

 i

 i

Building
Machine Learning

Systems Using
Python

Deepti Chopra

Practice to Train Predictive
Models and Analyze Machine Learning

Results with Real Use-Cases

www.bpbonline.com

ii

FIRST EDITION 2021
Copyright © BPB Publications, India
ISBN: 978-93-89423-617

All Rights Reserved. No part of this publication may be reproduced,
distributed or transmitted in any form or by any means or stored in a
database or retrieval system, without the prior written permission of
the publisher with the exception to the program listings which may be
entered, stored and executed in a computer system, but they can not be
reproduced by the means of publication, photocopy, recording, or by
any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of
author’s and publisher’s knowledge. The author has made every effort
to ensure the accuracy of these publications, but publisher cannot be
held responsible for any loss or damage arising from any information
in this book.

All trademarks referred to in the book are acknowledged as properties
of their respective owners but BPB Publications cannot guarantee the
accuracy of this information.

Distributors:
BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991

MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297

DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400

BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj,
New Delhi-110002 and Printed by him at Repro India Ltd, Mumbai

www.bpbonline.com

 iii

Dedicated to

My Family and Friends
Who are always with me to love, support and care.

iv

About the Author

Dr. Deepti Chopra is working as Assistant Professor (IT) at Lal
Bahadur Shastri Institute of Management, Delhi. She has around 7
years of teaching experience. Her area of interest includes Natural
Language Processing, Computational Linguistics and Artificial
Intelligence. She is author of 3 books and has written several
research papers in various International Conferences and Journals.

 v

About the Reviewer

Anmol has 3 years of experience in the software industry. He has
honed his skills in Machine Learning, Deep Learning, build and
maintain ETL/ELT data pipelines and data-driven systems. Some
of the industries Anmol has worked in are Airline, E-Commerce,
Human Resource and HealthCare. His everyday work involves
analysing and solving complex business problems, breaking down
the work into feasible actionable tasks, and collaborating with
his team and project manager to plan and communicate delivery
commitments to our business clients.
When he is not working, Anmol spends most of his time reading,
traveling the world, playing Fifa and catching his favourite
Broadway shows. An admitted sports fanatic, he feeds his addiction
to football by watching Real Madrid games on Sunday afternoons.

vi

Acknowledgement

I want to thank God most of all, because without God I wouldn’t be
able to do any of this.

I acknowledge with gratitude and sincerely thank all my family
and friends for the blessings and good wishes conveyed to me to
achieve the goal to publish this machine learning based book.

My sincere thanks are due to few friends/TR of this book who
encourages and motivate me every time and proves that they
are always here for me. Such relations are the perfect example of
‘Quality over Quantity’.

This book wouldn’t have happened if I hadn’t had the support
from content editor of BPB Publications. My gratitude goes to the
editorial and publishing professionals of BPB Publications for their
keen interest and support in bringing out this book

Finally, I would like to thank Mr. Manish Jain at BPB Publications
for giving me this opportunity to write my first book for them.

 vii

Preface

With the increase in availability of data from different sources,
there is a growing need of data driven fields such as analytics
and machine learning. This book intends to cover basic concepts
of machine learning, various learning paradigms and different
architectures and algorithms used in these paradigms.

This book is meant for the beginners who want to get knowledge
about machine learning in detail. This book can also be used by
machine learning users for a quick reference for fundamentals in
machine learning.

Following are the chapters covered in this book:
Chapter 1: Introduction to Machine Learning
Description: This chapter covers basic concepts of machine
learning, areas in which ML is performed, input-output functions
Topics to be covered:
 1. What is machine learning?
 2. Utility of ML
 3. Applications of ML

Chapter 2: Linear Regression
Description: This chapter discusses about Linear Regression
Topics to be covered: List of topics covered in this chapter are:
 1. Linear Regression in one variable
 2. Linear Regression in multiple variables
 3. Gradient descent
 4. Polynomial Regression

Chapter 3: Classification using Logistic Regression
Description: This chapter discusses about classification using
Logistic Regression
Topics to be covered: List of topics covered in this book are:

viii

 1. Binary Classification
 2. Logistic Regression
 3. Multi class Classification

Chapter 4: Overfitting and Regularization
Description: This chapter discusses about overfitting and
regularization
Topics to be covered: List of topics covered in this chapter are:
 1. Overfitting and regularization in linear regression
 2. Overfitting and regularization in logistic regression

Chapter 5: Feasibility of Learning
Description: This chapter discusses about feasibility of learning
Topics to be covered: Topics covered in this chapter are:
 1. Feasibility of learning an unknown target function
 2. In-sample error
 3. Out-of-sample error

Chapter 6: Support Vector Machine
Description: This chapter discusses about Support Vector Machine
Topics to be covered: Please provide the list of topics to be covered
through the book:
 1. Introduction
 1.1 Margin
 1.2 Large Margin methods
 2. Kernel methods

Chapter 7: Neural Network
Description: This chapter discusses about Neural Network
Topics to be covered: List of topics covered in this chapter are:
 1. Introduction
 2. Early models
 3. Perceptron learning
 4. Backpropagation
 5. Stochastic Gradient Descent

 ix

Chapter 8: Decision Trees
Description: This chapter discusses about decision trees
Topics to be covered: List of topics covered in this chapter are:
 1. Decision Trees
 2. Regression Tree
 3. Stopping Criterion and Pruning Loss functions in Decision

Tree
 4. Categorical Attributes, Multiway Splits and Missing Values

in Decision Trees
 5. Instability in Decision Trees

Chapter 9: Unsupervised Learning
Description: This chapter discusses about Unsupervised Learning
Topics to be covered: List of topics covered in this chapter are:
 1. Introduction
 2. Clustering
 2.1 K-means Clustering
 2.2 Hierarchical Clustering
 3. Principal Component Analysis'

Chapter 10: Theory of Generalization
Description: This chapter discusses about theory of generalization
Topics to be covered: List of topics covered in this chapter are:
 1. Training versus Testing
 2. Bounding the testing error
 3. Vapnik Chervonenkis inequality
 4. VC Dimension
 5. Proof of VC inequality

Chapter 11: Bias and Fairness in ML
Description: This chapter discusses about bias and fairness in ML
Topics to be covered: List of topics covered in this chapter are:
 1. Introduction
 2. How to detect bias?
 3. How to fix biases or achieve fairness in ML?

x

Downloading the code
bundle and coloured images:

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/34fca5

Errata
We take immense pride in our work at BPB Publications and follow
best practices to ensure the accuracy of our content to provide with
an indulging reading experience to our subscribers. Our readers are
our mirrors, and we use their inputs to reflect and improve upon
human errors, if any, that may have occurred during the publishing
processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any
unforeseen errors, please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by
the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can
upgrade to the eBook version at www.bpbonline.com and
as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection
of free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers on
BPB books and eBooks.

 xi

BPB is searching for authors like you

If you're interested in becoming an author for BPB, please visit
www.bpbonline.com and apply today. We have worked with
thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You
can make a general application, apply for a specific hot topic that
we are recruiting an author for, or submit your own idea.

The code bundle for the book is also hosted on GitHub at https://
github.com/bpbpublications/Building-Machine-Learning-
Systems-Using-Python. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and
videos available at https://github.com/bpbpublications. Check
them out!

PIRACY

If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at :
business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested
in either writing or contributing to a book, please visit www.
bpbonline.com.

REVIEWS

Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make
purchase decisions, we at BPB can understand what you think
about our products, and our authors can see your feedback on their
book. Thank you!

