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Preface

This book on Concepts of Artificial Intelligence and Its Application in Modern Healthcare Systems
captures the use of Al in today’s healthcare scenario. The book’s material focuses on applications
and challenges in relevant areas. The work is the result of our effort to put together a representative
collection of chapters covering most advanced techniques and development in the healthcare
domain. The chapter contents are listed according to the book’s theme. The contents are explained
in the application area where Al is applicable in medical and different technologies. This approach
also helps readers to find the advances in healthcare areas together with technologies. The chapters
include introductory contents in addition to the chapter introduction. The history and evolution of
healthcare technology states that healthcare is in demand and a top priority today. Hence, the
chapters have been collected and presented in the book. A more efficient and practical aspect of
implementation of Al techniques should be further enhanced and applied in the healthcare area.

The book is intended for, and inclined to, researchers, students, and academicians, as well as
developers and industry parties in multidisciplinary areas. The editors of the book envision the
numerous problems and their solutions in the healthcare area and believe that this book provides
ample references for improving the quality in a course of healthcare technology.

The editors sincerely thank all contributors who have agreed to present their work in our book.
They are also grateful to the reviewers whose helpful remarks ensured the quality of the authors’
presented work. Special thanks to Ms. Jubi and Ms. Isha for their invaluable collaborations in
making this book a reality.
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2 Concepts of Al and Its Application in Modern Healthcare Systems

1.1 INTRODUCTION

In artificial intelligence (Al), “artificial” refers to objects that are made or produced by humans
rather than occurring naturally, and “intelligence” refers to the ability to form tactics to achieve
goals by interacting with an information-rich environment. In other words, Al is a broad term that
refers to any technique that allows computers to simulate human intelligence through the use of
logic [1]. In the twenty-first century, Al has gotten a lot of attention and applications, although its
origins are far older. Since the stone era, humanity has progressed at an exponential rate. Because
of the massive growth in the population, difficulties caused by such pressure have also increased.
People today are dying at a far higher rate from cancer, mental problems, and depression, or as a
result of modernised warfare. Humanity underwent many biological alterations over time to
become what it is now. Such alterations, as well as the expanding human chain, have resulted in
significant variances in specific human genes, resulting in a variety of physiological, psycholog-
ical, and biological differences. In addition, as population clusters with various races of people
develop, space accommodation has resulted in a vast junction of animal and human territory, which
has led to many outbreaks and pandemics. Humans have been known to turn to prayers in the past,
but this has changed as people have discovered medical characteristics in natural substances, and
now modern technology, designed medications, and new procedures have replaced them [2]. The
quantity of exposure of live beings to invisible rays that cannot be felt but can travel through our
bodies varies depending on geography and technological support. Some of them have the power to
wreak havoc on our DNA, resulting in genetic abnormalities that can spread to future generations
or simply harm our health.

Even though we have the resources for treatment, we can’t always fight nature, which is why so
many people die every day. But, instead of relying on traditional ways, what if we focused on
individualised or automated therapies, assisted surgeries, personalised lifestyle recommendations,
and, most importantly, preventing such diseases in individuals? We don’t need any psychic abilities to
accomplish this goal, thanks to technological advancements. Imagine people predicting ailments your
unborn child would acquire in the future by merely looking at your genes, allowing you enough time
to consider methods, treatments, or even having a child when adoption seems more compassionate.
Genetic profiling may be the solution. All of these new technologies go under the umbrella of artificial
intelligence, a notion that was first envisioned in the mid-1990s and is still transforming the world
every day, with a slew of new capabilities awaiting release until hardware issues are resolved [3].

Al simply refers to a machine’s ability to think and act rationally and practically like a person. It
is now aimed at automating basic tasks that need basic human intellect, such as computing,
analysing, and predicting or recommending actions, among other things. Al could help doctors
better manage patient pathways or treatment strategies, as well as provide them with practically all
the information they need to make outstanding healthcare and medical decisions [4]. Al has
already established itself in several fields of healthcare, and it is only beginning to change things
radically, starting with the creation of treatment strategies and progressing through the automation
of repetitive tasks through medication administration and drug research. Since the world has gone
digital, mountains of data are awaiting analysis. Every day, a large amount of data is generated in
healthcare as well. Patients’ medical histories, eating habits, geographic location, and other factors
can all be examined using modern algorithms. Various authorities and institutes are using large
datasets containing medical records to anticipate probable diseases that may be on the rise in a
specific area. Animal populations and their environs can be studied to forecast epidemics, and
outbreaks can be tracked to determine their origin, clusters, routes, and mutations. People might be
immediately reminded of their upcoming check-ups and appointments. Individuals can be advised
to take a vaccination course based on their area and other factors. A genetic test can aid in the
identification of defective/abnormal genes that can be used to forecast genetic disorders, as well as
susceptibility to a specific disease or strain. Lifestyles can also be examined to determine if any
issues could lead to the development of other diseases.
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Doctors don’t have to memorize nearly as much information as they did 50 years ago. Al is
prepared to take this reality to the next level. The time spent on ‘“thinking” is getting into a
position to consider, make a choice, or research something. Much more time was spent finding
or obtaining information than processing it. To get the data into a comparable format, it took
more than a few hours of calculation. When they were in comparable form, it took only a few
seconds to decide. As Al advances, it will be able to increase the energy of a person’s thinking
in three key areas: advanced computation, statistical analysis, and hypothesis development [5].
These three areas correspond to three distinct AI waves. Specialists typically monitor more
than 50 patients each day, which can be a great degree of debilitating thinking when considering
the amount of notice and information required for each individual. Unlike a doctor, Al is
unaffected by the number of patients, the length of the workday, or task redundancy. Al assists
doctors in assessing a patient’s health risk and then applying intelligence to not only improve the
quality of care but also to monitor and advise patients on the adverse effects of specific
medications.

The influence of Al across the globe is troubling, with technologically advanced tools pro-
viding enhanced decision-making, disease discovery, and management of chronic and acute
illnesses. Doctors and other medical professionals use Al to diagnose patients more accurately
and quickly. In medicine, Al employs arithmetical algorithms as well as data science from the
human body to create diagnoses that are superior to those made by doctors. This allows pro-
fessionals to take immediate action in the case of disorders that could otherwise develop seri-
ously. Healthcare systems must be viewed as a collection of heterogeneous, distributed, and
omnipresent systems that speak different languages, integrate medical devices, and are person-
alized by different entities, which were set by people living in different situations and pursuing
different aims. As a result, architecture has been designed to support medical uses in the form of
an organization for the integration, dispersal, and archiving of medical data and the electronic
medical record, in the shape of a web spider of the intelligent information-processing system, its
main subsystems, their functional roles, and the flow of information and control among them,
with modifiable autonomy. The quality of service will be improved with such web-based sim-
ulated systems. In the field of healthcare, artificial intelligence is being used in a variety of ways.
Keeping track of medical records and data management is the most visible application of artificial
intelligence in healthcare. This tracking involves getting it together, storing it, standardizing it,
and tracking its lineage. It is the first step toward transforming the available healthcare systems.
Recently, Google’s Al research arm, Google DeepMind Health, launched its Google DeepMind
Health project, which mines medical statistics to provide incredibly good and timely health
services [6].

Data management is the most widely used application of artificial intelligence and digital
automation in healthcare since accumulating and evaluating data is a necessary step. To provide
faster, more consistent access, robots collect, store, re-layout, and trace data. The amount of
health data that is currently available has increased over the last decade. Every day, large
amounts of data (patient information, diagnosis information, new research discoveries, and so
on) are generated in the healthcare industry. The use of big data and analytical tools has helped
organizations gain the insights needed to collaborate more efficiently with patients and make
better decisions; from cutting costs to streamlining hospital staff schedules, enabling remote
patient monitoring to anticipate epidemics, and this reliance on big data and storing it has been
growing noticeably [7]. Al is an area of computer science and technology that deals with
the modelling of intelligent behaviour in computer systems. Combining the power of Al with the
experience, information, and human interaction of clinicians will improve the high quality of
patient care while simultaneously lowering its cost. Al can be used to examine data from entire
patient populations to find new evidence and select high-quality healthcare practices.
Performing routine tasks analysing tests, x-rays, CT scans, data entry, and other routine tasks are
all part of the job.
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1.2 REVOLUTIONS OF ARTIFICIAL INTELLIGENCE (Al) IN MEDICAL FIELD

Al improves the quality of care while simultaneously increasing the productivity and efficiency
of care. In the sphere of healthcare, artificial intelligence is anticipated to rise from $2.1 billion to
$36.1 billion by 2025, with a CAGR of 50.2 percent. Machine learning (ML) plays an important role
in the development of innovative medical treatments for treatment. ML is also used to keep track of
the patient’s data and to administer treatment. Hospitals in the medical field have acknowledged the
need to be digitalised and are integrating into administrative processes as time passes and the con-
struction of digital India takes place. Finland, Germany, the United Kingdom, Israel, China, and the
United States are some of the countries that are heavily investing in Al research [5].

Medical advancements are now being driven by ML in domains such as pharmaceuticals and
vaccines, medical devices, medical imaging, and radio genomics. This process can result in a
healthcare system that is both cost-effective and patient-centered. The main hurdle for Al is en-
suring their use in regular clinical practise. On a large scale, Al will not replace human clinicians;
rather, it will supplement their efforts to care for patients.

* Inventions of Al

* In 2017, an artificial intelligence-assisted surgery was performed to suture constricted
blood arteries. This research was carried out at the Maastricht University Medical
Centre in the Netherlands.

* A report published by Stanford University in 2017 described the successful application
of AL algorithms to detect skin cancer [7].

* In China, a robot passed the medical licensing exam in 2017, and this robot takes and
analyses patient data autonomously. The robot gathers basic information and directs you
to an actual doctor who is ready to begin therapy right away. This direction means that
the robot does not replace doctors, but rather assists doctors and patients in providing
faster and more precise care.

* Robot doctors (dentists) are considerably superior to human dentists since they can
work independently and more efficiently. A dental implant can be performed by the
robot without any errors. In 2018, this transition occurred in China. The staff was just
in charge of supervising the implant robot.

* Leonardo da Vinci Si is a surgical robot that performs operations. It improves its
technology in the future by using knowledge from previous procedures. It includes 3D
cameras and surgical equipment that mimic the movements of the operating surgeon.

* Deep-learning algorithms identified 23 patients who were at a higher risk of cardiovas-
cular disease. Intel worked on this with the Scripps Research Institute in California [5].

* According to a study, Al using deep learning was able to diagnose breast cancer at a
higher rate than medical personnel. With the use of machine-learning technology, Path
Al is assisting pathologists in making more accurate diagnoses. This system has also
worked with pharmaceutical companies.

* Atomize employs artificial intelligence to combat major diseases such as Ebola and
multiple sclerosis. This use aids in the prediction of bioactivity and the identification
of patient features for clinical studies [5].

* Advantages of Artificial Intelligence (AI) in Field of Healthcare

* Increase productivity: the treatment and check-up procedure is rapidly accelerating. In
a recent interview, Dr. Kevin Sandeman stated that Al systems can diagnose at a faster
rate than humans.

* Improved diagnosis accuracy: Al improves analytical accuracy and reduces bias.

* Improve patient outcomes: Al benefits patients by improving treatment efficacy,
reducing the number of needless surgeries, and improving the quality of services pro-
vided to them [8].
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* According to Dr. Tuomas Mirtti, AI can make quick decisions and solve issues more
precisely and quickly than humans.

1.3 APPLICATION AREAS OF Al IN HEALTHCARE

Al has incredibly expanded the healthcare sector in past decades. Al applications have been
applied to unveil information and assist healthcare providers in a wide range of clinical tasks, like
assistance with case triage, enhanced image scanning and segmentation, supported decision
making, integration and improvement of workflow, disease risk prediction, patient appointment
scheduling, and treatment tracking. However, the applications of Al technology to disease
detection, cancer patient screening, therapy selection, reducing medication errors and productivity
improvement is now creating its way [8].

Furthermore, COVID-19 has created tremendous chaos around the world, affecting people’s
lives and causing a large number of deaths. In such a situation, Al application to COVID- 19 has
increased, especially to the medical-imaging data, screening positive cases, predictive and ana-
Iytical model in decision making, treatment planning, prediction of future cases, and vaccine
development. Al technology has already shown its potential to track the spread of COVID- 19, as
well as satisfy high-risk patients. It has also shown vast effectiveness in predicting real-time
infection rates by adequately analysing the previous data [8]. It is noticeable that Al platforms such
as Bluedot Global have predicted the COVID- 19 cases before the cases started from China.

There are different ways to build Al systems for healthcare, i.e., find healthcare problems to
apply Al solutions without due consideration to the local context. Hence, when establishing an Al
system in healthcare, it is important not to replace the principal elements of human interaction in
medicine but to focus on those interactions and improve their efficiency and effectiveness.
Moreover, Al innovation in healthcare will come through in-depth, human-centered understanding
of the complexity of patient journey and care pathway [8]. Figure 1.1 illustrates application area of
Al in healthcare and medicines.

1.3.1  PATiENT CARE

One of the biggest benefits of Al is to help people stay fit and healthy so they don’t need a doctor,
or not at least as often. Al has increased the ability for healthcare professionals to clearly
understand day-to-day patient needs, and with that understanding, they are able to judge, provide
feedback, and support for staying healthy. Babylon Health provides relevant information on health
and triage based on symptoms explained by the patient [10].

* Jvion: Identifying hidden patient risk across various diseases and if the risk trajectory can
be changed to a positive outcome [11].

* Wellframe: Wellframe delivers interactive-care programs directly to patients on mobile
devices. Clinical portfolio based on evidence-based care enables the care team to provide
a personalized experience for any patient [12].

* GNS Healthcare: The company uses machine learning to reveal the driver of disease
progression and how patients respond to drugs [13].

» Zakipoint Healthcare: The company displays all relevant health-related data at the
member level on the dashboard to understand healthcare expenses and population risk and
how to mitigate these risks [14].

For pregnant women, early identification and management of risk are essential to provide them
with early treatments. ‘SAFER’ is a risk assessment and risk management approach that has been
developed to assess antenatal risk and develop a comprehensive clinical management plan.
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FIGURE 1.1 Areas where Al is used in healthcare and medicine [9].

1.3.2 MebicAL IMAGING AND DIAGNOSTIC

The bulk of medical data that is associated with each patient in today’s healthcare system is
staggering and increasing every day. Though the doctors and medical personnel are extremely
knowledgeable and well trained, they are like other human beings who can make mistakes in
absence of adequate data. So Al is helping to make more accurate diagnoses at a faster rate while
reducing cost. Advanced medical imaging helps precisely analyse and transform images and model
possible situations [10].

» SkinVision: SkinVision enables to the assessment of skin spots and common skin cancer
by taking photos of skin from phones and sending risk indications by the clinical vali-
dation technology within 30 seconds.

* MammoScreen: MammoScreen with mammography to aid breast cancer detection. The
system is designed to identify the suspicious spots for breast cancer on 2D digital mam-
mograms and assess their likelihood of malignancy.

In recent years, Al is widely used in diagnosing COVID-19 cases and identifying patients with
ventilator support. Huiying Medical, a company in China, has developed an Al-based medical-
imaging system solution with 96% accuracy.

1.3.3 RESEARCH AND DEVELOPMENT

Drug research and development is one of the recent applications of Al in healthcare. New drugs are
discovered based on previous data and medical intelligence [15].
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* NuMedii: NuMedii is a biopharma company that discovers de-risk effective new drugs
by translating life science big data and Al into therapies. The company has built a
technology AIDD (Artificial Intelligence of Drug Discovery) that uses big data and Al to
discover connections between drugs and diseases.

Genome editing in Al is very powerful. Al in genetics is used to identify harmful genes and
treatment of diseases. Gene editing has the ability to cut out disease-causing genes. CRISPR
(clustered regularly interspaced short palindromic repeat) can edit deoxyribonucleic acid with
remarkable precision.

* 4Quant: The company utilizes big data and deep-learning technology to extract mean-
ingful, actionable information from images and videos for experiment design to help pick
and choose which components make the most sense for the needs.

1.3.4 HEALTHCARE MANAGEMENT

Healthcare management is creating an optimal market strategy for a brand based on market per-
ception and target segment.

* Healing: The company’s Migraine Buddy is an advanced migraine reporting and tracking
application. The application has recorded terabytes of data that help patients, doctors, and
researchers better understand the cause and effect of neurological disorders.

Process automation technologies such as intelligent automation and RPA helps hospitals automate
routine reporting. Customer service chatbots help patients’ clear queries regarding bill payments,
appointments, and medication refill. Patients may make false claims leveraging Al-powered fraud-
detection tools that can help hospital managers to identify fraudsters. There are too many possible
Al use cases in healthcare to be listed here, and they can be identified by the practitioners. A
machine-learning-based solution can be built in areas where significant training data is available,
and the problem statement can be formulated in a clear way [16].

1.3.5 ARTIFICIAL INTELLIGENCE IN STATISTICAL ANALYSIS

Al has exploded in popularity in a variety of fields and regions during the previous decade.
Unsurprisingly, healthcare is one of the industries that has been transformed by artificial intelli-
gence. While companies have broadened their applications of artificial intelligence, the funda-
mental application of Al remains in high demand: data analysis and prediction. With so many
technical breakthroughs, storage and processing technologies have grown in their own right,
allowing infrastructures to keep a digital footprint or record of everything they’ve done in the past.
Logs aren’t the only thing that’s being saved now that storage isn’t an issue. People’s responses
and medical histories, as well as test results, symptoms, medication, medication response, genetical
constitution, and other information, are collected anonymously or not, freely or not, to keep track
of everything related to healthcare. People have created numerous innovative methods to analyse
this massive mountain of data and draw meaningful conclusions as technology has progressed. To
maintain a deployable dataset, private organisations or the government may record all data from
hospitals or clinics [16].

1.3.5.1 Pharmaceutical Use

Response to drugs is one example of where statistical analysis has been shown to be beneficial.
People willingly participate in surveys in which their medical records, including tests and progress,
are kept to determine the efficacy of a treatment or procedure against a specific medical problem.
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The public can learn about any recurring pattern of symptoms, depending on location, gender, food
habits, culture, and other factors, as well as the effectiveness of a particular prescription in people
classified into various groups and their treatment progress. Once completed, it is easy to determine
if a certain population is segregated on any possible criteria for the majority of the population,
which improves treatment efficiency. Studies can be carried out to see if there is a link between
symptoms and lifestyle, culture, or geography, and this information can then be utilised to map the
condition accordingly.

1.3.5.2 Outbreak Prevention and Tracking

Data capturing a strange or novel symptom in a region progressively moving across the vici-
nities can be used to detect illness outbreaks, their origins, symptoms, impacts, and, most
crucially, the pattern and pace with which they travel. This detection can save a lot of lives since
it enables governments, healthcare organisations, and pharmaceutical companies, both world-
wide and locally, to be prepared for a potential epidemic and begin working on determining the
reason and root of the problem to create a defence. This ability was demonstrated in the last
pandemic, where scientists and health organisations predicted the speed and scope of infection,
the appearance of new variations due to mutation, their origin, symptoms, and path every day.
This ability has saved lives since people were aware of the scope of the harm and were prepared
for it. The same method was utilised to discover patterns, which aided in the discovery of any
potential medicine or vaccination adverse effects that may or may not affect people depending
on their lifestyles, age, or geographic region. This made it possible to build a working vacci-
nation with minimal side effects in a short amount of time, which would not have been con-
ceivable in the past [16]. This enabled super-quick vaccine development and manufacture,
which would not have been possible without statistical analysis of volunteer responses to
prototypes.

1.3.5.3 Genetics

It’s also employed in the field of analysing the recurrence/susceptibility of a given disease in persons
who share specific genes. Genetic illnesses can be inherited through a lengthy family history, and
blood tests are often ineffective in detecting them. People rely on symptoms to determine whether
they have a genetic disease that is incurable. People can now use artificial intelligence to discover
defective genes even before a child is born by looking at the genetic makeup of the child’s parents,
and so prevent a child’s quality of life from deteriorating. Identification of specific genes among
millions of genes necessitates extensive investigation. People can also use Al to map probable genetic
diseases or abnormalities in people all over the world based on their geographical birthplace,
ancestry, race, and other factors.

It is fair to conclude that all of these, as well as a slew of additional Al benefits, have aided in
improving the quality of life through greater preparedness and responsiveness. So much data and
data analysis tools have aided individuals and organisations in doing research, seeing trends,
learning and understanding the causes, and inventing treatments and techniques. As a result of
these capabilities, our healthcare business is making rapid progress and assisting people in sur-
viving ailments that were once thought to be fatal.

1.4 USE IN THE DEVELOPMENT OF MEDICINE AND VACCINES

The drug development process begins with existing data gathered from a variety of sources,
including high-throughput compound and fragment screening, computer modelling, and publicly
available information. Al is employed in many areas of the pharmaceutical business, including
medication development and discovery. It decreases human workload and allows for the
achievement of goals in a short time. Al can also help with decision-making and determining the
best treatment for a patient.
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It will provide the healthcare business a huge boost because they can now produce more and
more efficiently in less time, and vaccines can be manufactured in less time with fewer drawbacks.
Machine-learning models learn to discover patterns from a large number of training instances that
would be impossible for a human to remember. However, using AIML technology is a difficult
task because, first and foremost, we must feed and save all data to the machine, and then train it
according to that data, which can be difficult at times, and we must conduct numerous trials to
ensure that it is remembered. Additionally, its maintenance costs are high and take a long time.
However, in the end, it greatly aided us and saved us time. This method enabled the rapid
development of the COVID-19 vaccine, which benefited the entire country.

1.4.1 CHALLENGES FACED IN DRUG DEVELOPMENT

Vaccine and medicine development can be a lengthy and laborious process due to the large amount
of data available and the inability to recognise all previous trials, primarily due to the complexity
of different people’s immune systems and the various tasks involving fragment screening, com-
putational modelling, and information from the literature. Another issue in drug research is
increasing R&D efficiency, which is defined as the number of medications authorised by the FDA
per billion dollars spent on R&D alone. That is why Al is the technology that can save all of the
data and trials while also making them less expensive and more successful.

1.4.2 Al IN DRUG DEVELOPMENT

By reducing the number of produced compounds that are then tested in either an in vitro or in vivo
system, Al systems can lower attrition rates and R&D costs. Validated artificial intelligence ap-
proaches can be utilised to improve drug development success rates; however, the Al techniques that
are used in the development process must be validated before being applied to the drug development
process.

The first step in the retrosynthesis process is to recursively and sequentially analyse the target
compounds, breaking them down into small fragments or building blocks that can be easily pur-
chased and prepared. The second stage is to figure out how these fragments will be converted into
target molecules. Some technologies, such as SPiDER, which is based on Al and is used to forecast
the molecular target of B-lapachone or other compounds, save development time. The process of
drug repurposing becomes more appealing and practical using Al. The idea of adapting an existing
therapeutic for a new disease has advantages because the new drug is qualified and can proceed
directly to phase II trials for a different indication without having to go through phase I clinical
trials and toxicology testing.

1.4.3 Al IN PATTERN RECOGNITION

Artificial intelligence aids in the development of vaccines that contain highly immunogenic viral
components. Artificial intelligence can identify hit and lead compounds, allowing for faster
validation of the vaccine target and therapeutic structure design optimization. Al can also
forecast prospective toxicity risks, as well as possible synthetic routes for drug-like molecules,
pharmalogical properties, protein characteristics, efficacy, drug combination and drug target
connection.

The binding affinity of a medicine is measured using Al-based methods that conssider either the
features or similarities of the drug and its target. Machine-learning algorithms were taught by the
researchers to anticipate the intensity of viral fragments displayed on the human cell interface.
Machine-learning techniques and predictive model software also aid in the discovery of target-
specific virtual molecules and their connection with their particular targets, all while maximising
safety and efficacy [17].
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1.5 LIMITATION OF ARTIFICIAL INTELLIGENCE IN HEALTHCARE

Al depends on digital data, so inconsistencies in the availability and quality of data restrict the
potential of Al. Also, significant computing power is required for the analysis of large and complex
data sets. While many are enthusiastic about the possible uses of Al in the NHS, others point to
the practical challenges, such as the fact that medical records are not consistently digitized across the
NHS, and the lack of interoperability and standardization in NHS IT systems, digital recordkeeping,
and data labelling [18]. There are questions about the extent to which patients and doctors are
comfortable with digital sharing of personal health data [19]. Humans have attributes that Al systems
might not be able to authentically possess, such as compassion [20]. Clinical practice often involves
complex judgments and abilities that Al currently is unable to replicate, such as contextual knowl-
edge and the ability to read social cues [21]. There is also debate about whether some human
knowledge is tacit and cannot be taught [22]. Claims that Al will be able to display autonomy have
been questioned on grounds that this is a property essential to being human and by definition cannot
be held by a machine [9].
While AI offers a number of possible benefits, there also are several risks:

1.5.1  Security CONCERNS

The prerequisite of enormous datasets means designers are motivated to gather such information
from numerous patients. A few patients might be worried that this assortment might disregard their
security, and claims have been documented dependent on information dividing among enormous
wellbeing frameworks and Al developers [11]. Al could embroil protection in another manner:
Al can foresee private data about patients despite the fact that the calculation never got that data.
(To be sure, this is regularly the objective of medical services Al.) For example, an Al framework
could possibly distinguish that an individual has Parkinson’s infection dependent on the shaking of
a PC mouse, regardless of whether the individual had never revealed that data to any other person
(or didn’t have a clue). Patients should seriously think about this as an infringement of their
protection, particularly if the Al framework’s surmising were accessible to outsiders, for example,
banks or extra security organizations.

1.5.2 INFORMATION ACCESSIBILITY TRAINING

Al frameworks require a lot of information from sources, for example, electronic well-being records,
drug store records, protection claims records, or purchaser-created data like wellness trackers or
buying history. In any case, well-being information is regularly hazardous. Information is ordinarily
divided across a wide range of frameworks. Indeed, even besides the assortment recently referenced,
patients ordinarily see various suppliers and switch insurance agencies, prompting information split
in different frameworks and numerous configurations. This discontinuity builds the danger of
blunder, diminishes the breadth of datasets, and expands the cost of get-together information—which
likewise restricts the sorts of elements that can foster successful medical care Al

1.5.3 PREDISPOSITION AND IMBALANCE

There are risks, including inclination and disparity in medical care Al. Computer-based intelligence
frameworks gain from the information on which they are prepared, and they can join predispositions
from that information. For example, if the information accessible for Al is mainly accumulated in
scholastic clinical focuses, the subsequent Al frameworks will think less about—and, along these
lines, will treat less adequately—patients from populaces that don’t normally visit scholarly clinical
focuses. Essentially, if discourse acknowledgment Al frameworks are utilized to interpret experience
notes, such Al might perform more regrettable when the supplier is of a race or sexual orientation
underrepresented in preparing data.



Al in Healthcare 11

1.5.4 WouNDs AND BLUNDERS

The clearest danger is that Al frameworks will at times be off-base, and that patient injury or other
medical care issues might result. On the off chance that an Al framework suggests some unacceptable
medication for a patient, neglects to see cancer on a radiological sweep, or designates a clinic bed to
one patient over another in light of the fact that it anticipated wrongly which patient would help more,
the patient could be harmed. Obviously, numerous wounds happen because of clinical blunders in the
medical care framework today, even without the association of Al. Simulated intelligence blunders
are possibly unique for no less than two reasons. To begin with, patients and suppliers might respond
contrastingly to wounds coming about because of programming than from human blunders. Second,
if Al frameworks become broad, a basic issue in one Al framework may harm many patients—as
opposed to the set number of patients harmed by any single supplier’s mistake.

Most Al-based clinical gadgets exist as programming, and they are by and large new gadgets
unique in relation to the conventional gadgets as far as administrative issues. Thus, new approaches
should be set up to support and direct such gadgets. The International Medical Device
Regulators Forum has sorted these Al programming planned to be utilized for clinical purposes as
“Programming as a Medical Device (SaMD)” [13]. In the U.S., the Digital Health Unit was set up by
the FDA’s Center for Devices and Radiological Health in May 2017 to advance the skill in com-
puterized medical services gadget endorsements and guidelines, and the FDA has reported the rules
for SaMD in December 2017 [14]. The FDA recognizes that the current guidelines for conventional
clinical gadgets are not reasonable for SaMDs that are quickly being developed and modified [23].
FDA has as of late fostered a Software Precertification Program, which empowers quicker adver-
tising of SaMD through an engineer-focused affirmation pathway, not at all like the current pathway
fixated on individual items. Makers who accomplished ’authoritative greatness’ in this pathway can
get an exclusion from premarket audits for generally safe items. Japan, as per the Al clinical
improvement plans reported in 2018, is intending to make thorough principles overseeing the uti-
lization of Al in clinical gadgets to limit the current Al clinical gadget-related debates and forestall
the subsequent R&D hindrances [24]. Lastly, in Korea, the “Endorsement and Review Guidelines for
Big Data and Al-based Medical Devices” and “Audit Guidelines for Clinical Effectiveness of Al-
based Medical Devices” were declared in 2017, making them a portion of the primary Al-related
endorsement rules in the world [25] However, the normalized survey file for the security and viability
of Al-based clinical gadgets is as yet missing worldwide [26].

1.6 PREDICTIONS OF FUTURE ARTIFICIAL INTELLIGENCE (Al) IN HEALTHCARE

When we talk about artificial intelligence, we can’t just treat it as one technology, but a collection of
them. Most of these technologies are relevantly connected to the healthcare field, but the processes
and the tasks they do vary widely. Looking at our current progress in Al, we can see that Al will play
a very important role in the healthcare offerings of the future.

So, let’s talk about some particular Al technologies of high importance to healthcare.

As we can see that the form of machine learning is the primary capability behind the devel-
opment of precision medicine, agreed worldwide to be a sorely needed advance in healthcare.
Although the current Al technology can’t provide diagnosis and treatment recommendations to all
the diseases, with the early efforts we can make great progress. Even though it may prove chal-
lenging, we expect that Al will ultimately master this domain as well. Given the significant ad-
vancements in Al for imaging analysis, most radiology and pathology images are expected to be
reviewed by Al at some time. Speech and text recognition are already being used for tasks like
patient communication and clinical note capture, and this trend will continue.

The most difficult hurdle for Al in many healthcare fields is assuring its acceptance in daily
clinical practice, not whether the technologies are capable enough to be useful. Al systems must be
approved by regulators, integrated with EHR systems, standardized to the point that similar products
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work in a similar way, taught to physicians, paid for by public or private payer organizations, and
updated over time in the field for widespread adoption to occur. These obstacles will be overcome in
the end, but they will take considerably longer than the maturation of the technologies themselves. As
a result, we predict Al will be used in therapeutic settings only to a limited extent.

It’s also becoming clear that Al systems will not replace human clinicians on a large scale, but
rather will enhance their efforts to care for patients. Human physicians may progress toward
activities and job designs that rely on essentially human skills like empathy, persuasion, and big-
picture integration in the future. Those that refuse to work with artificial intelligence may be the
only ones who lose their careers in the long run.

The most common application of classical machine learning in healthcare is precision medicine,
which involves predicting which treatment techniques are most likely to succeed on a patient based
on a variety of patient characteristics and the treatment context. The great majority of machine-
learning and precision medicine applications require supervised learning, which requires a training
dataset with the end variable (e.g., illness onset) known.

If we talk about the most complex forms of machine learning, we’ll learn that it involves deep
learning or neural network models with many levels of features or variables that are meant to
predict outcomes. There could be thousands of hidden elements in such models, which are revealed
by today’s graphics processing units and cloud architectures’ speedier processing. Recognizing
possibly malignant tumors in radiography pictures is a common application of deep learning in
healthcare. Deep learning is increasingly being used in radionics, which is the discovery of
clinically significant patterns in imaging data that are beyond what the human eye can see. In
oncology-focused image analysis, both radionics and deep learning are routinely used. Their
combination appears to promise improved diagnostic accuracy than the previous generation of
computer-aided detection (CAD) techniques for image analysis.

Patient participation and adherence have long been seen as the ‘last mile’ challenge in healthcare,
the final barrier between ineffective and good health results. The more patients actively participate in
their own well-being and treatment, the better the outcomes—utilization, financial outcomes, and
member experience. To overcome these difficulties, big data and artificial intelligence are increas-
ingly being deployed.

Clinical experience is frequently used by providers and hospitals to establish a plan of care that
they know will improve the health of a chronic or acute patient. That doesn’t matter if the patient
doesn’t make the necessary behavioural changes, such as losing weight, arranging a follow-up
visit, filling medicines, or adhering to a treatment plan. Noncompliance, or when a patient fails to
follow a treatment plan or take prescription medications as directed, is a big issue. In a survey of
more than 300 clinical leaders and healthcare executives, more than 70% of respondents claimed
that less than half of their patients were highly involved, and 42% said that less than a quarter of
their patients were extremely engaged.

In healthcare, there are numerous administrative applications.

First and foremost, radiologists do more than simply read and analyse pictures. Radiology Al
systems, like other Al systems, accomplish a single task. Deep-learning models are trained for
specific image-identification tasks in labs and start-ups (such as nodule detection on chest com-
puted tomography or haemorrhage on brain magnetic resonance imaging). To properly identify all
potential findings in medical imaging, many of such limited detection jobs are required, and only a
few of these can currently be done by Al

In addition, radiologists consult with other physicians on diagnosis and treatment, treat diseases
(for example, by providing local ablative therapies), and perform image-guided medical interventions
such as cancer biopsies and vascular stents (interventional radiology), define the technical parameters
of imaging examinations to be performed (tailored to the patient’s condition), relate findings from
images to other medical records and test results, and discuss procedures and results with patients.

Second, clinical techniques for using Al-based image work are still in the early stages of
development. The probability of a lesion, the probability of cancer, the characteristic or location of
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a nodule is all different foci for different imaging technology providers and deep learning algo-
rithms. Deep-learning systems would be challenging to integrate into existing clinical practice
because of these unique foci.

Third, deep-learning image identification algorithms require ’labeled data,” which consists of
millions of photographs from patients who have been diagnosed with cancer, a broken bone, or another
pathology. However, there is no centralized archive of tagged or unlabeled radiological images.

Finally, for automated image analysis to take off, significant changes in medical legislation and
health insurance will be required.

