottom of the plot, the observations converge at explainer.
expected_value.

shap.decision_plot(expected_value, shap_values, features_display)

Figure 5.10: SHAP Model Output Values

Now, we can see from the preceding screenshot that the expected value is at -0.22,
and at the bottom of the plot, the observations converges. Like the force plot, the
decision plot supports link='logit' to transform the log odds to probabilities.

186 Continuous Machine Learning with Kubeflow

shap.decision_plot(expected_value, shap_values, features_display,
link='logit')

Figure 5.11: SHAP Model Log transform output

The cumulative effect of interactions:
The decision plots support the SHAP interaction values. So, from the tree-based
models, the first-order interactions were estimated. The SHAP dependence plots
provides the interactions of the individual’s visualize, which plot a decision plot to
show the cumulative effect of the main effects and interactions with one or another
observation among the data.

5.6.2 Force Plots Analysis
The observations can be highlighted using a dotted line style. Here, we highlighted
a misclassified observation. Our naive cutoff point is zero log odds (probability 0.5).

ML Model Explainability & Interpretability 187

y_pred = (shap_values.sum(1) + expected_value) > 0

misclassified = y_pred != y_test[:20]

shap.decision_plot(expected_value, shap_values, features_display,
link='logit', highlight=misclassified)

Figure 5.12: SHAP Model Naïve cut threshold graph

Let's inspect the misclassified observation by plotting it alone. When a single
observation is plotted, its corresponding feature values are displayed. Notice that
the shape of the line has changed. Why? The feature order has changed on the y-axis,
based on the feature importance for this line observation. The section on "Preserving
order and scale between plots" shows how to use the same feature order for multiple
plots.

188 Continuous Machine Learning with Kubeflow

shap.decision_plot(expected_value, shap_values[misclassified], features_
display[misclassified],link='logit', highlight=0)

Figure 5.13: SHAP Misclassified output

A force plot for the misclassified observation is shown as follows. In this case, the
decision plot and the force plot are both effective at showing how the model arrived
at its decision.

%matplotlib inline

shap.initjs()

shap.force_plot(expected_value, shap_values[misclassified], features_
display[misclassified],

 link='logit', matplotlib=False,show=True)

ML Model Explainability & Interpretability 189

Figure 5.14: SHAP Force plot decision misclassified

From the preceding JavaScript dynamic visualization for the misclassified analysis,
we can figure out the manual interpretation by seeing those results. The focus of this
section is to build the architecture and how to play with our dataset.

5.7 TensorFlow Estimator Model
Framework Building
In this section, we will work on building the TensorFlow Estimator model and then
we will analyse the Model analysis with the Tensorboard and what-if tool. Next, we
will build the dataset for training by splitting the datasets.

X = Raw_Data.drop(["is_canceled"], axis=1)

y = Raw_Data["is_canceled"]

from sklearn.model_selection import train_test_split

xTrain, xTest, yTrain, yTest = train_test_split(X, y, test_size = 0.2,
random_state = 0)

xTrain['is_canceled']=yTrain

xTrain.reset_index(inplace=True,drop=True)

xTrain.head()

Figure 5.15: Table of House Booking Dataset

Next, we will create some Utility Function which we will use for the TensorFlow
Estimator Model Building.

190 Continuous Machine Learning with Kubeflow

Here, it will create a tf feature spec from the dataframe and columns specified.

def create_feature_spec(df, columns=None):

 feature_spec = {}

 if columns == None:

 columns = df.columns.values.tolist()

 for f in columns:

 if df[f].dtype is np.dtype(np.int64):

 feature_spec[f] = tf.io.FixedLenFeature(shape=(), dtype=tf.
int64)

 elif df[f].dtype is np.dtype(np.float64):

 feature_spec[f] = tf.io.FixedLenFeature(shape=(), dtype=tf.
float32)

 else:

 feature_spec[f] = tf.io.FixedLenFeature(shape=(), dtype=tf.
string)

 return feature_spec

Create simple numeric and categorical feature columns from a feature spec and a list
of columns from that spec to use. The models might perform better with some feature
engineering such as the bucketed numeric columns and hash-bucket/embedding
columns for the categorical features.

def create_feature_columns(columns, feature_spec):

 ret = []

 for col in columns:

 if feature_spec[col].dtype is tf.int64 or feature_spec[col].
dtype is tf.float32:

 ret.append(tf.feature_column.numeric_column(col))

 else:

 ret.append(tf.feature_column.indicator_column(

 tf.feature_column.categorical_column_with_vocabulary_
list(col, list(xTrain[col].unique()))))

 return ret

ML Model Explainability & Interpretability 191

The following is an input function for providing the input to a model from
tf.Examples.

def tfexamples_input_fn(examples, feature_spec, label, mode=tf.
estimator.ModeKeys.EVAL,

 num_epochs=None, batch_size=64):

 def ex_generator():

 for i in range(len(examples)):

 yield examples[i].SerializeToString()

 dataset = tf.data.Dataset.from_generator(

 ex_generator, tf.dtypes.string, tf.TensorShape([]))

 if mode == tf.estimator.ModeKeys.TRAIN:

 dataset = dataset.shuffle(buffer_size=2 * batch_size + 1)

 dataset = dataset.batch(batch_size)

 dataset = dataset.map(lambda tf_example: parse_tf_example(tf_
example, label, feature_spec))

 dataset = dataset.repeat(num_epochs)

 return dataset

Next, we will parse Tf.Example protos into the features for the input function.

def parse_tf_example(example_proto, label, feature_spec):

 parsed_features = tf.io.parse_example(serialized=example_proto,
features=feature_spec)

 target = parsed_features.pop(label)

 return parsed_features, target

Here, it will convert a dataframe into a list of tf.Example protos.

def df_to_examples(df, columns=None):

 examples = []

 if columns == None:

 columns = df.columns.values.tolist()

 for index, row in df.iterrows():

 example = tf.train.Example()

 for col in columns:

 if df[col].dtype is np.dtype(np.int64):

 example.features.feature[col].int64_list.value.

192 Continuous Machine Learning with Kubeflow

append(int(row[col]))

 elif df[col].dtype is np.dtype(np.float64):

 example.features.feature[col].float_list.value.
append(row[col])

 elif row[col] == row[col]:

 example.features.feature[col].bytes_list.value.
append(row[col].encode('utf-8'))

 examples.append(example)

 return examples

Next, this function converts a dataframe column into a column of 0's and 1's based
on the provided test. It is used to force the label columns to be numeric for the binary
classification using a TF estimator.

def make_label_column_numeric(df, label_column, test):

 df[label_column] = np.where(test(df[label_column]), 1, 0)

The following are the steps which we will perform prior to the training:

•	 Specify the input columns and target predictor and set the column in the
dataset that you wish for the model to predict:

label_column = 'is_canceled'

input_features = [‘lead_time', 'arrival_date_week_number',
'arrival_date_day_of_month',

 'stays_in_weekend_nights', 'stays_in_week_nights',
'adults', 'children','babies', 'is_repeated_guest', 'previous_
cancellations','previous_bookings_not_canceled', 'agent',
'company', 'required_car_parking_spaces', 'total_of_special_
requests', 'adr',hotel', 'arrival_date_month', 'meal', 'market_
segment','distribution_channel', 'reserved_room_type', 'deposit_
type', 'customer_type']

Create a list containing all input features and the label
column

features_and_labels = input_features + [label_column]

ML Model Explainability & Interpretability 193

•	 Convert the dataset to tf.Example protos:

 examples = df_to_examples(xTrain)

•	 Create and train the linear classifier and a feature spec for the classifier:
num_steps = 2000

feature_spec = create_feature_spec(xTrain, features_and_labels)

feature_spec

Figure 5.16: Feature Columns Tensors and datatypes

train_inpf = functools.partial(tfexamples_input_fn, examples,
feature_spec, label_column)

5.7.1 TensorFlow Estimator Model
Here, we will build the Model with the two estimators, Model Linear Classifier and
DNN Classifier. For further reading, check out the following link:
https://www.tensorflow.org/api_docs/python/tf/estimator

194 Continuous Machine Learning with Kubeflow

Now, we trained the Model first with the Linear Model Classifier estimator.

classifier = tf.estimator.LinearClassifier(

 feature_columns=create_feature_columns(input_features, feature_
spec))

classifier.train(train_inpf, steps=num_steps)

Figure 5.17: Estimator Output Result for Linear Classifier

Next, we will train our second model DNN Classifier as follows:

#title Create and train the DNN classifier {display-mode: "form"}

num_steps_2 = 2000

classifier1 = tf.estimator.DNNClassifier(

 feature_columns=create_feature_columns(input_features, feature_
spec),

 hidden_units=[128, 64, 32])

classifier1.train(train_inpf, steps=num_steps_2)

Figure 5.18: Estimator Output Result for DNN Classifier

ML Model Explainability & Interpretability 195

In the preceding example, we trained both our TensorFlow Estimator Model Linear
Classifier and DNN classifier; next, we will check out some cool Model evaluation
products to analyse our results.

5.8 Advance Visualization for TensorFlow
Model with Tensorboard & What-IF Tool
In this section, we will conduct the TensorFlow Model evaluation with what-if and
tensorboard tools.

5.8.1 Tensorboard
Now, we will visualize our Model results and logs in Tensorboard for the DNN
classifier.

%load_ext tensorboard

%tensorboard --logdir=/tmp/

Figure 5.19: DNN Estimator Model Evaluation scaler results

196 Continuous Machine Learning with Kubeflow

Here, this Scaler Tab will tell us the model evaluation results like the accuracy, bias,
Global step, Loss and so on.

Figure 5.20: DNN Estimator Model Evaluation graphs

The preceding screenshot shows us the model graphs and computation of matrix
multiplication in tensors in a graphical visualisation.

Figure 5.21: DNN Estimator Model Layer weights

ML Model Explainability & Interpretability 197

In this preceding model, the layer activation function and weights are projected in
dense plots in the distribution tab.

Figure 5.22: DNN Estimator Model Histograms

Here, the frequency in epochs at which the activation will compute the histograms
for the layers of the model is shown in the HISTOGRAMS tab.

5.8.2 What-If Tool
Now, we will prepare the test dataset with the Model evaluation before the
deployment of how the Model is performing.

xTest['is_canceled']=yTest

xTest.reset_index(inplace=True,drop=True)

Next, we will import our library and transform or pre-process our test dataset
with the help of our util function df_to_examples, and set the pixel and height of
dynamic Visualization.
title Invoke What-If Tool for test data and the trained models
{display-mode: "form"}

num_datapoints = 2000

tool_height_in_px = 1000

from witwidget.notebook.visualization import WitConfigBuilder

from witwidget.notebook.visualization import WitWidget

Load up the test dataset

test_examples = df_to_examples(xTest[:2000])

198 Continuous Machine Learning with Kubeflow

Next, set up the tool with the test examples and the trained classifier for the what-if
visualization.

config_builder = WitConfigBuilder(test_examples).set_estimator_and_
feature_spec(

 classifier, feature_spec).set_compare_estimator_and_feature_spec(

 classifier1, feature_spec).set_label_vocab(['Check-Out','Canceled'])

a = WitWidget(config_builder, height=tool_height_in_px)

Figure 5.23: Dynamic Datapoint editor for prediction dataset

Now, the preceding screenshot shows the dynamic datapoint editor and all its
information and we can play around to check our data analysis.

Figure 5.24: Performance and fairness for all features

ML Model Explainability & Interpretability 199

Next, from the tab in the Performance and Fairness, we can have a look at the model
evaluation and compare the study between the two classifier models and its PR
curve and ROC with the Confusion Matrix.

Figure 5.25: Multi-slicing ROC/PR curve for two features

We can slice the datapoints and create some buckets to see the interdependent
feature’s evaluation. In the preceding screenshot, we used the multi-slicing strategy,
its analysis on the two features, and its definition on the Confusion matrix and
Fairness stud.

Figure 5.26: Features Statistics of Categorical and Numerical

200 Continuous Machine Learning with Kubeflow

At last, in the preceding screenshot, we can see the feature distribution for both the
numerical and the categorical values and its statistical nature and behaviour.

5.9 Conclusion
In this chapter, we learned about the end-to-end advance visualization for our
TensorFlow model evaluation with the various tools like Tensorboard and what-if.

We also learned how to build the advance Boosting algorithm LightGBM and use
the model endpoint to work on the feature analysis with the advance Visualization
technique to explain the decision plots for our Model, like Feature plot, summary
plots, Expected Shap plots and Misclassified plots, and so on. Furthermore, we have
built a TensorFlow estimator models, like the DNN Classifier and visualized our
Dense layers and evaluated the histogram and Logs with Tensorboard. We also
learned how to use the what-if tool to visualise the dynamic comparative study
between the two TensorFlow models prior to the deployment on the test data, which
includes the Datapoint editor, Performance with Fairness (ROC Curve, Confusion
matrix, and so on), and finally the feature distribution analysis tab.

5.10 References
 ● https://shap.readthedocs.io/en/latest/example_notebooks/plots/decision_

plot.html

 ● https://christophm.github.io/interpretable-ml-book/preface-by-the-
author.html

 ● https://www.tensorflow.org/tutorials/estimator/premade

 ● https://pair-code.github.io/what-if-tool/

 ● https://www.tensorflow.org/tensorboard/get_started

 ● https://lightgbm.readthedocs.io/en/latest/Features.html

Building Weights & Biases Pipeline Development 201

Chapter 6
Building Weights &

Biases Pipeline
Development

In this chapter, we will build an end-to-end LightGBM Model framework, and
will monitor the model performance in the Weight & Biases (Wandb) tool. Inside

Weights & Biases, we will see the live model RMSE graphs and parallel coordinates’
hyper parameter performance graphs for each iteration. Next, we will deploy the
model with the KF serving in our Kubernetes Cluster inside Google Cloud Platform.
Then, we will be serving model endpoint which will be used for prediction and
monitored in the Grafana Dashboard, such as Model Rate request with respect to the
time and CPU and GPU consumption.

Structure
In this chapter, we will cover the following topics:

•	 Problem statement

•	 Setup of project requirements in GCP & Wandb

•	 Introduction on the Weight & Biases usage

•	 Modelling and training the LightGBM Model for Equity Stocks Data

•	 Serving the Model with KF Serving in Kubernetes Cluster

•	 Monitoring the Performance with Grafana Dashboard

202 Continuous Machine Learning with Kubeflow

Objectives
After studying this chapter, we will be able to understand the following:

•	 How to set use Docker and Kubernetes.

•	 How to build the individual pipeline components like training and model
evaluation with Hyperparameter in the Weights & Biases tool.

•	 How to serve the Model with KF serving and predict the model request and
monitor with the Grafana Dashboard.

•	 How to use Kubernetes and many other Google Cloud Platform to leverage
the power of Machine learning with DevOps Knowledge.

6.1 Problem statement
The data is cleaned, regularized, and encrypted in global equity data. The first 21
columns (feature1 - feature21) are features, and target is the binary class you’re
trying to predict.