For more information about BPB, please visit www.bpbonline.
com.

xii

Table of Contents

 1. Introduction ... 1
 Structure ... 1
 Objectives ... 1
 History of machine learning ... 2
 Classification of machine learning ... 3
 Challenges faced in adopting machine learning 4
 Applications .. 7
 Conclusion ... 14
 Questions ... 14

 2. Linear Regression ... 15
 Structure ... 15
 Objectives ... 15
 Linear regression in one variable ... 16
 Linear regression in multiple variables 22
 Gradient descent ... 25
 Polynomial regression .. 30
 Conclusion ... 32
 Questions ... 32

 3. Classification Using Logistic Regression 33
 Introduction ... 33
 Structure ... 33
 Objectives ... 33
 Binary classification .. 34
 Logistic regression .. 39
 Multiclass classification ... 41
 Conclusion ... 44
 Questions ... 44

 xiii

 4. Overfitting and Regularization .. 45
 Structure ... 45
 Objectives ... 45
 Overfitting and regularization in linear regression 46
 Overfitting and regularization in logistic regression 55
 Conclusion ... 57
 Questions ... 57

 5. Feasibility of Learning .. 59
 Introduction ... 59
 Structure ... 59
 Objectives ... 60
 Feasibility of learning an unknown target function 60
 In-sample error and out-of-sample error 62
 Conclusion ... 65
 Questions ... 65

 6. Support Vector Machine ... 67
 Introduction ... 67
 Structure ... 67
 Objectives ... 67
 Margin and Large Margin methods 68
 Kernel methods ... 76
 Conclusion ... 77
 Questions ... 77

 7. Neural Network .. 79
 Introduction ... 79
 Structure ... 79
 Objectives ... 80
 Early models .. 80
 Perceptron learning .. 80

xiv

 Back propagation .. 83
 Stochastic Gradient Descent .. 87
 Conclusion ... 88
 Questions ... 88

 8. Decision Trees ... 89
 Introduction ... 89
 Structure ... 89
 Objectives ... 90
 Decision trees .. 90
 Regression trees .. 92
 Stopping criterion and pruning loss functions in
 decision trees ... 93
 Categorical attributes, multiway splits, and missing
 values in decision trees .. 93
 Instability in decision trees .. 94
 Conclusion ... 94
 Questions ... 95

 9. Unsupervised Learning ... 97
 Introduction ... 97
 Structure ... 97
 Objectives ... 98
 Clustering... 98
 K-means clustering ... 98
 Hierarchical clustering ... 101
 Principal Component Analysis (PCA) 102
 Conclusion ... 106
 Questions ... 106

 10. Theory of Generalization .. 107
 Introduction ... 107

 xv

 Structure ... 107
 Objectives ... 108
 Training versus testing ... 108
 Bounding the testing error .. 108
 VC dimension .. 109
 Conclusion ... 109
 Questions ... 109

11. Bias and Fairness in Machine Learning111
 Introduction ..111
 Structure ..111
 Objectives ..112
 Introduction ..112
 How to detect bias? ...112
 How to fix biases or achieve fairness in ML?114
 Conclusion ..114
 Questions ..114

 Index .. 115-119

xvi

Introduction 1

Chapter 1
Introduction

Machine learning is one of the applications of artificial intelligence.
Machine learning may be defined as the ability of the system

to learn automatically through experience without being explicitly
programmed. It is based on the development of programs that can
access data and use this data to perform learning on their own. In this
chapter, we will discuss the classification of machine learning, the
various challenges faced in machine learning, and the applications
of machine learning.

Structure
•	 History of machine learning
•	 Classification of machine learning
•	 Challenges faced in adopting machine learning
•	 Applications

Objectives
•	 Understanding the origin of machine learning

2 Building Machine Learning Systems Using Python

•	 Understanding the classification of machine learning
algorithm

•	 Challenges faced in machine learning

•	 Applications of machine learning

History of machine learning
In 1940s, the first manually-operated computer, ENIAC (Electronic
Numerical Integrator and Computer), was invented. At this time,
the word computer was used which meant, 'a machine having intensive
numerical computation capabilities'. Since 1940s, the idea was to build a
machine that could mimic human behavior of learning and thinking.
In 1950s, the first computer game program was developed that could
beat the checkers world champion. This helped checker players
in improving their skills. At this time, Frank Rosenblatt invented
Perceptron, which is a very simple classifier. Machine learning
became popular in 1990s when probabilistic approaches of AI were
born as a result of the combination of statistics and computer science.
Because of the large data available, scientists started building
intelligent systems that could analyze and learn from a large amount
of data. For example, the IBMs Deep Blue could beat the World Chess
Champion, Garry Kasparov. Machine learning is a kind of algorithm in
which the software applications can accurately predict the outcomes
without being explicitly programmed. The basic essence of machine
learning is to build algorithms that, on receiving input data, predicts
the output using statistical analysis and updates the output as the
new data is made available. The term Machine learning was coined
by an American scientist, Arthur Samuel, in 1959 who had expertise
in computer gaming and artificial intelligence. According to Arthur
Samuel, "It gives computers the ability to learn without being explicitly
programmed". According to Tom Mitchell in 1997, "A computer program
is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves
with experience E."

Consider a machine learning based system which can help us find
the traffic patterns in the busiest location. We can run a machine
learning algorithm and use the traffic patterns of the past experience
for training the system. If the system has learned successfully, then
it will predict the traffic patterns in a better way with performance
measure, P.

Introduction 3

As machine learning is in boom in today's era, it is conducive to know
the various applications as well as the challenges faced in machine
learning. In this chapter, we will discuss the different machine
learning techniques, the challenges faced in adopting machine
learning, and the various application areas of machine learning.

Classification of machine learning
On the basis of the nature of learning and the response or output
available to the learning system, machine learning implementations
are of three types:

•	 Supervised learning: In supervised learning, the learning is
performed using example data and its corresponding target
response. During testing, when new examples are provided, it
predicts the corresponding response. This learning is similar
to how a student learns from a teacher. A teacher provides
some good examples for the student to memorize. The
student is then able to frame general rules to solve problems
and draw useful conclusions.

•	 Unsupervised learning: In unsupervised learning, the
learning is performed using example data without its
associated target response. In this type of algorithm,
a restructuring of data is performed where the data is
segmented into different classes. The objects that belong to
the same class have a high degree of similarity.

•	 Reinforcement learning: Reinforcement learning is similar
to unsupervised learning in which, corresponding to the
example data, there is no target response and each example
is accompanied by a positive or a negative feedback. A
positive feedback or credit is given when, during testing, a
correct response is obtained corresponding to the example
data. In a negative feedback, the error or penalty is awarded
because, during testing, an incorrect response is obtained
corresponding to the example data.

•	 Semi-supervised learning: In semi-supervised learning,
during training, we have example data and some of the
corresponding target responses are missing. It is a combination
of supervised and unsupervised learning.

On the basis of the desired output, machine learning implementation
is divided into the following types:

4 Building Machine Learning Systems Using Python

•	 Classification: In this type of learning, two or more classes
are assigned to the input present in the training data. During
testing, when we provide the input, it is classified into two
or more classes. For example, in spam filtering, it classifies
whether an email is spam or not spam.

•	 Regression: Regression is performed during supervised
learning. In this type of learning, the output is continuous
rather than discrete.

•	 Clustering: Clustering is performed during unsupervised
learning in which the testing data is classified into groups
and, unlike the task of classification, these groups or classes
are not known beforehand.

The different types of machine learning algorithms are depicted in
Figure 1.1 as follows:

Figure 1.1: Classification of machine learning algorithm

Challenges faced in adopting
machine learning
There are various challenges in adopting machine learning for
developing projects. Some of these are as follows:

•	 Requirement of proper experimentation and testing:
We need to conduct frequent tests in a machine learning
system in order to obtain the desired outcome with proper

Introduction 5

experimentation. The method used to test the machine
learning algorithm is referred to as stratification. In this
method, we randomly split the data set mainly into two
subsets, training set and testing set.