Artificial intelligence (AI) has far-reaching ramifications in the medical field. The current global
COVID-19 pandemic, which has overburdened hospitals, stretched resources, and infected mil-
lions of individuals before testing and therapy were available, has brought this to light. The model
was only trained on data on healthcare costs, not on data about healthcare that was sought or
provided. Because the payment data showed that black patients in this scenario spent less money
on healthcare, the algorithm thought they didn’t require it. After the bias was eliminated from the
Al model, the results revealed that this group had a 28.8% higher need for healthcare services.
There are currently no established frameworks for analysing models for bias. This incident was
only discovered because the data was considerably distorted.

Despite the hurdles that Al faces in healthcare, scientists expect that Al will continue to make
significant advances in the medical industry in the years to come. Udacity recently organized a
virtual conference on the future of Al in healthcare, where leading experts in technology and
medicine discussed their predictions on anything from future pandemics to disease diagnosis [17].
What they foresee as being on the cutting edge of Al in healthcare is as follows.

* Future challenges in artificial intelligence (AI)

When it comes to implementing Al in the healthcare and medical fields, there are numerous
obstacles to overcome. Because of the privacy and secrecy of the huge amount of data obtained
from hospitals, Al had trouble acquiring access to those resources. Clinically proven diagnosis is
less available and credible, which reduces the chances of an accurate diagnosis. Due to the export
of imaging and medical record data, the work burden has increased. The clinical decision-making
capabilities of Al is limited to solving one problem at a time, but patients in life-threatening
situations may have a complex set of problems that require full examination from several angles.
Hospitals must collaborate with software companies to construct a robust Al platform based on
diagnosis and treatment data, which is a time-consuming and error-prone procedure. The proper
labelling, annotations, segmentation, and quality verification of imaging (CT/MRI) data necessitate
highly qualified specialists, which raises the entire cost and time. For the appropriate development
of an Al system to diagnose disease, imaging data is insufficient. All of the aforementioned factors
act as roadblocks to Al implementation in the healthcare and medical fields.

With the advancement of Al and software that can be used to analyse imaging data, diseases
like cancer may now be predicted with high accuracy and precision. Work guidelines for future
clinical practises will be aided by a wide range of study and analysis of imaging data. After
integrating Al, rehabilitation exercises could be modified to accomplish tailored evaluation and
rehabilitation training that improves desired neurological function in the context of various neu-
rological dysfunctions. New technologies with strong learning ability and generalisation capacity
are predicted to acquire human-like intelligence in the future, which will improve diagnostic ap-
proaches and decision-making systems, allowing for the provision of higher-quality and more
inexpensive medical services. Al will help primary hospitals improve their medical services, as
well as construct a black box model predictor to tackle black box problems and develop 5G
technologies. The high-speed transmission capabilities of the 5G network will improve real-time
remote technical guidelines for safe, dependable, and stable remote collaborative surgeries, low-
ering surgical risks.
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* Al could make medical professionals better

There’s no substitute for a human touch or years of medical experience, but that doesn’t rule out Al
as a useful tool for medical professionals. Al has been used to help detect high-risk patients during
distinct peaks of the pandemic, for example; screening and diagnostic analysis is another inter-
esting area where Al could supplement professional skills.

This capability isn’t restricted to COVID-19 or even hospitals. Kendra Gaunt of The Trevor
Project, an organisation dedicated to preventing suicide among LGBTQIA+ adolescents, was
recently interviewed on our company’s podcast to explore the role Al plays in their goal. Trevor has
lately used Al to help educate counsellors by providing realistic scenarios that let them to practise
before taking live calls, making them more successful in crisis situations, according to Kendra.

In the end, AI does not need to take centre stage to assist medical professionals, whether they be
doctors, nurses, or therapists. It can still assist healthcare in making significant progress.

In a nutshell, the healthcare business has experienced remarkable growth in the recent year. But,
in the midst of the chaos, we’ve seen some amazing technological developments that, in my
opinion, could pave the way for a new, better healthcare system fuelled in part by Al. Furthermore,
the healthcare industry’s experience has revealed valuable lessons for business executives in
general, not only in medicine. Specifically, now that we’ve all seen the power of Al, it’s almost
certain to stick around; however, to maximise its effectiveness, we must prioritise comfort,
maintain a human touch, and, perhaps most importantly, ensure that we’re using Al to make our
daily lives better and easier as we move toward a new normal.

1.7 CONCLUSION AND FUTURE WORK

Al is now allowing the healthcare industry to get better results. It has increased its productivity and
care efficiency. Doctors’ and patients’ roles have shifted as a result. The goal of Al is to expand and
grow in the medical industry. It will transform how diseases are diagnosed, treated, and detected.

It has the potential to aid in the treatment of serious health problems. Its purpose is to leverage
data and healthcare technologies to address ethical and social issues. The key difficulty for Al is to
ensure that it is transparent and compatible with the public’s interests.

Al has made significant progress in the health field, but it still has to evolve. And Al isn’t a
science that aims to replace human doctors with robots; rather, it aims to assist and support both
doctors and patients.

Artificial intelligence (AI) has exploded in popularity in a variety of fields and regions during
the previous decade. Unsurprisingly, health care is one of the industries that has been transformed
by artificial intelligence. While companies have broadened their applications of artificial intelli-
gence, the fundamental application of Al remains in high demand: data analysis and prediction.
With so many technical breakthroughs, storage and processing technologies have grown in their
own right, allowing infrastructures to keep a digital footprint or record of everything they’ve done
in the past. Logs aren’t the only thing that’s being saved now that storage isn’t an issue. People’s
responses and medical histories, as well as test results, symptoms, medication, medication
response, genetical constitution, and other information, are collected anonymously or not, freely or
not, in order to keep track of everything related to healthcare. People have created numerous
innovative methods to examine this massive mountain of data and draw meaningful conclusions as
technology has progressed. To maintain a deployable dataset, private organisations or the gov-
ernment may record all data from hospitals or clinics.

Response to drugs is one example of where statistical analysis has been shown to be beneficial.
People willingly participate in surveys in which their records, including tests and progress, are kept
to determine the efficacy of a treatment or procedure against a certain medical problem. Public
findings of any repeating pattern of symptoms depending on location, gender, food habits, culture,
etc., effectiveness of a particular drug in persons grouped by numerous groups, and treatment
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progress are all possible thanks to research in these records. Once completed, it is easy to
determine if a certain population is segregated on any possible criteria for the majority of the
population, which improves treatment efficiency. Studies can be carried out to see if there is a link
between symptoms and lifestyle, culture, or geography, and this information can then be utilised to
map the condition accordingly.

Data capturing a strange or novel symptom in a region progressively moving across the vici-
nities can be used to detect illness outbreaks, their origins, symptoms, impacts, and, most crucially,
the pattern and pace with which they travel. This detection could save a lot of lives since it enables
governments, healthcare organisations, and pharmaceutical companies, both worldwide and
locally, to be prepared for a potential epidemic and begin working on determining the reason and
root of the problem to create a defence. This ability was demonstrated in the last pandemic, where
scientists and health organisations predicted the speed and scope of infection, the appearance of
new variations due to mutation, their origin, symptoms, and path on a daily basis. This ability has
saved lives since people were aware of the scope of the harm and were prepared for it. The same
method was utilised to discover patterns, which aided in the discovery of any potential medicine or
vaccination adverse effects that may or may not affect people depending on their lifestyles, age, or
geographic region. This made it possible to build a working vaccination with minimal side effects
in a short time, which would not have been conceivable in the past. This enabled super-quick
vaccine development and manufacture, which would not have been possible without statistical
analysis of volunteer responses to prototypes.

It’s also employed in the field of studying the recurrence/susceptibility of a given disease in
persons who share specific genes. Genetic illnesses can be inherited through a lengthy family
history, and blood tests are often ineffective in detecting them. People rely on symptoms to
determine whether they have a genetic disease that is incurable. People can now use artificial
intelligence to discover defective genes even before a child is born by looking at the genetic
makeup of the child’s parents, and so prevent their quality of life from deteriorating. Identification
of specific genes among millions of genes necessitates extensive investigation. People can also use
Al to map probable genetic diseases or abnormalities in people all over the world based on their
geographical birthplace, ancestry, race, and other factors.

It will improve the medicine’s efficiency and make it more immunological, as well as reduce
risk and select the best treatment for each patient. It aids researchers in developing vaccines that
increase vaccine immunity levels, as well as providing speedy validation of vaccination targets and
optimization results. To be effective in Al-assisted drug development, an individual must be able to
train algorithms, which necessitates domain expertise. It necessitates a lot of upkeep and effort to
rebuild and learn. This provides an appropriate venue for Al and medicinal chemists to collaborate
and produce some output with correct analysis and efficiency.

It is fair to conclude that all of these, as well as a slew of additional Al benefits, have aided in
improving the quality of life through greater preparedness and responsiveness. So much data and
data analysis tools have aided individuals and organisations in doing research, seeing trends,
learning and understanding the causes, and inventing treatments and techniques. As a result of
these capabilities, our healthcare business is making rapid progress and assisting people in sur-
viving ailments that were once thought to be fatal.

Because the AIML is based on previous results and trials, it will have a significant impact on the
developing medical sector. It will take less time to provide proper and accurate results.

Its cost is very low, allowing industry to produce more for the general public.

Deep-learning technologies have also transformed cancer vaccine development by improvising
neoantigen prediction in collaboration with AI businesses and other medical sectors. “It won’t be
long until these are exposed for what they are; the hoopla can’t last very long because the truth will
come out in the data over the next five years ago or so, if by then we are generating better
pharmaceuticals, and doing it faster and cheaper, then Al will really take off,” Narain previously
stated.
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By employing this technology in the future, we will be able to get more out of our lives and
achieve our goals, and the medical business will benefit more. It is only the beginning of a healthcare
revolution, and progress is being made and will continue to be made at an exponential rate.

* Future scope of artificial intelligence (Al)

* To lower the death rate, Al will prioritise those who are in greater need. It can also
assist the patient’s blood pressure and anxiety, as well as increase social contact. The
use of social assistive robot technology improves the quality of life for senior citizens.

e A is used to find and create new drugs in the fields of immune-oncology and
neuroscience.

* Al has also given hope for the detection of melanoma, which is extremely difficult to
detect with the naked eye. It’s a sort of skin cancer that arises from the pigment-
producing cells called melanocytes.

* Since tissue-based genomics can’t sample other regions of the tumour, image-omics
will be used in the future.
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2.1 INTRODUCTION

As an increasingly emerging technology, artificial intelligence (AI) has arisen and gained broad
acceptance in many areas. Healthcare is one of the fields where the introduction of Al is extremely
promising. Currently, using Al in healthcare in India involves opportunities, various challenges,
possible solutions, and the a future with this emerging technology. New startups and major com-
panies provide Al solutions for healthcare problems in India, which are increasingly using Al. Such
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issues and solutions include resolving the uneven ratio between qualified doctors and patients;
making doctors more effective at their work; personalizing healthcare, delivering good healthcare in
rural areas, and educating physicians and nurses in complex procedures. Companies provide several
solutions, including medical diagnosis automation, automated medical test review, disease detection
and tracking systems, wearable detection-based medical tools, patient engagement systems, pre-
dictive diagnostics of healthcare, and disease prevention. The lack of accurate, usable, interoperable,
and clean data is a common problem in implementing such solutions; that problem is to be tackled
through the Electronic Health Records Standards established by Health and Family Welfare Ministry
in 2016. Specific challenges include access to open data sets and the practitioners’ acceptance. This
study aims to chart the existing state of Al in Indian healthcare. It explores the actual healthcare use of
Al; India’s Al-healthcare story; a key player in designing, implementing, and controlling Al in the
health sector; possible and actual health effects of Al; and the problems in Al policymaking in the
health sector. In every region, the health industry is facing unique challenges. The developed
economies fail to build an effective system to efficiently combine various roles when it comes to the
last miles of healthcare. If you look at the wide-area and number of potential recipients, problems are
different in a country like India. There are other issues, such as demographic growth, unique regional
problems, and digital literacy. To achieve the state-of-the-art research results, as well as facilities, the
increasing application of artificial intelligence (AI) in healthcare is crucial for the scientific com-
munity. Al could significantly boost outcomes in reliable healthcare and the quality in facilities as it is
used in healthcare. India is well-positioned to build solutions that tackle robustness and efficiency
issues with its immense wealth of unstructured medical data and population diversity combined with
its large pool of human talent. This report will address some of the problems that the Indian
healthcare system is facing. Some cases studies have provide promising pathways for Al [1-3].
Artificial intelligence (Al) is a technology that accentuates the formation of smart and intelli-
gent machines that work and respond like individuals [1,2]. The machines or smart computers with
the capability to accomplish intellectual roles, such as observing, learning, decision making,
reasoning, and problem solving, are called artificial intelligence computers or machines, as shown
in Figure 2.1. According to the panel of Forbes technology council members, 13 different sectors,
including the healthcare sector, will be revolutionized by artificial intelligence. This sector is
progressing toward a modern epoch, where plentiful medical data are performing an incredibly

ARTIFICIAL INTELLIGENCE
When machine can mimic human
behavior by having ability to plan,

predict, classify and learn

DEEP LEARNING
Subset of ML that employ neural
network to solve complex task like
Image, video and audio classification

FIGURE 2.1 Differentiation of Al, ML, and DL.
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significant role. In modern healthcare technologies, the primary objective is ‘assurance of the
affordable treatment is given to the needy patient within a short period deprived of complex
documentation in Indian scenario’ by using Al in healthcare [3].

Deep learning aims to transform the way medical tests are assessed and diagnosed by physi-
cians, allowing them to recognize illnesses and begin care sooner. The immense accessibility of
medical data creates incredible prospects and tasks for healthcare examination [4].

2.2 MACHINE LEARNING AND DEEP LEARNING

Machine learning is the ability of machines or computers to learn without being programmed. It
uses numerous algorithms to analyze and evaluate data, and, after analyzing the data, learn from it,
and then make judgments or deliver an output. In the field of medical imaging, conventional
machine-learning methods have been applied more recently. With rapidly enhancing computa-
tional capacity, along with the readiness of massive volumes of clinical data, traditional machine
learning (statistical tools based) has been replaced by the neural network-based deep learning. Too
many complex patterns can be trained, learned, and acquired by deep learning compared to tra-
ditional machine-learning systems. Therefore, machine-learning algorithms permit systems to
execute a task by training the machines by applying accessible data to inputs [5—8]. On the other
hand, deep learning is a subset of machine learning, which is based on biological neural network-
learning representations for solving complex problems as humans do, as shown in Figure 2.1.
Deep-learning approaches, unlike traditional machine-learning techniques, significantly sim-
plify the process of feature engineering by applying directly to unstructured data, such as audio,
video, and images, as shown in Figure 2.2. Alternatively, the machine learning in the featured area
scales inadequately and loses the opportunities to find new patterns from unstructured data. As a
replacement, the representation learning helps systematically find the representations required for
extrapolation from unprocessed data. So, this makes it easier and faster for researchers to develop

Image Acquisition

\ 4

Identify Region of
Interest

A 4

Segmentation

L 4
Extract Relevant
Characteristics

Feature Extraction
and Selection

4
Classification

FIGURE 2.2 Deep-learning steps for the classification process.
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FIGURE 2.3 Deep-learning steps for the classification process.

the newest concepts [9]. Deep learning-based CNNs algorithm is of special importance in the field
of medical imaging among all deep-learning methods. There are, of course, several recent works
that aim to apply CNN to medical image analysis. The deep-learning techniques are also a part of
representation learning with many stages of illustration, accomplished by comprising nonlinear
data that separately changes the depiction at a single point (beginning with the input data),
switching to a subsequent representation at an advanced level with the help of multiple hidden
layers, a somewhat abstract level. Deep learning takes things a step further by imitating the layered
or “deep” structure of the human brain, called an artificial neural network (Figure 2.3(a)). It
emulates this layered structure by creating a similar artificial neural network with the potential to
be even more powerful than state-of-the-art machine-learning software (Figure 2.3(b)).

Deep-learning algorithms exhibited wonderful performance in the early detection, diagnosis, and
precautionary measures in biomedical healthcare through hidden layers, as explained in Figure 2.3.
Moreover, it has exceptionally good potential in other related technologies, such as speech
recognition, natural language-processing tasks, and computer vision. As per the implementation of
deep learning in various areas and the quick advances of methodological enhancements, Al models,
especially subset deep-learning algorithms with framework, present an energizing new open door for
medical healthcare worldwide [7-10].

The most recent innovations in artificial intelligence technologies offer successful models to
obtain supervised, reinforcement, semi-supervised, or unsupervised learning models from such
complex data. For the medical research industry, this kind of active learning is important. That is
because computers can learn to improve the quality and accuracy of diagnoses from new medical
research and past performance data. By incorporating more advanced data processing into research
efforts and removing the need for a human expert with years of training, deep learning would
change the medical research field. This cutting-edge technology is also expected to reduce the time
it takes for a diagnosis to be made. Instead of moving from doctor to specialist for several months
or longer, patients would quickly work with their physician to type their symptoms and test results
into a device [4]. The deep-learning program uses data from millions of other patients to make
appropriate assessments months or years before a doctor could. This helps to reduce patient anxiety
and improve early therapy health outcomes. Deep-learning techniques are being applied to human
services, especially in the healthcare sector, and are now coordinated or some modules are in
progress. For instance, Google DeepMind has declared blueprints to employ its research team and
expertise in the health sector. and Enlitic business is also developing new deep-learning models to
point health issues from X-rays as well as computed tomography scans. Yet, deep-learning
methodologies have not been broadly examined practically in diverse health applications that
might gain from its facilities [6—10]. Hence, various characteristics of representation learning (deep
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learning) frameworks can be beneficial in the medical field because of its exceptional performance,
overall learning structure along with unified feature learning, the ability to manage complicated
data, and on and on. To quicken the endeavors, the Al technology subset, i.e. deep learning, have to
tackle numerous challenges concerning the in-depth characteristics such as noisy, heterogeneous,
sparse, and time dependency of raw data for enhanced techniques and frameworks that permit
artificial intelligence subfields such as deep learning to help in healthcare data workflows, along
with medical decision support systems. Newly upcoming methods, such as the deep belief net-
work, rectified linear unit, recurrent neural network, RBM, and deep residual learning, mitigate
problems like the disappearing gradient; hence, it is possible to train deeper models with much
more ability and thus transform the deep learning technology in medical imaging to next level.
Nonetheless, some remaining issues continue to be resolved, for example, data format inconsis-
tencies and the lack of reliable training data [11,12].

2.3 Al HEALTHCARE IN INDIA

Indian countries that use Al in healthcare also become part of a growing list. New start-ups and
major core companies occur through Al adoption in India with practical solutions for healthcare
problems in the region. These include resolving the unequal relationship between trained physi-
cians and patients and enhancing their performance at work, delivering customized healthcare and
first-class healthcare in far-flung areas, and educating physicians and nursing staff in clinical
practices. Industries provide a variety of solutions, including medical diagnostic automation,
digital processing of medical tests, advanced disease detection with screening, and real-time
monitoring equipment using automated software [13]. A common problem in the implementation
of these solutions has been setting up the electronic hygiene standards established by India’s health
department for detailed, accurate, interoperable, and clean data. Specific challenges include access
to and acceptance by clinicians of the online medical data. A CIS India report published in 2018
estimates that Al will allow the Indian economy to add US$ 957 billion by 2035. Microsoft,
together with Apollo and other hospitals, has taken a major effort to increase its usage to explore
the diverse uses of Al in the healthcare sector. Microsoft has announced that it will create an Al-
centric cardiology network in collaboration with Apollo hospitals. In the analysis of cardiovascular
risks in patients, the organization will use AI models and assist doctors with tailored treatments.
Siemens researchers and its engineers’ team have developed an Al system to create a digital double
heart, which imitates real cardiac cell electrical and physical characteristics, which allow surgeons
to perform simulations of the patient before surgery. Philips offers Al-based cardiac frameworks
that help doctors to diagnose conditions automatically using these models, to support surgeons for
their next step treatments or further processes. Google has designed a suite of Al-based frame-
works that include deep-learning algorithms for the analysis of medical images to diagnose eye
disease. Max Healthcare, one of Northern Indian’s largest hospital chains, uses Al for critical-care
monitoring [13,14].

2.3.1  GOVERNMENT INITIATIVES

Al integration in India’s healthcare has been considered an important technology to improve the
efficiency, quality, costs, and scope of healthcare. In India, helping AI has the greatest growth
potential, whereas innovations that can replace doctors have the least chance of success; one
explanation is a medical institution’s conflict of interest. Many Al health programs concentrate on
escalating healthcare services to poor populations that lack the necessary infrastructure or adequate
primary doctors. Therefore, the use of Al technology in healthcare appears to be addressing
the subject of monetary difference in India instead of increasing present gaps [8—13]. NITI Aayog
focuses on early diagnosis and identification, based on AI models of diabetic retinopathy and
cardiac risk. These interventions would, in the long term, benefit patients in the early stages of
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preventive treatment rather than reactive healthcare, reducing healthcare costs and increasing
recovery chances. NITI Aayog and Google join forces to collaborate on several plans to develop
India’s Al-enabled clinical care system. The collaboration between Google and NITI Aayog will
develop major educational initiatives, fund start-ups, and promote Al work through Ph.D. grants,
which will contribute to the broader concept of the latest state-of-the-art technology in India.
Google will organize hands-on workshops and development programs through NITI Aayog to raise
awareness among policymakers and government technical experts of specific Al technologies and
how they can be used for streamlining governance. A nationwide platform for innovation in cross-
border technologies, including clinical practices using Al, has been funded by NITI Aayog [14].
As part of this mandate, NITI Aayog, together with its national data and analysis platform, has
established India’s national Al strategy for the large implementation and use of Al India is cur-
rently witnessing major health developments, a growing prevalence, for example, of non-
communicable diseases and marked demographic changes. For most families, it is incredibly
difficult to manage out-of-pocket costs. To simplify medical information and promote efficient
execution, the National Help Stack (NHS) provides comprehensive central health records to all
citizens in the country. The new NHS is a challenging strategy that aims to use the latest tech-
nology to create a unified citizen health identity—while navigating services at various levels. The
Ministry of Health is also establishing a National Digital Health Authority, a statutory authority
that establishes interoperability frameworks, regulations, guidelines, and digital information ex-
changes. It would also entail cooperation if the government plans to use Al and mechanical
technology for healthcare workers in hospitals or community settings. State governments fund Al
start-ups as well. The Karnataka government, for example, mobilizes Rs 2000 core to fund them by
2020. Karnataka also has a start-up strategy and a fund that can support Al start-ups. Karnataka
Information Technology Venturing Capital Fund. Besides, an MoU with the government of
Telangana to establish a data science & artificial intelligence center of excellence was signed in
Feb 2018 by the National Association of Software & Services Companies (NASSCOM). The
government also partners with other nations on Al technology to boost the healthcare sector [15].
In April 2018, Theresa had addressed strategic partnerships and increasing convergence in regional
and international matters underneath the UTP collaboration. All sides will strengthen collaboration
on future technology to solve global challenges; realize Al‘s potential, the digital economy, health
innovation, and cybersecurity; and foster sustainable growth, clever urban development, and
economic mobility while improving our young people’s future skills and abilities. As a portion of
the rising joint technology partnership in India, the Indian government applauded the initiative of
the UK to set up the UK-India tech center in India [13,14].

2.3.2 THE STARTUPS IN INDIA

The technology hub will bring high-tech companies together to build investments and exports, as
well as offer a new forum for exchanging the best technologies and advancing policy collaboration,
advanced development, and health Als under India’s district ambition program. A host of start-ups
have taken onboard technologies like Al-enabled healthcare, mHealth, telemedicine, patient data
management, and remote diagnostics, which have developed in the health industry in India.
Companies are providing technology-based services in the Indian public health sector for positive
changes. The government’s policy to promote start-ups has further reinforced this service growth.
The Indian health sector has seen an explosion of innovation in Al application. Such companies are
providing customer service from cancer detections to the search for a new healthcare provider,
although its implementation tends to slowly be gaining momentum in rural towns, primarily in
urban areas. Tricog Health, a start-up targeted for its cloud-based cardiac-monitoring software by
the GE healthcare accelerator program. Tricog provides access to heart care in 340 cities in
23 countries, as well as in some of India’s most remote areas. The company’s app gathers clinical
data along with ECGs from field devices and applies the best deep-learning algorithms in real-time
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and diagnoses the diseases. A second company, Aindra Systems from Bengaluru, uses Al as
its second most common cancer in Indian women ages 15 to 60 to cope with cervical cancer. The
Al-enabled software solution of Aindra can observe cervical cancer in the initial phases and es-
calate the probability of life [11-14]. This firm improves the effectiveness of cervical cancer
research pathologists, who usually need to analyze each sample and mark the case manually, with a
high probability of cancer getting further analysis by an oncologist. HealthifyMe focuses on
lifestyles, such as obesity, high blood pressure, and diabetes. HealthifyMe brings the best elite
fitness experience in the world with its Al-enabled wellness coach Ria. The healthcare Al revo-
lution is just starting, and the future players’ list is never-ending. Early breast cancer screening is
underway at Niramai. Ten3 T provides RDM services through algorithms to sense irregularities
and warn the doctor about the patient’s condition. Advancells offers stem cell therapy that has
great potential for an organ transplant, also known as regenerative medicine. Doctors and
healthcare professionals may help patients who are unable to access hospitals with remote diag-
nostics and monitoring devices. SigTuple decreases pathologist pressure with smart automated
blood sample analysis. Al diagnoses start-up SigTuple. The Supercraft 3D printing company is
designing and developing imagining tools based on artificial intelligence that allows physicians,
nursing staff, and medical researchers to gain a deeper understanding of human structure. In the
end, Al can become a force that improves precautionary healthcare for all rather than only those in
urban or wealthy societies. In other words, simpler algae only must have a larger training dataset,
as Al experts frequently claim. This produces accurate, useful results for payers as well as pro-
viders. With a population in the billions, a country like India can deliver a massive amount of
health data to solve global health problems [13,14].

Furthermore, we review the opportunities, applications, and challenges related to these artificial
intelligence techniques, while implementing in precision diagnosis, early detection, treatment,
medicine, and next-generation healthcare in India.

2.4 BACKGROUND AND RELATED WORK

Extensive worldwide research is moving toward the implementation of artificial intelligence in the
healthcare sector. We will review the existing literature on the subject to get preliminary
knowledge and the scope of investigations. A detailed literature survey is conducted in the domain
of healthcare technologies using artificial intelligence, and their applications. Some research gaps
have been identified based on the literature review. In the paper, numerous machine-learning and
deep-learning algorithms are studied in-depth for improving effective decision support systems for
healthcare applications. Al algorithms are applied to find different patterns from medical data sets
and deliver an outstanding capability to guide patients and to predict most of the diseases. The use
of this technology is predominant and is used in numerous medical applications. In this section, we
have reviewed the leading contemporary literature of deep-learning models for medical imaging.
More than 50 articles published were reviewed to explore applications of artificial intelligence,
traditional machine learning, and deep learning in medical diagnosis. Table 2.1 encapsulates all the
research papers stated in the literature survey, in specific emphasizing the diseases addressed,
algorithms/models used, and the data source incorporated. The intense architectures employed in
the healthcare domain have been mainly centered on neural network algorithms such as con-
volutional neural networks (CNNSs), Restricted Boltzmann Machines (RBMs), recurrent neural
networks (RNNs), and Autoencoders (AEs). The algorithms and techniques, and the key concepts
behind their models, are demonstrated in Table 2.2. There are two main approaches when it comes
to the application of medical diagnoses. A first approach is to identify the outcome by linking data
to specific results (diagnostic results). The second approach is the detection and diagnosis of
tumors or other diseases using physiological data. Deep learning applies to medical diagnosis in
various ways. Table 2.1 presents brief analyses of individual research papers in the fields of deep
learning and medical diagnosis.
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TABLE 2.2
Extensive Study of Artificial Neural Networks that form the Future Deep Learning Designs
that Employed in the Latest Medical Diagnosis

Architecture Description

CNN CNN is a kind of deep-learning model for data processing that has images motivated by animal visual
cortex organization. It depends upon the local contacts along with attached weights throughout the
stable units pursued by feature sharing (sampling) to achieve unvarying descriptors for translation. It is
programmed to learn function hierarchies, from low- to high-level patterns, automatically and
adaptively. CNN is composed of a mathematical construct consisting of 3 types of layers such as
convolution layer, pooling layer, and completely interconnected layers [45]. The feature extraction task
was carried out by both layers such as convolution and pooling layers, whereas a completely
interconnected layer carried out the classification task by mapping the extracted features for concluding
output. The convolution layer performs a crucial part in CNN, comprises a stack of operations
including convolution and specialized linear mathematical operation [55].

RBM It is a two-layer neural network that makes up a whole deep-belief network. It comprises of the input or
visible layer followed by the second layer or hidden layer. Node pairs from each of the two groups may
have a symmetrical relation between them but within a group, there are no contacts between nodes.
This constraint creates these algorithms more influential than the conventional Boltzmann machines,
which enables links between the hidden layers. RBMs were effective in reduced dimensionality and
joint filtering. Therefore, deep-learning systems built using stacking RBMs to form the Deep Belief
Networks [50].

AE AE is an unsupervised learning algorithm that uses the backpropagation method, where the target values
equivalent to the inputs. i.e. y(i)=x(i). Autoencoders are comprised of a digital decoder that converts all
the input into a hidden representation, and again the decoder reconstructs that representation’s inputs
[34,43,51]. These are prepared to reduce reconstruction errors. To minimize dimensionality an auto-
encoder uses a neural network. This is beneficial to reduce the size of the set function before it is
transferred through another neural network [54].

RNN RNN is a sort of neural network in which the prior phase output is given as feedback to input in the
present step. The crucial role is the hidden state that retains information about every sequence. It is
employed in dropping the complexity of growing parameters and for storing data streams [40].
Therefore, these alternates are effective in apprehending extensive tenure needs, which lead to an
outstanding outcome in natural language processing (NLP) based applications [46].

2.4.1 MepicaL IMAGING

For decades, ML algorithms have been used in medical-imaging equipment, beginning with ap-
proaches to evaluate or assist in taking radiographic pictures in the 1970s. In the mid-1980s,
computer-aided diagnosis systems began to create automotive healthcare progress, leading with
severe cancer identification and treatment, algorithms for chest X-rays, mammograms, and then
widening to more advanced methods like scan, ultrasound, and other computed tomography (CT)
methods. The CAD algorithms used a data-driven approach predominantly in the early days, as
most deep-learning algorithms do today [15]. According to a new report by Signify Research, the
healthcare market for artificial intelligence in medical imaging is prepared for robust growth and is
expected to reach more than $2 billion by the end of 2023. The report states that AI will change the
medical imaging industry, concerning increased productivity, enhanced diagnosis precision,
additional personalized medication scheduling, and, eventually, better clinical results. Al will
perform a crucial part in radiology to manage the continuously growing number of diagnostic-
imaging procedures, even though shortages of a persistent radiologist in most of the countries [35].
Signify Research said the implementation of deep-learning technology and inexpensive cloud
computing, graphics processing units, and storage is faster than ever before. This not only leads to
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increasing the availability of the product from a wider choice of vendors but with added func-
tionalities. Gradually, Al-based tools become more precise and sophisticated. For predicting
Alzheimer’s disease and its variations, the primary application of medical imaging using deep
learning is spitting image processing for brain MRI scans analysis [51,54]. CNNs have been
employed in other medical fields to indicate a categorized description of knee MRI scans and along
with cartilage segmentation for prediction of the threat of severe osteoarthritis problems [53]. Deep
learning was also applied in the multi-channel 3D MRI segment of multiple sclerosis lesions and
ultrasonic visual differential treatment of benign and malignant breast nodules [54,55]. More
recently, Gulshan and research team [48] used CNNs in retinal fundus images to recognize diabetic
retinopathy, achieving a high sensitivity as compared to certified annotations by ophthalmologists.
CNN’s algorithms have performed as good as certified dermatologists, in the classification of
biopsy-verified medical photos of various forms based on skin cancers [49].

2.5 METHODOLOGY

The study would focus on these three aspects of artificial intelligence applicability in healthcare and
bring out the technologies being developed by academic institutions and R&D labs. The outcome of
the study would be useful for various R&D labs, industrial organizations including startups, that can
adapt and build upon the identified technologies and roll out to the Indian populace. This would also
eliminate the unnecessary cycle of reinventing the technology, and with a transfer of technology, the
technologies could be adopted by industries/ SMEs/start-ups and made commercial.

This study project aims to provide a platform where researchers, start-ups, and doctors can
discuss technologies designed using Al for improving healthcare services in the Indian context.
C-DAC has also shared its findings understudy project with many start-ups, academics, medical
practitioners, and thinkers to validate the study. This study aims to summarize what has been
achieved so far in Al healthcare, identify challenges, use researcher tactics to tackle the present
challenges, and recognize some of the promising applications and innovations for the future
healthcare in India. Based on the recent examined review in healthcare, the report suggests that
deep-learning (DL) methods can be the platform for transforming immense health data into better
human health. The DL algorithms ranging from convolution neural networks (CNN), radial basis
function (RBF) to variable auto-encoders have applied in countless applications in the field of
medical image analysis in recent medical research in detection, evaluation, facilitation, treatment,
and prediction of various critical diseases.

2.6 ISSUES AND CHALLENGES IN INDIAN HEALTHCARE SECTOR

The health condition of the people in India has greatly improved after Independence. Nevertheless,
the condition is less than in the case of the WHO report. Among 191 countries in the world, it
placed India in 112th place.

While the economy is rising rapidly, India spends little on its healthcare needs. Nevertheless, over
the period, India’s total public-health investment has decreased; India spends only around 1% of its
GDP on public health. Experts think that India needs to invest a significant amount of money to meet
appropriate global rates of child and mother mortality. The government can raise resources in various
ways from subsidies to welfare budgets optimization, especially by working closely with state
governments. The government, as per the 2002 National Health Policy. The health sector contri-
bution constitutes just 0.9% of GDP. It is not enough. Public health spending is 17.3 percent of the
overall health expenditure in India, while 24.9 percent in China, and 45.4 and 44.1 in Sri Lanka and
the USA, respectively. This is the key explanation for the country’s low health standards. In the
health sector, India also spends approximately 1.2% of its GDP, considerably less than some of
the world’s poorest countries. There are not enough facilities, appropriate management, committed
personnel, and many other things required to ensure fair and effective healthcare. The density of
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physicians per 1000 people of various countries is not sufficient. The report illustrates that India ranks
the worst compared to other countries in terms of medical personnel [14].