In the provided training_data, each id corresponds to a stock with a set of obfuscated
features. The target represents future performance. The rows are grouped into eras
that represent different points in time. Your goal is to train a machine learning model
to predict the target, given new features, and we will tell whether the equity is good
or bad. Let’s take a glimpse at the dataset:

Figure 6.1: Stocks feature data

NOTE Rest all the imports I have showed in my Colab Notebook, for which the
hyperlink of GitHub Account of this chapter is given below. Note Colab
platform Python 3.x. RUN IN GOOGLE COLAB

CODE https://github.com/bpbpublications/Continuous-Machine-Learning-
with-Kubeflow/tree/main/Chapter6

6.2 Setup of project requirements in GCP
& Wandb
Prerequisites: You must have an active GCP account, and while you practice this
chapter, it might charge for running the Kubernetes cluster. I am running all the
codes in MacOS.

Building Weights & Biases Pipeline Development 203

I think some basic Kubernetes and Docker knowledge is a must.

6.2.1 Kubeflow Cluster in GCP and Docker
setup
We have already deployed Kubeflow in the Kubernetes Cluster inside the Google
Cloud Platform and installed the Docker in Local in previous chapters.

6.2.2 Kaggle API setup for downloading data
In this section, we will see how to get the Kaggle API, and use that to download the
data directly from the Kaggle website. So, a user must have a Kaggle account; if not,
please create an account by clicking on the following link:

https://www.kaggle.com/

Figure 6.2: Kaggle website

•	 Installing Kaggle API:
You can run pip install Kaggle to install the API. You might need to run
pip install --user Kaggle on Linux or Mac if you are encountering
issues with the installation.

 https://github.com/Kaggle/kaggle-api

•	 Setting up API Key:
Now, go to your Kaggle account tab https://www.kaggle.com/<username>/
account and click on ‘Create API Token’. A file named kaggle.json will
be downloaded.

204 Continuous Machine Learning with Kubeflow

Next, move the file into the ~/.kaggle/ folder in Mac or Linux and to C:\
Users\.kaggle\ for Windows.

Alternatively, you can populate the KAGGLE_USERNAME and KAGGLE_KEY
environment variables with the values from kaggle.json to get the API to
authenticate. Here, we will be using the Google Colab for training the model;
now we will upload the Kaggle.json there.

Figure 6.3: Kaggle Account API

In this preceding screenshot, you can see that after login, you can click on Create
New API Token and it will download a Kaggle.json, as shown in the following
screenshot:

Figure 6.4: Kaggle Json API key

Keep this json file, which we will be using later.

6.2.3 Weights & Biases API Key
Weights & Biases will help you keep track of your machine learning projects. You
can use this tool to log the hyperparameters and output metrics from your runs,
then visualize and compare the results, and quickly share the findings with your
colleagues. The following is the website for Weights & Biases:

Building Weights & Biases Pipeline Development 205

Figure 6.5: Weights & Biases Website

It offers the following Framework and Integration in the On premise and Cloud
Setup:

Figure 6.6: Framework and Cloud Support

206 Continuous Machine Learning with Kubeflow

Next, let’s see how to create an API; so a user must have an account or they can
create an account by clicking on the following link: https://docs.wandb.com/

Next, go to the user settings and create an API and copy and paste it somewhere in
the notes.

Figure 6.7: Wandb User settings for API

The preceding screenshot shows the API Key, which we will use later for the
Integration of the Machine Learning Training Logs and Evaluation graphs.

6.3 Introduction on how to use Weights &
Biases
So, What-if offers some features, which are as follows:

1. Dashboard: It helps to track the experiments and visualize our training
results.

2. Reports: It saves and shares reproducible findings.

3. Sweeps: It optimizes the models with the hyperparameter tuning.

Building Weights & Biases Pipeline Development 207

4. Artifacts: Dataset and model versioning, pipeline tracking.

Now, install our library in an environment using Python 3, run the following
command pip install wandb, and then run the command wandb login.

Figure 6.8: Wandb Login from CLI

Modify your training script: We can add a few lines to our script to log the
hyperparameters and evaluation metrics.

•	 Initialize Wandb: Next, Initialize Wandb at the beginning of your script,
right after the imports.

Inside my model training code

import wandb

wandb.init(project="my-project")

The preceding command will automatically create a project for you, if it
doesn't exist in the Home. It will capture each run of the preceding training
script, and sync to that project, named "my-project".

•	 Declare Hyperparameters:

Here, it's easy to save the hyperparameters with the wandb.config object.

wandb.config.learningrate = 0.2

wandb.config.hidden_layer_size = 64

•	 Log Metrics:

Wandb offers to log the metrics for our training loss or accuracy as your
model trains (in many cases, we provide the framework-specific defaults). It
logs more complicated output or results like histograms, graphs, or images
with wandb.log.

def train_logs():

 for epoch in range(20):

 loss = 0

 wandb.log({'epoch': epoch, 'loss': loss})

•	 Save Files:
Anything which was saved in the wandb.run.dir directory, will be uploaded
to Weight & Biases and saved along with our run when it completes training,

208 Continuous Machine Learning with Kubeflow

which is convenient for saving the literal Weights & Biases for our trained
model. By default, this will save to a new subfolder for the files associated
with your run, created in wandb.run.dir (which is ./wandb by default).

 wandb.save("mymodel.h5")

We can pass the full path to the Keras or Tensorflow model API.

 model.save(os.path.join(wandb.run.dir, "mymodel.h5"))

Awesome! Next, run your script normally and it will sync the logs in a
backend process. This will be your terminal output, metrics, logs and files,
and will be synced to the cloud, alongside the record of our git state if we are
running from a git repo.

Figure 6.9: Sample Capture of Training Logs

In the preceding screenshot, you can see in one sample Graph of training and
Validation accuracy.

6.4 Modeling and training the LightGBM
Model for Equity Data
The dataset for equity has 21 features which are time-related. We have 96320 rows of
data structure which will be used by your model evaluation. Your goal is to predict
the test and live data. Here, the features in the dataset are regularized; there are no
categorical features.

The features and the target variable talks about the encrypted stock market data and
the target variable is converted into a positive trend of hedge fund versus negative.
No domain finance knowledge is required.

Building Weights & Biases Pipeline Development 209

6.4.1 Get the latest version of Weights & Biases
Dependency & Kaggle Setup
Here, we will run the entire platform in Colab.

Figure 6.10: Colab Logo

Now, run the following command in Colab:
from tqdm import tqdm

for i in tqdm(range(2)):

 !pip install -q -r requirements.txt --upgrade

Figure 6.11: Library Installation Output

The following is to run the requirements.txt which contains the library:

Figure 6.12: Python Library Name

Next, import the following library for the Notebook:
import wandb

import logging

import kaggle

import os

import numpy as np

import random as rn

import pandas as pd

import seaborn as sns

import lightgbm as lgb

import matplotlib.pyplot as plt

from scipy.stats import spearmanr

210 Continuous Machine Learning with Kubeflow

from sklearn.metrics import mean_absolute_error, mean_squared_error

from wandb.lightgbm import wandb_callback

from sklearn.model_selection import train_test_split

import warnings

warnings.filterwarnings("ignore");

import plotly.offline as py

py.init_notebook_mode(connected=True)

import plotly.graph_objs as go

import plotly.tools as tls

import plotly.figure_factory as ff

Set seed for reproducability

seed = 1234

rn.seed(seed)

np.random.seed(seed)

os.environ['PYTHONHASHSEED'] = str(seed)

Surpress Pandas warnings

pd.set_option('chained_assignment', None)

Now, we have imported the required library; next, let’s see how to setup the Wandb
API, which we created earlier, so that we can save our runs in the Wandb project.

6.4.2 Weights & Biases Dependency & Kaggle
API Setup
Copy the key and paste it in the Notebook and store the object in WANDB_KEY as a
string and run the Wandb login with API.

Weights and Biases:

Obfuscated WANDB API Key

WANDB_KEY = "ab0ab83e47545b9007e5f77eeb681ae530c0376c"

!wandb login ab0ab83e47545b9007e5f77eeb681ae530c0376c

Figure 6.13: Wandb Configuration Message

Building Weights & Biases Pipeline Development 211

The following is the successful message for the Wandb, and it configured our
connection.

Kaggle API Setup:
Now, upload the Kaggle.json file in the Colab, and it will be saved, by default, in
the contents folder in Colab. The following is the screenshot for the folder in Colab.

Figure 6.14: Folder structure in Colab

Move this file into ~/.kaggle/, which is inside the root folder in the environment.
This is required for authentication and Chmod will give the required permission to
have that key to be used everywhere in the Notebook.

!mkdir ~/.kaggle

!touch ~/.kaggle/kaggle.json

import json

api=json.load(open("/content/kaggle.json"))

with open('/root/.kaggle/kaggle.json', 'w') as file:

 json.dump(api, file)

!chmod 600 ~/.kaggle/kaggle.json

In the preceding command, we created an empty json file Kaggle.json inside
root./kaggle and copied the content from /content/kaggle.json and gave the
required access with chmod and changed the access permissions of the file system
objects.

212 Continuous Machine Learning with Kubeflow

Next, we will download the data from Kaggle. The following is the screenshot of the
data which we will use:

Figure 6.15: Kaggle Dataset URL

Click on the right side, copy the API command and paste it in a cell copy numerai/
encrypted-stock-market-data-from-numerai

Figure 6.16: API of Data

The following is the format for Kaggle API; run the following commands which
unzip that file as the numerai_training.csv file:

Signature: filename: [owner]/[dataset-name]

dataset_download_file(dataset, file_name, path=None, force=False,
quiet=True)

logging.info(kaggle.api.authenticate())

kaggle.api.dataset_download_files('numerai/encrypted-stock-market-data-
from-numerai', path='/content', unzip=True)

logging.info("Downloaded Data")

Building Weights & Biases Pipeline Development 213

6.4.3 Loading and Extracting of Data
Now, we will load the data with the Pandas library.

data=pd.read_csv("/content/numerai_training_data.csv")

import numpy as np

data['target']=np.random.uniform(0,1,size=data.shape[0])

data.head(5)

Figure 6.17: Features Table

Next, we will prepare the data for training; let’s split the data with 60/20/20
percentage for training, validation, and test respectively.

train, test = train_test_split(data, test_size=0.2)

train, val = train_test_split(train, test_size=0.2)

print(len(train), 'train examples')

print(len(val), 'validation examples')

print(len(test), 'test examples')

Figure 6.18: Train-Test split size

Now that we have spit our data, let’s do some EDA.

6.4.4 Exploratory Data Analysis
Let’s see the correlation matrix among the encrypted data with respect to the target
columns. The term positive correlation depicts that both the features will move in
the same direction, and negative correlation depicts that when one of the variable’s
value increases, the other variable’s values decrease. So, correlation with neural/
zero depicts that the variables are not related.

def correlation_plot(data):

 correlation = data.corr()

 matrix_cols = correlation.columns.tolist()

214 Continuous Machine Learning with Kubeflow

 corr_array = np.array(correlation)

 trace = go.Heatmap(z = corr_array,x = matrix_cols,y = matrix_
cols,xgap = 2,ygap = 2, colorscale='Plasma',colorbar = dict())

 layout = go.Layout(dict(title = 'Correlation Matrix for variables',
autosize = False, height = 900,width = 1000,margin = dict(r = 0 ,l
= 210, t = 25,b = 210), yaxis = dict(tickfont = dict(size = 9)),xaxis
= dict(tickfont = dict(size = 9))))

 fig = go.Figure(data = [trace],layout = layout)

 py.iplot(fig)

Now, let’s check the plot on the following page.

Figure 6.19: Correlation Plot

So, here the features are having a remarkably low correlation to the target variable.
Even the most correlated features only have around 1.5% correlation with the target
variable.

Building Weights & Biases Pipeline Development 215

Next, we have noticed that the importance of features may change over time. So, by
selecting a minimum number of features, we risk having a high "feature exposure." So,
the feature exposure can be quantified as a standard deviation of all your predictions'
correlations with respect to each and every feature. We can mitigate the risk by using
the dimensionality reduction techniques, such as Principal Component Analysis
(PCA) to integrate almost all the features into your model.

Next, let’s see the Distribution of the Train, Test, and Validation Data.

feats = [f for f in train.columns if "feature" in f]

plt.figure(figsize=(16, 5))

sns.distplot(pd.DataFrame(train[feats].std()), bins=50)

sns.distplot(pd.DataFrame(val[feats].std()), bins=50)

sns.distplot(pd.DataFrame(test[feats].std()), bins=50)

plt.legend(["Train", "Val", "Test"], fontsize=20)

plt.title("Standard deviations over all features in the data",
fontsize=20);

Figure 6.20: Distribution Plot

Now, we can see that all the train, validation, and test dataset’s standard deviation
among the features are widely spread in the breadth in its normal distribution,
between ranges 0.275 and 0.295.

feature_list = list(train.columns)

feature_list.remove("target")

Now, graph the feature column names inside a list feature_list for further
operations.

6.4.4 Utility Metrics Function
We will evaluate our training LightGBM Regressor with the following three metrics:

216 Continuous Machine Learning with Kubeflow

•	 Spearman Correlation: Statistically, this method will quantify the degree
to rank the variables which are associated by a monotonic function, that
represents as an increasing or decreasing relationship behaviour. The
method does a hypothesis test, and tells that the samples are uncorrelated
(fail to reject H0). The function next takes the two real-valued data as args
and returns both the correlation coefficient in the range between -1 and 1,
and also the p-value which will interpret the coefficient significance.

Figure 6.21: Spearman Correlation (Source Credit: Wiki)

•	 Mean Absolute Error: The average of the absolute differences between the
actual and predictions values. It tells how wrong the predictions were. It also
measures the magnitude error, and gives an idea direction, so a value of 0
indicates no error or perfect predictions.

•	 Root Mean Square Error: The R^2 (or R Squared) metric talks about an
indication of the goodness of fit for our predictions with respect to the
original values. In statistical terminology, it is also known as the coefficient
of determination. Its value lies in between 0 and 1 for no-fit and perfect fit
respectively.

def evaluate(df: pd.DataFrame) -> tuple:

 def _score(sub_df: pd.DataFrame) -> np.float32:

 """Calculates Spearman correlation"""

 return spearmanr(sub_df["target"], sub_df["prediction"])
[0]

Building Weights & Biases Pipeline Development 217

 mae = mean_absolute_error(df["target"], df["prediction"]).
round(4)

 RMSE=mean_squared_error(df["target"], df["prediction"])** 0.5

 spearman=spearmanr(df["target"], df["prediction"])[0]

 # Display metrics

 print(f"Spearman Correlation: {spearman}")

 print(f"RMSE Score: {RMSE}")

 print(f"Mean Absolute Error (MAE): {mae}")

 return spearman,RMSE, mae

So, we will use the preceding function in our Model of LightGBM.

6.4.5 Training model (using Weights & Biases)
with LightGBM Framework
In this section, let’s see how we will build our LightGBM framework with Weights
& Biases.

How does LightGBM work?

LightGBM uses the histogram-based algorithm, which buckets the continuous
feature (attribute) values into discrete bins. This speeds up the training and reduces
the memory usage.

Figure 6.22: LightGBM Architecture

LightGBM grows its trees in a leaf-wise manner for the best-first. Next, it takes the
leaf with the maximum delta loss for growing. The leaf-wise algorithms tend to
achieve lower loss than the level-wise algorithms by holding the leaf fixed.