•	 Inflexible business models: We should follow an agile and
flexible business policy in implementing machine learning.
If one of the machine learning strategies is not working, then
we need to perform more experimentation and consequently
build a new robust machine learning model.

Is the machine learning results ethical? Google is developing software
that is used in military project called Project Maven. This project makes
use of drone and will create autonomous weapons. Consequently, 12
employees of Google resigned in protest and more than 4000, along
with over 1000 well-known scientists, signed a petition requesting
the company to abandon the project.

•	 Impact of machine learning on humans: A machine learning
based system such as a movie recommendation system
changes the choice of human over time and narrows them
with time. It is interesting to know that people don't notice
how they get manipulated by algorithms. Examples include
movie recommendation systems, news, propaganda, etc.

•	 False correlation: A false correlation comes into play when
two parameters that are completely independent of each
other show similar behavior. This creates an illusion that
these parameters are somehow connected to each other.
They are also known as spurious correlation. For example,
if there is an increase in the number of car seat belts, there
is a decrease in the number of astronaut deaths. This is a
false correlation since a car seat belt has nothing to do with
accidents occurring in space.

•	 Feedback loops: Feedback loops are worse than false
correlations. It is a condition where the decision of an
algorithm affects reality while convincing that the conclusion
is correct. For example, a crime prevention program
suggested that more police officials to be sent to a particular
area on the basis of an increase in the crime rate. This led
to the local residents reporting crimes more frequently as
somebody was right there they can report them. This also led
to the police officials writing more reports and implementing

6 Building Machine Learning Systems Using Python

protocols resulting in a higher crime rate, which meant that
more police had to be sent to the area. Earlier, when police
officials were not present in the area, people didn't report
crimes frequently.

•	 Poisoned or contaminated reference data: The outcome of a
machine learning algorithm purely depends on the reference
data or training data that a machine learns. If the training
data or reference data is poisoned or contaminated, then
the outcome of machine learning will also be incorrect. For
example, if we want to develop a machine translation system,
and if the training file consists of incorrect translations, then
the output will also be incorrect.

•	 Trickery: Even if a machine learning algorithm is working
perfectly, it can be tricked. A noise or distortion can completely
alter the outcome of the algorithm. In the near future, if a
machine learning algorithm is used for the analyses of X-rays
emitted from the luggage at the airport and an object is placed
next to a gun, then the algorithm will not be able to detect the
gun.

•	 Mastering machine learning: A data scientist is a person
who has expertise in machine learning. Those who are not
data scientists may not acquire all of the knowledge related
to machine learning. They need to find the key issues in a
particular domain of machine learning and then try to
overcome these issues. For example, a person who is working
on predictive modeling may not have a complete knowledge
of a Natural Language Processing (NLP) task.

•	 Wrong assumptions are drawn: A machine learning based
system needs to deal with missing values in the data sets.
For example, the missing value issue can be resolved by
using the mean value as the replacement to the missing
value. Here, reliable assumptions need to be drawn related
to the replacement of the missing values. So, we must make
sure that the data doesn't come with the missing values and
assumptions drawn are of substantial amount.

•	 Machine learning based systems are still not intelligent:
While machine learning based systems are constantly
evolving, there exists failure as well in the current machine
learning based systems. For example, as an experiment,

Introduction 7

Microsoft's chatbot Tay was released on Twitter that
mimicked a teenage girl. It was a failure and consequently
the company had to close the experiment and apologize to
the whole internet crowd for the hurtful and offensive tweets
by chatbot Tay.

•	 Computational needs are expensive: In order to perform
large data processing, GPUs are used instead of CPUs. Some
companies don't have GPUs, so it takes a longer time for
the conventional CPUs to process large amounts of data. In
some situations, even with GPUs, it may take days or weeks
to complete the processing as compared to the traditional
software development that may take a few minutes or hours
to complete the task.

Applications
Machine learning is a buzzword today. There are numerous
applications of machine learning. Some of the applications are shown
in Figure 1.2:

Figure 1.2: Applications of machine learning

8 Building Machine Learning Systems Using Python

•	 Virtual personal assistants: Some of the most popular
examples of virtual personal assistants used today include
Alexa, Siri, and Google Now. These virtual personal assistants
help in finding information, whenever asked over voice. We
can activate these virtual personal assistants and ask questions
like "Which are the flights from London to Germany?”, “What are
the tasks that need to be performed today?" For answering such
queries, virtual personal assistants collect information or
search previously asked queries or collect information from
phone apps. Machine learning is an integral part of virtual
personal assistants as they collect information and refine
it based on the previous information which is then used
to generate results based on the given preferences. Virtual
personal assistants are integrated to various platforms such
as mobile apps (for example, Google Allo), smartphones (for
example, Samsung Bixby on Samsung S8), smart speakers
(for example, Amazon Echo, Google Home), etc. Virtual
personal assistants are small, portable devices. Google Home
is shown in Figure 1.3.

Figure 1.3: Google Home

•	 Traffic prediction: In order to manage traffic, GPS navigation
devices are used. GPS devices track the current location and
velocity of a vehicle, and store the information in the central
server. This information is used to generate the current traffic
report. This prevents traffic and helps in congestion analysis.
A GPS device equipped in a car is shown in Figure 1.4. So,
machine learning is used for estimating the areas where
congestion can be found on the basis of daily GPS reports.

Introduction 9

Figure 1.4: A GPS device equipped in a car

•	 Online transportation networks: When we book a cab using
an app, it estimates the price of the ride. Machine learning is
used to minimize the detour. It plays a very important role
in predicting the travel time, price of the ride, and reduce
detour.

•	 Video surveillance system: A single person cannot monitor
multiple video cameras. A video surveillance system uses
machine learning at its back end to detect unusual behavior
in people, like napping, stumbling, standing, etc. The video
surveillance system on detecting unusual behavior will alert
a human attendant and prevent any mishap from taking
place.

•	 Social media services: Machine learning is vastly used in
social media platforms for personalizing news feed and
targeting better ads. Other applications of machine learning
in social media services include the following:

o People you may know: Machine learning is based on
the concept of gaining knowledge with experience.
Facebook notices people that we connect with, the
profiles that we often visit, our workplace, groups
that we share, our interest, etc. On the basis of all this
information, Facebook gives a suggestion of the list of
people we would like to become friends with.

o Face recognition: When we upload a photograph of
ours along with a friend, Facebook can immediately
recognize that friend. This is because Facebook

10 Building Machine Learning Systems Using Python

identifies unique features, poses, and projections and
matches them with the photographs of the people in
our friend list. It is a very complicated application at
the back end as it considers the precision factor, but at
the front end, it is a very simple application of machine
learning. Facebook uses DeepFace, which is a deep
learning project responsible for the identification of
a person’s face in images. Facebook also provides a
feature of alternative tags for an image that is already
uploaded on Facebook.

o Similar pins: Computer vision involves extraction of
useful information from videos and images. Machine
learning is one of the applications of computer vision.
Pinterest makes use of computer vision to detect pins
or objects in an image and recommend pins which are
similar to it.

o Sentiment analysis: Sentiment analysis is one of
the applications of machine learning. It is a process
of determining emotion or the opinion of a person
from the given text. It is also referred to as opinion
mining or sentiment classification. The application
of sentiment analysis is found in decision-making
applications, review-based websites, etc.

•	 Email spam and malware filtering: Email clients use
numerous spam filtering techniques. In order to ensure
that these approaches are continuously updated, machine
learning is used. A rule-based spam filtering technique
does not track the latest tricks adopted by the spammers.
Examples of a spam filtering technique that is influenced by
machine learning are multilayer perceptron, C 4.5 Decision
Tree Induction, etc. Every day, nearly 325,000 malwares are
detected and about 90-98% of the code is similar to its previous
version. The system security programs that are based on
machine learning are able to the coding pattern. Hence, they
are able to find malware with a variation of 2-10% and also
provide protection against them.