2.7 CHALLENGES OF Al IN HEALTHCARE

It is challenging to secure private data of patients and timely practical validation of Al research
based on machine-learning and deep-learning algorithms by medical practitioners at clinics.
Figure 2.4 shows the key challenges for integrating Al technology into healthcare, including those
intrinsic to deep-learning and machine-learning technology, technical implementation difficulties,
and recognition of the hurdles to adoption, along with the requisite sociocultural or pathway
changes. Acquiring knowledge and perceptions from complicated, highly feature and diverse
medical datasets continues a major task in transforming healthcare using artificial intelligence in
the Indian context. Although existing studies involved very large numbers of patients with com-
prehensive benchmarking against expert results, most studies were retrospective, indicating that
traditionally branded data were used to train and evaluate algorithms. We will only begin to
understand the true usefulness of Al systems through prospective studies, as performance is likely
to be worse when meeting real-world data that vary from that encountered during algorithm
training. The limited number of prospective studies to date contains gradations of diabetic reti-
nopathy. Detection of metastases of the breast cancer in sentinel lymph node biopsies, detection of
wrist fractures, detection of colonic polyps and detection of congenital cataracts. By using
wearables, consumer technology allows for huge prospective studies concerning historical stan-
dards. Given the promising outcomes achieved after applying deep-learning patterns, the medical
application of new deep-learning algorithms to medical care remains faced with several
unanswered challenges. Once Al is included in their program, a common mistake health profes-
sionals make often focuses on the benefits while ignoring the risk posed by the same system. There
can be various potential drawbacks of relying only on computers rather than on humans. Therefore,
full knowledge of any Al system that a healthcare platform intends to use is necessary.
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FIGURE 2.4 Challenges for Al implementation in healthcare.
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Al itself has a long way to go before it can be integrated into any medical system without
hesitation. Here are some of the obstacles for healthcare professionals in the Al industry and some
things that can go wrong when health professionals rely only on Al instead of seeking ways to
overcome the obstacles. This also helps in bridging the gap for developing an effective Al-based
decision support mechanism for specific medical applications for healthcare in the Indian context.
In particular, the following key challenges in Indian context are highlighted.

Government policies in healthcare: The firm’s long-term business activities and traditions
cannot be streamlined only by depending on an Al algorithm. Organizations need to consider strict
and always changing government regulations. The data scientists are trained with the latest
technologies because of the large volume of data available is primarily unstructured. This leads to a
high demand in the healthcare sector for them.

Defective diagnosis: Al is based on a variety of data gathered from millions of patients who
suffer from similar conditions to ensure the correct diagnosis for any specific disease. In addition,
the data of patients belonging to a specific group should be appropriate for a fair comparison in Al
databases. If patients with a particular background don’t have sufficient data, Al will then make an
inaccurate diagnosis and doctors will be mistaken to do this if they aren’t sufficiently experienced
to see it as being wrong.

Absence of compassion: Al-based computers lack compassion and an understanding of human
existence and living circumstances. They often have economic and social implications after pa-
tients have been diagnosed. For example, an Al algorithm may indicate poor social support and
recommend a nursing facility for patients from a community with low revenues. Because it is more
expensive than home treatment, it may prevent the patient from continuing. Only a doctor will
evaluate the family and home environment of patients to decide what kind of treatment plan they
can afford, and which is most appropriate for their particular needs. Quartz, therefore, suggests that
creators of Al apps get better textbooks to research the world, and everyone in it, without class,
ethnic, or gender differences if they want Al to replace doctors.

Infringement of data privacy: Although important in all industries, privacy is usually particu-
larly strongly enforced when it comes to medical data. The patient’s data is usually not allowed to
be disclosed, and hospitals and research institutions are vigilant about cloud platforms and servers.
The start-up companies are unable to develop Al-based medical products due to difficulty in
accessing patient personal data. Patients need to take care of data privacy and malfunctioning
aspects while working with the AI systems. All patient information has been processed conve-
niently by Al applications. It covers everything from previous conditions, personal data, and blood
test medical reports, etc. Although a person can ensure confidentiality for doctors and patients,
machines do not make such promises. The loss of these data may result in a malfunction due to
algorithmic bias or failure to maintain the program. Or even worse, the wrong people could use this
information easily; that can occur if the network is not secured properly against hackers. Artificial
intelligence developments pose a threat to health data, and therefore, appropriate steps must be
established and taken to safeguard any Al machines in the medical sector.

Data quality and volume: Designing frameworks presently require huge data, and thus, the
cutting-edge industry is a huge information environment. In any case, mechanical information, as a
rule, is organized but may be of poor quality. The quality of the information may be poor and not at
all like other consumer-faced applications; information from mechanical frameworks often
have clear physical implications, which makes it harder to compensate for the quality with
volume. Information collected for preparing machine-learning models, as a rule, is missing a
comprehensive set of working conditions and well-being states/fault modes, which may cause
untrue positives and untrue negatives in online usage of Al frameworks. Therefore, we cannot find
the patients as required to teach a complete model of a machine or deep learning. Moreover,
knowledge of diseases and their unpredictability is far more complex than other relevant tasks.
Therefore, from a large data perspective, the amount of medical information necessary to train an
accurate and reliable learning model would be considerably higher compared to other media.
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Healthcare data are extremely unclear, chaotic, incomplete, and heterogeneous, unlike other en-
vironments in which information is smooth and well structured. It is challenging to form a decent
learning model of diverse data sets to get rid of several problems, such as data sparseness,
redundancy or lost values.

Domain complexity: Biomedicine and healthcare issues are more complex than in other fields
(for example, image as well as speech analysis). The diseases are heterogeneously, and their causes
and progress in most diseases are not yet fully known. Consequently, the sum of patients generally
is constrained in a practical medical field, and we cannot apply to most of the patients as we would
like too.

Incorporating expert knowledge: To healthcare problems, proven knowledge of medical
problems is important. Because of the small amount and the various quality issues of medical data,
expert expertise must be implemented for Al-based systems to monitor it in the appropriate path.

Temporal modeling: All healthcare problems have a time factor. Especially in the case of EHRs
along with monitoring equipment. Therefore, time-vulnerable deep-learning model training is
essential for awareness and timely clinical support for patients.

Feature enrichment: Due to the limited amount of data for patients suffering from specific
diseases in the world, the challenge is to collect as many characteristics as feasible to identify and
discover new aspects of treating every patient collectively.

Transparency: A physician must be able to understand why an algorithm has been approved for a
certain treatment. This means the methods for prediction explaining are more intuitive and clearer.
There is often a deal between projecting accuracy and transparency, particularly with the newest
group of Al techniques embedded with artificial neural networks, which makes this problem even
more crucial.

Sociocultural: Doctors, physicians or medical practitioners give treatments based upon their
knowledge, experience, insight and problem-solving skills. It can be difficult for doctors to get
suggestions from an Al-enabled automated system. Specific aspects likely to be assimilated into
the medical programs to ensure that emerging technology is not seen as a threat to the medical
doctor, but as medical assistance and updated knowledge for them. Indeed, if emerging technol-
ogies like Al are incorporated in such a manner that they empower doctors to treat more signif-
icantly and allows more people than to replace them.

Problem of infrastructure: In the last five to seven years, the latest deep-learning models have
been used against traditional deep neural networks. However, the devices and infrastructure es-
sential to support these algorithms are not accessible. Moreover, a small number of individuals
acquire the required technical knowledge needed to deal with problems in data and software
technology. Al solutions are often confronted with problems, particularly in medicine, with small
amounts of data and variable data quality. Predictive models must be retrained as new information
is provided so that improvements in data collection processes and other problems in the real world
are closely monitored that can lead to a drift in data distribution over time.

All these problems present many opportunities for developing the sector and future research
possibilities. Hence, we come across the resulting instructions with all of them in mind, en-
couraging the prospect of deep learning in medical care [59,60].

2.8 APPLICATIONS OF Al

Al plays a major role in various disciplines such as finance, marketing, banking, cybersecurity, and
healthcare. There are important key points of Al-enabled healthcare applications such as:
Making healthcare accessible: In poor healthcare infrastructure nations, retrieving healthcare
facilities is merely difficult, particularly for those residing in isolated areas. The integration of
recent Al systems with healthcare in these isolated areas to establish an automated Al-enabled
healthcare infrastructure in these rural areas. This provides a way to help patients understand their
symptoms and find appropriate medications rather than full-service care. Health guidance for
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FIGURE 2.5 Healthcare accessible through Al technologies to patient.

underdeveloped populations is provided with applications such as Ada. Such solutions are easily
accessible in the local languages of the areas where they are introduced (Figure 2.5).

Predicting diseases: Deep-learning algorithms of Al technology are capable of storing all
records of people in one site and gaining access to this data for a more precise diagnosis of future
illnesses in patients with current symptoms. Applications using algorithms predicted these diseases
and have millions of the prior diagnoses stored; patients may consult these Al applications without
taking any second opinion from any physician. However, Al can predict a person’s health prob-
lems in the future by integrating and analyzing data from various sources. An application such as
Verily by Google is predicting non-communicable diseases such as hereditary genetic illnesses,
cancer, and heart attacks. The goal is to allow doctors to predict any potential problems so that they
can establish plans for care to avoid or treat them promptly. Another method Al can assist with is
diagnosis by detecting biomarkers. Biomarkers are unique particles that appear in biological fluids
that can detect the existence of a specific illness in an individual’s body. Emerging technology such
as Al will automate manual work, saving a lot of time and energy in diagnosing a disease. These
deep-learning algorithms can competently categorize molecules to recognize a specific state; they
are also more cost-effective; if clinicians practice Al aid for diagnostic diseases, persons won’t
have to undertake costly laboratory tests.

Assisting in surgery: Al is now employed in surgical procedures as artificial intelligence-based
applications have demonstrated to be exceptional support for the surgeons in the surgery. Robot
surgery has currently opened the path for effective treatment of uncommon disorders in the
healthcare industry. Complicated surgical procedures can now be conducted with accuracy, min-
imum side effects, and decreased pain along with a faster recovery. In addition to these, Al now has
details for surgeons on existing patients under care in real-time. This includes scans showing
the brain’s different portions and MRI scans needed to assist in surgery. This is a security and relief
for the subjects under anesthesia.
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2.9 OPPORTUNITIES IN Al HEALTHCARE

India is one of the world’s countries with the most scope to improve life-based advanced, safe, and
scalable healthcare technologies due to its massive disparity in the delivery of healthcare, a strong
shortage of qualified medical practitioners and facilities, and low government expenditures for
healthcare. Nonetheless, it is still difficult to name more than a few digital technology deployment
examples in the nation of one billion people, many of them now fitted with internet access and
smartphones that have greatly influenced or commonly used health outcomes. This article discusses
a variety of success stories and highlights some troubling developments surrounding artificial
intelligence (AR) and Indian healthcare, as well as difficulties preventing smaller initiatives. Some of
the opportunities in Al in Healthcare are shown in Figure 2.6.

2.9.1 MepicAL IMAGING

The interpretation and comprehension of medical imaging are some of the biggest challenges for
medical specialists. This is incredibly important because medical imaging, together with symptoms
and blood tests, is a vital element for developing a medical diagnosis. For example, when viewing
MRIs and CT scans, oncologists continue to strive to distinguish cancerous cells and noncancerous
cells. They look unbelievably alike, and a misread picture with a corresponding somber overvivid
rate can cause a late diagnosis. This is one reason why cell biopsies are still so relevant in this area.
Medical research firms, however, change this model by machine learning. They teach these
machine models on how to accurately read medical imaging by exposing machine-learning soft-
ware to millions of stored images and the corresponding disease diagnosis. IBM Watson is a leader
in the field of artificial intelligence education in the medical picture. The machine-learning soft-
ware of the technology company is superior to many rivals because of the enormous amount of
IBM data. The company has been buying medical companies like Merge over the last decade. As a
result, more than 315 health data points are available today. Expect IBM in the next five years to
obtain FDA approval for its Al technology. IBM public announcements indicate that the company
expects permission to do more than basic medical imaging with deep-learning technology.
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FIGURE 2.6 Opportunities in Al in healthcare.
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2.9.2 PHARMACEUTICAL DISCOVERY

In deep learning, the pharmaceutical industry quickly becomes a leader. Major firms such as Amgen,
AstraZeneca, Bayer, Eli Lilly, and others are expanding their internal research teams to increase
the efficiency of their process of discovery. These organizations have a massive amount of data,
including research information and patient outcomes to do research and development on deep-
learning technology. The vast amount of information is important to the development of accurate
predictions, the major reason for investing so much in deep learning by the pharmaceutical industry.
A good example of this is the Benevolent Al. The company created a collection of custom algorithms
to find clues about potential new medicines in current and past medical research. Different classes of
drugs can be useful in the treatment of undesirable diseases by using software data. In particular, in
comparison, organizations such as Sophia Genetics use deep learning, to inform patients about their
hereditary disease vulnerability, using specific genetic markers linked to cancer, heart disease, dia-
betes, and more.

2.9.3 DISEASE IDENTIFICATION

Disease detection is one of the most important areas of machine and deep-learning science. Research
showed that at least 5% of medical diagnoses were wrong in any given year. This has an annual effect
of 12 million people, resulting in between 40,000 and 80,000 deaths. Deep knowledge and Al are
used by medical research organizations to improve the accuracy of disease detection. A good ex-
ample of the value of deep learning is the medical company’s equity. To improve patient outcomes
and disease identification, the company uses deep neural networks. It used its advanced Al tech-
nology recently to improve various diagnoses of sclerosis. This started by gathering millions of data
points from insurance claims for multiple sclerosis in the state of New York. The comprehensive
learning program finally was able to reliably “at least 8 months” identify the disease before doctors
could carry out the test using standard medical technology. The deep-learning process is dedicated by
helping medical professionals to treat diseases in advance of irreversible damage and to improve their
longevity and quality of life.

2.9.4 AI-ENABLED SURGERY

Al is now employed in the surgical procedure as artificial intelligence-based applications have
demonstrated to be exceptional support for the surgeons in the surgery. Robot surgery has currently
opened the path for effective treatment of uncommon disorders in the healthcare industry.
Complicated surgical procedures can now be conducted with accuracy, with minimum side effects,
decreased pain, and a faster recovery. In addition to this, Al now has details for surgeons on
existing patients under care in real-time. This includes scans showing the breakdown of the brain in
its different portions and MRI scans that are needed to assist in the surgery. This is a security and
relief for the subject while handing themselves to the doctors in anesthesia.

2.9.5 Diseases PREDICTION

Deep-learning algorithms of Al technology are capable of storing all records of people in one site
and gaining access to this data for a more precise diagnosis of future illnesses in patients with
current symptoms. Prediction applications using algorithms have diagnosed and stored millions of
results, with patients consulting these Al applications without taking second opinion from any
physician. However, Al can predict a person’s health problems in the future by integrating and
analyzing data from various sources. An application such as Verily by Google is predicting non-
communicable diseases, such as hereditary genetic illnesses, cancer, and heart attacks. The goal is
to allow doctors to predict any potential problems so that they can establish care plans to avoid or
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treat them promptly. Another method Al can assist with is diagnosing by detecting biomarkers.
Biomarkers are unique particles that appear in biological fluids that can detect the existence of a
specific illness in an individual’s body. The emerging technology such as Al will automate the
manual work, saving a lot of time and energy in diagnosing a disease. These deep-learning al-
gorithms can competently categorize molecules to recognize a specific state; they are also more
cost-effective; if clinicians practice Al aid for diagnostic diseases, persons won’t have to undertake
costly laboratory tests [13,14].

2.10 STUDY FINDINGS

The major findings include deep-learning algorithms of Al technologies used in medical imaging,
disease prediction, detection, and supervision for medical experts such as doctors and nurses,
pharmaceutical discovery, and less invasive diagnostics. Numerous journals have been reviewed in
the medical imaging for better findings in Al healthcare and the benefit of society. Internet of
things of Al technology used in remote-monitoring solutions and digital platform integrations.
Robotics is another field of Al technology used in remote-assisted surgery and ancillary services.
Machine-learning is another artificial intelligence technology used in teleconsultation application,
patient mobile interface, disease-detection prediction, and treatment. Software languages such
as Java, php are used in healthcare for designing teleconsultation applications. C-DAC, Mohali has
designed the teleconsultation application name esanjeevani to serve the nation during the COVID-
19 pandemic in India. Most of the states have been utilizing the healthcare technologies for the
benefits of patients and doctors in the pandemic situation currently. The study also identified list
start-ups, academic institutes, government organizations such as IITs/IISC funded by various
ministries working in the field of Al in healthcare. The study has also included case studies of Al-
based technologies in healthcare. Al algorithm testing and validation methods are developed to
assess algorithm output under conditions that vary from the training set. The development of Al
systems can boost the efficiency of modern mobile surveillance tools and applications; build data
infrastructure to collect and incorporate smart device-generated data to support Al applications;
and identify and build methods for addressing critical health data gaps. Developing protocols and
IT infrastructure to collect and incorporate different data. More significant steps need to implement
such as a robust open data policy, comprehensive privacy policy, government funding on the
healthcare sector, increased investment in R&D in Al, robust national infrastructure, providing
staff with the necessary skills to implement Als and be prepared for the changes that Al may bring.
A regulatory framework ensuring transparency and accountability are some of the actions nec-
essary to set up a functioning health environment for Al in India.

2.11 PRESENT AND FUTURE SCOPE

The article presented the latest literature survey on applying Al technologies, along with other
allied fields to improve the healthcare domain in the Indian context. It will not be easy for Al to
take control of the health sector and completely replace doctors. Next, we will find ways to address
the above problems and solve them. Ultimately, we need to find ways to educate people and
convince them of the different benefits that Al can offer in the healthcare industry to make them
feel as safe as with doctors only. Consumers should be educated about not only Al; they should
also be informed of the use of algorithms by healthcare professionals. They can only be convinced
to use them in their facilities if they can trust these algorithms. Only a great number of clinical
validations can build this trust, which can only be obtained through extensive studies and research
on the ground. There is no question we still have a very long way to go before the healthcare sector
can take on Al because in smaller facilities and developing countries, it still needs to prove value.
This can not be denied, but there is a competitive advantage to those who have incorporated Al into
their facility. However, Al makes it easier for doctors, not to completely replace them, even in such
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cases, we must bear in mind that Al is highly dependent on algorithms of machine learning; only a
human, a specialist physician, can see a patient holistically and consider several other factors
before creating a treatment plan. In fact, as Eliezer Yudkowsky, co-founder of the Institute for
Machine Intelligence, warns: “The biggest risk of artificial intelligence is by far that people find it
too early to understand.” Professionals must have a clear understanding of the system they use and
know how to protect it. Therefore, though Al has no doubt several advantages for the healthcare
industry, HitConsultant argues that Al should help rather than replace healthcare professionals.

2.12 CONCLUSION

The studies demonstrate that emerging deep learning and its advanced algorithms in medical
diagnosis are far superior to Al-enabled solutions in the healthcare field and various medical
applications. India is currently in a unique position to push national and foreign companies in the
field of Al and healthcare. Artificial intelligence is where it will reshape the healthcare industry in
India. Nevertheless, Al-driven applications have many challenges: an efficient legal structure for
privacy and data integrity is required, and we must address issues of cultural recognition, informed
consent, and liability. The most important role played will be patients’ data, which assists in
integrating Al into clinical care in India. There is a need to standardize/centralize hospital man-
agement systems. It can assist in the creation of electronic health data repositories for Al appli-
cations. Furthermore, the live demonstration of Al-based products and specialist training to the
doctors is the right approach for integrating Al into clinical care in developing countries like India.
Precision treatment and early detection of diseases are the benefits of implementing Al-enabled
solutions in healthcare in a country like India. India has the potential to tackle many health
concerns using Al, with a wide range of knowledge and an increasing start-up community. The
government has also taken a variety of steps to promote the adoption of Al across India, in its
search for India to join the Al revolution. Still more significant steps need to implement such as a
robust open data policy, comprehensive privacy policy, government funding on the healthcare
sector, increased investment in R&D in Al robust national infrastructure, providing staff with the
necessary skills to implement Als and be prepared for the changes that Al may bring, and a
regulatory framework ensuring transparency and accountability are some of the actions necessary
to set up a functioning health environment for Al in India.
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3.1 IMAGE SEGMENTATION

Image segmentation refers to the process of partitioning an image into multiple regions. These
regions are a group of connected pixels with similar properties, such as gray level, color, texture,
brightness, and contrast, etc. They also may correspond to a particular object or different parts of an
object. The object/region of interest can be extracted manually on a good quality'® F-FDGPET/CT
fused image by simply selecting image intensity ranges; however, it is a time-consuming process and
also subject to variation depending on the users. Segmentation carries a risk of generating incorrect
object boundaries. Splitting the image into too many objects, called over-segmentation, may generate
many small regions, which is problematic for good texture analysis and time-consuming to label
when generating ground truth data. Under-segmentation is a much more serious problem; in that case,
different objects can be merged into one cluster. We find that it is better to risk over-segmentation
than under-segmentation because in the first case, all the pixels belonging to a region belong to
the same class. On the other hand, in the case of under-segmentation, different regions are
merged together; that means one region can contain pixels belonging to more than one class. Semi-
automatic and fully automatic methods of segmentation are active areas of research in nuclear medicine
"8E_.FDG PET/CT or SPECT/CT imaging. The simplest fully automatic method of segmentation is a
thresholding-based segmentation method, which encompasses most of the voxel intensities of a par-
ticular tissue type. However, none of the segmentation methods are 100% successful for different types
of images, whether using the automatic or semi-automatic method of segmentation [1-8].

It is very rare to achieve a useful segmentation using a single procedure, even under the most
favorable conditions. Successful segmentation algorithms typically use a carefully constructed
combination of procedures to achieve useful results. Some modern algorithms, especially the
family of routines related to geodesic active contours, may seem to be an exception to this rule
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because they are often presented as achieving good segmentation results entirely on their own.
However, close examination will show that a variety of preprocessing steps, in addition to careful
parameter tuning, are necessary to achieve useful information.

3.2 WATERSHED ALGORITHM

The watershed transform was first proposed by Beucher and Lanteuejoul as a geophysical model of
rain falling on a terrain. The idea is that a raindrop falling on a surface will trickle down the path of
steepest descent to a minimum. The set of points on the surface that lead to the same minimum are
known as a catchment basin, and borders between catchment basins are watershed lines. If an
image is considered as a terrain and divided into catchment basins, then the hope is that each
catchment basin would contain an object of interest [9].

Watershed Implementation Methods: These three are commonly used in conjunction with the
watershed transform for segmentation.

* Distance transform approach
* Gradient method
* Marker-controlled approach

3.2.1 WATERSHED WITH DISTANCE TRANSFORM

Distance transform is a common tool used in watershed transform for image segmentation. The
concept is the distance from every pixel to its nearest non-zero valued pixel. Every single valued
pixel has a distance transform value of 0, as it is the closest non-zero valued pixel of itself [10].

3.2.2 GRADIENT-BASED METHOD

The principle of a gradient-based segmentation is to associate the boundaries of an object of interest
with the gradient intensity crests observed in the image. To obtain meaningful image segmentation,
several conditions must be satisfied. If the intrinsic resolution of the imaging device is low compared
with the voxel size, transitions between regions of different activities in the images look blurred. As a
consequence, the gradient-intensity peaks are not sharp and are thus more difficult to identify.
Another caveat is related to the fact that noise gets amplified in the gradient-intensity image, com-
pared with the initial image. As a first approximation, the effects of resolution and noise can be
modeled as follows. First, the unknown ‘ideal’ image (i.e. with an infinitely large resolution and
free of noise) is blurred by convolving it with the point spread function of the considered imaging
device. Second, the blurred image is corrupted by statistical noise. Really acquired images can be
assumed to result from this two-step model. This suggests that the ideal image could be recovered by
reversing the above model, in the first approximation. For this purpose, the acquired image should
be first denoised and then deblurred before segmentation [11].

3.2.3 MARKER-CONTROLLED METHODS

Direct application of watershed transform to a gradient image can result in over-segmentation due
to noise. Over-segmentation means a large number of segmented regions. An approach used to
control over-segmentation is based on the concept of markers. A marker is a connected component
belonging to an image. Markers are used to modify the gradient image. Markers are of two types,
internal and external, internal for object and external for boundary. The marker-controlled wa-
tershed segmentation has been shown to be a robust and flexible method for segmentation of
objects with closed contours, where boundaries are expressed as ridges. Markers are placed inside
an object of interest; internal markers associate with objects of interest, and external markers
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associate with the background. After segmentation, the boundaries of the watershed regions are
arranged on the desired ridges, thus separating each object from its neighbours [12].

Image segmentation based on a watershed algorithm can be understood by visualizing a gray-
scale image as a topographical surface, where the values of f(x, y) are implemented as heights. In
geography, a watershed is the ridge that divides areas drained by different river systems. A
catchment basin is the geographical area draining into a river or reservoir. The watershed transform
finds the catchment basins and ridges lines in a gray-scale image. During the segmentation based
on watershed transformation, the key concept is to change the starting image into another image
whose catchment basins are the objects or regions we want to identify.

In image analysis, there are issues that need to be addressed, like development of a unified
approach to the image-segmentation technique, which can be applied to all type of images, and
selection of an appropriate technique for a specific type of image. In spite of profuseness in seg-
mentation techniques, there is no universally accepted method for image segmentation; therefore, it
remains a challenging problem. In this study, we studied the feasibility of using the gradient method
of watershed algorithm of segmentation on '*F-FDG PET/CT image of lung, liver, lymphoma, and
breast tumors and tried to assess whether this method could provide appropriate segmentation.

Drever et al. (2007) [13] compared three image-segmentation techniques for target volume
delineation in positron emission tomography. The authors compared thresholding, Sobel edge
detection, and the watershed approach to yield accurate delineation of PET target cross-sections. A
phantom study employing well-defined cylindrical and spherical volumes and activity distributions
provided an opportunity to assess the relative efficacy with which the three approaches could yield
accurate target delineation in PET. Results revealed that threshold segmentation can accurately
delineate target cross-sections, but that the Sobel and watershed techniques both consistently fail to
correctly identify the size of experimental volumes. The usefulness of threshold-based segmen-
tation is limited, however, by the dependence of the correct threshold on target size.

Geets et al. (2007) [14] proposed a new gradient-based method and hierarchical cluster analysis
for segmenting FDG-PET images. In this study, iteratively reconstructed images were first de-
noised and deblurred with an edge-preserving filter and a constrained iterative deconvolution
algorithm. The authors first performed validation on computer-generated 3D phantoms containing
spheres and then on a real cylindrical Lucite phantom containing spheres of different volumes
ranging from 2.1 to 92.9 ml. Then, this validation segmentation on PET images was performed on
preoperative laryngeal tumours from seven patients by the gradient-based method and the
thresholding method based on the source-to-background ratio. For the spheres, the calculated
volumes and radii were compared with the known values; for laryngeal tumours, the volumes were
compared with the macroscopic specimens. Volume mismatches were also analysed. The authors
concluded that gradient-based segmentation method applied on denoised and deblurred images
proved to be more accurate than the source-to-background ratio method.

Ray et al. (2008) [15] compared two-dimensional and three-dimensional iterative watershed
segmentation methods in hepatic tumor volumetrics. The authors compared the accuracy of
two-dimensional (2D) and three-dimensional (3D) implementations of a computer-aided image
segmentation method to that of physician observers (using manual outlining) for volume mea-
surements of liver tumors visualized with diagnostic contrast-enhanced and PET/CT-based non-
contrast-enhanced CT scans. The method assessed was a hybridization of the watershed method
using observer-set markers with a gradient vector-flow approach. The authors called this method
the iterative watershed segmentation (IWS) method. Initial assessments were performed using
software phantoms that model a range of tumor shapes, noise levels, and noise qualities. IWS was
then applied to CT image sets of patients with identified hepatic tumors and compared to the
physician’s manual outlines on the same tumors. IWS utilized multiple levels of segmentation
performed with the use of fuzzy regions that could be considered part of a selected tumor. The
results indicated that 2D-IWS is likely to be more accurate than 3D-IWS in relation to the observer
volume estimate.
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Wang et al. (2009) [16] studied the “automated liver segmentation” for whole-body low-
contrast CT images from PET-CT scanners.” The main objective of this study was to improve the
identification and localization of hepatic tumor. The authors proposed a novel automated three-
stage liver segmentation technique for PET-CT whole body studies, where: 1) the starting liver
slice was automatically localized based on the liver-lung relations; 2) the “masking” slice con-
taining the biggest liver section was localized using the ratio of liver ROI size to the right half of
abdomen ROI size; 3) the liver segmented from the “masking” slice formed the initial estimation
or mask for the automated liver segmentation. They concluded that this method can automatically
segment the liver for a range of different patients, with consistent objective selection criteria and
reproducible accurate results.

Campadelli et al. (2009) [17] in their study reviewed semi-automatic and automatic liver
segmentation technique and compared their own fully automatized method. They used a gray-level
based liver segmentation method and tested it on 40 patients with satisfactory results, which were
comparable to the mean intra- and inter-observer variation. The authors concluded that their
method outperformed the techniques in the literature.

Ballangan et al. (2011) [18] evaluated the impact of reconstruction algorithms on semi-automatic
small lesion segmentation for PET in a phantom study. The aim of this study was to investigate the
impact of different reconstruction methods on semi-automated small lesion segmentation for PET
images. Four conventional segmentation methods were evaluated, including a region-growing
technique based on maximum intensity (RGmax), mean intensity (RGmean) thresholds, fuzzy c-mean
(FCM), and watershed (WS) technique. All these methods were evaluated on a physical phantom scan
that was reconstructed with ordered subset expectation maximization (OSEM) with Gaussian post-
smoothing and maximum a posteriori (MAP) with quadratic prior, respectively. The results dem-
onstrated that: 1) the performance of all the segmentation methods were subject to the smoothness
constraint applied on the reconstructed images; 2) FCM method applied on MAP-reconstructed
images yielded overall superior performance than other evaluated combinations.

Zhang et al. (2011) [19] presented an interactive method for liver tumor segmentation from
computed tomography (CT) scans. After some pre-processing operations, including liver paren-
chyma segmentation and liver contrast enhancement, the CT volume was partitioned into a large
number of catchment basins under watershed transform. Then a support vector machines (SVM)
classifier was trained on the user-selected seed points to extract tumors from liver parenchyma,
while the corresponding feature vector for training and prediction was computed based upon each
small region produced by watershed transform. Finally, some morphological operations were
performed on the whole segmented binary volume to refine the rough segmentation result of SVM
classification. The proposed method was tested and evaluated on MICCAI 2008 liver tumor
segmentation challenge datasets. The experiment results demonstrated the accuracy and efficiency
of the proposed method, which can be used routinely in clinical practice.

Christ et al. (2011) [20] proposed a methodology that integrates KMeans clustering with a
marker-controlled watershed-segmentation algorithm and integrates fuzzy CMeans clustering with
marker-controlled watershed-segmentation algorithm separately for medical image segmentation.
The clustering algorithms are unsupervised learning algorithms, while the marker-controlled
watershed-segmentation algorithm uses automated thresholding on the gradient magnitude map
and post-segmentation merging on the initial partitions to reduce the number of false edges and
over-segmentation. The authors concluded that integration of K-means clustering with a marker-
controlled watershed algorithm gave better segmentation than integration of fuzzy C-means
clustering with a marker-controlled watershed algorithm.

Ballangan et al. (2013) [21] assessed lung tumor segmentation in PET images using graph cuts.
The aim of segmenting tumor regions in positron emission tomography (PET) was to provide more
accurate measurements of tumor size and extension into adjacent structures than possible with
visual assessment alone and hence improve patient management decisions. They proposed a
segmentation energy function for the graph cuts technique to improve lung tumor segmentation
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with PET. Their segmentation energy was based on an analysis of the tumor voxels in PET images
combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV
feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with
similar or higher PET tracer uptake than the tumor, and the SUV cost function improves the
boundary definition and also addresses situations where the lung tumor was heterogeneous. They
evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer
(NSCLC). The authors concluded that their method improved segmentation and performed better
than region-growing approaches, the watershed technique, fuzzy c-means, region-based active
contour, and tumor customized downhill.

Bangara et al. (2014) [22] proposed a color-segmentation method for the detection of liver
tumor in PET/CT scans. The authors attempted to segment the PET/CT images of liver using a
binary tree quantization clustering method for the detection of a tumor. The problem of seg-
mentation of gray scale is that intensity values between healthy tissue and tumor may be very
close, but PET/CT provides more accurate measurements of tumor size than are possible with
visual assessment alone. So they took 12 PET/CT images and processed them for segmentation of
the liver tumor. The images are denoised using median filter, and a binary tree quantization
clustering algorithm was used for segmentation. Finally, a region of interest (ROI) selection and
shape-feature extraction was performed on the selected cluster to quantify the size of the tumor and
the result compared to check the accuracy of the method with the original image and K-means
clustering method. They concluded that this binary tree quantization clustering method is better
than the kK means clustering method in detecting tumors more accurately and precisely.

Altunbas et al. (2014) [23] evaluated the image-segmentation method to improve the accuracy
of liver tumor contouring for treatment planning in stereotactic body radiation therapy (SBRT).
They took pre-treatment PET-CT image sets for 26 patients who received SBRT to 28 liver lesions
delineated using the following 3 methods: (1) percent threshold with respect to background-
corrected maximum standard uptake values (SUV; threshold values varied from 10% to 50% with
10% increments); (2) threshold 3 standard deviations above mean background SUV (30); and (3) a
gradient-based method that detects the edge of the FDG-PET avid lesion (edge). For each lesion,
semi-automatically generated contours were evaluated with respect to reference contours manually
drawn by 3 radiation oncologists. Two similarity metrics, dice coefficient and mean minimal
distance (MMD), were employed to assess the volumetric overlap and the mean Euclidian distance
between semi-automatically and observer-drawn contours. They found the mean dice and MMD
values for 10%, 20%, 30% threshold, 3o, and edge varied from 0.69 to 0.73, and from 3.44 mm to
3.94 mm, respectively (ideal dice and MMD values were 1 and O mm, respectively). A statistically
significant difference was not observed among 10%, 20%, 30% threshold, 3o, and edge methods,
whereas 40% and 50% methods had inferior dice and MMD values. Finally, they concluded that
the three PET segmentation methods are potential tools to accelerate liver-lesion delineation. The
edge method appears to be the most practical for clinical implementation as it does not require
calculation of SUV statistics. However, the performance of all segmentation methods showed large
lesion-to-lesion fluctuations. Therefore, such methods may be suitable for generating initial esti-
mates of FDG-PET avid volumes rather than being surrogates for manual volume delineation.