218 Continuous Machine Learning with Kubeflow

The leaf-wise algorithm may cause over-fitting with a small set of data, so LightGBM
includes a parameter to limit the tree depth which is max_depth. However, the
leaf-wise trees still grow even when the max_depth is specified.

The advantages of the histogram-based algorithms include the following:

•	 Reduced cost of calculating the gain for each split.

•	 Uses histogram subtraction for further speedup.

•	 Reduces memory usage.

•	 Reduces communication cost for parallel learning.

For further reading, please go to the following link:
https://lightgbm.readthedocs.io/en/latest/Features.html

Sweeps:

We will train the LightGBM model to get a first good model, and then we will use
Weights & Biases to do the hyperparameter sweep. Here, in this example, we will
do a grid search for the LightGBM Framework algorithm over some of the most
important hyperparameters. First, we will define the configuration of the sweep.

The common use cases are as follows:

1. Explore: It efficiently discovers the promising region’s sample space of
hyperparameter combinations; nex,t it builds an intuition about your model.

2. Optimize: It helps to find the set of hyperparameter’s optimal performance
for our model.

3. K-fold cross validation: Here's a brief example below of k-fold cross
validation with W&B Sweeps.

Approach:

1. Add Wandb: Write a couple of lines of code to log the hyperparameters and
evaluation output metrics in our Python script.

2. Write config: Next, for the sweep over, we will define the variables and
ranges as well. We will choose a search strategy — it supports random, grid,
and Bayesian search, alongside early stopping.

3. Initialize sweep: Now, start the sweep server. It hosts the central controller
and will coordinate between the multiple agents which will execute the
sweep.

Building Weights & Biases Pipeline Development 219

Figure 6.23: Wandb Sweep Architecture

4. Launch agent: To use the train models in the sweep, run the command on
each machine, then the agents ask the backend central sweep server about
what hyperparameters to try next, and it will execute the runs.

5. Visualize results: Click on the link, which will be generated and open our
live dashboard to see all our results in one central place. Check the following
link for configuration: https://docs.wandb.com/sweeps/configuration

Run the following configuration in our notebook:

Configuration for hyperparameter sweep
sweep_config = {
 'method': 'grid',
 'metric': {
 'name': 'mse',
 'goal': 'minimize' },
 'parameters': {
 "num_leaves": {'values': [30, 40, 50]},
 "max_depth": {'values': [4, 5, 6, 7]},
 "learning_rate": {'values': [0.1, 0.05, 0.01]},
 "bagging_freq": {'values': [7]},
 "bagging_fraction": {'values': [0.6, 0.7, 0.8]},
 "feature_fraction": {'values': [0.85, 0.75, 0.65]},})
sweep_id = wandb.sweep(sweep_config, project="simpletransformers")

Figure 6.24: Sweep Configuration Link

220 Continuous Machine Learning with Kubeflow

Let’s break the preceding configuration for the sweep metric method and also we
will talk about LightGBM parameters.

Metric:
Here, specify the metric to optimize. This metric will log explicitly to Wandb while
in our training script. In this example, we want to minimize the validation loss for
our LightGBM model:
name: Name of the metric to optimize goal: minimize or maximize (Default is minimize)

Method:
Next, we will specify the search strategy from the grid, random search, and bayes:

•	 Grid: It iterates over all the possible combinations to find the parameter
values.

•	 Random: It chooses the random sets of values.

•	 Bayes: It uses a gaussian process to model our function and then chooses
the parameters which will optimize the probability of improvement into our
model. It is also called Bayesian Optimization.

Parameters:
Next, check out the following links for the parameter’s description:
https://lightgbm.readthedocs.io/en/latest/Parameters.html

The last code line from the preceding sweep_id will store the project name and
configuration setup which we will be providing during LightGBM Model Training.

•	 Prepare Data for LightGBM:

Now, we will be creating the data preparation for the LightGBM model.
dtrain = lgb.Dataset(train[feature_list], label=train["target"])
dvalid = lgb.Dataset(val[feature_list], label=val["target"])
watchlist = [dtrain, dvalid]

•	 Train the Model Integration Wandb:

Next, let’s see how to build the LightGBM regressor and build a train()
method as a utility function:
def _train():
 # Configure and train model
 wandb.init(name="LightGBM_sweep")
 lgbm_config = {"num_leaves": wandb.config.num_leaves, "max_
depth": wandb.config.max_depth, "learning_rate": wandb.config.
learning_rate, "bagging_freq": wandb.config.bagging_freq,

Building Weights & Biases Pipeline Development 221

"bagging_fraction": wandb.config.bagging_fraction, "feature_
fraction": wandb.config.feature_fraction, "metric": 'mse',
"random_state": seed }
 lgbm_model = lgb.train(lgbm_config, train_
set=dtrain, num_boost_round=750, valid_sets=watchlist,
callbacks=[wandb_callback()], verbose_eval=100, early_stopping_
rounds=50)

 # Create predictions for evaluation
 val_preds = lgbm_model.predict(val[feature_list], num_
iteration=lgbm_model.best_iteration)
 print(val_preds)
 print(type(val_preds))
 val.loc[:, "prediction"] = val_preds
 # W&B log metrics
 spearman,RMSE, mae = evaluate(val)
 wandb.log({"Spearman": spearman, "RMSE": RMSE, "Mean Absolute
Error": mae})
 #lgb_path = '/content/'
 save_to = "/content/lgb_classifier.txt"
 lgbm_model.save_model(save_to)

Now, let’s break down the preceding train() method:

•	 We will be initiating the training of our model in Wandb with the name
LightGBM _sweep which will save all the runs in that name.

Figure 6.25: Run Name in Wandb

222 Continuous Machine Learning with Kubeflow

•	 So, here we will set wandb.config in our script to save our training config,
hyperparameters, and input the settings like the dataset name or model type,
and any other independent variables or parameters, such as the learning rate,
max depth, and so on, for the LightGBM model experiments. It is very useful
for analyzing our experiments and reproducing our work for the future. We
will be able to group by the configuration values in our web interface and
compare the different runs and see how these affect the output. Let’s set the
object in lgbm_config.

Format: wandb.config.[PARAMETER]

•	 Next, we will train our LightGBM model with early_stopping_rounds
which will stop the training if one metric of one validation data doesn’t
improve in the end. Then both, the train and the validation data which we
created, will pass lgbm_config, which we created earlier.

•	 Then, we will evaluate our model with the test dataset and evaluate the
prediction with the original dataset to calculate MAE, RMSE, and Correlation.

•	 The output metrics or the dependent variables RMSE, MAE, and Spearman
should be saved with wandb.log instead. We have saved the LightGBM
model with the best iteration in the /content/lgb_classifier.txt folder
which we will be using for the KF Serving production in the Kubeflow
Kubernetes cluster in Goggle Cloud Platform.

Now, run the following command with the sweep_id configuration which we have
done earlier, and pass the preceding train() function.

Run hyperparameter sweep (grid search)

wandb.agent(sweep_id, function=_train)

Figure 6.26: Output of Each Run

Building Weights & Biases Pipeline Development 223

The preceding example is one run output logs in Notebook; it talks about the
model performance and each run is saving in the Blue Hyperlink URL where we
can navigate and see the performance and the Model Hyperparameters’ Parallel
Coordinates. For example, check the following link:

http://app.wandb.ai/aniruddha/simpletransformers/sweeps/03edx2p8

•	 Wandb Dashboard

In the preceding training logs, we got 3 URLs. Let’s navigate to the PROJECT
URL and check one sample Run performance.

Figure 6.27: Dashboard of one Run

Now, in the preceding screenshot, we can see that there are a total of 311 Runs, as
it was mentioned on the top left, next, the Dashboard consists of RMSE, Spearman,
Training Loss, and Validation Loss, and the Mean Absolute Error for each Run in a
single axis, and it tells which run is the best by comparing each other; let’s take one
example Spearman and train/validation loss.

Figure 6.28: Multiple Run Comparison

224 Continuous Machine Learning with Kubeflow

Now, in the preceding screenshot, in the first Bar plot, we can see the 3 top most
correlation run purple, green, and light pink bars. Similarly, we can analyse the
multiple scores for each run in train and test, which it trained in the number steps or
epochs, and we can take the best run for the Model Deployment. Next, click on RUN
URL; on the individual run, you will get the following report charts:

Figure 6.29: Multiple Run Comparison

So, the preceding screenshot talks about the individual run, as we can see the
validation loss is low with respect to the train loss.

Next, we can see the GPU or CPU consumption with respect to the various
parameters:

Figure 6.30: Model Machine performance

The preceding screenshot talks about the Memory Utilization for each run while
training the model and how much network traffic in bytes are consumed for pushing
the logs, and what’s the CPU consumption for the various runs.

Building Weights & Biases Pipeline Development 225

Let’s navigate to the SWEEP URL to visualize the sweep results:

Figure 6.31: Hyperparameter Importance Plot

So, the hyperparameter importance plot surfaces tell which hyperparameters are the
best predictors and highly correlated to that desirable values for your dataframe.

Here, the correlation represents a linear correlation between the hyperparameter
and the chosen metric, in this case, the Validation Loss. So, here the high correlation
tells that the hyperparameter has a higher value, and the metric also has higher
values and vice versa. Next, the correlation is also an awesome metric to look at,
but it can’t capture the second order interactions between the inputs, and it can get
messy to compare the inputs with the different range metrics.

Let’ go down a bit to check the parallel coordinate for hyperparameters to find out
the metric’s performance. It plots the map hyperparameter values to model the
metrics which is useful for honing in on combinations of hyperparameters that led
to the best model performance.

Figure 6.32: Hyperparameter Parallel Coordinate

226 Continuous Machine Learning with Kubeflow

In the preceding screenshot, each axis represents a different parameter range values,
in this case, we have 7 vertical axes such as bagging_fraction, learning_rate,
max_depth, _num_leaves, and so on. Next, visualize the relationship between the
different hyperparameters and the final mean square error of my model, which we
will be minimizing.

•	 Axes: It represents the different hyperparameters from wandb.config,
which I have mentioned earlier and all the metrics from wandb.log().

•	 Lines: Here, a single line represents a single run. Hover the mouse over a
line to see a tooltip with all the details about each run.

6.5 Serving the model with KF Serving
In this section, we will build our serving model. In the following screenshot, we can
see the three major components for our model serving below screenshot.

So, here we kept the saved trained model from the local to the root of the Docker file,
or we can call it from the Cloud Storage bucket.

Figure 6.33: Folder Structure

In previous chapters, we have covered the KF Serving Architecture; so you can refer

Let’s see how we will build the serving component lightgbm_wandb.py file:
import os

import sys

import json

import numpy as np

import kfserving

import lightgbm as lgb

Building Weights & Biases Pipeline Development 227

from typing import List, Dict

class KFServingSampleModel(kfserving.KFModel):

 def __init__(self, name: str):

 super().__init__(name)

 self.name = name

 self.ready = False

 self.model_output_base_path = "lgb_classifier.txt"

 def load(self):

 model = lgb.Booster(model_file=self.model_output_base_path)

 self.model = model

 self.ready = True

 def predict(self, request: Dict) -> Dict:

 inputs = np.array(request["instances"])

 reshaped_to_2d = np.reshape(inputs, (-1, len(inputs)))

 results = self.model.predict(reshaped_to_2d)

 result = (results > 0.5)*1

 if result==1:

 result="Positive Equity"

 else:

 result="Negative Equity"

 print("result : {0}".format(result))

 return {"predictions": result}

if __name__ == "__main__":

 model = KFServingSampleModel("kfserving-wandb-lightgbm-model")

 model.load()

 kfserving.KFServer(workers=1).start([model])

So, let’s break the transformer predictor code as follows:
•	 We kept the save model file lgb_classifier.txt in the Docker root, and

here we declared that file as an environment variable to an object model_
output_base_path.

•	 Next, in the Load function, we loaded the model in from the LightGBM
library.

228 Continuous Machine Learning with Kubeflow

•	 Then, in the predict method, the incoming data came as a json format, which
we needed to extract as a key-value pair and do the necessary prediction and
return as a dictionary.

•	 So, in the “main” function, the KFServingSampleModel Class took the name
of that deployment; keep a note of that and apply to the yaml file; here it is
”kfserving-wandb-lightgbm-model”.

Figure 6.34: kf Serving python code left & Deployment yaml right

Let’s say after building the image, the name is gcr.io/<PROJECT_ID> /<IMAGE_
NAME>:<TAG>

Now, let’s understand the KF serving transformer code here. From above screenshot
on the left side of the Python file, the KFServingsampleModel class will always have
one Load() method where we can load our trained model from the docker path or
from the Google Bucket; then we can load there for the prediction and predict()
method which will be used to take the incoming json request as an input. Then, we
can do our necessary operations prior to the model prediction of either the text or
the image data case.

Building Weights & Biases Pipeline Development 229

Let’s see how we will build the serving component Dockerfile:

FROM python:3.7-slim-stretch

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update && \

 apt-get -y install gcc mono-mcs g++ git curl bash && \

 rm -rf /var/lib/apt/lists/*

ADD requirements.txt /app/requirements.txt

RUN pip install -r /app/requirements.txt

ADD lightgbm_wandb.py /app/lightgbm_wandb.py

ADD lgb_classifier.txt /app/lgb_classifier.txt

COPY . /app

WORKDIR /app

CMD ["python","lightgbm_wandb.py"]

So from the above dockerfile we have the following steps:

•	 The first line of our Dockerfile begins with FROM. This is where we import
our OS or programming language.

•	 The next two lines involve setting up the environment and executing it on
the server. The ADD line makes the local file, requirements.txt, available
in the Docker container. The RUN command can be followed with any bash
code that you would like being executed.

•	 We use RUN to install our dependencies. Then ENV sets our environment
variable.

•	 The WORKDIR line sets our working directory to the app. Then, the ADD
line makes the remaining local files available in the Docker container. Next,
CMD will run the command when the Docker file will execute each time.

Now, let’s deploy it with the command line; and first let’s fill the yaml file:

apiVersion: serving.kubeflow.org/v1alpha2

kind: InferenceService

metadata:

 labels:

 controller-tools.k8s.io: "1.0"

 name: kfserving-wandb-lightgbm-model

 namespace: kubeflow

230 Continuous Machine Learning with Kubeflow

spec:

 default:

 predictor:

 custom:

 container:

 image: gcr.io/<PROJECT_ID>/<IMAGE_NAME:<TAG>

 imagePullPolicy: Always

 name: user-container

Here, in the preceding yaml file, we gave the same name which we had provided
in the lightgbm_wandb.py file; it will be (“kfserving-wandb-lightgbm-model”),
and then we provided the namespace “kubeflow” where it is deployed. Next, we
gave the Docker image a name for our Transformer model which we had created.