•	 Online customer support: Many websites today provide
the facility to chat with the company’s customer support
representatives while the user is scrolling the website. But not

Introduction 11

all the websites provide live executives to answer the queries.
In some websites, the user talks to a chatbot. These chatbots
extract useful information from the website and present it
to the customer as a response to their query. Chatbots have
advanced with time. They are based on a machine learning
algorithm that gains knowledge from past experiences.
Chatbots try to understand the user queries and then serve
them with better responses every time.

•	 Result refinement of a search engine: Google and many
other search engines make use of machine learning in order
to improve the searching capability. Whenever we perform
a search, an algorithm is run at the back end to see how we
respond to the results provided by a search engine. If we open
the top-most result and stay on the page for a very long time,
then the search engine assumes that the result displayed is
appropriate in accordance with the query. Also, if we reach
the second or the third page of the search results but do not
open any of the pages, then the search engine assumes that
the result displayed is not in accordance with the query.
In this way, the algorithm running at the back end tries to
improve the performance of the search results.

•	 Product recommendations: When we shop an online
product from a website, we notice that we start receiving
emails containing shopping suggestions. Also, the app or the
shopping website recommends items that match our choices.
Product recommendations are displayed on the basis of past
purchases, items browsed or added to the cart, or brand
preferences. This magical shopping experience is due to
machine learning.

•	 Online fraud detection: With the help of machine learning,
we can track online financial frauds. For example, to prevent
money laundering, Paypal uses the machine learning
approach. Using certain tools, Paypal can compare millions
of transactions occurring between buyers and sellers, and be
able to distinguish between legal and illegal transactions.

•	 Online gaming: Machine learning is used in online gaming.
For example, in Chess, it uses machine learning. On the basis
of previous moves that gave winning situations, the algorithm
running at the back end tries to improve its performance and

12 Building Machine Learning Systems Using Python

make similar moves that it considers the best. In this way,
machine learning tries to imbibe human-like intelligence in
computer that can play like any human chess champion.

•	 Financial services: According to the experts, online credit
card fraud has risen to $32 billion in 2020. Companies that are
related to the financial sector can see the flow of financial data
and prevent financial fraud. This is possible using machine
learning. Machine learning helps in the identification of
opportunities in trading and investment. With the help of
cyber surveillance, we can identify those institutions and
individuals that are at financial risk and take timely action to
prevent any cyber fraud.

•	 Healthcare: There has been an advancement in technology in
the field of medical healthcare by the incorporation of machine
learning. Wearable sensors and devices can provide real-time
overall health conditions of a person, such as his heartbeat,
blood pressure, etc. A doctor can use this information for
analyzing the health condition of an individual, draw pattern
using patient history, and predict any sort of ailment in the
future. A machine may also be trained to have human-like
intelligence. A machine may behave as a doctor and predict
a disease or suggest medicine on the basis of past health
condition records.

•	 Oil and gas: This industry requires the need of machine
learning the most. Machine learning applications in oil and
gas industry are vast. It not only includes streaming oil
distribution but also finding new sources of energy and the
analyzing of underground minerals.

•	 Self-driving cars: A self-driving car is one of the latest
and most exciting applications of machine learning. Tesla
is a famous car manufacturing firm, which is working on
developing self-driving cars. It is building a self-driving car
using an unsupervised machine learning algorithm that is
able to detect objects and people while driving.

•	 Automatic text translation: Today, if you visit any new place,
the language is not a barrier to understand the thoughts of
the locals or to share your thoughts with them. With the
help of machine learning, we can perform translation from
one language into another, and also perform the conversion
of text to speech and vice versa. GNMT (Google Neural

Introduction 13

Machine Translation) is based on neural machine learning
that performs the translation of text from one language into
another language. GNMT is also referred to as automatic
translation system. Complex English to Hindi translations
given by Google Translator is shown in Figure 1.5:

Figure 1.5: Complex English to Hindi translation by Google Translator

•	 Dynamic pricing: Dynamic pricing refers to the pricing
strategy that wholly depends on the objective thought.
For example, plane ticket, movie ticket, cab fare, etc. are
dynamically priced. Using machine learning, buying trends
can be found out and the dynamic prices of products can
be determined. Uber uses a machine learning model called
Geosurge to perform the dynamic pricing of individual rides.

•	 Classification of news: Machine learning helps in the
classification of vast news into different categories
like National News, International News, Sports News,
Entertainment, etc. These help the readers to choose the news
from their desired category. Machine learning methods used
for the classification of news are: Support Vector Machine,
Naive Bayes, K-Nearest Neighbor, etc.

•	 Information retrieval: It is one of the significant applications
of machine learning as it involves the extraction of knowledge
or structured data from unstructured data. Information
retrieval plays a crucial role in the big data sector. In the
machine learning approach, unstructured data is taken as
input and knowledge or structured data as output.

•	 Robot control: One of the applications of machine learning
is robot control. Recently, research was carried out to obtain
control over helicopter aerobatics and flight. In a robot control
based competition sponsored by Darpa, a robot that drove in
a desert for one hundred miles won over robot that could
notice distant objects.

14 Building Machine Learning Systems Using Python

Conclusion
Machine learning is one of the applications of artificial intelligence that
allows the system to automatically learn and improve its performance
without being explicitly programmed. Machine learning involves
the development of computer systems that can access data and use
this data to perform learning by themselves. In this chapter, we
have discussed about machine learning, the applications of machine
learning, and the challenges of machine learning. In the next chapter,
we will discuss about supervised learning and linear regression
which is one of the types of supervised learning techniques.

Questions
 1. Explain the difference between supervised learning and

unsupervised learning with examples.
 2. What are the challenges faced in adopting the machine

learning technique?
 3. Explain with an example how machine learning is used in the

healthcare sector.

 4. Explain with an example how machine learning is used in
social media services.

Linear Regression 15

Chapter 2
Linear

Regression

Supervised learning is a machine learning task of mapping the in-
put to the output on the basis of labeled input-output example

pairs. Supervised learning may be of two types: classification and
regression. In this chapter, we will discuss about linear regression
in one variable, linear regression in multiple variables, gradient de-
scent, and polynomial regression.

Structure
•	 Linear regression in one variable
•	 Linear regression in multiple variables
•	 Gradient descent
•	 Polynomial regression

Objectives
•	 Understanding linear regression in one variable
•	 Understanding linear regression in multiple variables

16 Building Machine Learning Systems Using Python

•	 Knowing gradient descent
•	 Understanding polynomial regression

Linear regression in one variable
Linear regression is a technique to depict the relationship between
an independent variable x and a dependent variable y. Linear regres-
sion states that the relationship that exists between one or more input
features and the relative output or target vector is approximately lin-
ear in nature. Linear regression finds the weighted sum of the input
features along with the constant referred to as bias term or intercept.
Linear regression has numerous real-life applications. These applica-
tions fall into two categories:

•	 If the application comprises forecasting, prediction, or error
reduction, then linear regression may be applied to the data
set values and make predictions in the response.

•	 When there is a need of variations in the response, then it may
be attributed by the presence of other explanatory variables.

Linear regression is used to find possible relationships between the
variables in the field of behavioral, biological, and social sciences. In
linear regression with one variable, hypothesis is defined as:

hθ (x) = θ0+θ1*x

Here, x is referred to as an independent variable on which depends
our hypothesis. For example, ‘Rainfall’ measured in mm could be x
and ‘The Number of Umbrellas sold’ could be the hypothesis that we
are trying to predict. θ0 and θ1 are referred to as the bias variable and
weight variable, respectively and they together constitute the weight
matrix.

Cost function is an equation that gives an estimate of how close we
are to the hypothesis. Smaller the value of cost function, closer we
are from the required curve. So, we try to minimize the cost function
in order to reduce error. The mean squared error cost function is de-
fined as follows:

Here, J is a cost function, m refers to the number of data points in our
data set, and y refers to the actual values that we will like to predict.