Arens et al. (2014) [24] studied the changes in tumour cell proliferation induced by radio-
therapy for head and neck cancer, which can be depicted by the PET tracer '*F-fluorothymidine
(FLT). Three advanced semiautomatic PET segmentation methods for the delineation of the
proliferative tumour volume (PV) before and during (chemo)radiotherapy were compared and
related to clinical outcome in 46 patients with squamous cell carcinomas of the head and neck. The
authors used background-subtracted relative-threshold level (PV RTL), a gradient-based method
using the watershed-transform algorithm and hierarchical clustering analysis (PV W&C), and a
fuzzy locally adaptive Bayesian algorithm (PV FLAB) applied to FLT PET/CT prior to treatment
and in the 2nd and 4th week of therapy. Primary gross tumour volumes were visually delineated on
CT images (GTV CT). PVs were visually determined on all PET scans. The authors concluded that
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in patients with head and neck cancer, FLAB proved to be the best performing method for seg-
mentation of the PV on repeat FLT PET/CT scans during (chemo)radiotherapy. This may
potentially facilitate radiation dose adaptation to changing PV.

Zhao et al. (2015) [25] proposed a new method of detecting pulmonary nodules with an im-
proved watershed algorithm on ('*F-FDG PET/CT) PET/CT study. A dynamic threshold seg-
mentation method was used to identify lung parenchyma in CT images and suspicious areas in PET
images. Then, an improved watershed method was used to mark suspicious areas on the CT image.
Next, the support vector machine (SVM) method was used to classify SPNs based on textural
features of CT images and metabolic features of PET images to validate the proposed method. The
proposed method in this process was more efficient than traditional methods and methods based on
the CT or PET features alone (sensitivity 95.6%; average of 2.9 false positives per scan) [26,27].

The segmentation of tumor in PET/CT image is the pre-processing step of the image analysis.
The segmented images are further analyzed for measurements of tumor size, tumor volume, or
texture classification, etc. In texture classification, the basic issue is identifying the given textured
region (tumor region) from a given set of texture classes (normal or other types of tumor). For
example, a particular region in PET/CT image may belong to malignant tumor, benign tumor, or
normal area. Each of these regions has unique texture characteristics. The texture analysis algo-
rithms extract distinguishing features from each region to facilitate classification of such patterns.
Implicit in this classification is the assumption that the boundaries between regions have already
been determined for further analysis.

Therefore, a robust lesion-segmentation method is critical for the quantification of lesion
activity in PET, especially for the cases where lesion boundary is not discernible in the corre-
sponding computed tomography (CT). However, lesion delineation in PET is a challenging task,
especially for small lesions, due to the low intrinsic resolution, image noise, and partial volume
effect. The combinations of different reconstruction methods and post-reconstruction smoothing on
PET images also affect the segmentation result significantly. Several authors have evaluated the
watershed segmentation method on phantom studies, and limited studies have assessed its role in
clinical scenarios. Watershed methods have been used in differentiating malignant and benign
solitary pulmonary nodules, in segmentation of hepatic tumors for treatment planning in stereo-
tactic body radiation therapy (SBRT), and to study changes in tumor cell proliferation induced by
radiotherapy for head and neck cancer. However, different techniques of watershed algorithms
have been used on different types of tumors with varying results, and the search for a more robust
technique of this method continues. We have tried to address this issue by assessing watershed
algorithm in segmentation of different types of solid tumors, including lung, liver, breast, and
lymphoma. In this study, we performed tumor segmentation on FDG PET/CT images of these solid
tumor malignancies using the watershed algorithm Figures 3.1-3.10.

Image segmentation is a process of partitioning a digital image into multiple segments. It
describes the process through which an image is divided into constituent parts, regions, or objects
to isolate and study separately areas of special interest. These regions are groups of connected
pixels with similar properties, such as gray level, color, texture, brightness, and contrast, etc., and
they may correspond to a particular object or different parts of an object.

The main goal of segmentation is to simplify and change the representation of an image into
something that is more meaningful and simple to analyse. Image segmentation can be performed
using automatic and semi-automatic methods. The simplest fully automatic method of segmen-
tation is the thresholding-based segmentation method, which encompasses most of the voxel
intensities of a particular tissue type; however, the automatic method may not be applicable to in
all settings and provide desired results. The semi-automatic method gives an opportunity to the
user to change the parameters as required to obtain good segmentation; however, it is a time-
consuming process and also subject to variation depending on the users. Both semi-automatic and
fully automatic methods of segmentation are the subject of intense research in imaging field and
nuclear medicine F-18 FDG PET/CT or SPECT/CT imaging.
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FIGURE 3.4 Shows a) Input image and b) Gradient
image (transformed using watershed algorithm). Over-
segmentation can be seen in the gradient image. 31) b)

FIGURE 3.5 Shows morphological-operation gradient
images with different parameters. The images show that
over-segmentation still exists.
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FIGURE 3.6 Shows image processed using watershed ridge lines of the negative of distance transformation
and also with compliment distance transform, but over-segmentation still remains.
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FIGURE 3.7 Shows over-segmentation resulting from applying the watershed transformation to the gradient
magnitude image. Watershed ridge lines are superimposed in black over the original binary image; some over-
segmentation is evident.

The first step of processing the input images was “segmenting grayscale images,” which means
dividing them into regions: generally, one of them stands for the background and each of the others
corresponds to one of the objects or areas to be extracted. This segmentation comes down to the
extraction of the contours of the desired objects. Now, the problem is to clearly define what a
contour is and what is not. Edge detectors are commonly used to create contour of the objects in
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FIGURE 3.8 Shows watershed transform of the smoothed gradient image after applying several values of
threshold (10 to 60); some over-segmentation is still evident.
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FIGURE 3.9 Shows external markers images with various threshold values.
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FIGURE 3.10 Shows internal markers images with various threshold values.

the image; the resultant image after the application of the edge detector is called the gradient
image. In our study, we have used a Sobel edge detector to create a gradient image.

It is difficult to achieve a perfect segmentation using a single procedure, even under the most
favourable conditions. Successful segmentation algorithms typically use a carefully constructed
combination of procedures to achieve useful results. In our study, we tried to segment solid tu-
mours in lymphoma, lung, breast, and liver malignancies from a single segmentation method using
a watershed algorithm and achieved perfect segmentation in 85% of the representative images.
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4.1 INTRODUCTION

The ever-increasing sophistication of medical imaging and information-processing technology has
led to the creation of a wide variety of medical images that can be used in clinical diagnosis [1].
Applications for the images include disease diagnosis, surgery, and radiation therapy. Although
each modality of medical imaging provides unique information about the human body, including
its organs and cells, each modality has a specific set of applications [2,3]. Therefore, in many real-
world clinical scenarios, a single sensor image is unable to offer sufficient information to the
treating physicians [4,5]. When trying to gain more thorough information about diseased tissue or
organs, it is typically necessary to merge the medical images obtained from various diagnostic
modalities [6,7]. The difference between anatomical and functional images is shown in Table 4.1.

These results demonstrate how no single imaging modality can reliably and quickly detect or
localise a cancerous lesion in its entirety. Image-fusion technologies are technologies that can
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TABLE 4.1
Anatomical and Functional Images Differences
Anatomical Imaging (CT, MRI) Functional Imaging (PET, SPECT)
Physical structure of the body Activity of the body
Detects the changes in the body structure and confirms the presence Shows the extent of the disease
of a mass
Cannot diagnosis the disease earlier Reveals the disease earlier
Cannot detect whether the mass is benign or malignant Can detect whether a mass is benign or malignant
Difficult to detect abnormalities Comparatively easy to detect abnormalities

instantly integrate multiple types of medical images [8,9]. These technologies can be used to
combine data sets efficiently [10]. Not only does the fused image provide a more accurate and
exhaustive characterization of a destination, but it also reduces the uncertainty and duplication in
the image caused by the sensor [11,12]. In image-guided diagnosis and medical condition eva-
luation, the use of image fusion improves accuracy. Due to their downsampling, these transfor-
mations are not shift-invariant, which indicates that the fusion is susceptible to registration issues.
This result is because downsampled data has shift invariance [13,14]. Over-complete wavelet
transforms, such as the DTCWT, have been proposed to address the DWT’s shift invariance and
directionality limitations [15]. On the other hand, a 2-D wavelet-based DTCWT cannot accurately
depict abrupt transitions like line and curve singularities because it is isotropic. There are only
three directions in which the wavelet can record data simultaneously [16].

4.1.1 NON-SUBSAMPLED SHEARLET TRANSFORM (NSST)

Shearlet transform: Case in point: It has a rapid decline in the spatial domain and is confined very
precisely. Shearlets are sufficient to fulfill the requirements of the parabolic scaling law. This
transform is sensitive to shifts in the direction that it is going. The number of directions has a factor
of two increase for each progressively lower scale, making the total number of directions 48.
However, it does not possess the property of being shift invariant, which is the origin of the pseudo
Gibbs phenomena, as well as other inefficiencies in the fusion results. Other inefficiencies can be
attributed to the fact that it is not fusion invariant, to avoid the problems discussed earlier. The
NSST method generates the most accurate and efficient sparse approximations of visual input that
are feasible. It is based on an affine structure that uses composite dilations as its primary building
block. When functioning in a two-dimensional space (n = 2), the composite dilation-based affine
system for a continuous wavelet L2 (R2) may be described as follows: the defined as,

(W (x) = |det My W (M x —1):t € R) 4.1
here,
_[a Vas 2
Aa—(o ﬁ)fora>0, SER,tER “4.2)

The analyzing elements are called shearlets. Here, a is scaling parameter, s is shear parameter, and
t is translation parameter. The matrix M,; can be written as

M, = BA, 4.3)
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Where, By is the shear matrix, A, is the parabolic scaling matrix.

A, = (8 JOE) B, = (é i) @.4)

Then shearlet transform of a function f is defined as
STf (a, s, t) = {f, ¥ast) (4.5)

The discrete version of shearlet transform Sf’ﬂk(j >0,-2 <1< — 1, k € 72 is obtained from
sampling of continuous shearlet transform (a,s,t).

Discrete shearlet transform decomposition thus allows for multiscale subdivision and directional
localization to be studied separately. A non-subsampled pyramid transform is used to achieve
multiscale subdivision of the shearlet transform. As a result, the smoothness that surrounds singu-
larities is no longer caused by the pseudo Gibbs phenomenon. Shift-invariant shearing filters are used
for directional localisation in the second step. For low-frequency subbands, it divides the frequency
plane into many trapezoidal high-frequency bands. To further break down the low frequency sub-
band, a pyramid transform is used. Once the necessary level of breakdown is reached, this cycle is
continued until it has been successfully completed.

NSST has the potential to be more effective than fundamental transformations, as previously
stated (e.g. wavelet, contourlet). Wavelet and contourlet transforms suffer from restricted direc-
tionality and high computing complexity, while NSCT can address the fundamental deficiency of
the earlier ones (such as shift variance).

NSST can better manage small changes in different directions (within an image) thanks to the use
of NSLP and several shearing filters, which use the non-subsampled laplacian pyramid (NSLP).
Before using direction filtering to obtain different subbands in various directions, NSLP, which has
the virtue of being able to scale in many directions and multiple scales at once, must be used to
deconstruct a picture into low- and high-frequency components. This sort of transformation is
unusual in that it employs the shear matrix, also known as the ShF, for direction filtering. When the
decomposition level is set to m = 3, an image is partitioned into m + 1 subbands, for a total of 4
subbands (one large fishing spoon and three half-fishes). The size of each subband is identical to what
it was in the original picture (thus ensuring shift-invariance). The NSST makes use of a three-level
decomposition mechanism, which is depicted in Figure 4.1.

This is how shearlet transform differs from the other MGA tools in terms of its distinguishing
characteristics:

» It generates a condensed waveform that is well localised on various scales and orienta-
tions. The mathematical structure of shearlets is complex. A benefit of having it in the
picture is that its representation is ideal when populated for images that include edges. It
does not impose any restrictions on the number of directions and does not place any
constraints on the size of the support for shearing. It offers a sincere segmentation method
of edges in the two-dimensional space.

» Unlike curvelets, shearlets are linked to an interpretation structure that does not undergo any
changes. When compared to the other MGA tools, the arithmetic of the inverse transform
requires nothing more than the characterizations of shearing filters. In this procedure,
composite inversion is not required at any point.

4.1.2 DescrierTioN oF NSCT

The idea behind the contourlet is to use square-shaped brush strokes and a large number of small
“dots” to create a super sparse expansion for very smooth contours, overcoming the limitation of the
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FIGURE 4.1 Image decomposition framework of shearlet transforms.

wavelet in this regard. For multi-scale decomposition, contourlet uses the Laplacian pyramid (LP), and
for directional decomposition, it uses the directional filter bank (DFB). Each level of decomposition can
have a different number of directions, which is much more flexible than wavelet’s three. Unfortunately,
downsamplers and upsamplers are included in both LP and DFB versions of the original contourlet
[17]. During image decomposition and reconstruction, NSCT does away with downsamplers and
upsamplers. A breakdown of the NSCT decomposition framework can be seen in Figure 4.2. NSDFB
and NSPFB are non-subsampled pyramid filter banks used in NSCT. Two-channel non-subsampled 2-
D filter banks are used to create the NSPFB [18]. In a DFB tree structure, each two-channel filter bank
has downsamplers and upsamplers that can be turned off and upsamplers that can be turned on. The
NSCT has both contourlet and shift-invariance properties in addition to its own. Image fusion makes it
simple to find relationships between subbands because the sizes of the different subbands are identical
when it is introduced. Designing fusion rules can benefit from this feature [19,20].

4.2 PROPOSED HYBRID ALGORITHM (NSCT-NSST)

Many hybrid image-fusion strategies are proposed in this paper to overcome the limitations of
conventional picture-fusion systems [21]. The first approach offered combines the DTCWT with
the non-subsampled shearlet transform (NSST). One of the proposed methods (DTCWT-NSST) —1
is seen in Figure 4.3.

4.2.1 AN OvVERVIEW OF PrROPOSED (NSCT-NSST) ALGORITHM

Method 1 uses DTCWT and NSST techniques on multimodal medical images as inputs. Steps
below describe the procedure:-

Step 1. The two images provided as input should be analysed.
Step 2. A 256 x 256 resizing of the images is performed on the inputs.
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Step 3. The input photos are broken down into sets of complex coefficients using the dual-
tree complex wavelet transform. For both coefficient sets, thresholds are generated
independently for each decomposition level and for each source picture.

Step 4. Each of the deconstructed photos should have an NSST.

Step 5. In case of low frequency coefficients, use the very average fusion rule, and for high
frequencies, the maximum fusion rule.

Step 6. To obtain the final proposed fused image, perform INSST followed by IDTCWTon
the inverse transform of the fused image.

4.2.2 ApprLYING NSST 10 THE NSCT DECOMPOSED IMAGE

Using fusing rules based on the regional energies can satisfy the vision system well since the visual
cortex is not attentive to a single pixel but is attentive to the edge, orientation, and surface texture of
the image. High sub-band fusion rules, on the other hand, are extremely complex, and this complexity
affects computation speed [22]. To achieve a satisfactory level of fusion effect and calculation speed,
the NSST-DTCWT has more low frequency sub-band coefficients, which can easily grab image
structure, which makes it simple to use the fusion rules in low and high frequency sub-band coef-
ficients [23]. Various medical images can be combined to create a fused image if the two images are
of different types. An initial NSST-DTCWT decomposition of image X/Y into decomposition
coefficients is performed. Fusion images are constructed using the absolute value of the coefficients.
Equations (3.7) and (3.8) explain the maximum and average fusion rules:

(g) NSST (h) Proposed Method 1 (i) Proposed Method 2
(DTCWT-NSST) (NSCT-Fuzzy)

FIGURE 4.4 Experimental results for neurocysticercosis disease affected images (Set 1).
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Cil’ if Cil > Ci2
Cr = 5 | 5 4.6)
Chif C <C;
| 2
Cr = E(Ci + C) “4.7)

when X,Y are input images, CF is the combined coefficient, and finally, inverse NSST and inverse
DTCWT are used to reconstruct the fused image using the merged coefficients.

4.3 RESULTS AND DISCUSSION

Patients infected with neurocysticercosis or other degenerative or neoplastic diseases are tested for
the proposed HMMIF technique using a cross mixing of MRI, PET, CT and SPECT of the brain.
These images are collected from the single patient because of their anatomical or functional
similarities to one another, as well as the fact that they were taken at the same time [24,25]. There
are several existing techniques, and the proposed hybrid image-fusion techniques have produced
promising results, which can be seen in Figures 4.4-4.7. MRI/PET and SPECT images are
combined from six separate sets of computed tomography (CT) and magnetic resonance imaging
(MRI). A set of patient medical imaging data from a CT or MRI scanner is used as the first set of

(2) NSST (h) Proposed Method 1 (i) Proposed Method 2
(DTCWT-NSST) (NSCT-Fuzzy)

FIGURE 4.5 Experimental results for metastatic bronchogenic carcinoma disease affected images (Set 2).
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input images. MRI/SPECT brain pictures impacted by metastatic bronchogenic carcinoma illness
are included in the second batch of input images. The third and fourth sets of input images exhibit
MRI/SPECT images of astrocytic and anaplastic tumours, respectively.

The fifth and sixth sets of input pictures exhibit brain imaging altered by Alzheimer’s and
moderate Alzheimer’s disease, respectively, using MRI/SPECT and MRI/PET. For the identical
input pictures, fusion results have been obtained using PCA, DTCWT, NSCT, NSST, and the
suggested hybrid approach combining DTCWT-NSST and NSCT-type 2 fuzzy. Both quality and
amount of analysis are superior to other classic fusion methods provided in this paper. Every one of
the cross-entropy measures are compared to the conventional and recommended hybrid-fusion
processes, as shown in Tables 4.2 and 4.3.

The IQI, mSSIM, and EQM should likewise have the highest possible value and be as near to “1”
as possible. Finally, a lower cross entropy value denotes a higher-quality fused output image. For an
image-fusion approach to work, all of these conditions must be satisfied. In addition to the new
hybrid-fusion approach just mentioned, algorithms like PCA, DWT, DTCWT, NSCT, and NSST
have also been put to the test. Using fusion criteria, techniques such as averaging low-pass subband
coefficients and selecting the highest possible high-pass subband coefficient value can be put into
practise. Qualitative and quantitative data are analysed in this evaluation of the proposed approach.

Figures 4.8 and 4.9 provide the fusion factor and IQI for six sets of fused image pairings, some of
which include CT-MRI, MRI-SPECT, and PET-MRI, among others. These figures may be found at
the bottom of this section. The results of the tests are analysed using principal component analysis,

(a) MRI (b) SPECT () PCA

(6 DTCWT

(g) NSST (h) Proposed Method 1 (i) Proposed Method 2
(DTCWT-NSST) (NSCT-Fuzzy)

FIGURE 4.6 Experimental results for Alzheimer’s disease affected images (Set 5).
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(g) NSST (h) Proposed Method 1 (i) Proposed Method 2
(DTCWT-NSST) (NSCT-Fuzzy)

FIGURE 4.7 Experimental results for Alzheimer’s disease affected images (Set 6).

TABLE 4.2

Performance Metrics Comparative Analysis for Different Fusion Methods (Set 1, Set 2)

Study Set Metrics FusFac QI Mssim  CE, EQM MI PSNR  STD

Algorithm

Set 1 PCA 1.582 0.498 0.542 2.502 0.432 1.820 24.03 20.34
DWT 1.716 0.508 0.572 2.072  0.499 1.899 25.90 22.23
DTCWT 1.862 0.511 0.522 1.928 0508 1.903 26.30 2439
NSCT 2.012 0.530 0.549 1.898 0.537  2.030 28.60 26.50
NSST 2.161 0.552 0.575 1.807  0.571 2.230 29.88 28.34
Proposed 1 (NSCT-NSST) 2.998 0.872 0.839 0981 0.857 2530 3230 30.20
Proposed 2 (NSCT-Fuzzy) 3.201 1.021 0.962 0.887 0982  2.630 34.20 32.39

Set 2 PCA 2.062 0.451 0.418 2.051 0.510  2.230 19.02 24.54
DWT 2.571 0.454 0.482 2.152 0517  2.330 20.30 26.34
DTCWT 2.671 0.518 0.489 2.098 0.529 2.494 23.67 27.45
NSCT 2.712 0.534 0.505 2.189  0.564 5594 25.30 34.45
NSST 3.011 0.507 0.524 1.878 0.557 2.630 26.80 39.33
Proposed 1 (NSCT-NSST) 4.851 0.712 0.792 0.953 0.878  3.230 34.09 57.45
Proposed 2 (NSCT-Fuzzy) 5.012 0.837 0.871 0.865  0.941 3.420 35.07 58.99
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TABLE 4.3

Performance Metrics Comparative Analysis for Different Fusion Methods (Set 3, Set 4)

Study Set Metrics FusFac 1Ql Mssim CE, EQM MI PSNR  STD

Algorithm

Set 3 PCA 1.520 0.506 0.439 2710 0452 2203 24.30 20.30
DWT 1.851 0.528 0.491 2312 0491 2.356 25.05 21.20
DTCWT 1902 0551 0521 2251 0517 2367 2770  24.30
NSCT 1.997 0.599 0.556 2.004  0.551 2.554 29.20 25.40
NSST 2.014 0.603 0.590 1.898 0.571 2.650 30.30 26.83

Proposed 1 (DCWT-NSST) 3.828 0.871 0819 0961 0871 3.120 3630  30.40
Proposed 2 (NSCT-NSST) 4.019 0.901 0.901 0.758 0941 3203 37.02 31.02

Set 4 PCA 1.582 0.501 0.409  2.691 0421 2030 19.09 2232
DWT 1.786 0589 0514 2445 0501 2,182 2376 2532
DTCWT 1.790 0.601 0.536  2.271 056 2473 27.80 2840
NSCT 1.858 0.688 0498 2025 0591 2783 2940 3023
NSST 1.989 0.690  0.508 1.698  0.609 2990 3273 3335

Proposed 1 (DCWT-NSST) 2.833 0.881 0.781 0931 0.881 3.690 4045 39.40
Proposed 2 (NSCT-NSST) 2.989 0.931 0.851 0.862 0961 3.580 4230  37.50

discrete-wavelet transform, discrete time continuous-wavelet transform, NSCT, and NSST tech-
niques in that order. The fusion factor and IQI value of the DTCWT-NSST and NSCT-Type 2 fuzzy
techniques that have been established are much higher than those of the other conventional ways
currently in use. This is the case when contrasted with the other traditional methods.

The comparative examination of the mSSIM and cross entropy for six sets of image pairings,
such as CT-MRI, MRI-SPECT, and MRI-PET, is depicted in Figures 4.10. The findings of the
experiments are analysed using PCA, DWT, DTCWT, NSCT, and NSST methodologies respec-
tively. In comparison to the other traditional methods that are currently in use, the values obtained
by the suggested DTCWT-NSST and NSCT-Type 2 fuzzy methods for mSSIM are higher, but the
values obtained for cross entropy are lower.
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FIGURE 4.8 Comparative analysis for fusion factor.
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FIGURE 4.9 Comparative analysis for image quality index.
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FIGURE 4.10 Comparative analysis for mean structural similarity index.

The comparative study of the EQM and MI for six sets of image pairings, such as CT-MRI,
MRI-SPECT, and PET-MRY], is depicted in Figures 4.11 and 4.12. The findings of the experiments
are analysed using PCA, DWT, DTCWT, NSCT, and NSST methodologies respectively. The
DTCWT-NSST and the NSCT-Type 2 fuzzy that have been proposed both have a greater value for
the EQM and the MI in comparison to the other standard techniques currently in use.

Figures 4.11 and 4.12 provide a comparison of the PSNR and standard deviation for six dif-
ferent image pairings, including CT-MRI, MRI-SPECT, and PET-MRI. PCA, DWT, DTCWT,
NSCT, and NSST are used to analyse the results of the experiments. The PSNR and standard
deviation of the newly created DTCWT-NSST and NSCT-Type 2 fuzzy techniques are higher than
those of other existing classic methods. Table 4.4 shows the comparison of the suggested ap-
proaches to the existing methods.
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FIGURE 4.11 Comparative analysis of edge quality measure.
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FIGURE 4.12 Comparative analysis for mutual information.

TABLE 4.4

Comparison of the Performance Metrics of the Proposed Methods with Existing Methods
Metrics Mutual Information Standard Deviation A
Methods

Jingming xia, et al. 2018 2.242 51.44 0.5887
Yong yang, et al. 2016 3.663 43.29 0.6197
Proposed Method 1 (DTCWT-NSST) 4278 57.45 0.878

Proposed Method 2 (NSCT-Fuzzy) 4.389 58.99 0.941
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4.4 CONCLUSION

The use of fusion criteria allows for the implementation of methods such as the averaging of the
low-pass sub-band coefficients and the selection of the highest possible value for the high-pass
subband coefficient. When fusing low-frequency coefficients, the maximum fusion rule is used,
whereas fusing high-frequency coefficients calls for the average fusion rule to be used. The quality
of the fusion has been evaluated using eight different performance parameters. According to the
findings, the values of the proposed hybrid image fusion technique produce the highest possible
values for four parameters. while the values for the proposed techniques produce the lowest
possible values for cross entropy. According to their subjective assessment score (3.5 out of 4) for
technique 1 (DTCWT-NSST) and method 2 (NSCT-Type 2 Fuzzy), respectively, the radiologist
has analysed the fused output pictures and compared them to their input images.
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5.1 INTRODUCTION

5.1.1 ARTIFICIAL INTELLIGENCE

Big data analytics and machine learning are having a deep influence on key aspects of current
modern life, ranging from entertainment to healthcare. Netflix distinguishes which movies people
prefer to watch, Amazon identifies which items most people like to buy from where, and Google
tells which types of symptoms and situations the public is seeking. All this data pool can be used
for very detailed particular profiling. These data are of great value for behavioral consideration and
direction, and they have the potential for predicting healthcare data trends. There is great positivity
that the use of different applications of Al can give substantial developments in all different areas
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of healthcare, ranging from diagnostics to treatment. The Al algorithms are performing far better
than humans in various jobs, like analyzing different medical images or correlating different
symptoms and biomarkers from electronic records for the characterization and prediction of the
disease (1). The term Al is used when a device does a thing the same as learning and problem-
solving rational functions (2). Al is used in the computer science field, particularly for the for-
mation of different systems execution tasks that required human behaviour intelligence using
different methods (3).

In 1959, Arthur Samuel presented a term called machine learning (ML) to the computer field.
ML is a subcategory of Al that uses different methods to allow the computer systems to study new
data, short of being unambiguously programmed (4). Among the different techniques that come
under ML, deep learning (DL) is one of the most gifted techniques in the broader Al domain
represented in Figure 5.1.

DL is a representation-based learning method having numerous levels of representation. The
main purpose of DL is to practice raw data to perform some sorting or recognition of tasks (5). To
do so, machine learning is using different computational models and different algorithms. By using
different algorithms, ML replicates the architecture of the biological neural networks in the brain;
so, it’s called artificial neural networks (ANNs) (6). Neural network architecture is designed in
different layers composed of different interrelated nodes. Each node of the network completes a
specific weighted sum or addition of the input data. Weights are dynamically optimized during the
preliminary preparation phase. There are mainly three different kinds of layers: (1) the input layer,
(2) output layer, (3) and hidden layer. The input layer generally receives input data. The output
layer produces the data-processing results. The hidden layer generally extracts the different pat-
terns followed within the data. There might be many hidden layers present according to the pattern
of the algorithms. The performance of conventional artificial neuron networks is improved using
the DL methods. Figure 5.2 describes classic ML and DL differences.

A deep artificial neuron network varies from the single or solo hidden layer by having a big
number of hidden layers. This large number of hidden layers describes the specific depth of the
neuron network (7). Convolutional neural networks have become very popular in computer-vision
applications today among the different deep artificial neuron networks. In convolution neural
network operations, the intensities of each pixel are calculated as the sum of each pixel of the
original image by different convolution matrices. Different convolution matrices are also called
kernels. For specific tasks, such as blurring, sharpening, or edge detection, different kernels are
applied. Convolutional neural networks are like biologically derived networks behaving the same
as the human brain cortex. The human brain cortex contains a complex structure of cells that are

Machine
Learning

FIGURE 5.1 Artificial intelligence umbrella.
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FIGURE 5.2 Classic machine-learning pattern and deep machine-learning pattern.

very sensitive to small regions of the visual field (8). The architecture of deep convolutional neural
networks allows the composition of complex features from simpler features to interpret image raw
data to detect specific features (8). Deep network architecture’s complexity makes it demanding in
relation to computational resources. With the development of the graphics processing unit, the
application of the deep-learning application is possible. Perhaps there might be a high number of
nodes required to detect complex relationships and patterns so that billions of parameters are
optimized during the preliminary phase. Radiologists are already aware of computer-aided
detection/diagnosis (CAD) systems, which were first introduced in chest x-ray and mammog-
raphy applications in the 1960s (7). However, algorithms development advancements with easy
access to different computational resources are allowing Al to be applied in radiological decision
making at an advanced functional level (9).

5.1.2 ARTIFICIAL INTELLIGENCE IN HEALTHCARE

Many countries have a shortage of experienced medical practitioners, even though demand for the
healthcare services is increasing so fast. With a very high expectation of patients needing services,
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healthcare industries are also struggling to keep up with all advanced technological developments
(10). Different healthcare services using health-tracking apps and web browsing are on demand
due to the latest development in wireless technology and smart devices. So, it makes a new forms
of healthcare delivery available from anywhere and anytime using remote interactions. It’s a boon
for underserved places that lack health specialists. It also helps to decrease costs and prevent
unnecessary exposure to contagious illnesses at the hospitals. Tele-caller healthcare technology is
also increasing in developing countries where the healthcare system is growing and healthcare
infrastructure can be designed to meet the current needs (10).

One recent question is revolving worldwide and involves the active discussion about whether Al
will replace the human healthcare practitioners in the future. But it is strongly believed that human
healthcare physicians will not be replaced by different machines or software in the so-called pre-
dictable future, but they can certainly assist medical practitioners to make better clinical decisions
and judgment in different areas of healthcare. Different methods to collect the different healthcare
data and newer advancements in data analytics techniques have led to success in the application of Al
in the healthcare industries. Different amounts of clinical questions and powerful data learning can
solve clinically relevant information otherwise hidden in the massive amount of data that are critical
in clinical decision making (11). Traditional healthcare ecology is understanding the importance of
different Al-equipped data-mining tools in the next-generation healthcare technology. Al can make
improvements to any different process within healthcare operation and delivery. An important driver
for the implementation of Al applications in the healthcare system is its lower cost.

Al applications can cut annual US healthcare costs by USD 150 billion in 2026. A large part of
these cost reductions from changing the healthcare model from a reactive to a proactive approach,
particularly focusing on healthcare management rather than disease treatment. This approach will
result in fewer hospitalizations, fewer doctor visits, and fewer treatments. Al-based technology will
have an important role in helping people stay healthy with continuous monitoring that will give an
earlier diagnosis, custom-made treatments, and more effective follow-ups (12).

5.2  FUNDAMENTS OF MEDICAL VISUALIZATION

5.2.1 EARLY STAGE

Before Al systems, no trained data were available in the healthcare system. Data were collected
from different clinical activities, such as screening, diagnosis, and treatment assignment. These
clinically derived data are often available but have limitations including the demographic region,
different medical records, different electronic recordings from specific medical devices, physical
examinations notes, and clinical laboratory and images received (13).

In addition, physical examination notes and clinical laboratory results are the other two major data
sources. We can differentiate them with a different image and genetic and electrophysiological
data because these sources contain large portions of unstructured descriptive texts, e.g. clinical notes
that are not directly analyzable. So, introducing artificial-intelligence-based technology mainly
emphasizes translating the unstructured text to machine-recognizable electronic medical records. Al-
based technologies are helping to extract different features from case reports to improve diagnosis
accuracy (14).

5.2.2 CurrenT TRENDS

One of the most capable areas of health innovation is the application of Al in medical imaging,
including image processing and image interpretation (15). Indeed, AI may be useful for numerous
applications starting from image procurement and processing to reporting, follow-up planning and
checking, data storage, data mining, and many more. Al is projected to enormously impact radiol-
ogists’ daily routines because of a wide range of these applications (16).
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FIGURE 5.3 Artificial intelligence devices workflow.

Al models use sophisticated complex algorithms to learn from a larger number of healthcare data
and then use the obtained results and insights to assist in clinical practice. It has learning and self-
correcting abilities to improve its accuracy based on feedback through machine learning. An Al
system can also provide up-to-date medical and clinical information from journals, textbooks, and
clinical practices for proper patient care (17). The Al systems can help to reduce diagnostic and
therapeutic errors that frequently occur in human clinical practice (18). The Al systems extract useful
information from a large patient population to assist in making real-time inferences for health risk
alerts and health outcome predictions (19).

Various Al devices are main categories into two major categories. The first category comprises
ML techniques that investigate structured data such as imaging, genetic and physiological data. The
ML procedures attempt to make a group of patients’ behaviors and, from that, it decides the prob-
ability of the disease outcomes in the medical clinical applications (14). The second category includes
the use of different natural language-processing methods that extract information from unstructured
data, such as clinical notes or medical journals to enrich structured medical data. The natural
language-processing procedures target turning texts into machine-readable structured data and then it
can be analyzed by machine-learning techniques (20). For better presentation, the flow chart in
Figure 5.3 describes the data generation through natural language-processing data enrichment and
machine-learning data analysis to get a clinical decision (21).