Next, run the following command from bash where the files are kept in the Visual
Studio:

1. Connect to the GCP cluster by using the following command:
gcloud container clusters get-credentials <$ClusterName> --zone

<$ZONE> --project <$PROJECTID>

2. Create the inference service by deploying it in the cluster:

 kubectl apply -f wandb.yaml

3. Check the inference service. Try it after some interval to check if it has been
created:

 kubectl get inferenceservice -n kubeflow

Figure 6.35: KF serving Inference

Sample Prediction:

•	 Run the following command in Bash from the serving folder:

MODEL_NAME=kfserving-wandb-lightgbm-model

HOST=$(kubectl get inferenceservice -n kubeflow$MODEL_NAME -o
jsonpath='{.status.url}' | cut -d "/" -f 3)

INPUT_PATH=@./input.json

CLUSTER_IP=$(kubectl -n istio-system get service kfserving-

Building Weights & Biases Pipeline Development 231

ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

curl -v -H "Host: ${HOST}" http://${CLUSTER_IP}/v1/
models/${MODEL_NAME}:predict -d $INPUT_PATH

Figure 6.36: KF serving Prediction Output

Run the following below command in Python from the Colab notebook:

Now, we will create some sample data to predict the results from the preceding
below URL. To create the sample data, the code is as follows:

import requests

MODEL_NAME="kfserving-wandb-lightgbm-model"

cluster_ip = <COPY YOUR CLUSTER IP HERE>

headers={"Host": "{0}.kubeflow.example.com".format(MODEL_NAME)}

response = requests.post("http://{0}/v1/models/{1}:predict".
format(cluster_ip, MODEL_NAME), data = data1,headers = headers)

response.json()

Figure 6.37: KF serving Prediction O/P Python

6.6 Monitoring the performance with
Grafana Dashboard
Grafana includes the built-in support for Prometheus. This topic explains the
options, variables, querying, and the other options specific to the Prometheus data

232 Continuous Machine Learning with Kubeflow

source. Launch the Grafana dashboard. As shown in Chapter 4, Building TFX Pipeline
in section 4.7, we have already installed Grafana.

Next, run from the Local Terminal and open the `grafana` dashboard by using
`localhost:8080` on the browser. Explore the different components of the Grafana
dashboard.

```bash

kubectl port-forward --namespace knative-monitoring $(kubectl get 
pod --namespace knative-monitoring --selector="app=grafana" --output 
jsonpath='{.items[0].metadata.name}') 8080:3000

```

The following Dashboard talks about the HTTP requests for the Knative Serving
Visualization which we will be serving per/sec request.

Figure 6.38: Grafana Dashboard HTTP Request

So, the following is the Dashboard for the Control Plane which shows the CPU
Consumption and the memory usage efficiency.

Figure 6.39: Grafana CPU/Memory Dashboard

Building Weights & Biases Pipeline Development 233

6.7 Conclusion
In this chapter, we learned how to build an end-to-end LightGBM framework in
Weights & Biases which captures our model in each run and output metrics. We built
the sweep and Wandb config for the LightGBM algorithm parameters alongside the
parallel coordinates plot for the Hyperparameter search.

We also deployed Kubeflow on the Kubernetes Platform and the model in
Kubernetes cluster with KF serving and monitored our prediction results in the
Grafana Dashboard.

In this chapter, we also gained knowledge on how to leverage the power of Google
Cloud Platform, and use our DevOps knowledge with Machine Learning to become
an MLops.

6.8 References
 ● https://plotly.com/python/builtin-colorscales/

 ● https://technowhisp.com/kaggle-api-python-documentation/

 ● https://www.kaggle.com/numerai/encrypted-stock-market-data-from-
numerai

 ● https://github.com/Kaggle/kaggle-api

 ● https://lightgbm.readthedocs.io/en/latest/Parameters.html

 ● https://www.wandb.com/

 ● https://github.com/kubeflow/kfserving

234 Continuous Machine Learning with Kubeflow

Applied ML with AWS SageMaker 235

Chapter 7
Applied

ML with AWS
SageMaker

In this chapter, we will work on the Housing Price Sales Dataset project, where we
will completely run, evaluate, and deploy the model in the Amazon SageMaker

Cloud environment and use S3 for Data Storage. We will also be using the in-built
container algorithm XG-Boost for Model Building, so that we are able to understand
the architecture of SageMaker Model Building framework end to end.

Structure
In this chapter, we will cover the following topics:

•	 Problem statement

•	 Getting started in AWS SageMaker setup

•	 Getting started with JupyterLab Notebook instances and SDK and S3 Bucker

•	 Getting started with launching notebook and loading data to S3

•	 Load, analyse, and transform the training data

•	 Amazon SageMaker training model

•	 Amazon SageMaker model deployment

236 Continuous Machine Learning with Kubeflow

Objectives
After studying this chapter, you will be able to understand the following:

•	 How to load and push data in Amazon S3 which is used for data storage.

•	 Outlier analysis, feature transformation, and imputation of categorical and
numerical columns.

•	 How to create notebook in Amazon SageMaker and build a model and
deploy it. Here, we will use XG-Boost in-built algorithm.

•	 The metrics and performance of our deployed model in Amazon CloudWatch.

7.1 Problem
Here, a home buyer described their dream house, and they probably won't begin
with the height of the basement ceiling or the proximity to an east-west railroad.

So, we have 79 variables describing what covers almost each and every aspect of the
residential homes in Ames, Iowa; this challenges to predict the final price of each
home.

NOTE Rest all the imports I have showed in my Jupyter Notebook, for which
the hyperlink of GitHub Account of this chapter is given. Note to use
Anaconda Package Python 3.x.

CODE https://github.com/bpbpublications/Continuous-Machine-Learning-
with-Kubeflow/tree/main/Chapter7

7.2 Getting started in AWS SageMaker
setup
So, we will start our journey with the AWS Account setup. To complete the setup,
complete the following steps:

1. Create an AWS account email address and password to sign in as the AWS
account root user and navigate to the IAM console at the following link:
https://console.aws.amazon.com/iam/.

Applied ML with AWS SageMaker 237

Figure 7.1: AWS Sign-in Console

2. Next, enable the access of the billing data for the IAM admin user that you
will create:

•	 Choose My Account on the navigation bar of your account name.

•	 Choose Edit Next to IAM User and Role Access to Billing
Information.

•	 Next, select the check box to Activate IAM Access and choose the
Update.

Figure 7.2: AWS My account. Dashboard

238 Continuous Machine Learning with Kubeflow

3. Choose Services from the navigation bar, and then IAM to go to the IAM
dashboard.

Figure 7.3: AWS IAM Dashboard

Optional: You can customise the Console Login Link given below, from the Access
management console in IAM, where there is a customise option to change <Alias>.

4. Click on Users and add new users:

•	 Type myrole.

•	 Now, select the check box next to the AWS Management Console access;
then select custom password; next, type your own new password in
the text box. So by default, AWS will force the new user to create a new
password when you first log into AWS. So, we can optionally uncheck
the box next to the User, as the user must create a new password at the
next sign-in to allow the new user to reset their password after they sign
in.

Applied ML with AWS SageMaker 239

Figure 7.4: AWS Add User Screen

•	 Choose Next: Permissions.

•	 On the Set permissions page, choose Attach existing policies directly.

•	 Click on Next: Review.

•	 Click on Create user.

•	 Download the csv file.

Figure 7.5: AWS User Creation Last Step Screen

240 Continuous Machine Learning with Kubeflow

Next, open the csv file and copy the link to your browser to login as myrole Username
and your Custom Password. Optional: You can customise the Console Login Link
below, from Access management console in IAM where there is a customise option
to change <Alias>.

The following is the screenshot of the csv file which we have downloaded:

Figure 7.6: AWS IAM Role Creation csv file credentials

5. Next, login as an IAM User and search for sagemaker.

Figure 7.7: AWS Service search dashboard

Here, we will search for the AmazonSagemaker

Applied ML with AWS SageMaker 241

7.3 Getting Started with JupyterLab
Notebook Instances and SDK & S3 Bucker
7.3.1 Create an S3 Bucket
Now, the training of a model will produce the following:

•	 The model training data which is transformed is stored in S3.

•	 Model artifacts, which the Amazon SageMaker generates during the model
training.

We can save all these things in the Amazon Simple Storage Service (Amazon S3)
bucket; we can store the datasets that we have used during our training data and
the model artifacts that are the output of a training job in a single bucket or in two
separate buckets.

The following is the screenshot of how the screen will look, once we log in:

Figure 7.8: AWS S3 Create Bucket Screen

242 Continuous Machine Learning with Kubeflow

Now, your Bucket (mysagemakerbucket) has been created.

Figure 7.9: AWS S3 Bucket Dashboard

7.3.2 Create an Amazon SageMaker Notebook
Instance
Navigate to the Amazon SageMaker console > Notebook instances > create notebook
instance. The steps are as follows:

1. On the Create notebook instance page, provide the following information (if
a field is not mentioned, leave the default values):
•	 In the Notebook instance name section, type a name for your notebook

instance.
•	 Then, for the Instance type, choose ml.t2.medium. This is the least

expensive instance type and is the recommended type for the notebook
instances support.

Figure 7.10: AWS SageMaker Create Notebook Screen

•	 For the IAM role, choose Create a new role, then choose Create role.

•	 Choose Create notebook instance.

Applied ML with AWS SageMaker 243

Figure 7.11: Create IAM Role screen

Figure 7.12: Create Notebook Screen

244 Continuous Machine Learning with Kubeflow

Wait for a few minutes, the Amazon SageMaker will launch an ML compute instance
— in this case, it will be the notebook instance — and it attaches an ML storage
volume to it. The notebook instance has a preconfigured Jupyter notebook server /
JupyerLab and a set of Anaconda libraries.

2. Launch the JupyterLab. The following screenshot shows how the deck will
look like:

Figure 7.13: AWS Notebook Instances Dashboard

3. Next, we have to add a few IAM polices, so click on the Notebook instance
name myfirstnotebook, as shown in the following screenshot:

Figure 7.14: AWS Notebook Dashboard which we created

Applied ML with AWS SageMaker 245

4. And then click on the IAM role with ARN; it will redirect to a new page.
Now, if the following policy is not there, then click on attach policy, and
search those policy names and click on the check box.

Figure 7.15: AWS Notebook IAM Role Policy Dashboard

Make sure all the red-boxed policies are attached in our IAM or else search and
attach those policies.

7.4 Getting Started by Launching
Notebook and loading data to S3
To get started for launching the Jupyter Notebook server, complete the following
steps:

1. Now, we will create a notebook.
•	 When we open the notebook in the JupyterLab classic view, on the

Files tab, choose New, and conda_python3. Here, the preinstalled
environment includes the default Anaconda installation and Python 3.

2. In the Jupyter notebook, choose File and Save as, and name the notebook.

246 Continuous Machine Learning with Kubeflow

Next, we will have a look at the Notebook options which will come across once we
click on that.

Figure 7.16: JupyterLab default Screen

3. Load the data into the S3 Bucket (mysagemaker) by creating a folder
 (houseprice), then in another folder (rawdata), upload the train.csv file.

Amazon S3> /mysagemakerbucket >/houseprice >/rawdata >train.csv

Figure 7.17: Amazon S3 Bucket file path

So, the preceding example is the S3 bucket location and file.

Applied ML with AWS SageMaker 247

7.5 Load, Analyse, and Transform the
Training Data
Here we will complete some of the following steps:

•	 Load the data from S3 and Python library.

•	 Feature Engineering of the raw data like Imputation and Outlier Detection.

•	 Then, log Transform our Target feature and check the correlation and Normal
distribution plots.

•	 Transform the categorical features with the Label Encoding and Dummies.

7.5.1 Data Loading from S3 and Library
Now we will load all the required Python Library for our model building and
deployment.

import numpy as np

import pandas as pd

import boto3

import re

import sagemaker

from sagemaker import get_execution_role

import matplotlib.pyplot as plt

import seaborn as sns

from scipy import stats

from sklearn.preprocessing import LabelEncoder, StandardScaler

from sklearn.base import TransformerMixin

from warnings import filterwarnings

filterwarnings('ignore')

from sklearn.base import BaseEstimator, TransformerMixin,
RegressorMixin, clone

from sklearn.neighbors import LocalOutlierFactor

248 Continuous Machine Learning with Kubeflow

Load the IAM Role which has been created during the notebook instance.

role = get_execution_role()

role

Figure 7.18: AWS-ARN-IAM path

Now, load the raw data from the S3 bucket, and give the address where it’s located
in the houseprice folder.

bucket_name = 'mysagemakerbucket'. # Your Bucket name

raw_folder=r'houseprice/rawdata/train.csv'

s3_raw_file_location =r's3://{0}/{1}'.format(bucket_name,raw_folder)

Now, load the file as a pandas dataframe; it will access the S3 location.

raw_data=pd.read_csv(s3_raw_file_location)

raw_data.head()

Figure 7.19: Raw DataFrame

7.5.2 Feature Engineering
Now, we will complete the feature engineering steps, prior to our model training
process.

7.5.2.1 Finding Categorical & Numerical Columns
Here, we will find out the numerical and categorical columns by Object type
including and excluding all the features.

num_cols = raw_data.select_dtypes(exclude='object').columns

print('{} Numeric columns \n{}'.format(len(num_cols), num_cols))

categ_cols = raw_data.select_dtypes(include='object').columns

print('\n{} Categorical columns \n{}'.format(len(categ_cols), categ_cols))

Applied ML with AWS SageMaker 249

Figure 7.20: Output Numerical & Categorical Features

Now, we have a total of 38 Numeric Columns and 43 Categorical Columns out of
the 81 columns.

7.5.2.2 Checking the missing values sum
Now, we will check the missing values from the table and then we will prepare for
the different imputation technique.

df_na = (raw_data.isnull().sum()) / len(raw_data) * 100

df_na = df_na.drop(df_na[df_na==0].index).sort_values(ascending=False)

We will plot the missing values count or sum in a bar plot.

with plt.rc_context(rc={'font.size':14}):

 fig, ax = plt.subplots(figsize=(16, 6))

 sns.barplot(df_na.index, df_na, palette="pastel", ax=ax)

250 Continuous Machine Learning with Kubeflow

 ax.set(xlabel='Features', ylabel='Missing values percentages')

 ax.tick_params(axis='x', rotation=55)

Figure 7.21: Missing Values Bar plot of Features

In the preceding screenshot, we can see the order from the most number of Missing
values with PoolQC, Alley, and so on; now we have to fill those columns for our
model building.

7.5.2.3 Log transformation of dependent feature
Now, we will transform our model dependent column to reduce the skewness and
maintain normal distribution across the mean.

def skew_distribution(data, col='SalePrice'):

 fig, ax1 = plt.subplots()

 sns.distplot(data[col], ax=ax1, fit=stats.norm)

 (mu, sigma) = stats.norm.fit(data[col])

 ax1.set(title='Normal distribution ($\mu=$ {:.2f} and $\sigma=$
{:.2f})'.format(mu, sigma))

 fig, ax2 = plt.subplots()

 stats.probplot(data[col], plot=plt)

 print('The {} skewness is {:.2f}'.format(col, stats.
skew(data[col])))

The distribution of the price and fit of normal distribution:

skew_distribution(raw_data, 'SalePrice')

Applied ML with AWS SageMaker 251

So, the distribution plots will look like the following:

Figure 7.22: Normal Distribution Plot Figure 7.23: Probability plot

Therefore, we need to transform it into a more normal distribution, since the linear
models will perform better. So, after the Log Transformation, the Normal distribution
and P-P plot is as follows:

raw_data['SalePrice']=np.log1p(raw_data['SalePrice'])

skew_distribution(raw_data, 'SalePrice')

Figure 7.24: Normal Distribution Plot Figure 7.25: Probability plot

SalePrice is now more Gaussian, and the second plot which represents the probability
plot shows that the distribution follows almost a normal distribution.