Linear Regression 17

To add normalization to the cost function, we introduce a constant
1/2m to it.

The code for linear regression in one variable in Python is as follows:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import __future__
df=pd.read_csv("C:\\Users\\computer\\Desktop\\umbrella.
csv") # Data is uploaded and a DataFrame is #created
using Pandas pd object
df

The strength of the relationship is found between
Rainfall and Umbrellas Sold
X = np.asarray(df.Rainfall.values)
y = np.asarray(df.UmbrellasSold.values)
Scaling and Normalization of the features are performed
def FeatureScalingNormalization(X):
Xnorm is a copy of X vector
Xnorm = X
avgx will the contain average value of x in the training
set
 avgx = np.zeros(X.shape[0])

18 Building Machine Learning Systems Using Python

rangex will contain the standard deviation values of x
rangex = np.zeros(X.shape[0])
avgx = X.mean()
rangex = X.std(ddof=1) # Calculated with NumPy. It
requires degreeoffreedom=1
The number of training examples is stored in p
p = X.shape[0]
a vector of size p with the average values of x
avgx_matrix = np.multiply(np.ones(p), avgx).T
a vector of size p with the standard deviation values
rangex_matrix = np.multiply(np.ones(p), rangex).T
Normalization is applied on x values
Xnorm = np.subtract(X, avgx).T
Xnorm = Xnorm /rangex.T
return [Xnorm, avgx, rangex]
featuresNormalizeresults = FeatureScalingNormalization(X)
normalized X matrix is obtained
X = np.asarray(featuresNormalizeresults[0]).T
mean values are obtained
avgx = featuresNormalizeresults[1]
standard deviation values are obtained
rangex = featuresNormalizeresults[2]
X

p = len(y) # number of training examples
X = np.vstack((np.ones(p), X.T)).T # Training Examples,
column of 1's is added to X
X

Linear Regression 19

plt.scatter(X[:,[1]], y, color='blue') # Data is plotted
and the Scatter plot is obtained
plt.xlabel("Rainfall")
plt.ylabel("Umbrellas Sold")

Figure 2.1: Linear regression plot showing the relationship between
Umbrellas Sold and Rainfall

In the above graph (Figure 2.1), we can visualize an increasing pat-
tern in the relationship between rainfall and the umbrellas sold.

We calculate the plot when two parameters, Theta is
randomly chosen as [140.0,5.0]

theta_0 = 140.0

theta_1 = 5.0

theta = np.asarray([theta_0,theta_1]).astype(float)

20 Building Machine Learning Systems Using Python

Plot the data

plt.scatter(X[:,[1]], y, color='black')

corresponding to the Hypothesis model, the red line is
plotted.

plt.plot(X[:,[1]], np.sum(np.multiply(X,theta), axis=1),
color='red', linewidth=1)

plt.xlabel("Rainfall")

plt.ylabel("Umbrellas Sold")

Figure 2.2: Linear regression plot when theta is randomly chosen

Calculate the Cost Function using 3 values in a Data set.
We have taken random values of theta as [120.0, 10.0].

X1=X[0:3]

y1=y[0:3]

m1=3

theta_0 = 120.0

theta_1 = 10.0

theta = np.asarray([theta_0,theta_1]).astype(float)

plt.scatter(X1[:,[1]], y1, color='blue')

plt.plot(X1[:,[1]], np.sum(np.multiply(X1,theta), axis=1),
color='red', linewidth=1)

Plot red points corresponding to the predicted values.

plt.scatter(X1[:,[1]], np.sum(np.multiply(X1,theta),

Linear Regression 21

axis=1), color='red')

plt.xlabel("Rainfall")

plt.ylabel("Umbrella Sold")plt.ylabel("Umbrellas Sold")

Figure 2.3: Linear regression plot for the calculation of cost function

As seen in the above graph (Figure 2.3), the blue dots show the value
of y as [18.0,20.0,25.0].

Cost Function is Calculated
def calcCostFunction(X, y, theta):
 # number of training examples
 p = len(y)
 # Cost J is initialized
 J = 0
 # Calculate h = X * theta
 h = np.sum(np.multiply(X, theta), axis=1)
 # Squared Error = (h - y)^2 (vectorized)
 SquaredError = np.power(np.subtract(h,y), 2)

 # Calculate the Cost J
 J = 1/(2*p) * np.sum(SquaredError)
 return J
calcCostFunction(X,y,theta)

22 Building Machine Learning Systems Using Python

3791.297245862391

The following code calculates 10 random theta values and
generates corresponding Cost Function values.
import random # import the random library
print("[Th0 Th1]", "\tJ")
for x in range(10):
 theta_0 = random.randint(1,101)
 theta_1 = random.randint(1,101)
 theta = np.asarray([theta_0, theta_1]).astype(float)
 # Calculate J and print the table

 print(theta, calcCostFunction(X, y, theta))

In the above output, we find 10 J values corresponding to 10 ran-
domly chosen theta values. We need an algorithm that can minimize
the value of J for the given theta values. We can find the minimum
value of J using the gradient descent algorithm.

Linear regression in multiple
variables
Linear regression in multiple variables explains the relationship be-
tween a dependent variable y and many independent variables. It
may be represented as follows:

Instead of a 'Yes' or 'No' reply, the value of Y will be a number. It is a
continuous dependent variable. Here, the theta values are referred to

Linear Regression 23

as regression weights and computed in such a way so as to minimize
the sum of the squared deviations.

Consider the following code that implements linear regression in
multiple variables using scikitlearn and statsmodels:

import pandas as pd

from sklearn import linear_model

import statsmodels.api as sm

Stock_Market = {'Year': [2018,2019,2018,2017,2017,2016,201
7,2019,2018,2018,2019,2019,2016,2017,2017,2018,2018,2018,2
018,2018,2016,2016,2016,2016], 'Month': [10, 12,10,9,8,4,6
,5,7,5,1,2,12,10,11,12,8,9,6,4,5,1,3,2], 'Rateofinterest':
[3.25,4.5,3.5,5.5,4.5,4.5,3.5,5.25,6.25,4.25,5,5,6,5.7
5, 4.75, 5.75,5.75,4.75,5.75,4.75,3.75,4.75,5.75,5.75
], 'RateofUnemployment':[7.3,4.3,3.3,4.3,6.4,5.6,4.5
,5.5,6.5,4.6,6.7,5.9,6,4.9,6.8,5.1,7.2,5.
1,6.1,7 .1,6.9,5.2,7.2,5.1],'Stock_price_
index':[1764,1594,1457,1493,1756,1244,1254,1175,13 29,1 54
7,1230,1375,1057,945,947,958,918,935,834,786,815,852,724,7
49] }

df = pd.DataFrame(Stock_
Market,columns=['Year','Month','Rateofinterest',
'RateofUnemployment','Stock_price_index'])

X = df[['Rateofinterest','RateofUnemployment']] # here we
have used 2 variables in Linear Regression using #Multiple
Variables

Y = df['Stock_price_index']

Using sklearn

regr = linear_model.LinearRegression()

regr.fit(X, Y)

print('Intercept: \n', regr.intercept_)

print('Coefficients: \n', regr.coef_)

prediction using sklearn

New_Rateofinterest = 3.25

New_RateofUnemployment = 7.3

print ('Predicted Stock Price Index: \n', regr.
predict([[New_Rateofinterest ,New_RateofUnemployment]]))

24 Building Machine Learning Systems Using Python

using statsmodels

X = sm.add_constant(X) # adding a constant

model = sm.OLS(Y, X).fit()

predictions = model.predict(X)

printmodel = model.summary()

print(printmodel)

The output of the above code is shown as follows:

In the above output, it shows the values of intercept, coefficient, and
predicted stock price index using sklearn and statsmodels:
StockPrice_Index = Intercept + (Rate of interest_Coefficient)*X1 + (Rate of
Unemployment_Coefficient)*X2

Substituting the values of intercept and coefficient from sklearn, we
get:
Stock Price_Index=2270.9128 + (-158.9578)*X1 + (-57.9007)*X2

From the table above, we infer that we get the same values of inter-
cept, coefficient, and predicted stock price index using sklearn and
statsmodels.