5.3 Al TECHNIQUES IN MEDICAL VISUALIZATION

The human brain is created to discover and master things by itself, but a machine cannot do the
same. In reality, the machine works precisely as it is delineated to perform. Machines take the input
and produce output based on that input, and follow the instructions given, but a human brain could
not think accordingly (22). The brain does not follow the extraneous instruction. It gets perception
on its own, perceives many things via the nervous system, and makes its own decisions. For
example, sensing the temperature of skin and odour, etc. (22).

The history of Al began with the gathering of scientists at Dartmouth College during the
summer of 1956. Scientists discuss the possibility of creating an artificial brain. Alan Turing was a
young British polymath who uncovered the mathematical possibility of AIl. However, great
challenges like the prerequisite of a computer that could store commands were not available at
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that time (23). An investment and interest in Al increased dramatically in the first two decades of
the twenty-first century as machine learning was effectively used to solve myriad challenges in
academia and industry (24).

Al in the future can perceive image acquisition and impulsive identification and investigate
functions in the field of intelligent medical treatment. For example, an Al algorithm is used to
detect skin cancer that can easily differentiate whether the skin mole is normal or melanoma. It can
also apply to various eyeball images and can identify the sucrose cataract, normal cataract, or
deepened myopia (25). Al is mushrooming exponentially over the last decade; high-pixel images
are available with just a single click, from image acquisition to data reporting, investigation, data
storage, data mining, and many others (8). Diagnostic medical imaging using Al is currently the
subject of a thorough evaluation. The identification of imaging abnormalities using Al has dem-
onstrated outstanding accuracy and sensitivity, and it holds out the prospect of improving tissue-
based detection and characterization (26). The identification of minute changes with unknown
significance, however, is a significant downside that arises with increased sensitivity (27).

According to a study on screening mammograms, artificial neural networks regularly exhibit
higher sensitivity for aberrant results, especially for small lesions, even though they are not more
accurate than doctors at detecting cancer (28). To ensure an efficient and secure integration into
clinical practice at the outset of an Al-assisted diagnostic-imaging revolution, the medical com-
munity must foresee potential unknowns of this technology. Establishing Al‘s place in clinical
medicine requires careful consideration of the risks it may present in light of its special capabil-
ities. It won’t be simple to distinguish between improved detection and overdiagnosis. To improve
the quality and comparability of Al studies, a regular practice of external validation using non-
sample data and well-specified cohorts is the fundamental of this assessment (29). Different
medical-imaging modalities can be employed for a variety of clinical applications because of their
distinctive qualities, varying responses to human body structure, and responses to organ tissue.
Ultrasonic imaging, magnetic-resonance imaging (MRI), and computed tomography and projection
imaging (such as x-ray imaging) is the most frequently employed image modalities for diagnostic
analysis in clinics (MRI), as shown in Figure 5.4 (30).

5.3.1 ML IN MeDIcAL VISUALIZATION

Machine learning in computer science and engineering is a fascinating field of research. It is regarded
as a subset of Al since it makes it possible to conclude instances, a function of human intelligence. In
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the realm of medical-imaging research, machine-learning techniques are frequently employed as
efficient classifiers and grouping algorithms (31). It is obvious why having a machine conduct
routine, well-defined work is appealing. Computers have a greater propensity for consistency and
tenacity than humans do. Given recent research showing that computers are capable of learning and
even mastering tasks that were once thought to be beyond their scope, machine-learning techniques
may become useful in computer-aided diagnostic and decision-support systems. The finding that,
periodically, machines may be capable of “understanding” patterns that are imperceptible to the
human eye is even more remarkable. This discovery has dramatically and significantly increased
curiosity in machine learning, especially in relation to how it may be applied to the analysis of
medical images. For instance, it has been demonstrated that machine learning can diagnose numerous
illnesses from medical photos as well as medical professionals (29).

5.3.1.1 What Is Machine Learning?

Whenever an ML algorithm is applied to a set of variables and some knowledge about those data,
the system could learn from the training examples and use what it has learned to produce a
forecast. If the algorithm system modifies its variable values to improve performance, i.e., more
test cases are correctly detected, then it is considered to be performing that task (32). Unsupervised
learning, reinforcement learning, and supervised learning are the three main categories of machine-
learning techniques. Reinforcement learning (RL) is insufficient for medical applications since an
RL system’s choice will affect the patient’s future health as well as their access to treatment
choices. As a result, it is more difficult to predict long-term impacts (33).

If the training data set has labelled outputs that match the input data, that is the primary distinction
between supervised and unsupervised learning. The difference between supervised and unsupervised
learning is that the former infers a mathematical relationship between the inputs and the labelled
outputs, while the latter infers a function that expresses hidden qualities found in the input data.
Depending on the objective, the output data from supervised learning may have a categorical value or
a numerical continuous value (34).

5.3.1.2 Algorithm of Machine Learning

The best feature weights can be determined using a variety of algorithms. These algorithms are based
on various ways of modifying the feature weights and data presumptions. The following sections
provide an overview of some of the most often used methods, including deep learning, decision trees,
k-nearest neighbours, support-vector machines, and neural networks (35).

5.3.1.2.1 Neural Networks

Artificial neural networks (ANNS), also known as simulated neural networks, are the foundation of
deep-learning algorithms (SNNs). By borrowing both their name and their physical makeup from the
human brain, they mimic how organic neurons converse with one another. One or more hidden layers,
an output layer, and a node layer are the components of an artificial neural network (ANN). The
weight and threshold associated with each network, or artificial neuron, are connected to other nodes.
A node is activated and starts sending data to the top layer of the network if its output rises beyond the
specified threshold value. In any other case, no data is sent to the program’s next layer. For neural
networks to grow and improve their accuracy over time, training data is necessary. However, if they
are calibrated for accuracy, these learning algorithms turn into helpful features in Al and computer
science by allowing us all to rapidly categorize and cluster data. Tasks in voice recognition or picture
identification can be done very quickly, rather than taking hours when human experts perform manual
categorization. One of the most popular neural networks is used in Google’s search algorithm (36).

5.3.1.2.2 K-nearest Neighbours

The k-nearest neighbours algorithm, often known as KNN or k-NN, is a supervised learning
algorithm that makes predictions or classifications about the clustering of a single data point using
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proximity. It can be used to solve classification or regression problems, but because it is predicated
on the discovery of similar points that are adjacent to one another, it is most usually used as a
classification tool (37).

Classification issues are resolved by majority vote, which means that the term used most fre-
quently to describe a given data piece is adopted. Although plural voting is the correct term, the
descriptor “majority vote” is usually used in literature. The distinction between the two phrases
arises from the fact that “majority voting” legally calls for a plurality of much more than 50%,
which works best if there are only two options. If there are several classes, let’s say four, you don’t
need 50% of the vote to decide which class wins; you might assign a class label with more than
25% of the vote (38).

5.3.1.2.3 Support-Vector Machines

The notion that the input data is converted to provide the biggest sector, or supporting vectors,
between the two classes gives support vector machines their name. Support-vector machines allow
for the free selection of the extent to which one desires a broad plane of separation versus the
number of points that are wrong due to the wide plane (39).

These learning machines have been around for a while, but recently, they have gained more
traction due to the addition of basic functions that can categorize cases that cannot be classified
linearly by leveraging nonlinear relationships between points in different dimensions. This prop-
erty distinguishes support vector-machine algorithms from many other machine-learning methods.
An easy-to-understand example of the use of a nonlinear function is to convert data from an
original space (the way the feature was collection and treatment instance, this same computed
tomography attenuation) to a hyperdrive (the novel method the function is depicted example, the
cosine of the CT absorption), where a hyperplane (a plane that appears to exist in that hyperdrive,
with the concept of using the plane positioned to best detach the data points) (40).

5.3.1.2.4 Decision Tree

All of the machine-learning techniques that have been discussed so far have one significant
drawback: it is typically impossible to extract the values used in the weights and activation
functions to obtain information humans can understand. The important benefit of decision trees is
that they provide rules that are understandable by humans for categorizing a particular case. The
component of decision trees that relates to machine learning is the quick search for the various
decision-point combinations that, when used, will produce the most accurate and simple tree.
When the algorithm is run, one determines how critical it is to have accurate findings versus more
choice points, as well as the maximal depth (i.e., the maximal number of decision points) and
maximal breadth that is to be searched (41).

5.3.1.2.5 Naive Bayes Algorithm

Naive Bayes classifiers are a subset of classification algorithms based on the Bayes theorem. Instead
of being a single algorithm, it is a collection of algorithms, and they are all predicated on the notion
that just about every pairing of characteristics being classified is unrelated to every other pair (42).

5.3.1.3 Application of ML
5.3.1.3.1 ML in Skin Cancer Detection

Al integration in smartphone apps can instruct users on how to conduct skin examinations and relay
the results to a doctor. Every kind of skin lesion is assigned a category, like “benign” and “malig-
nant,” either “naevi” or “melanoma,” to construct a novel ML skin cancer algorithm (43). Deep-
learning algorithms are instructed on an enormous number of photos from each class before being
evaluated on a fresh image. Three basic steps make up the entire procedure. In stage 1, digitally
enhanced macro or dermoscopic pictures tagged with the “ground truth” are the first images sent to
the algorithm. In stage 2, convolutional layers divide the extracted features from the images. A
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feature map is a levelled abstraction of the data’s visual representation. Low-level properties like
edges, corners, and forms are extracted in the first convolutional layer. Higher-level information is
gathered by later convolutional layers to determine the kind of skin lesion. In stage 3, feature maps
are used by the machine-learning algorithm to differentiate between different kinds of skin lesion
patterns. An updated image can now be classified using deep learning (44). Detection of skin cancer
using ML is shown in Figure 5.5.

5.3.1.3.2  Machine Learning in COVID-19 Diagnosis

Machine-learning and deep-learning algorithms have been proven to help analyze the enormous
high-dimensional features of medical photos. Patients with COVID-19 exhibit CT or x-ray findings
similar to other viruses and atypical pneumonia diseases. As a result, machine-learning and deep-
learning techniques may make it simpler to automatically distinguish COVID-19 from those other
pneumonia infections. Several methods, notably Ensemble, VGG-16, ResNet, InceptionNetV3,
MobileNet v2, Xception, CNN, VGG16, Truncated Inception Net, and KNN, have been used to
analyze chest images of COVID-19 patients. Notably, using these approaches to x-rays has
resulted in positive results. This finding is especially important because x-rays are widely available
and inexpensive. These methods can determine the degree of COVID-19 pneumonia, as well as the
likelihood of short-term death, in addition to separating COVID-19 individuals from non-COVID
pneumonia cases (45). The availability of publicly available libraries of CT and x-ray pictures of
individuals with COVID-19 has made it simpler to deploy machine-learning algorithms to a huge
number of clinical images and also to conduct all the training and validation processes (46).

More useful data for stratifying COVID-19 patients would come from an analysis of their
clinical and demographic data, their relationship to aspects of CT and x-ray imaging, and the
efficacy of machine-learning prediction approaches. Additionally, because deep-learning models
are black boxes, one of their biggest problems in medical applications is the unpredictability of
their results, which needs to be fixed (47).
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5.3.1.3.3 Machine Learning in Diagnosing Breast Cancer

Machine learning can be used to aid with illness diagnosis in a healthcare context. It frequently
uses ultrasound or x-ray pictures to aid in breast cancer screening. Methods using machine learning
(ML) for identifying, evaluating, and categorizing breast cancer. Using machine learning, re-
searchers were provided with a digital photo of fine-needle aspiration (FNA) of a breast tumor
(ML) (48). A breast cancer diagnosis utilizing a combination of mammography and ML techniques
has been made (49). Prostate cancer and breast cancer Gleason grades have been successfully
determined by analyses employing histopathology images and automated grading systems (50,51).
ML algorithms for automated breast cancer and prostate cancer diagnosis and classification on
digital histopathology images has also been shown by several previously reported methods (52).

5.3.1.3.4 ML in Diagnosing Eye Diseases

Recently, there has been a noticeable rise in the use of Al methods for diagnostic imaging, from
processing through interpretation. Recent articles on the use of Al in radiography, electro-
encephalography, electrocardiogram (ECG), x-ray scanning, ultrasound imaging, and angiography
employ MRI and CT more frequently than 50% of the time. Research efforts have focused on
disorders with high prevalence, including cataracts, adult macular degeneration (AMD), glaucoma,
as well as diabetic retinopathy (DR), among the uses of Al in ophthalmology. Al may be useful for
decreasing clinical obligations as it allows doctors with less expertise to scan for diseases and
identify them efficiently and fairly. Al has gained popularity in the field of ophthalmology since it
may be used to uncover clinically meaningful features for diagnostic and predictive purposes. The
efficiency of professionals and programs in diagnosing different eye-imaging modalities has been
examined in several studies. Slit lamp images, optical coherence tomography (OCT), and fundus
photography are a few of the Al methods utilized in ophthalmology (53).

5.3.1.3.4.1 Fundus photography Normal FP typically involves the acquisition of pictures at
one-field 45° to a posterior pole of a retina, and the complete retina can be observed at an angle of
230° (54). Wider spectrum FP detection is a recent discovery in the field of Al diagnostics, and its
advancement calls for more complex algorithms (55). Al may be applied in medical contexts to
analyze retinal images and diagnose illnesses. The Google Chips and Amazon DeepLens cameras
allow the possibility to integrate cutting-edge algorithms within devices, which is a useful strategy
in a range of medical fields (56). The first self-driving Al-based DR diagnostic system, IDx-DR,
was approved by the United States Food and Drug Administration in 2018. Recent efforts have
sought to automate pupillary tracking by integrating an actuator into the fundus camera. It has been
shown that Google Brain can estimate participants’ cardiovascular risk factors, like aging, systolic
pressure, haemoglobin Alc, and sex, from a single fundus image, a feat that is unachievable for
professional medical experts (57). More than 50,000 ocular pictures taken in a range of lighting
conditions are available on Kaggle, one of the largest dataset model and data-processing com-
petition websites in the world, with severity ratings ranging from O to 4. Additionally, EyePACS
and MESSIDOR are the two most used photo datasets for DR classification (58). Figure 5.6 shows
the application of DL algorithm for automatic detection of eye disorders.

5.3.1.3.4.2 Optical Coherence Tomography (OCT): OCT is a non-invasive, non-contact
optical image-based diagnostic method that aids in the diagnosis of several macular diseases and
provides detailed data about retinal morphology (59). An ML technique was recommended to predict
the need for anti- VEGF medicine based on OCT pictures obtained during the initial examination. AUCs
of 0.77 and 0.07, respectively, were found for the groups having low and high treatment regimens (60).

Retinal OCT may provide insights for early detection of neurodegenerative inside the brain,
including Alzheimer’s disease, according to recent research that analyzed a unique mix of retinal
OCT and MRI images (61).
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FIGURE 5.6 Application of DL algorithm for automatic detection of eye disorders.

5.3.1.3.4.3 Slit Lamp  Using just a slit lamp, an elevated light source, to project a narrow stream
of light into the eye allows one to inspect the posterior and anterior segments of the eye. The bulk
of the eye and its adnexa receive broad illumination as a means of facilitating general observation.
Congenital cataracts are a significant contributor to childhood blindness, and their identification
requires the use of slit-lamp images (62,63). The phenotypic of congenital cataracts are much more
complex than senile cataracts. Both the variability of cataract patients and the complexity of their
ocular pictures can be seen in slit-lamp images.

5.3.1.3.5 ML in Diagnosing Brain Disorder

Al models as an assisting tool for various frameworks of brain care, such as selecting candidates
for surgical intervention, target description for the operative procedure, route description for
corrective surgery, designing of tissue deformation for intra-operative support, and patient prog-
nosis for postoperative assessment (64).

Al-enhanced brain care can help patients with a variety of neurological conditions, including
epilepsy, brain tumours, lesions, Parkinson’s disease, brain traumas, and cerebrovascular abnor-
malities. Techniques for natural language processing (NLP), including gradient boosting machine
(GBM), sparse autoencoder (SAE), genetic algorithm (GA), ANN, SVM, fuzzy C-means, RF, and k-
means, were all used. In addition, customized approaches and lesser ML algorithms were adopted.
There were several utilizations of data types, such as magnetic resonance, computed tomography,
IUS, DTI, HSI, EHR, MER, and functional near-infrared spectroscopy (fNIRS) (65).

5.3.2 Deep LEARNING IN MEDICAL VISUALIZATION

DL is an Al area that has expanded quickly in recent years. DL is essentially a subset of the larger
family of machine learning that uses neural networks (similar to the neurons in our brains) to
simulate behaviour resembling that of the human brain. To possibly find patterns and classify the
information following those patterns, DL algorithms concentrate on mechanisms for information-
processing patterns. DL uses larger data sets than ML does, and the prediction method is self-
managed by the machines (66). Due to its many advantages, including its versatility, high
performance, potent generalization capability, and wide range of applications, the science world
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has focused on DL. The development of increasingly powerful computers and the abundance of
medical data have both greatly increased interest in this sector (67). The various invitations,
challenges, conferences, or findings that are presented by research organizations worldwide
demonstrate the interest in DL (68). As new developments are routinely produced, the numerous
contributions increase the effectiveness of the current models (69). Additionally, the growth of DL
has been aided in many scientific fields, including medicine, by the production of enormous
amounts of digital data, robust computer facilities, graphics processing units (GPU), and cloud-
based services. Deep learning can be thought of as an improvement over conventional artificial
neural networks because it builds a network with multiple (more than two) layers (70). Deep neural
networks (DNN) can find hierarchical feature representations in which the higher-level features
can be inferred from the lower-level characteristics.

To determine the local anatomical properties, several medical image-processing techniques now
in use rely on morphological feature representations. However, most of these feature representa-
tions were created manually, by specialists, and required a lot of time and work. Additionally, the
properties of the designed images are frequently problem-specific and barely reusable, meaning
they are not guaranteed to function for other image kinds. For instance, the imaging segmentation
and registration methods created for T1-weighted 1.5-Tesla brain MR pictures do not apply to T1-
weighted 7.0-Tesla images (71), let alone to images of other modalities or organs. The difference
between ML and Al is shown in Figure 5.7.

Deep-learning-based Al has proven beneficial in several medical disciplines. It excels partic-
ularly in strictly delineated clinical tasks where the vast majority of the data necessary for the
assignment is enclosed inside the data, depicted as a 1D signal (such as electrocardiography), 2D
or 3D medical imaging (such as a fundus images picture or optical coherence tomography), or
organized electronic medical record (72).

Because diagnoses in dermatology are primarily based on visual appearance, applications in this
field are particularly well suited for Al. This idea was proven by a study in which the researchers
trained a CNN to categorize lesions from images of skin illness (73). Malignant melanomas and
carcinomas might be distinguished with an accuracy comparable to those of up to 21 board-
certified dermatologists. In a second dermatology application, a CNN outperformed a panel of
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doctors who conducted the same examination in a time-consuming manual approach or even
outperformed them. This application concerned onychomycosis diagnosis (74).

5.4 Al SOFTWARE IN MEDICAL VISUALIZATION

As technology continues to revolutionize every aspect of healthcare, software utilizing Al, espe-
cially notably the component of Al referred to as ML, has emerged as an ever-significant part of a
growing array of medical equipment. Medical devices having ML capability have drawn more
attention in recent years. Over the past 10 years, the FDA has investigated and approved a rising
number of devices that have been legally sold (via 510(k) clearance, granted De Novo request, or
granted PMA) with ML, and it predicts that this trend will continue (75).

The best general-purpose Al imaging tools are Quibim, Enlitic, Butterfly Network, Lunit,
ChironX, Aidoc, Contextflow, and 4Quant. Here is a list of some of the most recent AI/ML-based
software that the USFDA has authorized is enlisted in, Table 5.1.

5.5 AI-BASED MEDICAL IMAGE SEGMENTATION FOR 3D PRINTING

A crucial part of many areas of medical research, instruction, and clinical practice is feature
extraction for 3D printers and 3D visualization. Computerized quantifications and visualization
techniques must be highly developed for medical picture segmentation. As Al technology has
advanced, it is now possible to swiftly and correctly identify tumours or organs in medical imaging
and automatically outline them (76). The process of extracting areas of interest (ROIs) using 3D
image data, such as that from CT or MRI scans, is known as medical-image segmentation. The
major objective of segregating this information is to locate the anatomical regions needed for a
given study, such as simulating physical attributes or realistically putting implants with CAD
designs inside of patients. Recent developments in Al-based software applications are making it
simpler to execute common jobs like medical image segmentation, which is a time-consuming
task (77).

From the segmented image medical experts can now design patient-specific medical gadgets to
aid in surgery planning thanks to 3D printing (3DP). A variety of tools can be used to produce
anatomical models from patient scans; however, research on the geometrical variance produced
during the digital translation of images to models is few (78). Deep convolutional neural networks
(DCNN) are used in Al-based segmentation in the AIMIS3D platform to automatically extract
tumour and organ borders (79). Using DCNN, a new technique for computer-aided design (CAD)
analysis, it is possible to automatically extract characteristics and monitor vast volumes of data to
create quantitative choices (80). There is a growing belief that deep-learning research could be a
viable replacement for manual, traditional approaches to image recognition and pattern classifi-
cation issues.

5.5.1 SEGMENTATION TECHNIQUES

Automatic segmentation is typically offered by segmentation applications like Vital Images
Advanced Visualization by Vitrea. To automatically or even partially automatically separate
particular organs from surrounding tissues, it makes use of sophisticated algorithms. Auto-
segmentation software uses a pre-set algorithm, which is based on the anatomical of interest to let
the user choose which region to segment. The automatic and interactive segmentation technologies
both contribute to the 3D models. From the models, many anatomical regions can be integrated.
They are also generated like a STL file for further reworking and 3D printing. When geographic
segmentation divides 3D objects, an arterial phase volume that displays the artery and a venous
phase’s volume that displays the veins are utilized (81).
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MRI scan of joint Segmentation CAD Design

3D Printed Knee Joints 3D Printing

FIGURE 5.8 Al-based segmentation approaching in 3D printed Knee Joints.

5.5.2 APPLICATION OF Al-BASED SEGMENTATION FOR 3D PRINTING

A platform-independent, extensible, 3-dimensional, automated-segmentation image-processing
application has made significant progress. The lumbar spine, cancer, arteries, and nearby nerves
were divided and visualized as 3D objects using CT images of the osteosarcoma. The lumbar spine
might be printed in 3D to demonstrate how tumour tissue has infiltrated and destroyed the bone
cortex. In breast cancer, the tumour target position must be precisely irradiated during radiation
therapy. Nevertheless, with each treatment, the patient’s position could alter and the breast could
move to other locations. A plastic breast bra that was 3D printed was utilized to limit breast
mobility and reduce breast position shift, which was quantitatively assessed on CT images. The 3D
conversion was done using CT breast cancer patient images (82). The segmentation pattern of joint
bone is shown for 3D printing in Figure 5.8.

5.6 CONCLUSION

The Al-enabled medical visualization can lead to more accurate & speedy outcomes. The image
processing in medical visualization can make better image structuring & advance image data
interpreting. Al subset as machine learning & deep learning can provide better more relevant
image data analysis for diagnosis or treatment as discussed for skin cancer detection, COVID-19
diagnosis, diagnosing breast cancer, eye diseases, diagnosing brain disorder. The image-data
recording becomes more sophisticated using Al. The dataset is a key important factor for any Al-
enabled system. Al-based medical image segmentation for 3D printing is a major advancement in
medical image visualization for better medical-oriented services. The various application of Al-
based segmentation for 3-D printing assist in better outcomes.
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6.1 INTRODUCTION

Depression is a common mental health disorder that causes people to feel sad for long periods and
lose interest in things they used to enjoy or find rewarding. It is a disease that can disrupt one’s
productivity in daily activities, sleep, and appetite. Globally, mental disorders represent the
greatest burden of noncommunicable diseases. They are accountable for a significant number of
disability-adjusted life years (DALYSs) lost by populations. Depression is one of the most prevalent
mental disorders. Early detection of depression can enhance the efficacy of treatment. This study
aims to use machine learning to identify early signs of depression by analyzing people’s daily
activities. Multiple machine-learning models were trained on a dataset containing both real and
synthetic samples. The process of data collection has two components. The first section consisted
of a questionnaire based on the Hamilton Depression Rating Scale (HDRS). The other section
consisted of 18 questions regarding daily activities and behavior. To eliminate inconsistencies, the
raw dataset was sanitized, normalized, and preprocessed. The dataset was then used to train
classification models using a variety of machine-learning algorithms, including K-Nearest
Neighbors (KNN), support-vector machines (SVM), decision trees (DT), linear discriminant
analysis (LDA), and Gaussian Naive Bayes. We examined the efficacy of the synthetic minority
oversampling technique (SMOTE) and random undersampling in preventing overfitting, which
could occur if the dataset was unbalanced. Various performance metrics, including precision,
specificity, sensitivity, AUC-ROC score, f-score, etc., were used to evaluate the techniques.
Combining a decision tree classifier with SMOTE produced the best results. The accuracy score
was increased to 84.7 percent using hyperparameter optimization and grid search, and the AUC-
ROC was raised to 0.934.

Depression impairs cognitive and social functioning, leading to decreased performance in the
workplace and elsewhere [1]. It even affects the quality of interpersonal relationships, especially
with family [2,3]. Hence, early identification and treatment of depression can help improve one’s
life. Early detection and appropriate treatment of the disease can promote remission, prevent
relapse, and reduce the burden of the symptoms on the individual.

The majority of mental health disorders are diagnosed by expert clinicians, although there are self-
reporting or assessment tools for certain diseases (such as depression and anxiety disorders).
The specialists utilize a variety of rating scales based on disease diagnostic manuals such as DSM-V,
ICD-10 Ch. 5, etc. With an acute shortage of mental health professionals and an ever-increasing
prevalence of mental disorders, there is an urgent need to automate the task of diagnosing mental
disease so that healthcare providers can screen large numbers of individuals in less time. Artificial
intelligence and machine learning may help accomplish this goal. In addition to clinician-administered
tests, there are self-reporting instruments for some mental health disorders, such as depression dis-
orders. The available screening tools focus solely on how a person feels, without examining other
behavioral characteristics. However, behavioral assessment may provide useful hints for exploring in
greater depth why a person feels a certain way and what types of daily challenges are being faced. It can
aid in both disease diagnosis and the prescription of an effective treatment.

The purpose of this study was to use machine-learning techniques to infer the onset of
depression based on certain behavioral cues from a person’s daily activities. For this purpose, a
dataset capturing 18 critical activity parameters of an individual, along with HDRS scales, was
used. The dataset was cleaned and standardized so that more accurate predictions could be made.
Several machine-learning models were trained on this dataset using a variety of algorithms, and
their performance was compared. The best-performing algorithm was used as a model for a system
with a graphical user interface that was built with Python’s KivyMD package. A person can put in
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their values for the 18 traits, and if depression is found, they will be notified so they can get help
from a trained professional.

6.2 LITERATURE REVIEW

As a result of technological advancements, artificial intelligence is permeating the mental health
and well-being space. This area of study has increasingly become the focus of a variety of dis-
ciplines. To get an idea of the increasing interest in the area, we analyzed several research pub-
lications in the Google Scholar database. Advanced search options were used to retrieve the results
for each of the years starting in 2011 and ending in 2021. The search string was “depression
detection using machine learning.” Furthermore, under advanced options, some extra key words
were supplied, including deep learning, depression, SVM, KNN, classification, ANN, major
depressive disorder, etc. Figure 6.1 shows an increasing trend in the number of research publi-
cations during recent years.

There is an ongoing effort to use machine learning to make early depression diagnoses using a
variety of data. These studies have varying characteristics which they use to identify people with
depression, like audio files [4], surveys [5,6], MRI scans [7,8] and even comments on social media
sites [9,10]. Artificial neural networks (ANN), support-vector machines (SVM), k-nearest neighbors
(KNN), decision trees, and random forests are among the most frequently employed machine-
learning algorithms for this purpose. Some studies, like that by Nemesure et al. [11], even used a
combination of algorithms whose output was used as an input in a higher-level classifier. There are a
few limitations to the datasets used by the studies conducted in this field. Rubin-Falcone et al. [7]
used MRI scans, which can be expensive and hence would not be an ideal method to identify
depression at an early stage in a way that is accessible to most people. Islam et al. [9] used some
advanced software like NCapture and LIWC, which has the same problem of accessibility as Rubin-
Falcone et al.’s MRI scans. Furthermore, several studies used datasets of a small group of participants
or even a small number of characteristics to compare. Even those by Nemesure et al. [11] and
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FIGURE 6.1 Number of research papers on depression detection using ML in Google Scholar.
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FIGURE 6.2 Essential components of a typical depression detection ecosystem.

Kasthurirathne et al. [12], which use very large datasets, collect data from hospitals and universities,
may be unable to capture a variety of instances in the population. This inability limits the general-
izability of the results. Additionally, the datasets tend to be heavily imbalanced since the population
of those depressed is much lower than the healthy population. Na et al. [13] tried to address this issue
by using the Synthetic Minority Oversampling Technique (SMOTE). However, the several synthetic
samples created could pose a problem when created without considering the majority class, which
can lead to the creation of ambiguous examples. Apart from accuracy, various metrics are used to
measure the efficacy of the machine-learning algorithm. Most studies use the area under the receiver-
operating characteristic curve (AUC-ROC), which is one of the most widely used evaluation metrics
for such classification models. Precision, sensitivity, and specificity are other parameters related to
the AUC-ROC, which are frequently mentioned. Some studies even highlight the use of a confusion
matrix to obtain false positive and false negative statistics. Other metrics include the F1 score [9,14],
the Brier score [15], and the mean kappa index [8]. However, given that the AUC-ROC is one of the
most reliable performance-measuring metrics, this study will use it to measure the machine-learning
model’s efficacy. Furthermore, the precision, recall, and F1 score will also be used. Figure 6.2 shows
the essential components of a depression-detection system.

Several studies have been conducted to identify people with depression using machine learning,
as shown in Table 6.1 below.

6.2.1 DiacNosTIC ToOLS AND SCALES FOR DEPRESSION

A number of scales and tools are used for depression screening. Some of them are used by a
qualified practitioner, while others can be used as a self-assessment tool.
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FIGURE 6.3 Outlining the process of the methodology used in the research.

6.3 MATERIALS AND METHODS

The steps taken to achieve the final result of an application that can identify people with depression
are outlined in Figure 6.3.

6.3.1 DATASET

The process of data collection has two components. The first section consisted of a questionnaire
based on the Hamilton Depression Rating Scale (HDRS). The other section consisted of 18 questions
regarding daily activities and behavior. About 2000 of these entries were found through surveys, and
the other 3000 were synthesized. The dataset contains two parts: one part with 18 general traits and
attributes of people who consented to the study, and the other part is the class of depressed or healthy
individuals identified using the Hamilton Depression Rating Scale (HDRS).

6.3.2 CLEANING AND STANDARDIZING THE DATASET

Given that the dataset was obtained via survey, a few missing values had to be filled. For char-
acteristics that could have decimal values, the mean was used to fill the blank spaces. For char-
acteristics with integer values, the mode was used to fill blank spaces. Inputs of characteristics,
which are words, were arbitrarily assigned consecutive integer values. The scaler function in the
Scikitlearn Python library was used to standardize the dataset.

6.3.3 BALANCING THE DATASET

The dataset contains 3885 entries for individuals classified as healthy and 1225 entries for in-
dividuals classified as depressed, as illustrated in Figure 6.4. The ratio of depressed to healthy
entries is 35:111, indicating that the dataset is clearly imbalanced. This imbalance may result in a
more inaccurate machine-learning model. As a result, the SMOTE function [18] from the imblearn
Python library was used to balance the data. Additionally, a combination of SMOTE and random
undersampling was used to balance the dataset, taking the majority class into account. When these
two functions were pipelined together, the RandomUnderSampler function in imblearn was used
with a sampling strategy of 0.5 and SMOTE with a sampling strategy of 0.4.
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FIGURE 6.4 Distribution of data by class.

6.3.4 TRAINING AND CROSS-VALIDATION

Linear discriminant analysis, K-neighbors classifier, decision tree classifier, Gaussian NB, and
SVM were the five machine-learning algorithms that were trained and compared.

6.3.4.1 K-Nearest Neighbors Classifier

K nearest neighbors is a simple but critical machine-learning algorithm. It is the most frequently used
algorithm for classification and pattern-recognition tasks, which makes it an excellent candidate for
this research. This algorithm first determines the number of neighbors (K) and then computes the
euclidean distance between data points to determine the K nearest neighbors. The model operates by
assigning a new data point to the category with the greatest number of neighbors [19]. This algorithm
is straightforward to implement and performs better when dealing with large datasets. However, the
computational cost associated with determining the value of K and calculating the euclidean distance
between data points is considerable. Finally, because KNN may fail to perform well when there are
too many features, dimensionality reduction techniques such as feature selection can be used.

6.3.4.2 Decision Tree

The name implies the use of a tree-like flowchart to generate predictions via various feature-based
splits. This classification technique divides a population into branch-like segments that form an
inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric, which
enables it to efficiently handle large, complex datasets without imposing a complex parametric
structure [20]. They are capable of handling both continuous and categorical variables, which are
both present in the dataset used in this study.

6.3.4.3 Linear Discriminant Analysis

Linear discriminant analysis is extremely efficient at solving multiple classification problems with
well-separated classes. The method’s intuition is to find a subspace with a lower dimension than
the original data sample dimension, in which the original problem’s data points are “separable”
[21]. LDA’s fundamental concept is to project data points onto a line to maximize scatter between



98 Concepts of Al and Its Application in Modern Healthcare Systems

classes and minimize scatter within each class, resulting in easily distinguishable classes. It is a
linear projection computation. LDA assumes that the data points have a Gaussian distribution and
that, when plotted, they form a bell-shaped curve.

6.3.4.4 Gaussian Naive Bayes

Gaussian Naive Bayes is a classification technique founded on Bayes’ theorem, which presupposes
predictor independence. It takes each data point and assigns it to the class to which it is most
similar. Rather than calculating that proximity using the euclidean distance from the class means,
the GNB considers not only the distance from the mean but also its relationship to the class
variance [22]. When this assumption of independence held true, this model outperformed others
and required less data to train. However, in practice, it is nearly impossible for all of a dataset’s
features to be completely independent of one another.