7.5.2.4 Correlation & Scatter Plots
Here, we will plot the correlation to check the relation between the variables and
scatter the plots to check the outlier analysis with respect to the dependent feature
House price.

252 Continuous Machine Learning with Kubeflow

corr = raw_data.corr()

top_correlation = corr['SalePrice'].sort_values(ascending=False)[:25]

threshold = 0.51

top_corr = corr.index[np.abs(corr["SalePrice"]) > threshold]

plt.figure(figsize=(10,8))

sns.heatmap(raw_data[top_corr].corr(),annot=True,cmap="RdBu_r")

So, the correlation plot will look like the following:

Figure 7.26: Top correlation Plot

Now, in the preceding screenshot, we can see that we plotted the top correlated
features with the 0.51 threshold value and figured out a few columns which are very
important with respect to the dependent columns.

We will find the mean correlation of the top numeric correlated features.

for col in top_correlation.index[:15]:

 print('{} - unique values: {} - mean: {:.2f}'.format(col, raw_
data[col].unique()[:5], np.mean(raw_data[col])))

Applied ML with AWS SageMaker 253

Figure 7.27: Correlated Mean wrt. Target feature

So, the following columns are the important columns which we figured out for
further analysis through the scatter plot.
cols = 'SalePrice GrLivArea GarageArea TotalBsmtSF YearBuilt 1stFlrSF
MasVnrArea TotRmsAbvGrd'.split()

with plt.rc_context(rc={'font.size':14}):

 fig, ax = plt.subplots(figsize=(16,13), tight_layout=True)

 pd.plotting.scatter_matrix(raw_data[cols], ax=ax, diagonal='kde', alpha=0.8)

Figure 7.28: Scatter Plot

254 Continuous Machine Learning with Kubeflow

These scatter plots will give us some insight into a few outliers, that is, the values
which resemble some incoherent/huge values, which will now impact the models.
Thus, we will only remove a few of them since these ones are really important. We
will remove the principal outliers in the scatter plots of (GrLivRea - GarageArea -
TotalBsmtSF - 1stFlrSF - MasVnrArea - TotRmsAbvGrd) vs SalePrice).

7.5.2.5 Outlier Detection
Now, we will remove the outliers from our Dataset with Sckit-Learn LocalOutlierFactor
Method.
def detect_outliers_plots(x, y,name,top=5, plot=True):
 lof = LocalOutlierFactor(n_neighbors=40, contamination=0.1)
 x_ =np.array(x).reshape(-1,1)
 preds = lof.fit_predict(x_)
 lof_scr = lof.negative_outlier_factor_
 out_idx = pd.Series(lof_scr).sort_values()[:top].index
 if plot:
 f, ax = plt.subplots(figsize=(9, 6))
 plt.scatter(x=x, y=y, c=np.exp(lof_scr), cmap='RdBu')
 ax.set(ylabel='SalePrice', xlabel=name)
 return out_idx

Extract the 8 columns in a separate table and list and drop the null values.

outlier_ana_data=raw_data[['SalePrice','GarageArea','TotalBsmtSF',
'YearBuilt' ,'1stFlrSF','MasVnrArea', 'TotRmsAbvGrd', 'GrLivArea']]

outlier_ana_data.dropna(inplace=True)

cols_out = ['GarageArea','TotalBsmtSF', 'YearBuilt'
,'1stFlrSF','MasVnrArea', 'TotRmsAbvGrd', 'GrLivArea']

for i in cols_out:

 outs = detect_outliers_plots(outlier_ana_data[i], outlier_ana_
data['SalePrice'],i,top=5) #got 1298,523

 print(outs)

Figure 7.29: Output of Index Outlier

Applied ML with AWS SageMaker 255

So, it will return the index of all the outliers in those 7 columns.

Figure 7.30: Normal Distribution Plot

Figure 7.31: Probability plot

We have created a function and called it here to detect the outliers; you can find
the code in GitHub, so don’t get confused if you see this method in the following
section.

256 Continuous Machine Learning with Kubeflow

We extracted the most common outliers from the dataset and found out the outliers.

outliers = [30, 88, 462, 523, 632, 1298, 1324]

from collections import Counter

all_outliers=[]

numeric_features = raw_data.dtypes[raw_data.dtypes != 'object'].index

for feature in numeric_features:

 try:

 outs = detect_outliers(raw_data[feature], raw_
data['SalePrice'],top=5, plot=False)

 except:

 continue

 all_outliers.extend(outs)

print(Counter(all_outliers).most_common())

for i in outliers:

 if i in all_outliers:

 print(i)

Figure 7.32: Outlier Index Count Dictionary

Outliers_table=raw_data.loc[outliers]

Outliers_table=Outliers_table[cols_out]

Outliers_table

Applied ML with AWS SageMaker 257

Figure 7.33: Outlier Table

Now we will delete the outliers via the index lists.

raw_data = raw_data.drop(raw_data.index[outliers])

raw_data.reset_index(drop=True, inplace=True)

raw_data.shape()

Figure 7.34: New Data shape

So, we have removed 7 rows of outliers which were most common.

7.5.3 Feature Transformation
Here, group the columns into numerical, categorical, Label Encoder columns, and
changing datatype of columns.

N= ['GarageYrBlt', 'MasVnrArea','GarageArea', 'GarageCars','BsmtFinSF1',
'BsmtFinSF2', 'BsmtUnfSF','TotalBsmtSF', 'BsmtFullBath',
'BsmtHalfBath','MasVnrArea']

M= ['MSZoning','Electrical','KitchenQual','Exterior1st',
'Exterior2nd','SaleType']

S=['OverallCond','YrSold','MoSold','MSSubClass','GarageCars',
'Fireplaces', 'HalfBath','OverallQual']

L= ['PoolQC','MSSubClass','MasVnrType','Alley','MiscFeature',
'Fence','FireplaceQu','BsmtQual', 'BsmtCond',
'BsmtExposure','BsmtFinType1', 'BsmtFinType2','GarageType',
'GarageFinish', 'GarageQual', 'GarageCond']

cols= ['BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'BsmtQual',
'BsmtCond', 'GarageQual', 'GarageCond', 'GarageFinish', 'GarageType',

258 Continuous Machine Learning with Kubeflow

 'FireplaceQu', 'ExterQual', 'ExterCond',

 'HeatingQC', 'PoolQC', 'KitchenQual',

 'Functional', 'Fence', 'LandSlope',

 'LotShape', 'PavedDrive', 'Street', 'Alley', 'CentralAir',

 'MSSubClass', 'OverallCond', 'GarageCars', 'YrSold',
'MoSold', 'Fireplaces', 'HalfBath']

So, the following transformation() function is used for the imputation of the
numerical columns:

def transformation(data) -> pd.DataFrame:

 for i in N:

 data[i] = data[i].fillna(0)

 for i in M:

 data[i] = data[i].fillna(data[i].mode()[0])

 for i in L:

 data[i] = data[i].fillna("None")

 for i in S:

 data[i] = data[i].astype(str)

 data["LotFrontage"] = data.groupby("Neighborhood")["LotFrontage"].
transform(lambda x: x.fillna(x.median()))

 data["Functional"] = data["Functional"].fillna("Typ")

 data = data.drop(['Utilities'], axis=1)

 return data

Here cat_transform() is used for the categorical label encoding and dummies
transformation:

def cat_transform(data)-> pd.DataFrame():

 le = LabelEncoder()

 for col in cols:

 data[col] = le.fit_transform(data[col])

 data = pd.get_dummies(data)

 return data

Here, the add_features() will add some important features which will help with
our prediction:

def add_features(data)-> pd.DataFrame():

Applied ML with AWS SageMaker 259

 data['TotalSF'] = data['TotalBsmtSF'] + data['1stFlrSF'] +
data['2ndFlrSF'] + data['GrLivArea'] + data['GarageArea']

 # Combine the bathrooms

 data['Bathrooms'] = data['FullBath'] + data['HalfBath']* 0.5

 # Combine Year built, Garage Year Built and Year Remod

 # (with a coeff 0.5 since it's less correlated to Year Built than
the Garage year built).

 data['YearMean'] = data['YearBuilt'] + data['YearRemodAdd'] * 0.5 +
data['GarageYrBlt']

 return data

Now, we have loaded the test dataset without the target columns and here we have
pre-processed together with the train data.

We don't need the Id column so we save it

df_train_id = raw_data['Id']

df_test_id = test_data['Id']

raw_data.drop("Id", axis=1, inplace=True)

test_data.drop("Id", axis=1, inplace=True)

same transformation to the train / test datasets to avoid
irregularities

size_train = len(raw_data.index)

size_test = len(test_data.index)

print((size_train),(size_test))

Figure 7.35: Raw Data /Test Data shape

Now, we merged the Raw data and Test data and prepared for the data transformation.

df_tot = pd.concat([raw_data, test_data], sort=False).reset_
index(drop=True)

df_tot.drop(['SalePrice'], axis=1, inplace=True)

260 Continuous Machine Learning with Kubeflow

print(df_tot.shape)

df_tot.head()

Figure 7.36: Merged Table

Let’s print the shape of the table.
print (df_tot.shape)

df_tot = transformation(df_tot)

print(df_tot. shape)

df_tot = cat_transform(df_tot)

print(df_tot.shape)

Now, we will transform the categorical and impute the missing values, both the
train and the test dataset; following which, we will just separate out our train data
from the merged data and then add features. The following is the process for the
train data:
x = df_tot[:size_train]

x=add_features(x)

print (x.shape)

x.head()

Figure 7.37: Raw Train Data after transformation then separating from merge data

In the preceding screenshot, you can see the shape of the train data changed to
(1453,225) after transformation. After that, we checked the Null values in our data
train which is zero for all columns.

Applied ML with AWS SageMaker 261

logSalesPrice=raw_data['SalePrice']
x.reset_index(drop=True, inplace=True
x.insert(loc=0, column='SalePrice', value=logSalesPrice)
x.head()

Figure 7.38: Now the Final table with target column in first

Now, we will add our independent feature in the first column because we will use
the in-built SageMaker algorithm XG-boost, and it will automatically take the first
column as the target column and rest as the independent features.

7.6 Amazon SageMaker Training Model
Now, for our consideration, our transformed raw data into Dataframe (x)/ train.
csv file is our master table and we will split this into Train/Validation file. We will
evaluate in the Validation dataset, and the test data which we will predict the Target
feature sales price.

Figure 7.39: Amazon SageMaker Train & Deploy (Credit: AWS Docs)

262 Continuous Machine Learning with Kubeflow

7.6.1 Splitting Data into Train/Validation and
push to S3
We will specify your bucket name and then give the path and folder a name, which
we will create in S3.

bucket_name = ‘mysagemakerbucket’ # your bucket name

training_folder = r'houseprice/training/'

validation_folder = r'houseprice/validation/'

test_folder = r'houseprice/test/'

s3_model_output_location = r's3://{0}/houseprice/model'.format(bucket_
name)

s3_training_file_location = r's3://{0}/{1}'.format(bucket_name,training_
folder)

s3_validation_file_location = r's3://{0}/{1}'.format(bucket_
name,validation_folder)

s3_test_file_location = r's3://{0}/{1}'.format(bucket_name,test_folder)

So, the model output and artifacts will store in the model output location, and the
training of the model will store in the training location, the evaluation of model will
be done from the validation data and we will predict our test data from the test file
location.

Figure 7.40: Amazon S3 Folder Structure

Applied ML with AWS SageMaker 263

The structure will look like the preceding screenshot in your S3 bucket. The following
function will be used to push the data to S3 by converting to binary:

def write_to_s3(filename, bucket, key):

 with open(filename,'rb') as f: # Read in binary mode

 return boto3.Session().resource('s3').Bucket(bucket).
Object(key).upload_fileobj(f)

We will split our train data into 80-20 percentage into the train set and validation set
randomly.

df=x.copy()

np.random.seed(5)

l = list(df.index)

np.random.shuffle(l)

df = df.loc[l]

rows = df.shape[0]

train = int(.20 * rows)

test = rows-train

Saving the train/validation/test dataset local path:

Write Training Set

df.iloc[:train].to_csv('house_train_final.csv',index=False,header=False)

Write Validation Set

df.iloc[train:].to_csv('house_validation_final.csv'
,index=False,header=False)

Write test Set

test_csv.to_csv('house_test_final.csv')

Here, we will be pushing out the train/validation/test dataset into S3 by calling the
write_to_s3 function:

write_to_s3('house_train_final.csv', bucket_name, training_folder +
'train.csv')

write_to_s3('house_validation_final.csv',bucket_name, validation_folder +
'validation.csv')

write_to_s3('house_test_final.csv',bucket_name, test_folder + 'test_tran.
csv')

264 Continuous Machine Learning with Kubeflow

So, we have pushed our data to S3.

7.6.2 Train with SageMaker API XG-Boost
which maintains the algorithm container
Now, we will establish a session with AWS by calling the session from SageMaker
SDK.

sess = sagemaker.Session()

Here, we will import the Amazon SageMaker Python SDK and get the XGBoost
container default version. Now, SageMaker API maintains the algorithm container
mapping for us specifying the region, algorithm, and version.

container = sagemaker.amazon.amazon_estimator.get_image_uri(

 sess.boto_region_name,

 "xgboost")

print('Using SageMaker XGBoost container:\n{} ({})'.format(container,
sess.boto_region_name))

 Figure 7.41: XG-Boost Container Location in AWS Cloud and Version

Next, we will configure the training job, and then we will specify the type and
number of instances to use; then we will specify the S3 location where the final
artifacts need to be stored. We will create an instance of the sagemaker.estimator.
Estimator class.

Reference: http://sagemaker.readthedocs.io/en/latest/estimators.html

estimator = sagemaker.estimator.Estimator(

 container,

 role,

 train_instance_count=1,

 train_instance_type='ml.m4.xlarge',

 output_path=s3_model_output_location,

 sagemaker_session=sess,

 base_job_name ='xgboost-Model')

Applied ML with AWS SageMaker 265

In the constructor, you can specify the following parameters:

•	 role: The AWS Identity and Access Management (IAM) role that Amazon
SageMaker can assume to perform tasks on our behalf (for example: it can
read the training results, it can call the model artifacts from our S3 bucket,
and it can write the training results to Amazon S3). This is the role that we
got in during the creation of Notebook instance.

•	 train_instance_count and train_instance_type: So, think of the type
and number of ML compute instances that we use for the model training;
here, we have to use only a single training instance.

•	 train_volume_size: This is the size, in GB, of the Amazon Elastic Block
Store (Amazon EBS) storage volume which will attach to the training
instance. It must be large enough to store our training data if you use the file
mode, which is default.

•	 output_path: This is the path to the S3 bucket where the Amazon SageMaker
stores our training results as a default extension file.

•	 sagemaker_session: This is the session object that will manage the
interactions with SageMaker APIs and for any other AWS service that our
training job will use.