Linear Regression 25

Gradient descent
Gradient descent is a method to minimize the value of Cost Function.
It can alter the values of Theta 0 and Theta 1 of a point based on the
slope or gradient of the Cost Function curve. The changes introduced
in the values of Theta 0 and Theta 1 also bring changes to the hy-
pothesis, thereby bringing a better fit to the data. Gradient descent
estimates the derivative of cost function. It is represented by the fol-
lowing formula:

Here, hθ X-y is referred to as error.

 is referred to as the learning rate. In this method, we first fetch and
clean the data and analyze it. Then, we define the hypothesis, re-
gression parameters, and cost function. Then, we run the gradient
descent algorithm on all the data points and update the hypothesis.
This algorithm is implemented in Python as follows:

def gradientDescent(X, y, theta, alpha, numiters):
 # number of training examples
 p = len(y)
 # Initialize J_history and Theta_history
 Jhistory = []
 Thetahistory = []
 for i in range(numiters):
 # Calculate h = X * theta
 h = np.sum(np.multiply(X,theta), axis=1)
 # Calculate the error = (h - y)
 error = np.subtract(h, y)
 # Calculate the new theta
 thetanew = alpha * 1/p * np.sum(np.multiply(X.T,
error), axis=1)
 # Update theta
 theta = np.subtract(theta, thetanew)
 # Collect all the theta and J
 Thetahistory.append(theta.tolist())
 Jhistory.append(calcCostFunction(X,y,theta).

26 Building Machine Learning Systems Using Python

tolist())
 return theta, Thetahistory, Jhistory
Running the Gradient Descent
Initialize theta
theta = np.asarray([0,0]).astype(float)
Set the number of iterations for the Gradient Descent
iterations = 2000
Set the Learning Rate
alpha = 0.01
Run the gradientDescent() function, and collect the
output in "results"
results = gradientDescent(X, y, theta, alpha, iterations)
Get the theta from the results
theta = results[0] # new theta
Get the theta history
Thetahistory = results[1] # Theta history
Get the J history
Jhistory = results[2] # Cost function history
plt.scatter(X[:,[1]], y, color='blue')
Plot Hypothesis (theta as calculated with the Gradient
Descent)
plt.plot(X[:,[1]], np.sum(np.multiply(X,theta), axis=1),
color='red', linewidth=1)
plt.xlabel("Rainfall")

plt.ylabel("Umbrellas Sold")

Figure 2.4: Plot between rainfall and umbrellas

Linear Regression 27

Now, we'll plot the Theta history as follows:

theta_0 = np.asarray(Thetahistory)[:,[0]]
theta_1 = np.asarray(Thetahistory)[:,[1]]
plt.plot(theta_0[0:len(theta_0)], color='red', linewidth=1)
plt.plot(theta_1[0:len(theta_1)], color='green',
linewidth=1)
plt.xlabel("Iterations")
plt.ylabel("theta")

Figure 2.5: Plot of Theta0 and Theta1 values

We have performed 2000 iterations. In the above figure, the red
curve represents θ0 and the green curve represents θ1. After 2000 it-
erations, the value of θ is [37.5,11.0]. Next, we'll plot the J history
as follows:

plt.plot(Jhistory[0:len(Jhistory)], color='blue',
linewidth=1)

Put labels

28 Building Machine Learning Systems Using Python

plt.xlabel("Iterations")

plt.ylabel("J")

Figure 2.6: J history plot

The above graph is a J history plot that shows the value of cost
function falls down after 200 iterations and then becomes stable till
1500 iterations. The minimum value of J is 57.5:

Now if we predict the rainfall in mm to be 82mm, we
predict the corresponding number of umbrellas sold.

query = [1, 82]

Scale and Normalize the query

queryNormalized = [1, ((query[1]-avgx)/rangex)]

prediction = np.sum(np.multiply(queryNormalized, theta))

prediction

20.373966510153515

So, approximately 20 umbrellas are sold:

Drawing a contour plot of J and θ

nslice = 50

theta0_vals = np.linspace(-100, 200, num=nslice)

theta1_vals = np.linspace(-400, 400, num=nslice)

Initialize J_val that will collect all the J values

Linear Regression 29

calculated by calcCostFunction()

J_vals = []

for i in range(len(theta0_vals)):

 for j in range(len(theta1_vals)):

 t = np.asarray([theta0_vals[i], theta1_vals[j]]).
astype(float)

 J_vals.append(calcCostFunction(X, y, t).tolist())

J_vals = np.asarray(J_vals)

J_vals = J_vals.reshape((nslice, nslice)).T

levels = nslice

s = 1

plot the contour with theta and the J values

plt.contour(theta0_vals, theta1_vals, J_vals, levels)

Draw the path of the Gradient Descent convergence

for k in range(0, iterations, 10):

 plt.scatter(np.asarray(Thetahistory)[k][0],\

 np.asarray(Thetahistory)[k][1], color='blue',
s=s)

Draw a red dot i correspondence of the theta associated
to the minimum J

plt.scatter(theta[0], theta[1], color='red', s=10)

plt.xlabel("theta_0")

plt.ylabel("theta_1")

Figure 2.7: Contour plot of J and Theta

30 Building Machine Learning Systems Using Python

In the above plot, the red dot at the center represents minimum value
of J, J=57.5 at θ=[37.5,11.0].

Polynomial regression
Polynomial regression is a type of regression analysis in which the
relationship that exists between a dependent variable y and an inde-
pendent variable x is modeled by the nth degree of the polynomial
x. It fits a nonlinear relation that exists between x and its correspond-
ing conditional mean of y. This is denoted as E(y|x). In some of the
cases, for the unknown parameters that are collected from the data,
E(y|x) is linear. So, polynomial regression is referred to as a special
case of linear regression with multiple variables.

Polynomial regression is represented as follows:

Y= θ0+θ1 X+ θ2 X2+ θ3 X3…….θn Xn

Consider the following code in Python on polynomial regression:

import operator

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.preprocessing import PolynomialFeatures

np.random.seed(0)

x = 1 - 3 * np.random.normal(0, 1, 50)

y = x - 3 * (x ** 2) + 0.5 * (x ** 3) + np.random.
normal(-3, 3, 50)

Data is transformed to include another axis

x = x[:, np.newaxis]

y = y[:, np.newaxis]

polyfeatures= PolynomialFeatures(degree=3)

xpoly = polyfeatures.fit_transform(x)

model = LinearRegression()

model.fit(xpoly, y)

ypoly_pred = model.predict(xpoly)

Linear Regression 31

rmse = np.sqrt(mean_squared_error(y,ypoly_pred))

r2 = r2_score(y,ypoly_pred)

print(rmse)

print(r2)

plt.scatter(x, y, s=20)

The values of x are sorted according to the degree
before the line plot

sort_axis = operator.itemgetter(0)

sorted_zip = sorted(zip(x,ypoly_pred), key=sort_axis)

x, y_poly_pred = zip(*sorted_zip)

plt.plot(x, ypoly_pred, color='m')

plt.show()

In the above code, we performed a polynomial regression, where the
degree of the independent variable x is 2. We also plotted the graph
and generated the RMSE and the R2 Score of the resultant curve. The
output of the above code is as follows:

Figure 2.8: Plot on polynomial regression

32 Building Machine Learning Systems Using Python

The RMSE score and the R2 Score obtained are 2.5898697824172037
and 0.9974338440099649, respectively.