6.3.4.5 Support-Vector Machine

The support-vector machine (SVM) is a supervised machine-learning algorithm that is typically used
to solve classification problems. Each data point is plotted in an n-dimensional space using this
algorithm, where 7 is the number of features in a given dataset. The machine is based on separating
hyperplanes defined by data classes [23]. This algorithm performs well with multidimensional data
and is particularly effective at obtaining a distinct margin of separation. However, when dealing with
large datasets, the required training time increases, increasing the model’s computational cost.
Additionally, it does not work well with datasets that contain a high level of noise and have a high
degree of overlap between the target classes. With a test size of 30% and an arbitrary random state of
6, the train-test-split function from the Scikit Learn library was used. Finally, a 10-fold cross vali-
dation was used to determine the algorithms’ performance on the dataset.

6.4 EXPERIMENTAL RESULTS

6.4.1 TooLs AND SET-UP

The following is a list of Python libraries used to create the machine-learning algorithm along with
the application:

6.4.1.1 Scikit Learn

Scikit Learn is a large Python library that enables the easy implementation of a wide variety of
machine-learning algorithms. It includes packages for several commonly used machine-learning
algorithms, including DT, KNN, LDA, GNB, and SVC. Additionally, this module was used to
improve the consistency of the dataset by importing the standard scaler function.

6.4.1.2 Imblearn

Imbalanced-learn is a Python module that helps balance significantly skewed datasets due to
distinct majority and minority classes. This library contains the random undersampler and the
synthetic minority oversampling technique (SMOTE), which were used to balance the dataset due
to the clear majority of healthy individuals.

6.4.1.3 Numpy

Numpy provides a number of techniques for processing data from large multi-dimensional arrays
and includes a number of mathematical functions. It was primarily used in this project to calculate
the mean of the area under the curve to evaluate the machine-learning models’ efficacy.

6.4.1.4 Pandas

Pandas is a widely used library for data analysis. It was primarily used to clean the data in this
project so that it could be easily standardized and trained using the Scikit learn package.
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6.4.1.5 Joblib

Joblib is a Python library that simplifies the process of saving and loading data-related Python
objects. It was used in this project to store the final machine-learning model that was used in the
application, preventing it from having to be trained each time. This aided in time savings but was
computationally inefficient.

6.4.1.6 Kivy

Kivy is a simple Python library that enables the development of cross-platform applications for
Windows, macOS, Android, iOS, and Linux. It was used to create a user interface through which a
user could input data to be cross-referenced by the machine-learning algorithm, which would then
provide an output. Kivy has its own syntax and is easily integrated into Python.

The computer system used in the experiment had an Intel i5 processor, 8 GB of RAM, and the
Windows 10 Pro operating system.

6.4.2 EVALUATING THE EFFicACcY OF MODELS

The following five metrics were used to evaluate and select the most suitable model to use in the
application:

6.4.2.1 Accuracy

It is the percentage of classifications the model correctly predicts. It is obtained after testing and a
10-fold cross-validation.

6.4.2.2 AUC-ROC

The receiver operating characteristics curve is a probability curve, and the area under the curve is a
measure of how well the model can distinguish between classes. The higher the AUC, the better
the model is at distinguishing classes. This value was obtained after undergoing a 10-fold cross
validation.

6.4.2.3 Precision
It is the ratio of the true positives to the sum of the true and false positives.

6.4.2.4 Recall
It is the ratio of true positives to the sum of true positives and false negatives.

6.4.2.5 F1 score

It is the weighted harmonic mean of precision and recall. A better model will have an F1 score
closer to 1.

Table 6.2 displays the results obtained from the original dataset without SMOTE class bal-
ancing. As the majority of samples belong to class 0, all models become skewed toward this class
(class 0). The GNB classifier has the highest accuracy (76.40%) in this instance. It also results in
the highest AUC-ROC score (0.757). Regarding class 0 and class 1 precision, DT and GNB are the
best performers for their respective classes. Nevertheless, it is evident from the recall metric that
all classifiers perform poorly in terms of depression detection due to class 1’s low recall value. The
DT classifier exhibits the highest recall value in this instance.

To mitigate the impact of class imbalance on poor class 1 recall, we employ the SMOTE
technique for class balancing. The performance of classifiers after application of SMOTE is
depicted in Table 6.3. It results in an improvement in overall performance, particularly the pre-
cision and recall values for depression class (class 1). The DT classifier achieves the best accuracy,
AUC score, class 1 precision, and F1-score values in this instance. The GNB classifier achieves the
highest class 1 recall rate.
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TABLE 6.2
Performance Metrics of Models Trained on Imbalanced Dataset Without Using SMOTE or
Random Undersampling

ML Model Accuracy AUC-ROC Precision Recall F1-Score

0 1 0 1 0 1
GNB 76.4% 0.757 0.77 0.51 0.98 0.08 0.86 0.13
SvVC 76.0% 0.520 0.76 0.00 1.00 0.00 0.87 0.00
LDA 75.9% 0.748 0.79 0.52 0.94 0.21 0.86 0.30
DT 75.3% 0.665 0.83 0.48 0.84 0.46 0.84 0.47
KNN 71.5% 0.512 0.76 0.24 0.92 0.08 0.83 0.12
TABLE 6.3
Performance Metrics of Models Trained Using Only SMOTE
ML Model Accuracy AUC-ROC Precision Recall F1-Score

0 1 0 1 0 1
DT 83.5% 0.839 0.82 0.83 0.83 0.82 0.82 0.83
GNB 74.2% 0.831 0.85 0.68 0.57 0.90 0.68 0.78
LDA 70.4% 0.768 0.72 0.69 0.65 0.75 0.69 0.72
KNN 66.4% 0.729 0.69 0.65 0.60 0.73 0.64 0.69
SvC 51.6% 0.523 0.51 0.53 0.61 0.43 0.55 0.48

In the literature, random undersampling for the majority class has been used extensively as an
adjunct to SMOTE. The random undersampling and SMOTE combination was evaluated. The results
are displayed in Table 6.4. However, random undersampling does not improve the performance
of the ML algorithms tested; rather, it degrades it. The accuracy of DT classifiers decreases from
83.50% to 75.50%.

The joblib library was used to create a.sav file with the machine learning model. Using the Kivy
library, a GUI was created with prompts so that a user could input their values for the 18 char-
acteristics. These values were compared and evaluated by the model, which produced an output
that was reflected on the user interface and indicated whether they were depressed or healthy.

TABLE 6.4
Performance Metrics of Models Trained Using SMOTE and Random Undersampling
ML Model Accuracy AUC-ROC Precision Recall F1-Score

0 1 0 1 0 1
DT 75.5% 0.733 0.80 0.63 0.83 0.59 0.81 0.61
GNB 71.8% 0.773 0.76 0.65 0.88 0.44 0.82 0.53
LDA 69.9% 0.752 0.74 0.61 0.88 0.36 0.80 0.45
SvVC 66.7% 0.541 0.67 0.00 1.00 0.00 0.80 0.00

KNN 62.9% 0.581 0.70 0.43 0.79 0.32 0.74 0.37
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6.5 DISCUSSION

Tables 6.2, 6.3, and 6.4 above show the results obtained before and after balancing the dataset
using SMOTE and random undersampling. Overall, the decision tree algorithm with SMOTE had
the best efficacy. It had the highest accuracy of 83.5% and an AUC-ROC of 0.839. Furthermore,
the precision, recall, and F1 score were consistently high, around 0.82 or 0.83. This result shows
that the model can, a lot of the time, figure out who is depressed and healthy. The decision tree
algorithm can be further optimized using the GridSearchCV function found in the Scikit Learn
library. It is a function that is fit with different hyperparameters for the decision tree to find the
optimal combination. The criterion parameter had two options: gini and entropy. Max depth was
arbitrarily assigned a range of 1-15, min samples per leaf 1-10, and min samples per split 1-15.
After a few attempts, the combination that yielded the highest accuracy had criterion as entropy,
max depth as 14, min samples leaf as 2, and min samples split as 14. The accuracy of this
algorithm was 84.7%, and the AUC-ROC was 0.934.

This model was imported using the joblib library, and a GUI was created using the kivy library.
Shown below is a picture of the user interface in which a user would input their values for the 18
characteristics. After clicking the submit button, the values would be cross-referenced with the
model, and one of the two following outputs would be displayed.

6.6 LIMITATIONS

Although the machine-learning model works with relatively high accuracy and AUC-ROC, there
are a few limitations to this project. First, the dataset can be improved on by adding more char-
acteristics so that a correlation between them, and depression can be identified for more accurate
identification. Furthermore, a larger dataset using surveys from people all around the world can be
used to improve the applicability of the project. This, however, will necessitate a significant
number of resources, which may not be readily available.

Second, other machine-learning algorithms can be explored, too. This research only considered
popular algorithms and left out others like random forest and deep neural networks, which may
yield more accurate results. Furthermore, other forms of cross validation like K-fold cross vali-
dation or LOOCYV should be considered too to find the optimal method.

6.7 CONCLUSION

This paper has demonstrated that machine learning can be used to identify people with depression
with an accuracy of 84.7%. Using a large dataset of over 5000 entries, training a decision tree
algorithm has proven effective in detecting depression in a way that is easily accessible by people
via a smartphone or a laptop. Depression is a disease for which appropriate treatment after early
detection can help reduce the effect of symptoms and even encourage remission. However, it must
be acknowledged that this form of detection is not perfect and can be improved. Future work could
include using multiple algorithms whose output could be used as an input for a higher-level
algorithm. Also, more characteristics could be found so that the machine-learning algorithm can be
trained more accurately.
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7.1 INTRODUCTION

According to the World Cancer Research Fund International, breast cancer is the most common
cancer among women and the most common cancer overall. Therefore, an important question
arises of creating a method for the early diagnosis of breast cancer. Such a method should
be simple, cheap, accurate, and non-traumatic. Currently, common diagnostic methods, such as
clinical review, mammography, and aspiration biopsy, do not always show high accuracy and
can be traumatic.
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Our work is focused on considering the machine-learning methods for diagnosing breast cancer
obtaining features using fractal analysis of the distribution of chromatin in Feulgen-stained images
of buccal epithelial nuclei (Andreichuk et al. 2021; Klyushin et al. 2021).

7.2  MALIGNANT-ASSOCIATED CHANGES IN BUCCAL EPITHELIUM

Malignant-associated changes in cells distant from a tumor were discovered by H. Nieburg
(Nieburgs, Herman, and Reisman 1962, Nieburgs 1968). He discovered the lability of X-chromatin in
somatic cells depending on functional changes in the body and the general somatic environment. If
there was a malignant tumor in an organism, changes in the content of X-chromatin in the buccal
epithelium and peripheral blood neutrophils were observed. Oncologists have found that the number
of cells with X-chromatin correlates with impaired functionality of the heterocyclic X chromosome.

Tumor-associated changes were manifested as increases in nuclei of epitheliocytes and the size of
zones of limited chromatin with light halo. Similar phenomena were found in the nuclei of cells of
other organs. Obrapalska et al. (1973) reported that tumor-associated changes in the buccal epithe-
lium were observed in more than 70% of cancer patients. Increasing of DNA content in the nuclei of
epitheliocytes in patients with melanoma was found in comparison with the control group of prac-
tically healthy people. In addition, in patients with melanoma, a decreasing amount of X-chromatin
was found compared with patients who had benign tumors or healthy people. In women with breast
cancer, increasing of DNA content and the size of the interphase nuclei of the buccal epithelium was
recorded. At the same time, it was reported in (Ogden, Cowpe, and Green 1990) that in men with
bronchial epithelioma and healthy men, the difference between the amount of DNA in buccal epi-
thelial epithelial cells was not insignificant.

The buccal epithelium is a popular target for early disease detection (Rathbone, Drummond, and
Tucker 1994; Rosin 1992; Prasad, Mukundan, and Krishnaswamy 1995). It is a fairly accurate
reflects health of a person. For example, by the proportion of nuclei with negative electrical charge of
the buccal epithelium and the speed of nuclei movement during microelectrophoresis, one can
determine the a person’s biological age and other indicators. Using the buccal epithelium, the genetic
effects caused by a toxic environment can be assessed. For example, under the influence of genotoxic
carcinogens (in particular, tobacco), the number of micronuclei in exfoliative cells can increase
10 times compared to the control (Nair et al. 1991; Tolbert, Shy, and Allen 1992). Therefore, a
change in the number of micronuclei can be considered a marker of various pathologies. For ex-
ample, after chemotherapy or radiation therapy, the number of micronuclei in the oral cavity of
cancer patients increases. The same phenomenon has been observed in people chewing carcinogenic
gums (Adhraryn, Dave, and Trivedi 1991) or exposed to mutagenic influences (Sarto et al. 1990).

Chromatin makes it possible to assess the level of buccal epithelium differentiation in patients
with gastric or duodenal ulcers. This assessment uses indicators such as the index of maturation,
differentiation, and the karyopyknotic index. Changes of the normal differentiation of the buccal
epithelium are a sign of some disorders. Cellular atypia of the buccal epithelium strongly correlates
with precancerous and neoplastic changes and makes it possible to almost accurate diagnose these
diseases. Also, changes of the buccal epithelium differentiation can occur due to metabolic and
hormonal disturbances, as well as mechanical influences and chemical reactions (Schonwetter,
Stolzenberg, and Zasloff 1995).

Palcic et al. (1994) found that changes in DNA content and chromatin texture in the nucleus are
associated with the appearance of malignant neoplasms. These changes were found in normal cells
outside the tumor. Presumably, this is how normal cells react to malignant changes in organs (in
particular, in the mammary gland). This finding allowed the authors to suggest that tumor-
associated changes are strongly pronounced near the tumor and fade or disappear as they move
away from it, or after it disappears due to a surgical operation. On this basis, the authors proposed
the use of quantitative cytospectrophotometry for the diagnosis of early forms of cancer and its
prognosis.
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FIGURE 7.1 Condensed and decondenced hromatine in a nucleus of
buccal epithelium (1—heterochromatin, 2—euchromatin).

Ogden et al. (1990) attempted to evaluate the effect of a tumor on the buccal epithelium to
characterize processes in organs distant from the tumor. Changes in the size of nuclei and nuclear
membranes, as well as chromatin heterogeneity, were found in almost 80% of patients with various
tumors. However, the researchers were unable to identify clear patterns, with the exception of an
increase in the nuclei of buccal epithelium cells and a change in the nuclear-cytoplasmic ratio.
Nevertheless, they confirmed the effect of tumors on the condition of the buccal epithelium.

The traditional object of study of genomic DNA has been blood, but recently, researchers have
increasingly focused their attention on the DNA of buccal epithelial cells. An analysis of the
literature demonstrates that a malignant tumor has a hidden effect on many body systems, causing
a corresponding reaction, in particular, in the buccal epithelium.

As well-known the nucleus chromatin is classified as condensed or decondensed. The level of
chromosome decondensation can vary. Complete decondensed chromatine is called euchromatin,
and completely condensed chromatin is called heterochromatin. Heterochromatin may be intensely
stained with Feulgen stain and may be definitely registered using a light microscope (Figure 7.1).

Lieberman-Aiden et al. (2009) found that DNA in the cell nucleus is packed into a globule that
looks like a folded three-dimensional Peano curve. This finding led to intensive research into the
fractal properties of cells. Currently, the fractal dimension of cells is used to assess their hetero-
geneity in endometrial hyperplasia and highly differentiated endometrioid carcinoma (Bikou et al.
2016) to assess survival in melanoma (Bedin et al. 2010), leukemia (Adam 2006) and other dis-
eases (Losa 2012; Metze 2010, 2013). Note that the fractal properties of cells have previously
aroused the interest of many researchers (Einstein et al. 1998; Ohri, Dey, and Nijhawan 2004; Losa
and Castelli 2005), but in these studies, tumor cells, and not buccal epithelium, were studied.
Researchers observed that increasing of the average DNA content in the nucleus is a marker of
malignant tumor (Boroday et al. 2016; Klyushin et al. 2021). Therefore, given the presence of
tumor-associated changes in the buccal epithelium, it can be assumed that these changes, among
other things, can affect the fractal dimension of cell nuclei in cancer patients. We prove this
hypothesis in this work.

7.3 BREAST CANCER DIAGNOSIS USING MACHINE LEARNING

There are many modern approaches to the problem of diagnosing breast cancer. For example, works
(Yanetal. 2018; Yang et al. 2019; Patil et al. 2019) focus on the use of convolutional neural networks
(CNN) and recurrent neural networks (RNN) for diagnosing breast cancer based on histopathological
images collected by biopsy. Moreover, in the works (Yang et al. 2019; Patil et al. 2019), the methods
are given, which can be interpreted and important for medical diagnosis. Another example can be the
work (Punitha, Al-Turjman, and Thompson 2021), which uses an artificial neural network connected
to a bee algorithm for cancer diagnosis to select the best features and parameters, as well as a dataset
with images that were obtained by fine-needle biopsy. The work (Yifan, Jialin and Boxi 2021) uses
the same data as (Punitha, Al-Turjman, and Thompson 2021), but uses the Adaboost and Random
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Forest methods for diagnostics. Another work (Hu, Whitney, and Giger 2020) is also an example of
breast cancer diagnostics based on multiparametric magnetic resonance imaging. Features are ex-
tracted from images using a convolutional neural network, and then classification is carried out using
the support-vector machine.

The work (Khamparia 2021) is focused on the consideration of artificial neural networks that will
be further trained on mammography images. Another example is the work (Kavitha 2022), in which
neural networks and deep-learning methods are used to diagnose breast cancer using mammography
images. All the works cited as examples show high accuracy. But these works are based on data
collected by dangerous and expensive diagnostic methods. So biopsy and high-definition mam-
mography can be traumatic or harmful to health due to radiation exposure. Therefore, the question
arises of finding a safer and cheaper method for the early diagnosis of breast cancer.

7.4 MATERIALS AND METHODS

We investigated the control group (29 woman), patients with breast cancer at the second stage (68
woman), and the patients with fibroadenomatosis (33 woman). Diagnoses were confirmed histo-
logically. The dataset consists of 20256 photos of interphase nuclei of buccal epithelium (6752
nuclei photographed without filter, through a yellow filter and through a violet filter).

Smears of oral mucosa cells were taken from the spinous layer and dried at temperature
21-22C°, fixated in the Nikiforov mixture and Feulgen-stained with cold hydrolysis in 5 n HCl for
15 min. After dissolving content of a cell excepting DNA, Feulgen-stained chromatin was pho-
tographed by an Olympus analyzer, consisting of an Olympus BX microscope, a Camedia C-5050
digital zoom camera and a computer. As a rule, every smears consisted of 52 nuclei. The content of
DNA-fuchsine in the nuclei was computed as a product of the optical density by area. For every
nuclei, we obtained a photo 128x128 pixels.

To perform the binarization, we used the 3-sigma rule. The algorithm assumes that the pixels
are divided on two classes (foreground and background). The foreground (image of a nucleus) is a
set of pixels whose brightness differs from the average brightness less than by three values of
standard deviation. Other pixels are considered as a background.

Next, comparing the values of brightness of each pixel using the 3-sigma rule, we classified points
to the corresponding class. All pixel of the background considered to be black (Figure 7.2).

FIGURE 7.2 Nuclei after adaptive threshold pre-processing.
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The background of the photos often contains artifacts (noise, spots, or other defects). The color
brightness of such pixels is close to the brightness of the foreground, i.e., it is a mistake. Meantime,
it is necessary to grant that the distribution of chromatin in the nucleus is heterogeneous. As a
result, a nucleus looks like a pink foggy spot, consisting of dark regions (heterochromatin) and
light regions (euchromatin).

Therefore, after selecting, a background on a binary image, we must restore the original color,
but only for a foreground. For this purpose, we used the smoothing image. For removing artifacts,
we compared the brightness of their pixels with surrounding pixels. If they were pixels of a
background of an image, we paint the suspicious pixel by black color. Spots on a foreground were
eliminated in a similar way, but in this case, we used not a small threshold, but a confidence
interval constructed using the e-sigma rule. We compared the brightness of their pixels with
surrounding pixels, also. If the brightness of suspicious pixels fell out of a confidence interval for
the surrounding pixels, we assigned to the suspicious pixels the average brightness of surrounding
pixels. Then, we computed the fractal dimension of an image.

7.5 FRACTAL ANALYSIS OF CHROMATIN

To determine the fractal dimension of an image, we used the Hurst exponent, connected with the
fractal dimension D by the formula H = 2 — D (Butakov and Grakovskiy 2005). For the Hurst
exponent computed for a data sequence, at first, we mapped an image into a sequence of brightness
of pixels using a space-filling Hilbert curve (Sagan 1994) passing though every pixel of an image
and sequentially read the values of the color brightness of the pixels. Thus, we obtained three
vectors of color brightness corresponding to three colors channel of the RGB color model.

1. Compute the standard deviation of values in current segment of a data sequence:

m

Sun = Y, (i — Zy), (7.1
i=1

where N is the size of the segment (varying from 2 to the end the sequence), m is the upper
limit of summing (from 1 to N—1), x; is a brightness of a pixel, Xy is the mean brightness of
the segment. Therefore, we compute N—1 values &, v, ... ,Oy—1.n-

2. Compute the range of standard deviations (7.1):

R= max 6,y — min S,n (7.2)
m=2,....N m=2,....N

, (7.3)

where s is the standard deviation of the whole data sequence.
4. Compute 1g Q and 1g N using (7.3) and the line dependence of 1g Q on Ig N.
5. Compute the Hurst exponent as the tangent of the slope angle of the line dependence of
lgQonlgN.

Thus, the dataset with the features used in the work contains the data on 97 patients (68 patients
with breast cancer, 29 people from the control group). A patient is represented by three samples



108 Concepts of Al and Its Application in Modern Healthcare Systems

(for each of the RGB channels) of fractal dimensions for each image of the interphase nuclei of the
patient’s buccal epithelium.

To use the usual methods of machine learning, we add a few more features. This is necessary
because each patient is represented only by a sample of fractal dimensions, which complicates the
classification process. The main idea of expanding the number of features is to add different means
and statistical values to the data, which are calculated for each sample. Therefore, for each sample
of each patient, we calculate the following values.

e Arithmetic mean

* Geometrical mean
e Harmonic mean

e Median

* Standard deviation

Analyzing the graphs represented in Figures 7.3-7.5, it is possible to put forward the theory that
the signs obtained from the blue channel are the most informative.
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FIGURE 7.3 Comparative graphs for signs created by sampling the blue channel. The graph shows the
distribution of the data, where the ordinate and abscissa axes have the corresponding signs. Diagonal contains
graphs of the distribution of data by the corresponding feature. The parameter BC equal to O is the control
group. BC equal to 1 is the group of patients with breast cancer.
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FIGURE 7.4 Comparative graphs for signs created by sampling the green channel. The graph shows the
distribution of the data, where the ordinate and abscissa axes have the corresponding signs. Diagonal contains
graphs of the distribution of data by the corresponding feature. The parameter BC equal to O is the control
group, BC equal to 1 is the group of patients with breast cancer.

7.6 ALGORITHM ADABOOST

Consider the Adaboost algorithm (Zhu et al. 2009) for classifying patients with breast cancer. This
powerful machine-learning algorithm is based on the sequential combination of simple classifi-
cation algorithms in which each next one will correct the error of the previous ones. We have the
following data for learning the algorithm: (x;, y,), (%, ¥,), ... , (x4, ,), Where x; € R” is an input of
the model, {1, 2, ..., K} is an output of the model, and K is the number of classes. The purpose of
the algorithm is to find a classification rule C(x) using training data. For new x the rule C(x) returns
a label of class from the set {1, 2 ..., K}.

7.6.1 ALGORITHM ADABOOST-SAMME

1. Initialize weights of observations w; = %, i=1,2, ..., n.
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FIGURE 7.5 Comparative graphs for signs created by sampling the red channel. The graph shows the
distribution of the data, where the ordinate and abscissa axes have the corresponding signs. Diagonal contains
graphs of the distribution of data by the corresponding feature. The parameter BC equal to O is the control
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2. Fromm =1 to M:

2.1 Learn a simple classifier on training data using the weights w;.
2.2 Compute an error of the obtained classifier

err™ =Ir Y wi(y, # T™ (xi))/z nw;,
i=1

i=1

where [r is a learning rate and 7 is an indicator function.

2.3 Compute

a™ = log

1 — (m)
% + log(K — 1).
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2.4 Update the weights of observations
Fori=1,2.... n.

w; < wiexp(@™I (y; = T™ (x))))

2.5 Normalize new weights w;.

As a result, we obtain the following classification function:

M
C(x) =argmax Y a™I(T™ (x)= k).
k m=1

7.6.2 DekcisioN TREe

The Decision Tree algorithm is usually used as a simple classifier in the Adaboost algorithm
(Hastie, Tibshirani, and Friedman 2009). This machine-learning algorithm is known for being easy
to interpret. The algorithm builds a tree at each node of which the data is split, according to the
variable chosen by the algorithm. Each leaf of the tree belongs to one of the classes, according to
which the classification is carried out.

Let our training data contain N observations: i.e. (x;, y;), (%, ¥,), ..., (v, yy), where
x; = (Xj1, X2, ..., Xjp). Class labels are y, € {1, 2, ..., K}, where K is the number of classes. Let we
have a dividing on M regions Ry, R, ..., Ry then at the node m, which represents the region R,,
containing N,,, training samples, we denote by

1
b=~ X 10 =k
meieRm

the proportion of class k at node m. We classify the observation at node m into the class
k(m) = arg max, p,,. It should be noted that when using observation weights, it is the proportions
of classes in the nodes that will change.

In experiments with the Adaboost algorithm, the Gini index is used to select the optimal var-
iable for splitting.

K
Qm (T) = Z pAmkpAmk’ = Z p,\mk(1 - ﬁmk)’
kzk’ k=1

where T is the constructed tree. For splitting, a variable is also chosen that minimizes the Gini index.
Another splitting criterion is the cross entropy K

K
Qm (T) == Z ﬁmk logﬁmk'
k=1

A decision tree has many split-stopping criteria, but the Adaboost algorithm usually uses trees of
depth 1 or trees of maximum depth 2.
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7.6.3 TESTING ADABOOST

To conduct testing, we divided the dataset into two parts: a training sample (80%) and a test sample
(20%) on which the resulting model will be evaluated. For the Adaboost algorithm, we tested with
different sets of paired parameters, namely the number of classifiers and the learning rate. Note that
the learning rate parameter [r is the weight that is applied to each classifier on every boosting iter-
ation. Thus, when the learning rate is greater than one, the contribution of the generated classifiers to
the final result increases, and when the learning rate is less than one, on the contrary, it decreases.
With this approach, you need to maintain a trade-off between the speed of learning and the number of
classifiers (Figures 7.6-7.8).
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FIGURE 7.6 Graphs for selecting the optimal learning rate for the Adaboost algorithm based on Decision
Tree with depth 1 with 150 classifiers. The abscissa shows the values of the learning rate parameter, and the
ordinate shows the accuracy and its bounds.
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FIGURE 7.7 Graph for selecting the optimal learning rate for the Adaboost algorithm based on Decision
Tree with depth 2 with 150 classifiers. The abscissa shows the values of the learning rate parameter, and the
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FIGURE 7.8 Depth fitting plot for the Decision Tree algorithm with the Gini splitting criterion, which is
trained on the blue channel data. The abscissa shows the values of the max depth parameter, and the ordinate
shows the accuracy.

We also performed cross-validation for each set of parameters with splitting the training data
into five parts. The choice of the optimal set of parameters was carried out using the accuracy
metric averaged over cross-validation.

After choosing the optimal parameters of the model, it is trained on the entire training sample.
The final evaluation of the model is carried out on a test sample according to the metrics.

True Positive + True Negative

* Accuracy =
Y True Positive + True Negative + False Positive + False Negative

True Positive

. nsitivity = '
Se suvity True Positive + False Negative

True Negative

* Speczﬁczz‘y = True Negative + False Positive

For the Adaboost algorithm with the Decision Tree classifier with a maximum depth of 1, the
following parameters turned out to be the best: the learning rate is 0.2, the number of classifiers is
150. The resulting model gives the following metric values on the test sample.

* Accuracy = 0.95
* Sensitivity = 0.92
* Specificity = 1.0

For the Adaboost algorithm with a Decision Tree classifier with a maximum depth of 2, the best
learning speed is 1.5 and the number of classifiers is 150.
The resulting model gives the following metric values on the test sample.

* Accuracy = 0.85
* Sensitivity = 0.92
* Specificity = 0.71

7.6.4 CONCLUSIONS ON ADABOOST

The Adaboost algorithm with 150 decision trees with a depth of 1 and a learning rate of
0.2 showed the best results. Testing shows that the Adaboost algorithm works beautifully on the
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task at hand. Accuracy (95%), sensitivity (92%) and specificity (100%) obtained are superior to
the results of some other diagnostic methods. For example, the sensitivity of mammography
is approximately 87% (D’Orsi and Sickles 2017), while the specificity ranges between 93% and
88% (Nelson et al. 2016).

However, the Adaboost algorithm does not have a clear and transparent interpretation, which is
important in the tasks of diagnosing diseases.

7.7 ALGORITHM RANDOM FOREST

Consider the Random Forest algorithm (Breiman 2021) for the problem of diagnosing breast
cancer. The theory put forward earlier about the greater information content of the blue data
channel will also be tested. The idea of the Random Forest algorithm is to build an ensemble of
decision trees that are trained on different subsamples of the training data. The end result of the
classification is the averaging of all the results of the constructed decision trees.

7.7.1 RaANDOM FOREST

Training the Random Forest algorithm consists in applying the bootstrap aggregation (bagging)

technique to Decision Tree algorithms. Assume that we have training data X = (x, %, ..., x,,) with

class labels Y = (y;, ¥,, ..., ¥,). Bootstrap aggregation B times selects a random subsample from

the training sample and trains the Decision Tree algorithm on the newly received sample.
Forb=1, ..., B:

1. Create a subsample X, ¥, from the training sample X, Y.
2. Train Decision Tree f, on the sample X, 1.

After training all Decision Tree algorithms for new data x, the results of all Decision Tree clas-
sifiers are averaged. That is, the class that has chosen the largest number of Decision Trees will be
selected. This method is also called the simple voting method.

To test the hypothesis about the greater informativeness of the data obtained from the blue
channel, the Random subspace method (Ho 1998) was used to select a subsample for training
Decision Tree algorithms. The idea of the method is to project the training sample into subspaces
(training sample space). Thus, subsamples with a smaller dimension are obtained, on which
classifiers learn. For our task, we will divide the feature spaces into three subspaces for each of the
channels (blue, green, red).

Also, in addition to the simple voting method, logistic regression was used for the Random
Forest algorithm with the Random subspace method. Thus, logistic regression learned from the
results of the three decision trees that were learned from each of the data channels. This makes it
possible to find the most informative data channel by checking weights of logistic regression.

7.7.2 Locistic REGRESSION

Logistic regression (Yang 2019) is a statistical classification algorithm that checks whether the
input data belongs to one class or another.

Let we have a binary classification (then class O is a control group, and class 1 is a group of
patients with breast cancer), and input data x. Then, the probability that x will belong to second
class (class 1) is

P(G=1X=x)=0(B+ B x),
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where G is a corresponding class and a sigmoid function has the form

1
o(x) = .
@ 1 +e™*
The learning of logistic regression is performed using minimization of a cost function L () by
gradient methods

N
LPB)=Y {ylogpxi )+ (1 —y)ptxis B},

i=1

where N is the number of training samples, x is an input sample, y is a sample of class labels,
pxi; B)=P(G = 11X = x;5 B).

7.7.3 TestING RANDOM FOREST

For testing, we divided the dataset into two parts: a training sample (80%) and a test sample (20%)
on which the resulting model will be evaluated. Let us consider several approaches with the
Random Forest algorithm.

First, the Random subspace method was used to create three subspaces of training data for each of
the channels. After that, the Decision Tree algorithm was trained on the data of each of the data
channels. For each of the three trees, we carried out cross-validation by splitting the training data into
five parts and selecting the parameters for the maximum depth of the tree and the algorithm splitting
criterion (the Decision Tree parameters were chosen after the accuracy metric). As a result, the
following results were obtained for each of the data channels (Figures 7.8-7.10).

Decision Tree trained on data from the blue channel.
Depth = 3.

Splitting criteria = Gini index.

Accuracy = 0.75

1,000
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FIGURE 7.9 Depth fitting plot for the Decision Tree algorithm with the Gini splitting criterion, which is
trained on the green channel data. The abscissa shows the values of the max depth parameter, and the ordinate
shows the accuracy.
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FIGURE 7.10 Depth fitting plot for a Decision Tree algorithm with a cross-entropy splitting criterion that
trains on red channel data. The abscissa shows the values of the max depth parameter, and the ordinate shows
the accuracy.

Sensitivity = 0.85
Specificity = 0.57

Decision Tree trained on data from the green channel.
Depth = 4.

Splitting criteria = Gini index.

Accuracy = 0.60

Sensitivity = 0.69

Specificity = 0.43

Decision Tree trained on data from the red channel.
Depth = 5.

Splitting criteria = cross entropy.

Accuracy = 0.50

Sensitivity = 0.77

Specificity = 0.0

The next issue for the aggregation of the Decision Tree algorithms is the use of the simple
voting method (averaging the votes):

3
Py=1=} L),

i=1

where P(y = 1) is the probability that, given x, the result of the Random Forest will be class 1
(breast cancer patient), 7; are Decision Tree algorithms that produce a class 1 probability. When
testing this version of the Random Forest algorithm, the following results were obtained:

e Accuracy = 0.70
* Sensitivity = 0.85
* Specificity = 0.42
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Also, based on the previously obtained trees, logistic regression was applied. The input logistic
regression algorithm takes class 1 (breast cancer patient) probabilities that were generated from
each of the three decision trees. Training of logistic regression lasts as long as the maximum
component of the loss function is greater than 10~*. Therefore, the modification of the Random
Forest algorithm gave the following results:

* Accuracy = 0.75
* Sensitivity = 0.69
* Specificity = 0.86

In addition, the Random Forest algorithm was tested with the bootstrap aggregation technique of
distributing data into 100 subsamples to train the appropriate number of Decision Trees with the
Gini splitting criterion. The trees are split until each letter contains training examples of only one
class, or there are no more than two examples in the letter. This Random Forest variant gave the
following results:

e Accuracy = 0.90
* Sensitivity = 0.92
* Specificity = 0.85

7.7.4 CoNcLUSIONS ON RANDOM FOREST

The Random Forest algorithm was tested, and beautiful results were obtained. The best result was
shown by the Random Forest algorithm from bootstrap aggregation and 100 decision trees:
accuracy (90%), sensitivity (92%), and specificity (85%).