So, we will set the hyperparameter values for our XGBoost training job by calling the
sdk method set_hyperparametersmethod of the estimator class.

estimator.set_hyperparameters(base_score=0.5, colsample_bylevel=1,num_
round=150,

 colsample_bynode=1, colsample_bytree=0.5,

 learning_rate=0.02, gamma=0.025,

 max_depth=4, n_estimators=1500, min_child_weight=2,

 nthread=1, reg_alpha=0., reg_lambda=1, subsample=0.5,

 objective='reg:linear', random_state=28)

Here, we have to create the training channels which will be used for the training job.
We use both the train and the validation channels.

content type can be libsvm or csv for XGBoost

training_input_config = sagemaker.session.s3_input(

 s3_data=s3_training_file_location,

 content_type='csv',

 s3_data_type='S3Prefix')

266 Continuous Machine Learning with Kubeflow

validation_input_config = sagemaker.session.s3_input(

 s3_data=s3_validation_file_location,

 content_type='csv',

 s3_data_type='S3Prefix'

)

data_channels = {'train': training_input_config, 'validation':
validation_input_config}

Now, to start the model training, we will call the estimator's fit method. XGBoost
supports "train", "validation" channels.

#Reference: Supported channels by algorithm

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-
docker-registry-paths.html

estimator.fit(data_channels)

Figure 7.42: XG-Boost Model Fit Logs of RMSE of 0.6942 which is minimum

Applied ML with AWS SageMaker 267

It is a synchronous operation. The method will display the progress logs and it waits
until the training completes before returning.

Go to the training Jobs and Model in Amazon SageMaker service and you can check
all the details of the model hyperparameter and the output artifacts location.

Figure 7.43: XG-Boost Model Training Job Dashboard

Now, the preceding screenshot is of the dashboard of the model which we have
fitted; we will get all the output location and instance type and required information
in the dashboard.

7.7 Amazon SageMaker model deployment
Now, we will deploy from the training job which was fitted earlier and give an
endpoint name and instance type.

Ref: http://sagemaker.readthedocs.io/en/latest/estimators.html

predictor = estimator.deploy(initial_instance_count=1,

 instance_type='ml.m4.xlarge',endpoint_name
= 'xgboost-house-v1')

Here, we will deploy the model that we have trained in create and run a Training Job
by calling the deploy method of the sagemaker.estimator.Estimator object from
SDK. So, now it is the same object which we have used to train our model. When we
call the deploy method, it will specify the number and type of the ML instances that
we want to use to host the endpoint for deployment.

268 Continuous Machine Learning with Kubeflow

Note: If an error comes, please use instance_type=’ml.t2.medium’.

 Figure 7.44: XG-Boost Model Deployment Endpoint

In the preceding screenshot, we can see the endpoint deployment name and below
that, we can call the endpoint, with RealTimePredictor API by passing the name.

endpoint_name = 'xgboost-house-v1'

predictor = sagemaker.predictor.RealTimePredictor(endpoint=endpoint_
name)

Figure 7.45: XG-Boost Model End-Point Cloud-Watch Metrics

Applied ML with AWS SageMaker 269

Now, the preceding screenshot shows the model CPU Utilization and its performance
with respect to time and we can see those in CloudWatch and Cloud logs to track all
the model performance.

Figure 7.46: SageMaker API Notes(Credit :AWS SageMaker SDK)

Now we will set the environment variables.

from sagemaker.predictor import csv_serializer, json_deserializer

predictor.content_type = 'text/csv'

270 Continuous Machine Learning with Kubeflow

predictor.serializer = csv_serializer

predictor.deserializer = None

We need to pass an array; so the prediction can pass a numpy array or a list of values
[[19,1],[20,1]]. Here, we will load the test data and transform the add_features
function, and then we will predict.

t=pd.read_csv("house_test_final.csv")

t=add_features(t)

t.shape

arr_test = t[t.columns[1:]].values

For a large number of predictions, we can split the input data and query the prediction
service. array_split is convenient to specify how many splits are needed.

predictions = []

for arr in np.array_split(arr_test,50):

 result = predictor.predict(arr)

 result = result.decode("utf-8")

 result = result.split(',')

 print (arr.shape)

 predictions += [float(r) for r in result]

Now, we will reverse and transform our log values. We can evaluate our validation
dataset as well.
pred=np.expm1(predictions)

sub=pd.DataFrame()

sub['id']=df_test_id.values

sub['SalePrice']=pred

sub.head()

Figure 7.47: Prediction results

Applied ML with AWS SageMaker 271

So, the preceding table is the prediction output which we have predicted from the
deployed endpoint.

The following is the deployed endpoint:

Figure 7.48: Model Endpoint Dashboard, Delete the endpoint

To avoid incurring unnecessary charges, use the AWS Management Console,
as shown in the preceding screenshot, to delete the resources, or delete from the
Notebook as follows:
sagemaker.Session().delete_endpoint(predictor.endpoint)

7.8 Conclusion
We have come toward the end of this chapter, and you can run and deploy your own
model in cloud with comfort, and use the power of Cloud.

In this chapter, we learned about outlier analysis, feature transformation, and
the imputation of categorical and numerical columns. Then, we learned how to
create notebook in Amazon SageMaker and build a model and deploy it. We also
learned how to use XG-Boost in-built algorithm. Then, we checked the metrics and
performance of our deployed model in Amazon CloudWatch.

7.9 References
•	 https://docs.aws.amazon.com/sagemaker/latest/dg/studio-jumpstart.html

•	 https://docs.aws.amazon.com/sagemaker/index.html

•	 https://github.com/awslabs/sagemaker-churn-prediction-text

272 Continuous Machine Learning with Kubeflow

Web App Development with Streamlit & Heroku 273

Chapter 8
Web App

Development with
Streamlit &

Heroku
In this chapter, we will build an end-to-end web application for the computer

vision models, and build that UI with Streamlit. We will be learning about the
many Open CV models for Image like cropping, changing pixels, and so on. Next,
we will host the Web application with the Heroku Container Registry or Kubernetes
Cluster as a service application in Google Cloud.

Structure
In this chapter, we will cover the following topics:

•	 Problem statement

•	 Setup of project requirements in GCP & Heroku

•	 Introduction on components of Streamlit

•	 Building the Framework for Streamlit for OpenCV models

•	 Creating the components for Heroku Deployment

•	 Deploying the Streamlit code by containerizing in Kubernetes cluster

274 Continuous Machine Learning with Kubeflow

Objectives
After studying this chapter, you will be able to understand the following:

•	 How to use Docker and Kubernetes.

•	 How to build the web application in Python Streamlit without any JavaScript
knowledge.

•	 The various Computer Vision OpenCV models.

•	 How to construct the framework for the Streamlit and host it to Heroku.

•	 How to use Kubernetes and many Google Cloud Platform to leverage the
power of that to deploy and application to host.

8.1 Problem statement
In this chapter, we will be using OpenCV model’s various image processing
technique applications, for which we will build the framework for UI with Streamlit
Library. So, we will be building the OpenCV models like pencil sketch, cropping
image, sharpening image, and color changing image, and then we will add a comic
reader. Then, we will host the application either in Heroku or in Kubernetes cluster
in GCP.

NOTE Rest all the imports I have showed in my Colab Notebook, for
which the hyperlink of the GitHub Account of this chapter is given.
Note Colab platform Python 3.x. RUN IN GOOGLE COLAB

 CODE https://github.com/bpbpublications/Continuous-Machine-
Learning-with-Kubeflow/tree/main/Chapter8

8.2 Setup of project requirements in GCP
& Heroku
Google Cloud Platform: Create an account with your email id and you will be
redirecting to the home page of the cloud account.

You must have an active GCP account, and while you practice this chapter, it might
charge for running the Kubernetes cluster, as I am running all the codes MacOS. I
recommend some basic Kubernetes and Docker knowledge is a must.

Web App Development with Streamlit & Heroku 275

Figure 8.1: Google Cloud Platform

Heroku: Create an account with your email id.

Figure 8.2: Heroku Platform

Let’s build the Streamlit component in the following section.

8.3 Introduction on components of Streamlit
Streamlit is an open-source app framework and is the easiest way for the data
scientists and machine learning engineers to create beautiful, performant apps in a

276 Continuous Machine Learning with Kubeflow

few hours. The goal of Streamlit is to create an interactive app for our data or model
and, along the way, to use Streamlit to check, debug, perfect, and share our code.

Set up your virtual environment: pip install streamlit==0.71.0

Features:

•	 We can build an app with a few lines of code and leverage the Streamlit
simple API, which we will automatically update as we can save the source
Python file.

Figure 8.3: Streamlit Features 1

•	 We can add the various widgets for the variable declaration in Python like
checkbox, slider, text box, and so on. No need for the hard coding of the
variables from the backend and define routes, which will handle the HTTP
requests and so on.

Figure 8.4: Streamlit Features 2

Web App Development with Streamlit & Heroku 277

•	 Instantly host your application on prem or cloud without much effort and
maintenance.

Figure 8.5: Streamlit Features 3

So, these are the most import features for Streamlit.

8.3.1 Main concepts
First, let’s write a few Streamlit commands into a Python script, then we will run it
with the Streamlit run. A new tab will open in your default browser. It’ll be blank for
now. That’s OK.

```bash

streamlit run your_script.py

```

Figure 8.6: Streamlit Host URL on-prem

Working with Text:

streamlit.write(*args, **kwargs)

“Swiss Army knife”. You can pass almost anything to st.write(): text, data,
Matplotlib figures, Altair charts, and more. Use specific text functions to add content
to your app.

streamlit.title(body)

278 Continuous Machine Learning with Kubeflow

It displays the text in the title format.

streamlit.subheader(body)

This API displays the text in the sub-header format.

streamlit.code(body, language='python')

It displays a code block with the optional syntax highlighting.

streamlit.latex(body)

This one displays the mathematical expressions formatted as LaTeX.
import streamlit as st
import pandas as pd
import numpy as np

st.title('My first Web Application')
st.subheader("This is Subheader for Maths Equation")

st.markdown('Streamlit is **_really_ cool**.')
st.latex(r'''f(x)=a_0 +\sum_{n=1}^{∞}(a_n + b_n)\left(\frac{1-r^{n}}{1-
r}\right)
 cos\left(\frac{nπx/L}{1-r}\right)sin\left(\frac{nπx/L}{1-r}\right)''')

st.write('Hello, *World!* :sunglasses:')
code = '''def python():
 print("Hello, Streamlit!")'''
st.code(code)

Now, open Bash or Terminal, wherever the code is, then run streamlit run
Basics.py:

Figure 8.7: Streamlit Text Components

Web App Development with Streamlit & Heroku 279

So, the preceding screenshot shows the output for the Text components for the
Streamlit tool.

Working with Media:
streamlit.audio(data, format='audio/wav', start_time=0)

This API displays an audio player.

streamlit.image(image, caption=None, width=None, use_column_width=False,
clamp=False, channels='RGB', output_format='auto', **kwargs)

It’s easy to embed images, videos, and audio files directly into your Streamlit apps.

streamlit.video(data, format='video/mp4', start_time=0)

Here, this API displays a video player.

Now, open Bash or Terminal, wherever the code is, then run Streamlit run
Basics.py.

Figure 8.8: Streamlit Media Components

So, the preceding is the output for the media components for Streamlit.

Working with Media :
streamlit.button(label, key=None)

It is used to display a button widget.

streamlit.checkbox(label, value=False, key=None)

This API displays a checkbox widget.
streamlit.selectbox(label, options, index=0, format_func=<class 'str'>,
key=None)

280 Continuous Machine Learning with Kubeflow

It displays a select widget.

streamlit.radio(label, options, index=0, format_func=<class 'str'>,
key=None)

It is used to display a radio button widget.

streamlit.multiselect(label, options, default=None, format_func=<class
'str'>, key=None)

This API displays a multiselect widget. The multiselect widget starts as empty.

streamlit.slider(label, min_value=None, max_value=None, value=None,
step=None, format=None)

It displays a slider widget. This supports int, float, date, time, and datetime types.
streamlit.text_input(label, value='', max_chars=None, key=None,
type='default')

This API displays a single-line text input widget.
streamlit.number_input(label, min_value=None, max_value=None,
value=<streamlit.elements.utils.NoValue object>, step=None, format=None,
key=None)

Display a numeric input widget.

Let’s build the preceding API in our Python script:
import streamlit as st

import pandas as pd

import numpy as np

from PIL import Image

import datetime

st.title('My first Web Application for Widget')

Button

if st.button('HIT ME'):

 st.write('Hello welcome to my world :sunglasses:')

else:

 st.write("It's time for GoodBye")

Checkbox

condition = st.checkbox('Do you want?')

if condition:

Web App Development with Streamlit & Heroku 281

 st.write('Welcome to my checkbox world!')

RadioButton

sport = st.radio(

 "What's your favorite sport?",

 ('Cricket', 'Football', 'Hockey'))

if sport == 'Cricket':

 st.write('You selected Cricket.🏏')
elif sport =='Football':

 st.write('You selected Football. ⚽')

elif sport=='Hockey':

 st.write('You selected Hockey.🏏')
else:

 st.write("You didn't select anything.")

SelectBox

option = st.selectbox(

 'Which movie type you want to see?',

 ('Romantic', 'Action', 'Horror'))

st.write('You selected:', option)

Multiselect

options = st.multiselect(

 'What are your favorite colors',

 ['Green', 'Yellow', 'Red', 'Blue'],

 ['Yellow', 'Red'])

st.write('You selected:', options)

Slider

age = st.slider('How old are you?', 0, 130, 25)

st.write("I'm ", age, 'years old')

Text Input

title = st.text_input('Movie title', 'Dark night Rises')

st.write('The current movie title is', title)

282 Continuous Machine Learning with Kubeflow

Number Input

number = st.number_input('Insert a number')

st.write('The current number is ', number)

#File Upload

uploaded_file = st.file_uploader("Choose a CSV file", type="csv")

st.set_option('deprecation.showfileUploaderEncoding', False)

if uploaded_file:

 text_io = io.TextIOWrapper(uploaded_file)

 if text_io is not None:

 data = pd.read_csv(text_io)

 st.write(data)

Input Date

d = st.date_input(

 "When's your birthday",

 datetime.date(2019, 7, 6))

st.write('Your birthday is:', d)

Now, open Bash or Terminal, wherever the code is, then there run Streamlit run
Basics.py. And open the link, http://Localhost:8051, in your browser.

Web App Development with Streamlit & Heroku 283

Figure 8.9: Streamlit Media Components

284 Continuous Machine Learning with Kubeflow

So, the preceding is the output for the media components for Streamlit.

Working with Data & Chart:
streamlit.dataframe(data=None, width=None, height=None)

It displays a dataframe as an interactive table.
streamlit.line_chart(data=None, width=0, height=0, use_container_
width=True)

It displays a line chart. Similarly, we can plot Bar plot, and Area Chart.
streamlit.plotly_chart(figure_or_data, width=0, height=0, use_container_
width=False, sharing='streamlit', **kwargs)

It displays an interactive Plotly chart. Plotly is a charting library for Python.

import streamlit as st

import pandas as pd

import numpy as np

st.title('My first Web Application for Data & Chart')

Data Table

df = pd.DataFrame(np.random.randn(4, 2),columns=('col %d' % i for i in
range(2)))

st.dataframe(df) # Same as st.write(df)

Line Chart

chart_data = pd.DataFrame(np.random.randn(20, 3),columns=['a', 'b',
'c'])

st.line_chart(chart_data)

plotly

import plotly.express as px

df = px.data.gapminder().query("year == 2007")

fig = px.sunburst(df, path=['continent', 'country'], values='pop',

 color='lifeExp', hover_data=['iso_alpha'],color_
continuous_scale='RdBu',

 color_continuous_midpoint=np.average(df['lifeExp'],
weights=df['pop']))

st.plotly_chart(fig, use_container_width=True)

Web App Development with Streamlit & Heroku 285

Now, open Bash or Terminal, wherever the code is, then run Streamlit run
Basics.py. Then, open the following link in your browser: http://Localhost:8051

Figure 8.10: Streamlit Data & Charts Components

For further API study, please visit the following link: https://docs.streamlit.io/en/
stable/api.html.