Conclusion
In this chapter, we discussed about linear regression in one variable,
linear regression in multiple variables, gradient descent, and polyno-
mial regression. We also discussed their implementation in python
using scikitlearn, statsmodels, etc. In the next chapter, we will
discuss about the classification using logistic regression.

Questions
 1. Explain linear regression in one variable using an example.

 2. Explain linear regression in multiple variables using an
example.

 3. Explain polynomial regression with an example.

 4. Explain gradient descent with an example.

Classification Using Logistic Regression 33

Chapter 3
Classification

Using Logistic
Regression

Introduction
Logistic regression is a kind of regression analysis that comes into
play when the dependent variable is binary. It is a kind of predictive
analysis that explains the relationship between one dependent
variable and one or several nominal, interval, ordinal, or ratio-level
independent variables. In this chapter, we will discuss about binary
classification, logistic regression, and multi-class classification.

Structure
•	 Binary classification
•	 Logistic regression
•	 Multi-class classification

Objectives
•	 Understanding binary classification
•	 Understanding logistic regression

34 Building Machine Learning Systems Using Python

•	 Understanding multi-class classification

Binary classification
Binary classification, also referred to as binomial classification, may
be defined as the process of classification of elements into two groups
on the basis of the classification rule. It is found in the following
fields:

•	 In the medical field, it is used to test whether a patient has
any disease or not.

•	 In factories, it is used to decide whether a product is in
accordance with the quality standards or not, or to check if
some specification is met or not.

•	 In information retrieval, it is used in deciding whether a given
page or an article should be in the result set of a search or not
on the basis of the relevance of an article or the usefulness to
the user.

•	 In spam filtering, it is used in deciding whether an email
message received is a spam mail or not.

•	 It is also used in credit card fraudulent transaction detection.

Some of the techniques used for learning binary classifiers include
the following:

•	 Decision trees

•	 Neural networks

•	 Support vector machines

•	 Bayesian classification

Consider the following code in Python that performs a binary
classification. Here, we have considered breast_cancer, which is a
predefined data set in sklearn. This data set comprises 569 instances
of tumors, 30 features or attributes such as texture, radius, area, and
the smoothness of the tumor. It comprises two classes of tumors such
as malignant and benign. Malignant tumors are represented by 0 and
benign tumors are represented by 1:

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB

Classification Using Logistic Regression 35

from sklearn.metrics import accuracy_score
Loading the predefined iris data set from Sklearn
data = load_breast_cancer()
Organizing the data
labelnames = data['target_names']
labels = data['target']
featurenames = data['feature_names']
features = data['data']
data
print(labelnames)
print('Class label = ', labels[0])
print(featurenames)
print(features[0])
Splitting the data
train, test, train_labels, test_labels = train_test_
split(features,labels,test_size=0.33,random_state=42)
Initializing the classifier
gnb = GaussianNB()
Training the classifier
model = gnb.fit(train, train_labels)
Making predictions
prediction = gnb.predict(test)
print(prediction)
Evaluating the accuracy
print(accuracy_score(test_labels, prediction))

36 Building Machine Learning Systems Using Python

The output of the above code is shown below:

From the above code, we infer that the first data instance represents
0. So, it is a malignant tumor and its mean radius is 1.799e+01. There
are different testing analysis methods used in binary classification.
Consider the following testing data on which we will apply the
testing analysis methods:

Instance Target Outcome
1 1 0.89
2 1 0.75
3 1 0.60
4 1 0.50
5 0 0.45
6 1 0.44
7 0 0.42
8 1 0.41
9 0 0.42
10 1 0.39
11 1 0.31
12 0 0.30
13 0 0.18

Classification Using Logistic Regression 37

Instance Target Outcome
14 0 0.17
15 0 0.16
16 0 0.15
17 0 0.14
18 0 0.13
19 0 0.10
20 0 0.10

Let us now consider the following testing analysis methods:
•	 Confusion matrix: It is used to present the performance of a

binary classifier. The decision threshold, T may be used to find
out whether the given set of instances is positive or negative.
If the probability allotted to the given instance of a classifier
is greater than T, then it is referred to as positive otherwise, it
is referred to as negative. When all the given testing instances
are classified, then the target labels are compared with the
outcome labels to generate the following four terms:

o True positives (TP) – The total number of instances
that are positive and are classified as positive

o False positives (FP) – The total number of instances
that are negative and are classified as positive

o False negatives (FN) – The total number of instances
that are positive and are classified as negative

o True negatives (TN) – The total number of instances
that are negative and are classified as negative

The confusion matrix is represented as follows:

Predicted Positive Predicted Negative
Real Positive True Positives False Negatives
Real Negative False Positives True Negatives

Here, the column represents the outcome classes and the
rows represent the target classes. The diagonal cells show
the number of cases that are classified correctly and the off-
diagonal cells show the number of cases that are not classified
correctly.

38 Building Machine Learning Systems Using Python

Let the value of the decision threshold be T=0.4. Consider
the testing data table given above. We get the following
confusion matrix:

Predicted Positive Predicted Negative
Real Positive 6 2
Real Negative 3 9

•	 Binary classification tests: These are the parameters that
are derived from the confusion matrix. They involve the
following parameters:

o Classification accuracy: It may be stated as the ratio
of the instances that are correctly classified. It can be
depicted as follows:

(True_Positives + True_Negatives)

(Total instances)
Classification_Accuracy =

o Error rate: It may be stated as the ratio of instances
that will not be classified correctly. It can be depicted
as follows:

Error Rate=
(False_Positives + False_Negatives)

(Total instances)

o Sensitivity: It can be stated as the ratio of the correct
positives and the total number of positives. It is also
referred to as recall or true positive rate. It can be
depicted as follows:

Sensitivity=
(True_Positives)

(Total Positive instances)

o Specificity: It can be stated as the ratio of the correct
negatives and the total number of negatives. It is also
referred to as the true negative rate. It can be depicted
as follows:

Specificity =
(True_Negatives)

(Total Negative instances)

From the above mentioned confusion matrix, we obtain 25%
error rate, 75% accuracy, 75% sensitivity, and 75% specificity.

Classification Using Logistic Regression 39

Logistic regression
Logistic regression is a statistical model that makes use of the
logistic function to model a binary dependent variable. It may be
defined as the transformation of linear regression mot del that can
probabilistically model the binary variables.

It may be represented by the following probability:

The output in linear regression is continuous, whereas in logistic
regression, the output is discrete. Assumptions of logistic regression
include the following:

•	 In logistic regression, the dependent variable should be
binary.

•	 In logistic regression, Linearity must exist between logit
and independent variables.

•	 There is no chance of multicollinearity.

•	 It requires a large sample size.

•	 It remove outliers and misclassified instances from the
training data. Logistic regression assumes that there is no
error in the output variable.