The idea of building a Random Forest based on three decision trees, each of which is trained on
its own (blue, green, red) data channel, has not shown its effectiveness. The decision tree built on
the data from the blue channel shows the same accuracy as the Random Forest built on these trees
using logistic regression.

At the same time, the trees built on the green and red data channels show very low results.
Considering that the logistic regression weights for the decision tree trained on the blue channel data
are the largest, it can be concluded that the blue data channel is the most informative. However, other
data channels should not be discarded from consideration, their importance is confirmed by the high
accuracy of the Random Forest algorithm with 100 trees, which was studied on all data channels
at once.

7.8 CONCLUSION

Machine-learning methods for diagnosing breast cancer based on the fractal dimension of buccal
epithelium nuclei is proposed in the work. The cancer diagnosis method with 95% accuracy, 92%
sensitivity, and 100% specificity is developed. The significance of the data from blue, green, red
channels is checked using the Random Forest algorithm and logistic regression. The blue data
channel is more important than the other two channels. However, the best results are obtained
when using all data channels.

Future scope of the work consists in considering images with yellow and violet filters (only
images without filters are used in this work), and in using other measures of fractal dimension.

REFERENCES

Adam, R., Silva, R., Pereira, F. et al. 2006. The fractal dimension of nuclear chromatin as a prognostic factor
in acute precursor B lymphoblastic leukemia. Cellular Oncology 28: 55-59. doi: 10.1155/2006/409593


https://dx.doi.org/10.1155/2006/409593

118 Concepts of Al and Its Application in Modern Healthcare Systems

Adhraryn, S. G., Dave, B. J., and Trivedi, A. H. 1991. Cytogenetic surveillance of tobacco-arecaunt (mava)
chewers, including patient with oral cancers and premalignant conditions. Mutation Research 261, no.
1: 41-49. doi: 10.1016/0165-1218(91)90096-5

Andreichuk, A. V., Boroday, N. V., Golubeva et al. 2021. Artificial Intelligence System for Breast Cancer
Screening Based on Malignancy-Associated Changes in Buccal Epithelium. In: Enabling Al Applications
in Data Science, ed. A. H. Hassanien, A. E. Taha, and N. E. M. Khalifa, 266-285. Cham: Springer.

Bedin, V. et al. 2010. Fractal dimension of chromatin is an independent prognostic factor for survival in
melanoma. BMC Cancer 10: 260. https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-
10-260. doi: 10.1186/1471-2407-10-260

Bikou, O. et al. 2016. Fractal Dimension as a Diagnostic Tool of Complex Endometrial Hyperplasia and
Well-differentiated Endometrioid Carcinoma. In Vivo 30: 681-690.

Boroday, N., Chekhun, V., Golubeva, E. et al. In Vitro and in Vivo Densitometric Analysis of DNA Content and
Chromatin Texture in Nuclei of Tumor Cells under the Influence of a Nano Composite and Magnetic
Field. Advances in Cancer Research and Treatment. 2016, 706183. doi: 10.5171/2016.706183

Breiman, L. 2021. Random Forests. Machine Learning 45, no. 1: 5-32.

Butakov, V. and Grakovskiy, A. 2005. Evaluation of arbitrary time series stochastic level by Hurst parameter.
Computer Modelling and New Technologies 9, no. 2: 27-32.

D’Orsi, C. J. and Sickles, E. A. 2017. Breast Cancer Surveillance Consortium Reports on Interpretive
Performance at Screening and Diagnostic Mammography: Welcome New Data, But Not as Benchmarks
for Practice. Radiology 283, no. 1: 7-9.

Einstein, A., Wu, H., Sanchez, M., and Gil, J. 1998. Fractal characterization of chromatin appearance for
diagnosis in breast cytology. The Journal of Pathology 185: 366-381. doi: 10.1002/(SICI)1096-9896
(199808)185:4<366::AID-PATH122>3.0.CO;2-C

Hastie, T., Tibshirani, R., and Friedman, J. 2009. Elements of Statistical Learning. Cham: Springer.

Ho, T. 1998. The Random Subspace Method for Constructing Decision Forests. I[EEE Transactions on
Pattern Analysis and Machine Intelligence 20, no. 8: 832-844. doi: 10.1109/34.709601

Hu, Q., Whitney, H. M., and Giger, M. L. 2020. A deep learning methodology for improved breast cancer
diagnosis using multiparametric MRI. Scientific Reports 10: 10536. 10.1038/s41598-020-67441-4

Kavitha, T., Mathai, P. P., Karthikeyan, C. et al. 2022. Deep Learning Based Capsule Neural Network Model
for Breast Cancer Diagnosis Using Mammogram Images. Interdisciplinary Sciences—Computational
Life Sciences 14: 113-129. 10.1007/s12539-021-00467-y

Khamparia, A., Bharati, S., Podder, P. et al. 2021. Diagnosis of breast cancer based on modern mammography
using hybrid transfer learning. Multidimensional Systems and Signal Processing 32: 747-765. 10.1007/
s11045-020-00756-7

Klyushin, D., Golubeva, K., Boroday, N. et al. 2021. Breast cancer diagnosis using machine learning and
fractal analysis of malignancy-associated changes in buccal epithelium. Chapter: Artificial Intelligence,
Machine Learning, and Data Science Technologies Future Impact and Well-Being for Society 5.0, ed.
N. Mohan, R. Singla, P. Kaushal, and S. Kadry, 1-17. London: Taylor & Fransis.

Lieberman-Aiden, E. et al. 2009. Comprehensive mapping of long-range interactions reveals folding prin-
ciples of the human Genome. Science 326, no. 5959: 289— 193. doi: 10.1126/science.1181369.

Losa, G. and Castelli, C. 2005. Nuclear patterns of human breast cancer cells during apoptosis: characteri-
zation by fractal dimension and (GLCM) co-occurrence matrix statistics. Cell and Tissue Research 322:
257-267. doi: 10.1007/3s00441-005-0030-2

Losa, G. 2012. Fractals and their contribution to biology and medicine. Medicographia 34: 365-374.

Metze, K. 2010. Fractal dimension of chromatin and cancer prognosis. Epigenomics 2, no. 5: 601-604. doi:
10.2217/epi.10.50

Metze, K. 2013. Fractal dimension of chromatin: potential molecular diagnostic applications for cancer prog-
nosis. Expert Review of Molecular Diagnostics 13, no. 7: 719-735. doi: 10.1586/14737159.2013.828889

Nair, U., Obe, G., Nair, J., and Maru, G. B. 1991. Evaluation of frequency of micronucleated oral mucosa
cells as a marker for genotoxic damage in chewers of betel quid with or without tobacco. Mutation
Research 261, no. 2: 163-168.

Nelson, H. D., Fu, R., Cantor, A., Pappas, M., Daeges, M., and Humphrey, L. 2016. Effectiveness of
breast cancer screening: systematic review and meta-analysis to update the 2009 U.S. Preventive
Services Task Force Recommendation. Annals of Internal Medicine 164, no. 4: 244-255. doi: 10.7326/
M15-0969

Nieburgs, H. E. 1968. Recent progress in the interpretation of malignancy associated changes (MAC). Acta
Cytologica 12: 445-453.


https://dx.doi.org/10.1016/0165-1218(91)90096-5
https://bmccancer.biomedcentral.com
https://bmccancer.biomedcentral.com
https://dx.doi.org/10.1186/1471-2407-10-260
https://dx.doi.org/10.5171/2016.706183
https://dx.doi.org/10.1002/(SICI)1096-9896(199808)185:4<366::AID-PATH122>3.0.CO;2-C
https://dx.doi.org/10.1002/(SICI)1096-9896(199808)185:4<366::AID-PATH122>3.0.CO;2-C
https://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1038/s41598-020-67441-4
http://dx.doi.org/10.1007/s12539-021-00467-y
http://dx.doi.org/10.1007/s11045-020-00756-7
http://dx.doi.org/10.1007/s11045-020-00756-7
https://dx.doi.org/10.1126/science.1181369
https://dx.doi.org/10.1007/s00441-005-0030-2
https://dx.doi.org/10.2217/epi.10.50
https://dx.doi.org/10.1586/14737159.2013.828889
https://dx.doi.org/10.7326/M15-0969
https://dx.doi.org/10.7326/M15-0969

Non-Invasive Technique of Breast Cancer Diagnosis 119

Nieburgs, H. F., Herman, B. E., and Reisman, H. 1962. Buccal cell changes in patients with malignant tumors.
Laboratory Investigation 11, no. 1: 80-88.

Obrapalska, E., Cadel, Z., and Kostyrka, J. 1973. Ocena cytologic zna nablonka jamy ustney u chorych na
nowotwory zlosliwe. Nowotwory 1973, 23, no. 1/2: 25-29 (in Polish).

Ogden, G. R., Cowpe, J. G., and Green, M. W. 1990. The effect of distant malignancy upon quantitative
cytologic assessment of normal oral mucosa. Cancer 65: 477-480. doi:/10.1002/1097-0142(19900201)
65:3<477::AID-CNCR2820650317>3.0.CO;2-G

Ohri, S., Dey, P., and Nijhawan, R. 2004. Fractal dimension in aspiration cytology smears of breast and
cervical lesions. Analytical and Quantitative Cytology and Histology 26: 109-112.

Palcic, B. 1994. Nuclear texture: can in be used as a suurrogate endpoind biomarker? Journal of Cellular
Biochemistry 19, no. 1: 40-46.

Patil, A., Tamboli, D., Meena, S., Anand, D. et al. 2019. A. Breast Cancer Histopathology Image
Classification and Localization using Multiple Instance Learning. In: 2019 IEEE International WIE
Conference on Electrical and Computer Engineering (WIECON-ECE), 1-4. doi: 10.1109/WIECON-
ECE48653.2019.9019916

Prasad, M. P., Mukundan, M. A., and Krishnaswamy, K. 1995. Micronuclei and carcinogen DNA adducts as
intermediate end points in nutrient intervention trial of precancerous lesions in the oral cavity.
European Journal of Cancer 31B(3): 155-160. doi: 10.1016/0964-1955(95)00013-8

Punitha, S., Al-Turjman, F., and Thompson, S. 2021. An automated breast cancer diagnosis using feature
selection and parameter optimization. ANN, Computers and Electrical Engineering 90: 106958.

Rathbone, M. J., Drummond, B. K., and Tucker, I. G. 1994. The oral cavity as a site for systemic drug
delivery. Advanced Drug Delivery Reviews 13, no. 1-2: 1-23.

Rosin, M. 1992. The use of the micronucleus test on exfoliated cells to identify anticlastogenic action in
humans. Mutation Research 287, no. 2: 265-276. doi: 10.1016/0027-5107(92)90071-9

Sagan, H. 1994. Space-filling curves. New York—Berlin: Springer-Verlag.

Sarto, F., Tomanin, R., Giacomelli L. et al. 1990. The micronucleus assay in human exfoliated cell of the nose
and mouth: application to occupational exposures to chromic acid and ethylene oxide. Mutation
Research 244, no. 2: 345-351. doi: 10.1016/0165-7992(90)90083-V

Schonwetter, B., Stolzenberg, E., and Zasloff, M. Epithelial antibiotics induced at sites of inflammation.
Science 257, no. 5204: 1645-1648. doi: 10.1111/j.1600-0757.2010.00373.x

Tolbert, P. E., Shy, C. M., and Allen, J. W. 1992. Micronuclei and other nuclear anomalies in buccal smears
development. Mutation Research 271, no. 1: 69-77. doi: 10.1016/0165-1161(92)90033-i

Yan, R. et al. 2018. A Hybrid Convolutional and Recurrent Deep Neural Network for Breast Cancer Pathological
Image Classification. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), 957-962. doi: 10.1109/BIBM.2018.8621429

Yang, H., Kim, J. -Y., Kim, H., and Adhikari, S. P. 2019. Guided Soft Attention Network for Classification of
Breast Cancer Histopathology Images. IEEE Transactions on Medical Imaging 39, no. 5: 1306-1315.
doi: 10.1109/TMI1.2019.2948026

Yifan, D., Jialin, L., and Boxi, F. 2021. Forecast Model of Breast Cancer Diagnosis Based on RF-AdaBoost.
In: 2021 International Conference on Communications, Information System and Computer Engineering
(CISCE), 716-719. doi: 10.1109/CISCE52179.2021.9445847

Zhu, J., Zou, H., Rosset, S., and Hastie, T. 2009. Multi-class AdaBoost. Statistics and Its Interface 2: 349-360.


https://dx.doi.org//10.1002/1097-0142(19900201)65:3<477::AID-CNCR2820650317>3.0.CO;2-G
https://dx.doi.org//10.1002/1097-0142(19900201)65:3<477::AID-CNCR2820650317>3.0.CO;2-G
https://dx.doi.org/10.1109/WIECON-ECE48653.2019.9019916
https://dx.doi.org/10.1109/WIECON-ECE48653.2019.9019916
https://dx.doi.org/10.1016/0964-1955(95)00013-8
https://dx.doi.org/10.1016/0027-5107(92)90071-9
https://dx.doi.org/10.1016/0165-7992(90)90083-V
https://dx.doi.org/10.1111/j.1600-0757.2010.00373.x
https://dx.doi.org/10.1016/0165-1161(92)90033-i
https://dx.doi.org/10.1109/BIBM.2018.8621429
https://dx.doi.org/10.1109/TMI.2019.2948026
https://dx.doi.org/10.1109/CISCE52179.2021.9445847

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com
http://taylorandfrancis.com

8 Fractionalization of Early
Lung Tumour Regions and
Detection Using a Low
Intricacy Approach

Thanushree Latha A.S., Pranav M., and Hemalatha Karnan
School of Chemical and Biotechnology, SASTRA, Thanjavur

CONTENTS
8.1 INTrOQUCTION. ....couiiiieiiiriieteet ettt ettt st st st en e b e e bt e e sbeeanene 121
8.1.1 Significance of Lung TUMOULS ........ceeriiriiiirieriieiie ettt et 122
8.1.2  Issues with Lung Tumour Detection ..........ccceecueenieriieinieiiiienieneenteeeesee e 122
8.1.3 Image Processing for Tumour Detection...........cccecueeruieriieeniinnieenieniieeieenee e 122
814 ODJECHIVES .eeueieeiiieiieeieeite ettt ettt e et sb et e st e e s bt e sateesstesabe e baesabeenbeesabeenaaesaseas 123
8.2 LILETALUIE SUIVEY .eeueiiuiiiiiiiiiieniieeitte et ettt ette st e stte st esbtesabe e bt e sabeesbeesateesbtesabeenbaesseenseenas 123
8.2.1 Review for Image Preprocessing Techniques .........ccoccoevueevieriiiiniinneenienneeneeeenn 124
8.2.2 Review for Feature EXtraction..........ccccecevirviinirniinieninieneneeneseenieerenieeresieenene 124
8.2.3 Review for OTSU Segmentation.........c..cccueeeeerieeeniieieeneenieneeieneeneseeneseereeneenne 125
8.2.4 Review for Quadtree DecOMPOSIHON .....ccveeveieriieriieniieiie ettt 125
8.3 Experimental Work/MethodOIOgY ........ccuieuirriiiiiinieiiieniieeieeste ettt 126
8.3.1 Pre-processing MethOdOLOZIES .......cccueerueeriiiriieriiiiiiieiieeite ettt 126
8.3.1.1 Selection of CT Scan IMages.........cceceeriirriieniiiiieinienieenteeieesee e 126
8.3.1.2  Grayscale CONVEISION.......cceevuerruieriieeniierieeniienieeniteeieesieesbeesseesseesanesseens 127
8.3.1.3  Top-Hat FIltering.......ccceovuiiriiriiiiieiieenieetetc ettt 127
8.3.1.4 Plotting Histogram and Image Binarization .........cc.ccceceevvieriieeniennieennenns 127
8.3.1.5 Distance Transformation ........c..ccoccecverervieniirniinieenineeneneenceeene e 127
8.3.1.6  Watershed Transform ..........cccoeeiiiiiiiiiniiiinieeieeieeeeec e 127
8.3.2  OTSU SegMENTALION. ...ccutiriiiriieriieriierieetteeteeieesteesitesateesbtesabeebeesbeesbeesabeesseesasees 128
8.3.3 Analysis Using Quadtree DecompOSItiON........cccuervveerieriiienieniieenieesieeneesveeseeeeanees 128
8.3.4 Comparison Using Distribution PLOtS..........ccceevieniiniiiiniiiiiinieneereeeieereeeeeen 128
8.4 Results and DiSCUSSION. ....c..ueriiriiriirieiieietietertete ettt sttt be e saeene 128
8.4.1  Pre-processing OULPULS.........ceecueeruierieenieniierieeieeniteeteesieesbeesatesabeesasesseesseesseensees 128
8.4.2 OTSU Segmentation OULPULS........ecetereeeriierieeieenieenite st esiteeteesbeeeseesbeesreesaeesaeees 131
8.4.3 Analysis Using Quadtree DecoOmMpPOSItION........cceervveerieriieenienieenieeieeneeereesiee e 133
8.4.4 Comparison of Histograms Using Distribution Plots ...........cccceeviiinieniiinnenniennnen. 133
8.5 Conclusions and Further Work...........coocuiiiiiriiiiiiiiiiieece et 134
RETEIEICES ..ottt ettt sa e st st ae e sanens 135

8.1 INTRODUCTION

Being among the major causes of death, cancer has attracted the attention of scientists from various
interdisciplinary fields to try and fight the challenges it poses to the human healthcare industry. In
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our attempt to join this battle against cancer, we have used various image-processing techniques to
enhance the rate of successful diagnosis using medical images. This early detection will aid doctors
in providing effective treatment plans to patients to save their lives [1].

8.1.1  SiGNIFICANCE OF LUNG TUMOURS

Globally, cancer is the leading cause of death, totaling nearly 10 million deaths in 2020 [2]. The
most common cause of cancer death in 2020 is lung cancer Figure 8.1.

Detection of lung cancer usually is possible only in the advanced stages of cancer progression due
to the late onset of noticeable physiological symptoms. Most of these symptoms are either slight or
ignored. Even if cancer is suspected at earlier stages, the tumours are generally mistaken for small
benign lung abscesses through the initial screening. A lung cancer diagnosis is initially done by
analysing chest x-ray images of the patient [1]. These images show the tumour cluster as a white
patch that is easily recognizable for large tumours. However, for the identification of smaller tumours
in the initial stages of cancer progression, CT scan images are much more reliable [1,3].

8.1.2 Issures witTH LUNG TUMOUR DETECTION

Easy recognition of the small tumour clusters will reduce the occurrence of false negative cases/
reports. Diagnoses using x-ray images had a rate of false negatives of 17.7% in 2021 [3]. More
efficient diagnostic methods are urgently needed to improve the outlook on the survival rates of
lung cancer patients. Early-stage detection of lung cancer enhances the chances of survival of the
patient significantly [1]. This detection involves the identification of smaller tumours present
within the chest or lung, which is much harder [4]. Automatic, fast, efficient, and reliable iden-
tification techniques can help improve the accuracy of identification and classification of tumours.
Better detection strategies can help in the early recognition of cancer cells.

8.1.3 IMAGE PROCESSING FOR TUMOUR DETECTION

For automatic identification of tumours, various image-processing techniques have been used for
different types of cancer diagnoses. For brain tumour detection, an automated system based on image
segmentation was used to perfect the segmentation of the tumour region from brain MRI images [5].
Using OTSU segmentation, brain tumours were detected from medical images using MATLAB
Software [6]. Based on various thresholding methods that could identify micro calcifications, early
breast cancer was detected from mammogram images [7]. Lung tumours were detected from CT scan
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FIGURE 8.1 Most common causes of cancer death in 2020 (in millions).
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images using feature extraction and contour modelling [8]. Detection of small metastatic lung cancer
using direct 3D template-matching techniques [9] and detection of lung cancer in CT images using
image-processing techniques based on mathematical morphological operations [10] are examples
of image-processing applications for tumour detection, segmentation, and cancer diagnosis.

From these literature studies, it was considered apt to use OTSU segmentation and feature-
extraction methodologies to segment the tumour region precisely. OTSU segmentation being a global
adaptive binarization threshold image segmentation is a fast, straightforward method utilising math-
ematical morphological operations on the image. Its major advantage is that it is not affected by the
contrast and brightness of images and hence yields the most precise results every time. However, being
an iterative process, computational complexity increases with larger datasets, such as CT scan images.
Feature extraction helps break down these large datasets (a large number of variables) into small
relevant groups called features, therefore making processing easier. Even though these features are
significantly small as compared to the original number of image variables, they represent the original
dataset with accuracy and originality. To enhance the precision of outputs from these methods, various
pre-processing techniques such as grayscale conversion, Top Hat filtering, histogram construction,
distance transformation, and watershed transforms are performed on the original DICOM images
derived from medical-image repositories. These methods are aimed to provide a process that accounts
for high stability, precision, reliability, and efficiency. The process is then subjected to validation by
performing Quad-tree decomposition and analysis through cumulative functional distribution and
residual plots obtained from the histograms of the original and segmented image.

8.1.4 OBJECTIVES

To be able to automatically detect tumour regions from raw medical images, it will be possible to
avoid the chances of tumour region nullification due to various image-processing techniques that
are applied as default to make the medical image easily observable by the naked eye. Using pre-
processing and segmentation techniques appropriate for the raw medical images, the tumour region
can be retained and identified. The specific objectives of this project are:

1. To identify appropriate image pre-processing techniques to enhance the features of raw
CT scan images of DICOM file format

2. To apply OTSU segmentation to detect tumour regions

. To verify the segmented regions using Quadtree decomposition

4. To compare the histogram of the original image with the segmented image using dis-
tribution plots

(98]

8.2 LITERATURE SURVEY

To be able to perform efficient tumour fractionalisation and evaluation of the same, the following
parameters should be satisfied in the most optimal way possible: (i) Initial image pre-processing
and removal of noise to enhance the precision of the image segmentation technique employed in
this project. (ii) Suitable segmentation techniques to distinguish the tumour regions accurately.
This technique should be able to classify the pixels in the tumour region without committing to any
errors that could produce false fractionalisation of tumour regions that cannot be accommodated.
(iii) Analysis and evaluation for reliability of the employed segmentation techniques. This step
should be able to examine if the proposed model is reliable without any bias. The results should be
easily acceptable, interpretable, and understandable. This step is optional for fractionalisation of
tumour regions. It only serves as a model evaluation technique.

Numerous literatures have been enumerated over lung cancer detections using CT images
[8,11]. These studies also include various strategies for the selection of suitable pre-processing
techniques to enhance the outcomes of diversified outputs obtained through the work.
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8.2.1 ReviEw FOR IMAGE PREPROCESSING TECHNIQUES

By the inclusion of image processing and machine learning, a lung cancer detection system on CT
images is framed by Rahane et al. (2018) [12]. The result of this project is a model that can classify
lung CT images as regular and irregular. The abnormal images are then segmented to show em-
phasis on tumour regions. The various pre-processing techniques to improve contrast and clarity of
images involved are grayscale conversion, noise reduction using median filter, image binarization
techniques, and feature extraction.

To minimise lung cancer detection errors by humans, Kalaivani et al. (2017) [13] built an
automated process for detection. This process for early-stage detection involves certain methods
for image processing and also includes the concept of artificial neural networks. The image pre-
processing techniques inculcated in this project are grayscale conversion, histogram equalization,
image binarization, and feature extraction.

Using image-processing techniques, Kulkarni et al. (2014) [14] were able to classify lung cancers.
A novel algorithm is developed with the help of image-clarifying techniques to identify cancer at
naive stages by satisfying extensive accuracy. This process involves image pre-processing techniques
and feature extraction. The pre-processing techniques include image smoothening using median filter
and image enhancement using Gabor filter, which can perform texture analysis. The Gabor filter has
an optimal localization in both the spatial and frequency domains.

Sujan et al. (2016) [5] used OTSU segmentation to perfectly segment the tumorous tissues from
the human brain. The visual depiction is subjected to pre-processing techniques such as grayscale
conversion, noise removal by median filtering, and image binarization. Morphological erosion is
performed using a structural element shaped like a disc with an optimally required diameter. This
element aids accurate tumor segmentation. Salt and pepper noises are removed using a median filter,
and each pixel value is incremented by a value of 25 to enhance selection of optimal threshold.

In the paper by Saini et al. (2015) [6], image fractionalisation is performed to withdraw the
numerous features of an image. Examination, observation, and interpretation can be easily done on
these images. The work emphasises the identification of brain tumour and associated cells from
MRI images using mathematical morphological alterations. Since ultrasound images consist of
speckle noise and are of low contrast, pre-processing techniques become mandatory. These
techniques include image restoration using level-set function, smoothening and edge sharpening
using a Gabor filter, and contrast enrichment using histogram equalization. These are succeeded by
OTSU’s method for image segmentation and best suited global thresholding. The tumour regions
are identified with the help of density-based clustering approach.

8.2.2 ReviEw FOR FEATURE EXTRACTION

Amutha et al. (2013) [8] used a level-set active contour model with a diminishing algorithm for
lung tumour detection from CT scan images. For denoising, a kernel-based non-local neigh-
bourhood algorithm is used. Feature extraction for image classification is executed with the aid of a
second order histogram. Upon tumour detection, segmentation is performed through the use of
level-set active contour modelling.

The work of Miah et al. (2015) [15] involves a series of processes such as image accession,
pre-processing, image binarization, optimal thresholding technique, image segmentation, feature
extraction, and a notion of neural network detection. After segmentation of the lung tumour from
CT scan images, a robust feature extraction method is applied to take out information of selected
lines. This information is used to tutor the neural network. The algorithm is tested on both
tumorous and non-tumorous scans.

Katre et al. (2017) [16] aimed to classify lung tumour stages using familiar methods such as
image processing and data classification. Image pre-processing techniques such as denoising using
median filter, enhancement using a high boost operator, and image segmentation using marker-
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controlled watershed transforms are performed. Feature extraction helps identify the potential
regions of tumour presence, which is the region of interest.

8.2.3 Review ForR OTSU SEGMENTATION

A comparative analysis carried out by Gajanayake et al. (2009) [17] concludes that OTSU seg-
mentation method is the best method to carry out segmentation of brain tumours from 2D brain MRI
(magnetic resonance imaging) images. In this paper, all the familiar gray-level image-segmentation
techniques such as OTSU segmentation, mean shift method, K-means, fuzzy c-means, and six other
such methods, are compared to recognize the most satisfactory segmentation algorithm for the
identification of tumours from 2D MRI images of the brain. The resultant images from each method
are then compared by a panel of professional radiologists to conclude segmentation using OTSU
method as the most reliable.

In the paper written by Huang et al. (2012) [18], the OTSU method was titled to be a simple and
stable method widely applied for image segmentation as it has automatic control over threshold
selection. However, they also found out that OTSU’s method is highly sensitive to disturbances and
target size. For images with more than a single peak, it is not as effective. When the contrast between
two intra-class variances is high, threshold is more inclined toward the class with a larger intra-class
variance. This outcome resulted in extra pixels of this class to be classified into an incorrect class. To
improve the segmentation technique, the paper proposed two approaches. One, large parts of the gray
values can be avoided, therefore limiting the threshold-selecting range. Two, removing gray values
on both extremes of intensities, therefore reducing noises and false selection of threshold.

Xu et al. (2011) [19] through their work discovered a property of OTSU method that the
optimal threshold of an image is equal to the average of the mean levels of the two classes
separated by this threshold value. This was done through mathematical modelling. Therefore,
they concluded that there will be a bias in favour of threshold for the class with the biggest
variance when the intra-class variances of the two classes are different. To overcome this bias, a
range-constrained OTSU segmentation method is proposed. Experiments revealed that this
method yields satisfactory results and hence is a suitable improvement method for segmentation.
The range-constrained OTSU method relied on an iterative process for the selection of an
optimal threshold.

A paper published in The International Arab Journal of Information Technology [20] proposed
a fast OTSU segmentation method to reduce computational complexity. The method involves
creating checkpoints to drastically reduce the number of iterative cycles. Upon comparison of
threshold values obtained from the classical OTSU method and the OTSU-checkpoints method on
the same set of images, there is no deviation of the value of the optimal threshold. The checkpoints
are framed using mathematical relations.

8.2.4 Review FOrR QUADTREE DECOMPOSITION

In the work framed by Dua et al. (2010) [21], they use an advanced edge-detection technique based
on regional recursive hierarchical decomposition of an image called Quadtree decomposition. The
validation and comparison studies were performed on diabetic retinopathy images obtained as a
result of CT scanning. These tests rendered the method efficient and accurate. Successful seg-
mentation of the image occurred using the Quadtree technique.

Subramaniam et al. (2013) [22] used the Quadtree decomposition method to estimate the
variations between young and elderly healthy lungs from CT images. Here, the Quadtree method
illustrated the changes in heterogeneity of the density of soft tissues between different subjects.
The technique is sensitive enough to differentiate between heterogenous and homogenous regions
and hence will be useful for tumour detection.
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8.3 EXPERIMENTAL WORK/METHODOLOGY

The methodology of this project includes two major steps for image processing: image pre-
processing techniques and OTSU segmentation. Image pre-processing is necessary to enhance the
various features of the raw images such as brightness, contrast, etc. to ensure that during segmen-
tation, no data is left unprocessed. All image-processing techniques are performed using MATLAB
Software.

8.3.1 PRE-PROCESSING METHODOLOGIES

Pre-processing of the raw CT scan images of the chest involve the following steps: Figure 8.2

8.3.1.1 Selection of CT Scan Images

CT scans have the advantage of recording the structures of minute details, such as early tumours,
because the imaging process involves scanning across various directions and in multiple planes
that are reconstructed to ensure high accuracy in replicating internal body structures. All medical
images, such as CT scans, MRIs, and ultrasounds, are suggested to be stored in the DICOM file
format because it enables all of the metadata to remain attached to the file instead of being lost.
DICOM files are compatible with various software and hence can be easily transferred and read
without any incompatibility issues. The chest CT scans of patients with lung cancer have been
obtained from the open-source medical image repositories. The source for the images used for
processing in this project is acknowledged by the following citations [23,24], a publicly available

CT Scan Images
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archive of numerous medical CT images for lung cancer. The images are read using the syntax
I=dicomread(“File_name”).

8.3.1.2 Grayscale Conversion

The DICOM images are converted into a grayscale image using the syntax J = im2gray(I). This
technique involves the conversion of 24-bit values (RGB values) into 8-bit values (grayscale
values). This process allows for feature extraction by reducing the number of large data for easier
processing. The value of each pixel will only represent information on the intensity of light and
will remove characteristics of saturation and color. This will reduce the computational complexity
of data processing.

8.3.1.3 Top-Hat Filtering

The syntax used to achieve Top Hat filtering is J = imtophat(I,strel( ‘disk’,10)) where the diameter
of the structural element (strel) is chosen to be 10 units as it yields appropriate results. This
filtering technique removes noises. The noises are identified as the minimal pixel-valued elements
in the image. This principle of Top Hat filtering ensures that minute tumours are not identified as
noises and removed during pre-processing. The algorithm of this technique involves the sub-
traction of morphological closing operations on the input image from the original input image.
Here, closing operations help smoothen the contours of deformed images and therefore help
remove small noises.

8.3.1.4 Plotting Histogram and Image Binarization

A histogram is plotted using the syntax histogram(I). This plot shows the frequency distribution
of grayscale-level intensities. It is in the form of a bar graph with the grayscale values of
pixels plotted against the horizontal axis and the intensity values of the pixels plotted against
the vertical axis. This graphical representation of an image is useful to obtain an optimal
threshold to perform image binarization. The pixel values above the optimal threshold are
assigned a value of 1, being completely white, and the pixel values below the optimal threshold
are assigned a value of 0, being completely black. This assignment generates a binary (black and
white) image. Binary images are required for other pre-processing techniques to enhance the
precision of processing algorithms. The syntax used to find the optimal threshold is level =
graythresh(I).

8.3.1.5 Distance Transformation

The distance of a non-featured element from a featured element is measured using the syntax D =
bwdist(C). Here, the featured elements refer to the edges, points, or objects and the non-featured
elements refer to the blank spaces. The blank spaces are generally set to 0 and the featured ele-
ments are set to 1 of the binarized image. Therefore, in simpler terms, the distance between the
zero and the non-zero pixels of a binary image is calculated. Finding the Euclidean distance
between the various elements helps to understand the spatial distribution of various elements of
the image by giving us knowledge of the background and object features.

8.3.1.6 Watershed Transform

Watershed transform is applied to an image to examine it for high and low-level areas using the
syntax J = watershed(I). The low-level regions are compared to catchment basins and are cor-
related to the dark (0) pixels. The high-level regions are compared to the ridges and are correlated
to light (1) pixels. Therefore, by treating the image as a topographical map, the brightness of each
pixel is used to identify lines/ridges in the image. This allows for the segmentation of various
regions of the image. The region consisting of the tumour is approximately identified using this
methodology.
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8.3.2 OTSU SEGMENTATION

OTSU’s method of segmentation involves the grouping of pixels into foreground and background
classes to achieve automatic image thresholding. To achieve this classification, pixels are plotted into
a histogram after which an optimal threshold value is obtained. This optimal threshold value is found
using an iterative process that compares all the possible threshold values and the spread of the pixels
on each side of the threshold value. The optimal threshold value is set when the sum of the foreground
and background spreads is minimal, i.e., the intra-class spread should be minimal, whereas the inter-
class spread should be maximal. This algorithm yields a single peak value that clearly distinguishes
between the foreground and background pixels of the image. Based on this output, the tumour region
which is made up of light pixels and correlates to the foreground pixels is precisely distinguished.

8.3.3 ANALysis USING QUADTREE DECOMPOSITION

The syntax used to perform Quadtree decomposition is J = gtdecomp(I, minimum size of block). This
technique yields information about the structure of an image. The method results in a subdivided
image into homogenous regions. These subdivided regions are represented as blocks. The function
initially divides the entire image into four equal-sized square blocks that are tested to meet a par-
ticular criterion of homogeneity by comparing them using a specific dynamic range. If the criterion is
met by the block, it is not divided further, but if it fails to meet the criterion, it is in turn subdivided
into four blocks and tested with the specified criterion again. This process occurs iteratively until each
block meets the specified criterion. This process will result in homogenous square blocks of various
sizes. This method is used to crosscheck the obtained OTSU segmented image by comparing the
segmented regions to the homogenous blocks of wide spatial concentration.