8.4 Building the Framework for Streamlit
for OpenCV models
To build a framework for Streamlit for OpenCV models, complete the following
steps:

STEP 1: Load all the Dependency for the Computer Vision Model and Streamlit.
import streamlit as st

import cv2

286 Continuous Machine Learning with Kubeflow

import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
import io
import cv2 as cv
import os
import glob
import requests
from bs4 import BeautifulSoup
import urllib.request
import random
import pandas as pd
from io import BytesIO
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

STEP 2: Now we will set some Logo and Title for our application. Then, we can
select the OpenCV model from the dropdown. Then, st.sidebar.selectbox()
will add the widget to the right side of the UI.

st.markdown("![Alt Text](https://raw.githubusercontent.com/
aniruddhachoudhury/AR-RL-/master/CoMPUTER%20VISION.gif)")

st.title("Computer Vision Use Case")

st.sidebar.subheader("Choose Computer Vision Model")

model = st.sidebar.selectbox("Model", ("Pencil Sketch","Crop
Image","Sharp Image","Color Spacer","Comic Reader"))

Figure 8.11: Streamlit dropdown of models

Web App Development with Streamlit & Heroku 287

STEP 3: In this step, we will write one heading with the st.write() function, and
we will set some depreciation option. Next, we will upload the image in any format
of jpg, png, and so on, so the st.file_uploader() object will be stored inside file_
image.

 st.write("This Web App is to help convert your photos to
realistic images")

 st.set_option('deprecation.showfileUploaderEncoding', False)

 file_image = st.sidebar.file_uploader("Upload your Photos",
type=['jpeg','jpg','png'])

 st.set_option('deprecation.showfileUploaderEncoding', False)

Figure 8.12: Streamlit st.file_uploader()

STEP 4: Now, let’s build the first model for OpenCV Pencil Sketch. If we gave the
condition that if you want to select the model from Step 2 here, it will be the pencil
sketch, and the dodgeV2() and pencilsketch() function will do the necessary
pre-processing like transforming and scaling the image, and returning the output.
The st.image() function will show the input and output image in the browser.
The st.write() function shows the text you want in your browser. The st.file_
uploader() function will return a BytesIO object. However, Image.open() accepts
a string to read an image.

def dodgeV2(x, y):

 return cv2.divide(x, 255 - y, scale=256)

def pencilsketch(inp_img):

288 Continuous Machine Learning with Kubeflow

 img_gray = cv2.cvtColor(inp_img, cv2.COLOR_
BGR2GRAY)
 img_invert = cv2.bitwise_not(img_gray)
 img_smoothing = cv2.GaussianBlur(img_invert,
(21, 21),sigmaX=0, sigmaY=0)
 final_img = dodgeV2(img_gray, img_smoothing)
 return(final_img)
if model == "Pencil Sketch":
 st.subheader("PencilSketcher app to Cartoon Image")
if file_image is None:
 st.write("You haven't uploaded any image file")
else:
 input_img = Image.open(file_image)
 final_sketch = pencilsketch(np.array(input_img))
 st.write("**Input Photo**")
 st.image(input_img, use_column_width=True)
 st.write("**Output Pencil Sketch**")
 st.image(final_sketch, use_column_width=True)

Now, open Bash or Terminal, wherever the code is, and then run Streamlit run
Master.py. Then, open the following link in your browser: http://Localhost:8051.

Figure 8.13: OpenCV Pencil Sketch Output

Web App Development with Streamlit & Heroku 289

STEP 5: Now, let’s build the second model for the OpenCV cropping and changing
pixel. If we gave the condition that if you want to select the model from Step 2 here,
then it will be the Cropping Image. The st.file_uploader() function will return
a BytesIO object. However, Image.open() accepts a string to read an image. Next,
we will use the st.sidebar.slider() function for selecting the pixel coordinates
from the slider for all the coordinates. We have added one if condition – either you
want to crop or not. After that, we will do the necessary OpenCV image cropping
operations and pixel change. The st.image() will dump the image and show the
input and output image in the browser.

if model == "Crop Image":

 st.subheader("Crop your Image app to your size")

 if file_image is None:

 st.write("You haven't uploaded any image file")

 else:

 input_img = Image.open(file_image)

 image = np.array(input_img)

 x, y = image.shape[:2]

 height, width = image.shape[:2]

 print(height,width)

 st.sidebar.subheader("Choose Pixel for image")

 # Let's get the starting pixel coordiantes (top
left of cropping rectangle)

 startrowper=st.sidebar.slider("Start Row", min_
value=0., max_value=1.0)

 startcolper=st.sidebar.slider("Start Column",
min_value=0., max_value=1.0)

 endrowper=st.sidebar.slider("End Row", min_
value=0., max_value=1.0)

 endcolper=st.sidebar.slider("End Column", min_
value=0., max_value=1.0)

 Crop = st.sidebar.selectbox("You want to Crop",
("Yes", "No"))

 if Crop=='Yes':

 start_row, start_col = int(height * startrowper),
int(width * startcolper)

 # Let's get the ending pixel coordinates (bottom
right)

290 Continuous Machine Learning with Kubeflow

 end_row, end_col = int(height * endrowper), int(width
* endcolper)

 # Simply use indexing to crop out the rectangle we desire

 cropped = image[start_row:end_row , start_col:end_col]

 row, col = 1, 2

 fig, axs = plt.subplots(row, col, figsize=(15, 10))

 fig.tight_layout()

 axs[0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

 axs[0].set_title('Original Image')

 cv2.imwrite('original_image.png', image)

 st.image('original_image.png', use_column_width=True)

 axs[1].imshow(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))

 axs[1].set_title('Cropped Image')

 cv2.imwrite('cropped_image.png', cropped)

 st.image('cropped_image.png', use_column_width=True)

 else:

 st.write("You don't want to crop")

Now, open Bash or Terminal, wherever the code is, and then run Streamlit run
Master.py. Then, open the following link in your browser: http://Localhost:8051.

Web App Development with Streamlit & Heroku 291

Figure 8.14: OpenCV Pixel change Output

So, the preceding is the output for the OpenCV pixel changer model in the Streamlit
app.

STEP 6: Now let’s build the third model for OpenCV sharpening our image. If we
gave the condition that if you want to select the model from Step 2 here, it will be
the Cropping Image. The st.file_uploader() function will return a BytesIO object.
However, Image.open() accepts a string to read an image.

Next, we will use the st.sidebar.slider() function for selecting the pixel
coordinates from the slider for all the coordinates. After that, we will do the necessary
OpenCV image sharpening with the cv2.filter2d kernel and normalization
application. st.image() will dump the image and show the input and output image
in the browser.

if model == "Sharp Image":

st.subheader("Sharpen your Image")

 if st.sidebar.button('Changer'):

 showpred = 1

 if file_image is None:

292 Continuous Machine Learning with Kubeflow

 st.write("You haven't uploaded any image file")

 else:

 input_img = Image.open(file_image)

 image = np.array(input_img)

 row, col = 1, 2

 fig, axs = plt.subplots(row, col, figsize=(15, 10))

 #fig.tight_layout()

 axs[0].imshow(cv2.cvtColor(image, cv2.COLOR_
BGR2RGB))

 axs[0].set_title('Original Image')

 # Create our shapening kernel, we don't
normalize since the

 # the values in the matrix sum to 1

 kernel_sharpening =
np.array([[-1,-1,-1],[-1,9,-1], [-1,-1,-1]])

 # applying different kernels to the input
image

 sharpened = cv2.filter2D(image, -1, kernel_
sharpening)

 axs[1].imshow(cv2.cvtColor(sharpened, cv2.
COLOR_BGR2RGB))

 axs[1].set_title('Image Sharpening')

 st.image(input_img, use_column_width=True)

 cv2.imwrite('sharpen_image.jpg', sharpened)

 st.image('sharpen_image.jpg', use_column_
width=True)

Now, open Bash or Terminal, wherever the code is, and then run Streamlit run
Master.py. Then, open the following link in your browser: http://Localhost:8051.

Web App Development with Streamlit & Heroku 293

Figure 8.15: OpenCV Sharpening Output

STEP 7: Now, let’s build the fourth model for the OpenCV colour spacer change. If
we gave the condition that if you want to select the model from Step 2 here, it will be
the Cropping Image. The st.file_uploader() function will return a BytesIO object.
However, Image.open() accepts a string to read an image. Next, we have added the
st.sidebar.selectbox() function on the sidebar for UI; here we have different
OpenCV colour changing options like “bw”, ”hsv”, and so on. Then, if the condition
matches the option which we chose, it will do the necessary operations, and at last
st.image() will show the image inside the browser.

 if model == "Color Spacer":

 st.subheader("Sharpen your Image")

 cs = ["bw","hsv","yuv","lab"]

 color_space = st.sidebar.selectbox("Pick a space.", cs)

 if st.sidebar.button('Changer'):

 showpred = 1

 if file_image is None:

 st.write("You haven't uploaded any image file")

294 Continuous Machine Learning with Kubeflow

 else:
 input_img = Image.open(file_image)
 st.write("**Input Photo**")
 st.image(input_img, use_column_width=True)
 src = np.array(input_img)
 if color_space == "bw":
 image = cv.cvtColor(src, cv.COLOR_
BGR2GRAY)
 if color_space == "hsv":
 image = cv.cvtColor(src, cv.COLOR_
BGR2HSV)
 if color_space == "yuv":
 image = cv.cvtColor(src, cv.COLOR_
BGR2YUV)
 if color_space == "lab":
 image = cv.cvtColor(src, cv.COLOR_
BGR2LAB)
 st.write("**Output Pencil Sketch**")
 st.image(image,use_column_width=True)

Now, open Bash or Terminal, wherever the code is, and then run Streamlit run
Master.py. Then, open the following link in your browser: http://Localhost:8051.

Figure 8.16: OpenCV Colour Changer Output

Web App Development with Streamlit & Heroku 295

So, the preceding is the output for the OpenCV model components in Streamlit.

We composed all the models under a function like the following:
def main():
 {
CODE
}

if __name__ == '__main__':
 main()

To locally debug the test, we run the command, Streamlit run Basics.py.

Figure 8.17: Local Host URL for App

8.5 Creating the components for Heroku
Deployment

Figure 8.18: Heroku Architecture

296 Continuous Machine Learning with Kubeflow

Now, create the Python Script for your application, containerize your whole
Framework with Docker, release the build to App inside Heroku, and then host the
application inside and deploy it there, which will generate a host URL.

Now, we will build the Docker image; for that, make sure you start the Docker, after
which you will see the Docker is activated on the top. In the following screenshot,
we can see that the first icon Docker is started. You can stop or restart from that icon.

Figure 8.19: Docker Activation

Heroku provides three ways to deploy your Dockerized app. We will be using the
Container Registry.

Figure 8.20: Heroku Deployment Method

The Heroku Deployment folder consists of the following files:

Figure 8.21: Heroku Deployment Folder

Now, let’s create the Docker file for the Heroku Deployment.

Dockerfile:

FROM ubuntu:18.04

streamlit-specific commands for config

ENV LC_ALL=C.UTF-8

ENV LANG=C.UTF-8

RUN mkdir -p /root/.streamlit

RUN bash -c 'echo -e "\

[general]\n\

Web App Development with Streamlit & Heroku 297

email = \"\"\n\

" > /root/.streamlit/credentials.toml'

RUN bash -c 'echo -e "\

[server]\n\

enableCORS = false\n\

" > /root/.streamlit/config.toml'

RUN apt-get update && \

 apt-get install -y \

 python3.7 python3-pip \

 libsm6 libxext6 libxrender-dev

EXPOSE 8501

make app directiry

WORKDIR /streamlit-docker

Figure 8.22: Heroku Docker requirements File

COPY requirements.txt ./requirements.txt

RUN pip3 install -r requirements.txt

COPY . .

Figure 8.22: Heroku Docker requirements File

RUN chmod +x ./heroku_startup.sh

ENTRYPOINT "./heroku_startup.sh"

298 Continuous Machine Learning with Kubeflow

Let’s breakdown the Docker as follows:

•	 FROM: To get a base image. Just like you need an OS as a basis of your
application.

•	 MAINTAINTER: To show the message about the author of this image.

•	 ENV: To set an environment variable to a certain value.

•	 RUN: To execute the command requirements file which contains the Python
libraries.

•	 EXPOSE: To let your container listen on the specific port while running.

•	 WORKDIR/ COPY: To set the working directory, copy new files/directories.

•	 CMD: To provide default actions when executing the container.

•	 Change the permission of heroku_startup.sh or you will receive the
permission denied error while executing heroku_startup.sh.

•	 ENTRYPOINT "./heroku_startup.sh": To tell the Docker to execute heroku_
startup.sh when starting the container.

•	 The purpose of the second and the third RUN Command in the preceding line
is to let OpenCV run normally in Docker to mitigate an issue that if we don’t
install libSM.so.6 and import OpenCV when building the Docker Image, our
container will silently crash with the following message: segmentation fault
(core dumped) when executing.

 Heroku.yml:

build:

 docker:

 web: heroku.Dockerfile

run:

 web: ./heroku_startup.sh

Heroku needs heroku.yml to build and deploy the Docker images, so we will create
one for the usage. Obviously, the build and run sections indicate what we wanted to
do in build and run in the stage on Heroku, respectively.

Heroku_startup.sh:

echo PORT $PORT

streamlit run --server.port $PORT Master.py

Web App Development with Streamlit & Heroku 299

Heroku uses a $PORT environment variable for the port exposure. We have to set
the $PORT variable to Streamlit or your app will not appear. In this case, we will
expose at 8501.

Installation:
Now download Heroku CLI : https://devcenter.heroku.com/articles/heroku-
cli#download-and-install

Install Brew: https://brew.sh/

 brew tap heroku/brew && brew install heroku

 sudo snap install --classic heroku

The Component Steps are as follows:

•	 First log in to your Heroku account and follow the prompts to create a new
SSH public key.
$ heroku login

•	 Sign in to the Container Registry:
$ heroku container:login

Figure 8.23: Heroku Login for CLI

•	 Navigate to the app’s directory and create a Heroku app:
 $ heroku create

Figure 8.24: Heroku App creation

300 Continuous Machine Learning with Kubeflow

•	 Build the image and push to the Container Registry in one command. Make
sure you started the Docker. And make sure you change the app name below
for your case which will be created above.

$ heroku container:push web -a hidden-river-78993

Figure 8.25: Heroku Container Built and Pushed message

•	 Then release the image to our app which we have created; here it will be
hidden-river-78993.
$ heroku container:release web -a hidden-river-78993

Figure 8.26: Heroku Container released to App

Now, open the app in your browser or we can navigate to the website and click on
Open app at the right corner.
$ heroku open-a hidden-river-78993

Figure 8.27: Heroku Website Click Open App

Web App Development with Streamlit & Heroku 301

Now, we can see our web Application hosted in Heroku.