8.3.4 ComrarisoN UsSING DisTRIBUTION PLOTS

The histograms of the original, segmented, and threshold images are obtained and compared with
the aid of a distribution plotter available in MATLAB R2022 Online. The cumulative function
distribution of the data of the original, segmented, and threshold images are then plotted in a
graphical representation. The normal distribution and residual distribution of the original and
segmented image are considered for a comparative study.

8.4 RESULTS AND DISCUSSION

Upon subjecting the CT scan images of the lungs to the various pre-processing techniques men-
tioned above and OTSU segmentation, the following results were obtained. Output images after
each pre-processing methodology are displayed to compare, observe, and study its effects on
enhancing the segmentation process.

8.4.1 PRE-PROCESSING OUTPUTS

The first output image (Figure 8.3) is the raw CT scans DICOM image. The original image is
displayed to make it possible to compare the effects of the various pre-processing and OTSU seg-
mentation methods. A medical practitioner can identify the irregular white patches as potential tu-
mour clusters. With our code, we will check if these tumour regions are being successfully detected
by segmentation; see Figure 8.4.

The histogram is a graphical representation of an original image’s pixel intensity distribution. The
number of pixels found at each pixel value is plotted in a histogram. The lower signal values are
typically represented on the left side of the graph, while the higher signal values are typically repre-
sented on the right side. It represents data points that are organized into ranges that the user specifies.
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FIGURE 8.4 Histogram for original image.

Upon applying a Top Hat filter to the original image, within a radius of 10 units, the contrast
between different structures are retained, whereas the bright regions of the chest wall are filtered
out (Figure 8.5). This filtering ensures that the chest walls do not get wrongly diagnosed as a
tumour since they both share the characteristic feature of reflecting as a white patch on CT scans.
Minimal noise present in the original image (Figure 8.3) is eliminated in the resulting image upon
Top Hat filtering (Figure 8.5).

The plotted histogram (Figure 8.6) depicts the frequency distribution of various grayscale levels
of the filtered image (Figure 8.5). Though it does not provide any spatial information and inter-
relation of the gray pixels, the pixels give information on the general shape and size of the gray
value spread [25]. The x-axis represents the grayscale values of pixels, and the y-axis represents
the intensity values of the pixels. It is noticeable that the frequency of O-valued (black) pixels is
much higher than the frequency of low-valued pixels. The frequency of high-valued pixels is
significantly higher than the pixel values lying around its range; this makes it possible to correlate
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FIGURE 8.6 Histogram for thresholding.

the histogram (Figure 8.6) with the filtered image (Figure 8.5). Because there are more background
pixels than foreground pixels in the filtered image, the majority of pixels are concentrated on the
darker side of the grayscale in the histogram plot. The pixels toward the rightmost end of the
histogram belong to the tumour.

Upon image binarization using the optimal threshold derived from the histogram (Figure 8.6),
the image (Figure 8.7) is seen to be depicted only by pixels with values strictly either O or 1. The
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originally lighter regions are completely white, and the originally darker regions are completely
dark. This outcome is achieved using thresholding techniques, as discussed prior.

The watershed transform (Figure 8.7) clearly depicts the various regions of the CT scan image.
Upon comparison with Figure 8.3, it can be seen that the specific regions depict the following
regions of the human chest anatomy (Table 8.1).

8.4.2 OTSU SEGMENTATION OUTPUTS

The histogram used for OTSU segmentation is displayed in Figure 8.8. The two characteristic peaks
denote the intensity values of the pixels. The x-axis represents the grayscale values of pixels, and the
y-axis represents the intensity values of the pixels. The peaks depict the lighter regions, and the valleys
represent the darker regions of the CT scan. Upon finding optimal threshold values and processing the
image, the OTSU segmentation technique yields the final output (Figure 8.9) of the project.

A defined outline of the high-intensity regions shows the potential regions of the tumour. Upon
comparing Figure 8.9 with Figure 8.3, the segmented regions that represent bone can be voluntarily
eliminated from evaluation. This step yields the expected outcome of the project by segmenting
regions of tumour clusters. This output can also be observed in an inverse format, i.e., in the white
and black format (Figure 8.10), based on the observer’s preference. The inverse format is obtained
by inverting the values of individual pixels. Pixels initially with a value of 1 now become 0 and
vice versa.

TABLE 8.1

Regions of Watershed Transform

Colour of Region Anatomical Region
Yellow Right lung

Orange External to body

Dark Blue External to body

Light Blue Left lung

Aqua Blue Vertebral column

Green Major tumour cluster
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OTSU Segmentation-White and Black
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8.4.3 ANALysis UsING QUADTREE DECOMPOSITION

%
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From the subdivided/decomposed image (Figure 8.11), the tumour regions can be identified as the
larger homogeneous blocks after eliminating the consideration of completely low pixel valued
blocks. The subdivided blocks with majorly high valued pixels can be correlated to the segmented
tumour regions obtained in Figure 8.9. This serves as a verification for the OTSU segmentation
derived output.

8.4.4 ComrarisoN oF HistoGrRaMs UsSING DISTRIBUTION PLOTS

The data of the cumulative function distribution is seen to converge within the data range zero to one
data points. This distribution significantly shows the interpolation of tumorous regions with respect to
the original and segmented pixel distribution. The confidence interval allowed for the data is 99%.
The normal distribution and residual distribution along the mean have a concurrent residual distri-
bution between 3.5 to 5.5 raised to the fourth power, which matches with the fit plot. Figure 8.12 and
Figure 8.13 emphasize more upon the fractionalization of regions restricted to tumour occurrences,
thereby helping the observer look into the region-specific region of the tumour Figure 8.14.

Quadtree Decompositon

FIGURE 8.12 Quadtree decomposition.
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8.5 CONCLUSIONS AND FURTHER WORK

The final result of the project mainly focuses on the segmented tumour regions from raw CT scan
images of the chest. This model was reliable due to the individual advantages of the various pro-
cessing techniques, such as Top Hat filtering, watershed transforms, thresholding, and OTSU
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segmentation. An appropriate and effective pre-processing methodology was developed for CT scan
images. OTSU segmentation derived the most reliable outputs by accurately segmenting the tumour
regions upon validation tests. The algorithm is tested using a DICOM image to ensure that the model
will be usable with any medical equipment or accessory equipment, such as scanners, transmitters,
printers, etc., since all medical images are stored in DICOM file format. The developed algorithm
is reliable for automatic segmentation of lung cancer from CT scans. To automatically eliminate the
bony structures that are mistaken for tumour regions, direct 3D template-matching methods can be
implemented. This will allow only the tumour regions to be visible on the final output image result.
Quadtree decomposition verifies the segmented tumour regions. Distribution plots allow for efficient
comparison between the original image and segmented image.

The algorithm can be improved to be adaptable for other medical images, such as MRIs and
ultrasound images. This improvement will need less specific pre-processing methodologies or
more adaptable pre-processing techniques since different medical imaging will need enhancement
of different features of the raw DICOM image. OTSU segmentation can be used advantageously
for the automatic segmentation of tumours of the different organs of the body.
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9.1 INTRODUCTION: BACKGROUND AND DRIVING FORCES

The stimulation of human intelligence by machines is artificial intelligence. The theory and cre-
ation of computer programs can carry out tasks and resolve issues that call for the human intellect.

9.1.1 How Dots Al OPERATE?

With large volumes of labeled training data, Al systems analyze the data for connections and patterns.
They forecast future conditions based on these patterns. Additionally, by studying millions of in-
stances, an image-recognition program can learn to recognize and characterize things in photos.
Reverse engineering human traits and abilities into a machine and exploiting its computing
prowess to outperform us is the process of creating an Al system. Numerous sub-domains of
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artificial intelligence are applied to the various fields of the industry to better understand how Al
functions [1-3].

* Machine learning (ML): ML teaches a computer to draw conclusions and make decisions
based on prior knowledge. Without relying on human experience, it recognizes patterns
and examines historical data to deduce the significance of these data points and reach a
potential conclusion.

* Deep learning: Deep learning is a machine-learning (ML) technique that trains a computer
to process inputs through layers to categorize, infer, and predict the outcome.

* Neural networks: These algorithms simulate how the human brain processes data by
capturing the link between several underlying variables.

* Natural language processing (NLP): NLP is the process through which a machine reads,
comprehends, and interprets a language.

* Computer vision: Computer-vision algorithms attempt to comprehend a picture by dissecting
the image and examining various aspects of the object. The machine may then classify and
learn from a collection of images to get superior results based on earlier findings.

* Cognitive computing: By analysing text, audio, images, and other input the way a human
would, cognitive computing algorithms seek to simulate the functioning of the human
brain and attempt to produce the intended results.

9.1.2 THE THrRee COGNITIVE SkiLLs oF Al

* Learning processes: This area of Al programming is concerned with gathering data and
formulating the rules that will transform the data into meaningful knowledge. The al-
gorithms give computing devices detailed instructions on how to carry out a specific task.

* Reasoning processes: This area of Al programming is concerned with selecting the best
algorithm to produce the desired result.

* Self-correction processes: This feature of Al programming is to optimize algorithms and
make sure they deliver the best outcomes [3].

9.2 Al ADVANCEMENT IN PATHOLOGY: AN INTRODUCTION

Artificial intelligence has made its remarkable way into the field of pathology. Al has proved to
be an asset in a wide variety of markets. Some examples include its applications in healthcare,
business, education, reinforcement, finance, law, manufacturing, banking, transportation, and
security.

Al refers to educating a computer to solve a problem without giving explicit instructions on
each step. It is common to draw a contrast between traditional machine learning and more
contemporary methods like deep learning. Al applications have multiplied exponentially due to
several developments during the past 10 years. Among the advancements are better hardware,
better algorithms, and an increasing quantity of available data. These developments were in
line with the pathology field’s growing digitization trend [4,5]. Algorithms using Al and ML are
beneficial for solving simple problems. Analysis of tissue samples from significant screening
initiatives, such as colorectal cancer screening, and situations when numerous slides with
identical content are submitted (such as with sections of prostate specimens) are included in
routine pathological diagnosis.

One of the most promising areas of diagnostic medicine is digital pathology. It is a popular area
of primary study. Digital pathology encompasses more than merely converting histopathology
slides into digital images. Combining many data sources with recent developments in artificial
intelligence and machine learning makes novel knowledge measurable by a human expert avail-
able. An integrated strategy is needed to build a solid foundation for an “augmented pathologist.”
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9.3 LITERATURE REVIEW

Artificial intelligence can detect specific features within that image (characterizing an image in terms
of classification labels) that contribute to understanding its clinical behavior. The image analysis may
be robust and provide more information than the unaided morphological interpretation by the human
mind. However, the capability may get compromised by the vast annotated datasets required for
supervised deep-learning training as currently implemented. The unsupervised experiential training
that occurs in the case of humans is not currently helpful. However, multiple weakly supervised
strategies substantially reduce the amount of specific annotation mandatory for training.

9.3.1 ARTIFICIAL INTELLIGENCE IN PATHOLOGY

The use of Al-assisted methods in medical contexts has recently increased. They might be used
more widely, especially in the field of imaging. For instance, numerous businesses now provide
solutions for radiology that address regular diagnostic issues, yet none of these services are used
nationally. This trend occurs cautiously in pathology because full-slide scanners are still infre-
quently employed for formal diagnosis due to many complicated causes, such as high investment
costs, security concerns, or pathologists‘ objections. Specific academic and commercial institutions
are conducting ground-breaking research in this field [6].

9.3.1.1 Applications in Medical Imaging

The ability to identify pulmonary nodules with CT, detect polyps in CT colonography, screen
for breast cancer, find microcalcification clusters (early signs of breast cancer) in mammog-
raphy, and detect masses for benign or malignant in mammography. Al with computer-aided
detection methods in mammography increase the diagnostic precision for the classification of
breast cancer.

The diagnosis of stroke utilizing neuroimaging with CT and MRI with deep-learning technologies
automates the extraction and classification of imaging information with speed and power. Radiomics,
picture segmentation, and multimodal prognostication are significant research fields. On the CT front,
a decision-support tool automating the Alberta Stroke Program Early CT Score (ASPECTS)
assessment tool for early ischemia alterations is now under development. This tool is comparable to
one recently approved by the FDA. Additionally, Al is combined with CT angiography to distinguish
between carotid plaque and free-floating intraluminal thrombus and to accurately assess the level of
cerebral edema to predict recovery following stroke. It might help in the early triage of stroke patients
who would benefit from craniectomy.

By enabling doctors in isolated and rural areas to contact and consult with specialized patholo-
gists, Al, in conjunction with digital pathology, may even advance telepathology (the practice of
pathology over the internet). These two technologies have the potential to reduce inter-reader vari-
ability among pathologists by making it simple to transmit photos so that a second reader may
validate findings. Al will be used in digital pathology methods to identify information in images not
visible to the human eye, such as molecular markers in cancers. Such findings might support early
diagnosis and result in new illness micro classifications [7].

9.3.1.2 Addressing Bio-disaster X Threats with Artificial Intelligence and
6G Technologies

According to studies, bio-disaster X could ruin economies and upend people’s lives and liveli-
hoods. In essence, it represents a growing threat to civilizations everywhere. In detail, effective Al
and 6G-enabled strategies were observed to shed light on bio-disaster X threats. These strategies
ranged from natural language processing to deep-learning-based image analysis to address prob-
lems like early bio-disaster X detection (like identification of suspicious behaviors), remote design
and development of pharmaceuticals (like treatment development), and public health interventions
(like reactive shelter-at-home mandate enforcement), as well as disaster resiliency.
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Due to the possible adverse effects bio-disaster X could have on people and the economyj, it is
an impending but preventable catastrophe. Deploying technology-based solutions to avoid and
contain bio-disaster X risks may be more realistic and cost-effective than relying on the profes-
sional attention of overworked medical professionals and government officials. More research
could investigate how the fusion of Al and 6G systems could improve high-impact readiness even
more [8].

9.3.1.3 Prostate Cancer Risk Stratification via Light Sheet Microscopy

Most prostate cancer diagnosis depends on pathologists’ interpretation of thin 2D sections of
prostate biopsies. With the aid of these 2D sections, it is possible to deduce the 3D structure of
cancer and grade it using the ISUP grading system, which positively correlates with patient out-
comes and aids in formulating crucial clinical judgments.

The findings demonstrate that 3D pathology with Al outperforms Al approaches utilizing con-
ventional 2D sections and accurately stratifies high-risk versus lower-risk patients. The study is
noteworthy for its use of artificial intelligence to 3D digital pathology datasets from clinical biopsies
and an ex-vivo microscopy approach (light-sheet microscopy), which allows for 3D imaging of the
complete prostate core needle biopsies. The method offers a promising novel prostate cancer diag-
nosis that can be utilized in conjunction with pathologist interpretation of conventional 2D sections if
proven in more significant patient cohorts [9].

9.3.1.4 The Applications of Artificial Intelligence in Chest Imaging of
COVID-19 Patients

Worldwide healthcare and economic crisis occurred during the outbreak of COVID-19 (corona-
virus disease 2019) infection, often known as the SARS-CoV-2 [Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2)]. The clinical evaluation of patients with suspected or
confirmed COVID-19 infection required diagnostic imaging for disease identification, screening,
and stratification. However, imaging aids in the differentiation of COVID-19 from other lung
infections and illnesses. Imaging helps distinguish COVID-19 from other lung infections and
diseases.

Al-based COVID-19 classification and segmentation models are developed by first training
them on various image sources, often normal and abnormal (COVID-19, non-COVID-19) chest
pictures. Thus, gathering data is considered mandatory. The system’s working is portrayed in the
flowchart in Figure 9.1.

After ethical approval, patient data must be retrieved, queried, accurately de-identified, and
securely kept. Pseudonymization is the best method for de-identification; when the DICOM pic-
tures are pseudonymized, the subject’s identity is replaced with “pseudonyms” or identifiers [10].

9.3.1.5 A Narrative Review of Digital Pathology and Artificial Intelligence Focusing on
Lung Cancer

With the development of whole-slide imaging (WSI) technologies, pathology diagnosis is also

possible online. The uses of digital pathology are constantly growing, from helping rural insti-

tutions with a pathologist shortage to everyday use in diagnoses like lung cancer.

The use of whole-slide images (WSIs), also virtual slides, has substantially increased thanks to
improvements in the speed of glass slide digitization technology and the decline in storage costs.
Users of WSIs can view digital slides on electronic displays at various magnifications, just like in the
Google Maps app. The adoption of digital pathology has been more gradual for a variety of reasons,
such as the difficulty in determining the return on investment. Adoption still presents difficulties,
despite the regulatory approval of numerous commercial systems. Pathology lab procedures, such as
slide preparation, quality control, labeling, and bespoke integration with current laboratory infor-
mation systems, must be changed significantly to digitalize a pathology practice (LIS).

Hiring someone to look after storage systems and the systems themselves is expensive [11].
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FIGURE 9.1 Flowchart depicting the use of Al in chest imaging.

9.3.1.6 Artificial Intelligence-based Analysis of Genetic Data

The concept of genotype-phenotype coupling implicates that it is highly likely that changes in
morphology in tumor tissue—for example, with a mutation in a critical gene—are also identified.
Besides the ability to anticipate molecular or clinical factors based on histo-morphological data, Al
applications will play an increasingly essential role in interpreting molecular pathological data.
As an illustration, deep-learning categorizes the deoxyribonucleic acid (DNA) methylation profiles
of lung squamous cell carcinomas to separate metastatic head and neck cancer from primary lung
cancer.

9.3.1.7 First FDA-cleared Al Product in Digital Pathology

On September 21st, 2021, the FDA granted Paige the first marketing authorization for an Al product
in digital pathology for its prostate cancer diagnosis system: Paige Prostate. In addition to data
analysis of digitally scanned whole-slide images (WSIs) produced from prostate biopsies, the soft-
ware is designed to help pathologists identify areas suspected of malignancy. The FDA gave their
product a brand-new classification: “Software algorithm device to aid users in digital pathology.” A
software algorithm device to aid pathologists in digital pathology is an in vitro diagnostic device
meant to analyze acquired scanned pathology entire slide images, according to this general type of
equipment description.

It uses computer algorithms to provide details on picture elements’ presence, position, and
properties that have therapeutic consequences. The user is supposed to use the information col-
lected from this gadget to make a pathological diagnosis [12].

9.4 METHODOLOGY

H&E-stained slides are used for scanning the majority of the digital pathology images for Al Tissue
sectioning, staining, paraffin embedding, grossing, and formalin fixing are just a few processes
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pathology samples undergo. Each step in the process and the different hardware and software used
with the digital image scanners can impact the quality of the digital photographs, including their
color, brightness, contrast, and scale. It is strongly encouraged to reduce the influence of these
variances before using the images in automated analysis activities for the best outcomes.

V(old) —a .
W It is
used for the values of each channel in color images or the pixels in grayscale images. Since
images taken from separate devices can have varying pixel sizes, even at the same magnifi-
cation level, scale normalization is a concern when numerous image acquisition devices are
employed. Since they all used the same image acquisition method, such as a specific micro-
scopic camera or digital slide scanner, scale normalization has not been mentioned in related
research [13-16].

Many researchers favored CNN as a base algorithm for their deep-learning models. Deep-
learning-based models, particularly CNNs, have recently gained considerable attention.

Transfer learning and data augmentation should be employed to get better results. While later
layers, such as fully connected layers or deconvolutional layers, are initialized randomly in transfer
learning, the convolutional layer parameters of a CNN are imported into the target CNN as layer
initialization. A well-known dataset like ImageNet is used to pre-train a CNN‘s convolutional
layer parameters. Different training stages can update only the imported layer parameters or all of
the layer parameters, including the ones that were randomly initialized for the layers. The
development of a model without transfer learning is supposed to produce superior outcomes when
there is adequate data.

An efficient way to improve image data is to apply multiple transformations to the provided
image while maintaining its core elements. These transformations include rotation (90, 180, and
270 degrees), flipping (horizontal/vertical), scaling, random translations, blurring, and sharpening,
as well as introducing jitters to the color and brightness and adjusting the contrast histogram,
among others [17,18].

Since applying large medical images directly to CNN is challenging, another type of aug-
mentation uses the patch construction method. From a sizeable problematic image with a size
between 1024 x 1024 (camera) and > 104 x 104 (scanner) pixels, smaller patches with sizes
between 32 x 32 and 512 x 512 pixels are recovered for use in training and inference of CNNs.

Instead of using the pre-generated image patches throughout the training phase, resampling
patches throughout each training epoch can increase the variance in training data and decrease the
likelihood of overfitting. Once the patch-level CNN is trained, a different ML model is usually
made for the decision at the complete picture level. A patch-level decision is taken for each patch
in the training images to produce heatmap-like output, from which many features are retrieved
using traditional image-analysis methods. The gathered feature values from the training images are
then supplied into the target picture-level ML model [16].

Figure 9.2 shows the framework of a CNN Model.

Machine learning (ML) uses data to develop predictive models to find patterns or carry out
operations like regression or classification. ML techniques fall into two categories: supervised
learning and unsupervised learning. In various implementations, WSIs are normalized for
quick processing, annotated by a skilled user, and divided into image patches after being
aligned using a multiresolution registration technique. To uncover properties that are useful for
recognizing and classifying ROIs in images, an ML model may be trained using the image
patches [19].

In CAD methodology, the image’s general qualities are the foundation for the optimization. A
typical image index is built utilizing these global image features after each image in a database of
images with a known ROI has evaluated its global image characteristics. Based on their image
characteristic index, the database’s photos are divided into several image groups, with the CAD
scheme for each group. The global image features of the digitized picture are established when the

One method used to lessen such discrepancies is normalization. {V(new) =
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FIGURE 9.2 CNN deep-learning based model.

construction of classification criteria optimizes the CAD system for processing a digital image
based on that image’s characteristics. The digitized image is given an image rating once the global
image attributes are detected, and the image is then assigned to an image group based on the image
rating. A detection method adapted to the designated image group is used to determine the ROI
shown in the image [20-23].

9.5 DISCUSSION

Pathologists often annotate structures, train, and evaluate algorithms to detect and classify these
structures, and then validate the algorithms. In this scenario, the taught Al platform will absorb all
the biases of the pathologists who developed the ground truth. A competent pathologist who signs
off on the case would study the results produced by Al, determine whether they should be used,
and evaluate the accuracy of the predictions made by the technology.

The ground truth, for instance, might differ between an algorithm created under the direction of
a top expert pathologist and a platform developed using a solid and convincing correlation to
clinical data such as prognosis and therapy effectiveness. Therefore, explaining how ground truth
was established for each algorithm is crucial in developing Al algorithms [24,25].

The paucity of prospective, randomized, multi-center trials evaluating the benefit for pathologists
and patients is now the most significant obstacle to using Al-based methods. Studies are necessary to
identify Al solutions that improve outcomes. For research, high-quality clinical data are just as
important as photographic data. Considering these issues, the use of digital pathology and Al has the
potential to revolutionize the industry and help pathologists complete their work more efficiently and
adequately.
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In this review study, we gathered data on prior developments, assessed the industry’s position
now, and speculated on potential future trends of Al in DP.

However, the studies mentioned above, and reviews did not demonstrate sufficient robustness and
reproducibility to be incorporated into routine clinical practice because of biases in datasets, either
too small or too heterogeneous, poor data integration, or insufficient validation. Additionally, specific
machine-learning models could exhibit bias due to overfitting and underfitting. A specific criterion
was set for including and excluding the chosen research to overcome the constraints associated with
selection bias [26].

To minimize existing prejudices and further widening health disparities, many healthcare
workers believe in decoding the present and restructuring current practices before involving Al
This mindset has proved to be a hindrance in Al advancement [27].

Artificial intelligence has come a long way in the previous 65 years. Healthcare-related Al
research has advanced over the preceding two decades and is now applied in many different
medical subspecialties, including pathology, radiology, and dermatology. A national or worldwide
plan is needed for Al and digital pathology (DP) to be used for automated diagnosis, case triaging
for improved workflow, or providing pathologists with new insights. The DP system will provide a
second opinion and the advantages of time and cost savings over the traditional microscope-based
pathology approach. It will also lessen the inter- observer variation problem if the system’s
requirements—appropriate slide image management software, integrated reporting systems, faster
scanning, and high-quality images—are met.

However, Al methods, including deep learning, are subject to legitimate criticism because it is
unknown how they function internally to make decisions by design. As a result, it will be necessary to
resolve any legal and regulatory difficulties before realizing any benefits. Despite the few setbacks,
precision image processing at a faster rate is one of AI’s most significant advantages in pathology.
Additionally, it aids in the early detection of biomarkers during testing, saving pathologists time
studying samples. The development of brightfield and fluorescent slide scanners has also made it
possible for pathologists to detect concealed problems. In their daily work, medical personnel is
helped by procedures like immunohistochemistry and digital histopathology. A cloud-based data
management system can be used to store digital data, enabling remote access to other pathology
centers located in various locations [28].

The multidimensional applications of Al in the field of pathology and its future objectives have
been graphically represented in Figure 9.3.

9.6 FUTURE SCOPE

Several models have been proposed in various research, as stated in this study; hence, these models
must be further validated and applied in other domains to ensure that these models can be im-
plemented in various locations efficiently. Due to the primary concerns in healthcare systems late
diagnosis, incorrect treatment, and misinterpretation—appropriate systems must be created with
the incorporation of cutting-edge software, tools, and technology.

To successfully utilize artificial intelligence in the creation of smart cities, it is required to
analyze and save the available data so that it can be used to produce effective Al and deep learning
algorithms for the advancement of pathologies [29,30].

It is promising that the automated morphological analysis has become more accurate thanks to
DL technology. The pathology definition in Al is increasing to encompass prognosis prediction
and assessment of illness severity. A pathological diagnosis is more than just a morphological
diagnosis; it involves a nuanced process of analyzing and making decisions based on clinical
information about various organs and illnesses. A large amount of data, including genetic data,
clinical data, and digital images, is necessary to construct Al that can manage a variety of clinical
circumstances.
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FIGURE 9.3 Al applications in the field of pathology.

Various types of research have been done using public medical databases, like TCGA. They are an
excellent place to start when researching and developing medical Al, but much more high-quality
data is required. For instance, to develop an Al that can analyze pathology images and human
pathologists, it is necessary to create and validate detailed annotations on many pathology images.

9.6.1 CHALLENGES IN THE IMPLEMENTATION OF ARTIFICIAL INTELLIGENCE-BASED DIAGNOSIS

Although artificial intelligence and machine learning have the potential to revolutionize the area of
pathology, their translational use confronts several significant challenges. The amount of data
consumed, and an Al system’s accuracy are closely related. In the study by Campanella et al., the
validation error decreased by around 10 when 100 times more occurrences were analyzed.
However, a dearth of histopathological specimens is available in digital form for computer anal-
ysis. Additionally, digitalization always requires high up-front costs.

Even though there will be a significant increase in the volume of digital data over the medium
term, or at the latest, within the next 10 years, a complete study and detailed description of these
data by experienced pathologists are still lacking.

Another factor that substantially influences the accuracy of an Al model is the data quality,
which has significant implications for it (garbage in, garbage out problem). The guide “Digital
Pathology,” published by the professional association of German pathologists (Berufsverband
Deutscher Pathologen e. V.), offers aid with the digitization of pathology. It notably encourages the
use of digital technology while highlighting the freedom of method choice and the pathologist’s
responsibility for the selected diagnosis route [31].
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The most significant obstacle to using Al-based methods now is the lack of prospective, ran-
domized, multicentered trials evaluating the benefit for pathologists and patients separately. Such
investigations are crucial to discover Al solutions that can improve patient-related outcomes. High-
quality clinical data are equally crucial for this research as imaging data. Essentially, this is about
the possible predictive application of Al-based methods. If these problems are fixed, Al and digital
pathology have the potential to change the industry and make it possible for pathologists to finish
their tasks more swiftly and precisely.

Privacy protection, the utilization of proprietary techniques, a lack of funding, and the absence
of pathologists who can participate in the annotation process are difficulties in producing such
high-quality data.

The ultimate solution to such challenges is collaborating with numerous hospitals and medical
labs to create a sizable amount of meticulously labeled and annotated medical data.

A medical Al prognostic prediction model that combines clinical data, genetic data, and
morphology will eventually exist. Additionally, an AI model learned from the patient’s prognosis
mixed with several characteristics such as tumor markers, morphology, and treatment options can
develop a new grading system relevant to other tumor types. This system will overcome the
inconsistent current grading and staging results across pathologists and help to improve patient
clinical outcomes [32-34].

9.7 CONCLUSION

By automating processes like finding metastases, recognizing tumor cells, and counting mitoses
shortly, Al has the potential to change the quality completely, precision, and effectiveness of
pathology. The use of Al in pathological diagnosis is anticipated to lighten the labor of pathologists
and contribute to the standardization of subjective diagnoses that may result in patients receiving
subpar care.

Pathologists interested in AI/ML envision various tools that may provide better efficiency and
accuracy in the regular diagnostic workflow. These tools could scan slides to count elements such
as lymph node metastases, mitoses, inflammatory cells, or pathologic organisms, presenting results
at sign-out and flagging examples for review. AI/ML tools could even flag regions on a slide and
prioritize cases based on slide content. Future systems may be able to correlate patterns across
multiple inputs from the medical record, including genomics, allowing a more comprehensive
prognostic statement in the pathology report.

Integrating ML techniques will help diagnose the ailment quicker, cheaper, and safer in the
coming years. However, various biases stand as a hurdle. They must be overcome to develop other
ML-based algorithms to guarantee sufficient robustness and reproducibility for their integration
into clinical practice. Many proposed ML models could not be proven fit for translation in clinical
practice. Higher-quality datasets, articles with sufficient documentation, and external validation are
required to give the currently developed ML models sufficient robustness and reproducibility to
integrate them into the existing clinical practice.

It is perhaps sufficient to say that Al advancements in pathology hold the potential to revolu-
tionize the healthcare industry. However, the journey to make our expectations a reality is not an
easy one. It would require a breakthrough that will gain the trust of pathologists across the globe.
The results so far are accurate to a certain extent but not enough to be independent of human
intelligence.

To conclude, despite the many challenges posed by society, funding departments, and lack of
appropriate technology, Al advancements are gradually advancing in the field of pathology. Many
pathologists have their hopes tied to the progress of AI/ML to assist them in their workload and
give patients a better healthcare environment Table 9.1.
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TABLE 9.1
Key Terms Used
S.No. Term Description

1 Artificial intelligence Computer behavior resembles intelligent or human behavior. Methods like machine
learning are employed to assist with this intelligence.

2 Machine learning Computer algorithms improve with experience and generate artificial knowledge.

3 Deep learning A subfield of machine learning is mainly concerned with using artificial neural
networks.

4 Artificial neural network Ths network consists of artificial neurons arranged in layers or planes, or one after
the other. They are used in deep-learning applications.

5 Convolutional network A subtype of artificial neural networks reduces the input of presumably relevant
features by using specific folding matrices. They are used in automated image-
recognition applications.

6 Recurrent neural network  In recurrent neural networks, weighted connections exist not only in the direction of
the output layer but also in preceding layers or levels, creating a kind of memory
that is useful in recognizing sequences.

7 Support vector machine The support-vector machine, a popularly used illustration of traditional mechanical
science, illustrates a mathematical pattern-recognition model. The goal of
classification is to create as much space between each subject as possible by
classifying objects.

8 Transfer learning Artificial neural networks employ transfer learning. This learning explains how a
network is initially trained on a dataset before being applied to further data.

9 Graphical processing unit  This unit is frequently used hardware components for artificial neural network training.

10 Multiple instance learning A technique wherein, not every training example is annotated. Instead, some
situations—Tlike all picture tiles—are assigned to a slide. The annotating procedure
is made more accessible.
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10.1 INTRODUCTION

The rapid spread of COVID-19 urged WHO to declare it an epidemic of international concern and,
soon after, on March 12, 2020, WHO announced it as a global pandemic [1]. COVID-19 is spread
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which are enveloped RNA
viruses and have a crown-like appearance. Over the years, seven strains of these viruses have
spread, having mild to fatal impacts on the human race [2]. With the second-highest population
globally, India is having a hard time dealing with the COVID-9 disease. The early COVID-19
cases in India were due to people coming from abroad. By March 7, around one lakh people in the
country had been infected with the disease. Owing to its fast transmission rate, the ministry of
home and family welfare, the government of India, issued several advisories related to travel,
including quarantine rules for 14 days, a social distance of one meter, and compulsory mask
wearing to avoid disease transmission. However, even after these steps, the disease spread across
the country at a very rapid pace. On May 18, 2020, the total number of confirmed cases reached
one lakh, and by July 18, 2020, it crossed the mark of 8.5 lakhs. During this period, the government
imposed the first phase of lockdown for 21 days. This closing was a complete lockdown, which
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reduced social, retail, park visits, grocery, and pharmacy mobility by —73.4%, —46.3%,-51.2%,
respectively [3]. It also influenced the transit to outstations and parks along with workplaces. But,
as the number of positive cases was still growing, India’s government extended this lockdown until
May 3, 2020, in the second phase, and it was further extended until May 31 in the third phase. The
Indian Council of Medical Research (ICMR) projection highlighted that social distancing and
quarantine interventions might reduce the growth rate by 62% [4]. To increase the effects of
measures the Indian government was taking, the GOI levied the quarantine law under the Epidemic
Disease Act, 1897. This law allowed inspecting people traveling by rail/ship (extended to cover
flight) and make the suspects stay in separate places in the hospital.

Even though several measures were used and the lockdown was extended phase by phase, by
the end of all of these measures, India had experienced 1,90,648 confirmed cases along with 5407
deaths [1]. Undoubtedly, with the country’s huge population, the statistics highlight the govern-
ment’s success to no small extent. The earnest efforts of all the front-line workers, especially the
doctors, nurses, and paramedics, are noteworthy. The lockdown simultaneously had a destructive
impact on society, mainly on the small, medium, and large enterprises. The suddenly imposed
lockdown forced millions of migrants to move to their place with no money to pay for shelter and
food. This total shutdown increased the unemployment rate to 19% after one month of lockdown
[5]. In general, the coronavirus