Figure 8.28: Computer Vision App hosted in Heroku

8.6 Deploying the Streamlit code by
containerizing in Kubernetes cluster

Figure 8.29: Architecture for GCP Kubernetes Deployment

Now, create the Python script for your application and containerize your whole
Framework with Docker and deploy the application inside Kubernetes cluster as
a deployment service and the Docker image will be exposed as a Load Balancer
deploy, which will generate a host URL on port 8501:

302 Continuous Machine Learning with Kubeflow

•	 A Container is a type of software that packages up an application and all
its dependencies, so the application runs reliably from one computing
environment to another.

•	 Docker is a software used for building and managing the containers.

•	 Kubernetes is an open-source system for managing the containerized
applications in a clustered environment.

•	 Google Kubernetes Engine is an implementation of the open source
Kubernetes framework on the Google Cloud Platform.

Let’s build the Docker image with everything being the same from earlier, just
remove the last two lines from the earlier Heroku Dockerfile and add one line of
CMD to run the Streamlit Python script:

FROM ubuntu:18.04
ENV LC_ALL=C.UTF-8
ENV LANG=C.UTF-8
RUN mkdir -p /root/.streamlit

RUN bash -c 'echo -e "\
[general]\n\
email = \"\"\n\
" > /root/.streamlit/credentials.toml'

RUN bash -c 'echo -e "\
[server]\n\
enableCORS = false\n\
" > /root/.streamlit/config.toml'

RUN apt-get update && \
 apt-get install -y \
 python3.7 python3-pip \
 libsm6 libxext6 libxrender-dev

EXPOSE 8501
WORKDIR /streamlit-docker
COPY requirements.txt ./requirements.txt
RUN pip3 install -r requirements.txt
COPY . .
CMD streamlit run Master.py

Web App Development with Streamlit & Heroku 303

Now, run the following commands in Bash to build the Docker image for your GCP
deployment, assuming you have the GCP project as a pre-requisite:

``` bash

gcloud init

gcloud auth configure-docker

PROJECT_ID=$(gcloud config get-value core/project)

IMAGE_NAME=opencv-streamlit

IMAGE_NAME=gcr.io/$PROJECT_ID/$IMAGE_NAME

IMAGE_TAG=v1

# build image

docker build --no-cache  -t  $IMAGE_NAME:$IMAGE_TAG .

docker push $IMAGE_NAME:$IMAGE_TAG

```

Let’s say our Docker image will be like the following: gcr.io/<PROJECT_ID>/
opencv-streamlit:v1

Make sure you install kubectl which we have installed in Chapter 1, Introduction
to Kubeflow & Kubernetes Cloud Architecture. Also, go to the following link: https://
kubernetes.io/docs/tasks/tools/install-kubectl/

Create Cluster:
To setup the Kubernetes cluster, either you use Google Cloud Shell or Microsoft
Visual Studio Terminal of your system. Navigate to Google Cloud Platform >
Kubernetes > Cluster.

Figure 8.30: GCP Cloud Shell

304 Continuous Machine Learning with Kubeflow

Now, complete the following steps:

1. Set your project ID and Compute Engine zone options for the gcloud tool.

PROJECT_ID=$(gcloud config get-value core/project)

gcloud config set project $PROJECT_ID

gcloud config set compute/zone us-central1

2. Create a cluster by executing the following code:

gcloud container clusters create streamlit-computer-vision --num-
nodes=2

Figure 8.31: Cluster Creation

3. Connect to cluster by clicking on the Connect button.

gcloud container clusters get-credentials streamlit-computer-
vision --region us-central1 --project <PROJECT_ID>

Figure 8.32: Cluster Connect

4. To deploy and manage the applications on a GKE cluster, you must
communicate with the Kubernetes cluster management system. Execute the
following command to deploy the application:
kubectl create deployment computervision-streamlit --image=gcr.
io/<PROJECT_ID>/opencv-streamlit:v1

Figure 8.33: Successful Deployment Message

5. The containers you run on GKE are not accessible from the internet because
they do not have external IP addresses. Execute the following code to expose
the application to the internet:

kubectl expose deployment computervision-streamlit
--type=LoadBalancer --port 80 --target-port 8501

Web App Development with Streamlit & Heroku 305

Figure 8.34: Successful LoadBalancer Service Message

6. Execute the following code to get the status of the service. EXTERNAL-IP is
the web address you can use in the browser to view the published app.
kubectl get service

Figure 8.35: Successful Service Message

Copy the External IP and paste it in a browser. We will get our application
http://34.71.219.0

Now, we can see our web application hosted in Google Cloud Platform:

Figure 8.36: Computer Vision App hosted in Google Kubernetes Engine

8.7 Summary
In this chapter, we learned how to build a web application with the Streamlit tool in
Python without having prior knowledge to any other language. Then, we hosted the
application in the Heroku Platform and Google Kubernetes Engine.

Next, we learned about the various Streamlit components for how to display the
text, image, charts, and so on. Also, we built the framework for our web application
for the various computer vision OpenCV models like Sharpening, Cropping Image,
and so on. After that, we saw the architecture to build the Heroku deployment which

306 Continuous Machine Learning with Kubeflow

is a common skeleton to be used for all Skelton Machine Learning web application
deployment alongside Google Kubernetes Engine.

In this chapter, we have gained knowledge on how to leverage the power of Google
Cloud Platform and how to use your Devops knowledge with Machine Learning to
become an MLops. Also, we also learned how to use Streamlit to build Skelton Web
application in just a few hours in Heroku and Cloud.

8.8 References
 ● https://devcenter.heroku.com/categories/referencehttps://technowhisp.

com/kaggle-api-python-documentation/

 ● https://docs.streamlit.io/en/stable/api.html

 ● https://kubernetes.io/docs/tutorials/kubernetes-basics/

 ● https://cloud.google.com/kubernetes-engine/docs/quickstart

 ● https://www.pyimagesearch.com/start-here/

 ● https://docs.docker.com/get-started/overview/

 ● https:/ /devcenter.heroku.com/articles/container-registry-and-
runtime#unsupported-dockerfile-commands

Index 307

Index

A
Amazon SageMaker Notebook Instance

creating 242-245
Amazon SageMaker Training model 261

data, splitting into train/validation
262

deploying 267-271
SageMaker API XG-Boost, using 264-

267
train data, pushing to S3 263
validation data, pushing to S3 263

auto-scaling
algorithm 129
panic 129
working concept 129

AWS S3 Bucket
creating 241

AWS SageMaker
problem statement 236
setup 236-240

B
brain tumor 87
breakdown technique

for building production pipeline 46

C
Cloud IAP

OAuth, setting up from 27
cluster 10
CNN Kubeflow Pipeline

architecture 90, 91
building 90
data extraction or ingestion

component, building 91-95

308 Continuous Machine Learning with Kubeflow

data pre-processing component,
building 95-100

evaluation component, building 106
GCP Kubeflow setup 86
model, serving with KF Serving 106-

113
problem statement 86
problem statement analytics 87
training model component,

building 101-105
components, KF Serving

endpoint 66
explainer 66
predictor 66
transformer 66

components, Kubeflow 20
central UI 21
dashboard 24
Jupyter Notebook server 23
Katib 24
Metadata 22, 23
registration flow 21, 22

container 3
features 2, 3

container isolation 3
contrastive explanations 178
cumulative effect of interactions 186
custom Docker image

building 35
using, in Jupyter Notebook 36

D
decision plot

features 184-186
default namespace 18
deployment 12

using 13

desirable properties, SHAP
consistency 177, 178
local accuracy 177
missingness 177

Docker 2
reference link, for installation 29
setting up 29

Docker architecture
image 3
VM containers 3

Dockerfile 4, 5
Docker Hub

URL 29
Docker image 3

F
Fairness Indicators 159
Fairness metric visualization 159
feature exposure 215
force plots analysis 186-189

G
gcloudsdk

installing 26
setting up 26, 27

GCP Kubeflow setup
cluster, connecting to 34
Docker, setting up 29
gcloudsdk, installing 26
gcloudsdk, setting up 26, 27
Grafana, deploying 34
kubectl, installing 26
kubectl, setting up 26
Kuberflow, setting up 30-34
OAuth, setting up from Cloud IAP 27,

28
performing 25, 26

Index 309

prerequisites 24
reference link 24

Google Cloud Platform (GCP) 24
Google Kubernetes Engine (GKE) 8
Grafana dashboard

serving traffic endpoint performance,
monitoring with 81-84

H
Heroku Deployment

components, creating for 296-301
high availability

health checks 7
load balancing 7
traffic routing 7

histogram-based algorithms
advantages 218

I
Ingress 15

architecture 16, 17

J
Jupyter Notebook

correlation and scatter plots 251-254
custom Docker image, using 36-39
data, loading from Python library 247
data, loading from S3 247, 248
feature engineering 248
feature transformation 257-261
launching 245, 246
missing values sum, checking 249, 250
model dependent column

transformation 250, 251
numerical and categorical columns,

finding 248, 249
outlier detection 254-257
PVC setup 39-43

server 23
server, setting up in Kuberflow 35

K
Kaggle API

API Key, setting up 203, 204
installing 203
URL 203

Katib
reference link 24

kfctl command line interface (CLI)
using 31

KF Serving
architecture 66
components 66
LightGBM model, serving with 226-

231
used, for serving TensorFlow model

65
using 67

Knative 124
Knative Pod Autoscaler (KPA) 125
Knative Serving 124
kubectl

installing 26
setting up 26

Kubeflow 18
architecture 19
components 20
features 20
Jupyter Notebook server, setting up 35
setting up, in Kubernetes cluster 30-34

Kubeflow central UI
URL 21

Kubeflow orchestration, for ML
deployment 18

310 Continuous Machine Learning with Kubeflow

Kubeflow pipeline
building 47
building, for TensorFlow model 49
data extraction 47
data ingestion 47
data pre-processing 48
GCP Kuberflow setup 46
problem statement 46
serving 48
training 48

Kubeflow Pipeline Orchestrator
building 164-173

kube-node-lease namespace 18
kube-public namespace 18
Kubernetes

advantages 6
capabilities 5, 6
cluster orchestration system 8
components 9
features 6
master 8
Nodes 9
purpose 6
slave 9
working 8

Kubernetes components
cluster 10
deployment 12
network 11
node 9, 10
pod 11
service 14
storage 12

Kubernetes, features
automated rollouts and rollbacks 7
canary deployments 7

designed for deployment 7
high availability 7
open-source 6
portable 6
programming languages and

framework support 7
Stateful containers 7
workload scalability 6

kube-system namespace 18

L
LightGBM 182

architecture 217
working 217

LightGBM model
data extracting 213
data loading 213
exploratory data analysis 213-215
Kaggle API key setup 211, 212
Kaggle setup, obtaining 209
library, installing 209
modeling, for equity data 208
performance, monitoring with Grafana

dashboard 231, 232
serving, with KF Serving 226-231
training 182, 183
training, for equity data 208
training, with Weights & Biases 217-

226
utility metrics function 215
Wandb API key setup 210
Wandb dependency, obtaining 209

LightGBM parameters
reference link 220

Index 311

M
machine learning (ML) 22
master, Kubernetes

API server 8
Control Manager 9
scheduler 9

mean absolute error 216
metadata, Kuberflow

managing 22, 23
model analysis

with advance visualization, along
SHAP tool 183, 184

N
namespaces

default 18
kube-node-lease 18
kube-public 18
kube-system 18
multiple namespaces, using 17, 18

network 11
node 9, 10
Nodes

Container Engine 9
Kubelet 9
Kube Proxy 9
Pod 9

O
OAuth

setting up, from Cloud IAP 27, 28

P
persistent volume (PV) 37, 38
pipeline, CNN TensorFlow model

building 114-124

pipeline, TensorFlow model
building 73-81

pod 11
Principal Component Analysis (PCA)

215
profile setup, Kubeflow 21, 22
project requirements, GCP & Heroku

setup 274, 275
project requirements, GCP & Wandb

Kaggle API setup 203, 204
Kubeflow Cluster 203
setting up 202
Weights & Biases API Key 204-206

PVC
setting up, for Jupyter Notebook 39-43

R
root mean square error 216

S
Service 14

purpose 14
types 15

serving component, TensorFlow model
pipeline

building 67-72
serving endpoint, CNN TensorFlow

model
auto-scaling, with Knative 124-128

serving traffic endpoint, TensorFlow
model

performance, monitoring with Grafana
81-83

SHAP
desirable properties 177
explanation example 178
goal 176
installation 179

312 Continuous Machine Learning with Kubeflow

Python libraries, installing 179
solid theoretical foundation 178
Spearman correlation 216
Stateful containers

ephermal storage volume 7
persistent storage 8
volume 7

storage 12
Streamlit 275

code deployment, by containerizing in
Kubernetes cluster 301-305

commands, writing into Python script
277

data & chart, working with 284, 285
features 276, 277
framework, building for OpenCV

models 285-295
media, working with 279-282
text, working with 277, 278

Streamlit component
building 275, 276

T
Tensorboard

advanced visualization, for
TensorFlow model 195-197

TensorFlow Estimator model
building 189-193
building, with DNN Classifier 194
building, with Linear Model Classifier

estimator 194
building, with two estimators 193

TensorFlow model
evaluating, with Tensorboard 195-197
evaluating, with What-If tool 197-199

TensorFlow Model Analysis (TFMA)
158

TensorFlow model pipeline
building 49, 50
data extraction or ingestion

component, building 50-54
data pre-processing component,

building 54-59
Docker image, building for data

extraction 53
evaluation component, building 65
training model component, building

60-65
TensorFlow Serving

inference, performing on example data
162-164

installing 161
model, serving with 161
running 162

TFMA metric visualization 158
TFX components

Evaluator 133
ExampleGen 133
ExampleValidator 133
functionality 134
Pusher 133
SchemaGen 133
StatisticsGen 133
Trainer 133
Transform 133

TFX environment setup 134
root directory, setting 135, 136

TFX Pipeline
architecture 132
problem statement 132

TFX pipeline components 136, 137
Evaluator, building 157, 158
ExampleGen, building 137, 138
ExampleValidator, building 142, 143

Index 313

Pusher, building 159, 160
SchemaGen, building 140-142
StatisticsGen, building 139, 140
Trainer, building 149-155
training, analyzing with TensorBoard

156
Transform, building 143-148
Tuner, building 156

training model
feature transformation 180-182

types, Services
ClusterIP (default) 15
ExternalName 15
Headless 15
LoadBalancer 15
NodePort 15

U
utility metrics function

mean absolute error 216
root mean square error 216
Spearman correlation 216

W
Wandb sweep architecture 219
Weights & Biases

API, creating 206
API Key 204
features 206
Framework and Cloud support 205
using 207, 208

What-If tool
advanced visualization, for

TensorFlow model 197-199
wit-widget

installation 179
Python libraries, installing 179, 180

workload scalability
auto-scaling 6
horizontal infrastructure scaling 6
manual scaling 6
replication controller 7

314 Continuous Machine Learning with Kubeflow

	1
	2