Consider an example of a logistic regression, given number of hours,
a student studied for exams and number of hours, a student slept.
We have to predict whether a student will pass (represented by 1)
or fail (represented by 0). It is represented by the following Python
code:

import pandas as pd

import numpy as np

from sklearn import metrics

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

df = pd.read_csv("C:\\Users\\computer\\Desktop\\student.
csv")

df.head()

40 Building Machine Learning Systems Using Python

x = df.drop("PassorFail",axis = 1)

y = df.PassorFail

In the above code, the drop method is used to remove PassorFail
attribute from x and, x is assigned to other attributes. PassorFail
attribute is assigned to y.

x_train, x_test, y_train, y_test = train_test_split(x, y,
random_state=4)

The above code splits the data set into 75% training data and 25%
testing data:

logistic_regression = LogisticRegression()

logistic_regression.fit(x_train,y_train)

Here, the fit method is used to train the model. The predict method
is used to perform predictions on x_test values. The output of the
prediction is stored in y_prediction. The accuracy_score method
of metrics class is used to estimate the accuracy of the model. The
accuracy obtained in the logistic regression model is 50%.
y_prediction = logistic_regression.predict(x_test)

accuracy = metrics.accuracy_score(y_test, y_prediction)

Classification Using Logistic Regression 41

accuracy_percentage = 100 * accuracy

accuracy_percentage

50.0

first_student = logistic_regression.predict((np.array([7,
5]).reshape(1, -1)))

first_student

array([1], dtype= int64)

In the above code, we predict whether the first student will pass
or fail on the basis of the number of hours studied; the number of
hours slept is 7 and 5. The prediction result is that the first student
will pass as indicated by the array([1],dtype=int64). Also, we
predict whether the second student will pass or fail on the basis of
the number of hours studied; the number of hours slept is 2 and 10.
The prediction result is that the second student will fail as indicated
by the array([0],dtype=int64).

second_student = logistic_regression.predict((np.array([2,
10]).reshape(1, -1)))

second_student

array([0], dtype=int64)

Multiclass classification
Multinomial or multiclass classification may be defined as the
problem of the classification of instances into two or more classes.
Multiclass classification makes sure that each sample is assigned
only one label.

Consider the following Python code on multiclass classification.
Here, we use a predefined data set wine from sklearn. This data set
comprises 178 instances of wine and 13 features or attributes related
to the wine, such as the amount of alcohol, malic acid, ash, alkalinity
of ash, the amount of magnesium, total phenol, flavonoids, non-
flavonoid phenols, color intensity, hue, etc.

from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
Predefined Sklearn Wine data set is loaded

42 Building Machine Learning Systems Using Python

data = load_wine()
The data is organized
labelnames = data['target_names']
labels = data['target']
featurenames = data['feature_names']
features = data['data']
Look at our data
print(labelnames)
print('Class label = ', labels[0])
print(featurenames)
print(features[0])
Splitting our data
train, test, train_labels, test_labels = train_test_
split(features,labels,test_size=0.33,random_state=42)
Initializing our classifier
gnb = GaussianNB()
Training our classifier
model = gnb.fit(train, train_labels)
Making predictions
prediction = gnb.predict(test)
print(prediction)
Evaluate the accuracy
print(accuracy_score(test_labels, prediction))

The following is the output obtained from the above code:

In the above code, it shows that sample 1 is of class 0 and the amount
of alcohol in it is 1.423e+01. Here, the sample is classified into 3 classes
of wines, such as class 0, class 1 and class 2.

Consider another code on multiclass classification. Here, we have
taken iris, a predefine data set from sklearn. The iris data set
comprises 150 instances of iris (a kind of flower) and 4 features or

Classification Using Logistic Regression 43

attributes of iris, such as the sepal length, sepal width, petal length,
and petal width:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
Loading the predefined iris data set from Sklearn
data = load_iris()
Organizing the data
labelnames = data['target_names']
labels = data['target']
featurenames = data['feature_names']
features = data['data']
data
print(labelnames)
print('Class label = ', labels[0])
print(featurenames)
print(features[0])
Splitting the data
train, test, train_labels, test_labels = train_test_
split(features,labels, test_size=0.33, random_state=42)
Initializing the classifier
gnb = GaussianNB()
Training the classifier
model = gnb.fit(train, train_labels)
Making predictions
prediction = gnb.predict(test)
print(prediction)
Evaluating the accuracy
print(accuracy_score(test_labels, prediction))

44 Building Machine Learning Systems Using Python

The above code divides the sample into 3 classes of iris, such as
setosa, versicolor, and virginica. It shows that the first sample
of iris is of type setosa and its sepal length is 5.1 cm.

Conclusion
In this chapter, we discussed about binary classification, logistic
regression, and multi-class classification. We also discussed their
implementation in Python using scikitlearn. In the next chapter,
we will discuss about overfitting and regularization in linear
regression, and overfitting and regularization in logistic regression.

Questions
 1. Explain binary classification with an example.

 2. Explain logistic regression using an example.

 3. Explain multiclass classification with an example.

Overfitting and Regularization 45

Chapter 4
Overfitting and
Regularization

Logistic regression is a regression analysis that occurs when the
dependent variable is binary. Binary classification involves the

classification of elements on the basis of the classification rule into
two groups. In the previous chapter, we discussed about binary
classification, logistic regression, and multi class classification and
their implementation in Python using scikitlearn. Overfitting
is one of the common problems in machine learning, and it can be
handled using regularization. In this chapter, we will discuss about
overfitting and regularization in linear regression and overfitting
and regularization in logistic regression.

Structure
•	 Overfitting and regularization in linear regression
•	 Overfitting and regularization in logistic regression

Objectives
•	 Understanding overfitting and regularization in linear

regression

46 Building Machine Learning Systems Using Python

•	 Understanding overfitting and regularization in logistic
regression

Overfitting and regularization in
linear regression
In a linear model, a straight line is drawn in a prediction model. A
linear model can be depicted using a single attribute that can predict
a value or multiple attributes that can predict a value. The equation
is given as follows:

For single variable:
h(X) = θ0+θ1 X

For multiple variables:
h(X)= θ0+θ1 X1+ θ2 X2+ θ3 X3…….θn Xn

In the above equations, is the intercept and to are the slopes of the
respective attributes from to . Consider the 2 graphs given below
based on the linear model:

Figure 4.1: Linear model having two points

Overfitting and Regularization 47

Figure 4.2: Linear model having multiple points

Figure 4.1 represents two points and Figure 4.2 represents multiple
points. Consider the following equation that can be used to represent
many possibilities that can fit a straight line:

h(X)= θ0+θ1 X+ θ2 X2+ θ3 X3…….θn Xn

Figure 4.3 shown below may represent the above equation:

Figure 4.3: Linear model having multiple points & multiple straight lines

48 Building Machine Learning Systems Using Python

If there is one theta, then it represents one slope of direction and we
obtain a straight line. If there are multiple thetas, then they represent
multiple slopes of direction and we obtain a curved line. A linear
model having multiple points, multiple curves, and multiple theta
values is shown in Figure 4.4:

Figure 4.4: Linear model having multiple points & multiple curves

We need regularization in order to prevent overfitting in a model.
Our model may be in one of the following states:

•	 Overfitting

•	 Appropriate fitting or good fitting

•	 Under-fitting

Overfitting, appropriate fitting, and under-fitting are shown in Figure
4.5, Figure 4.6, and Figure 4.7. In a classification problem, when we
work on a data set to perform the task of prediction, we calculate
the accuracy by implementing on the training data and the testing
data. If it obtains a satisfactory performance, we try to enhance
the performance by either adding or removing certain features set.
Sometimes, the designed model may behave poorly. It shows poor
performance when either the designed model is too simple or too
complex to address the target:

Overfitting and Regularization 49

Figure 4.5: Under-fitting

In Figure 4.5, under-fitting of data takes place as all the points are not
covered by the line. It is also referred to as high bias. We can avoid
under-fitting by using a polynomial equation that generates a curved
line instead of a straight line:

Figure 4.6: Appropriate fitting or good fitting

In Figure 4.6, almost all the points are covered by the line. So, it is
referred to as good fitting or appropriate fitting. Also, it maintains a
balance between variance and bias:

Figure 4.7: Overfitting

50 Building Machine Learning Systems Using Python

In Figure 4.7, all the points including outliers and noise are covered
by the line. So, it is also referred to as overfitting. As this model is
too complex, it gives a poor result. It is also known as high variance.
In order to avoid overfitting, we have to use regularization.
Regularization performs the task of reducing the variance by
increasing bias, which thereby decreases the expected error.

The general equation for linear regression is given as follows:

h(X)= θ0+θ1 X1+ θ2 X2+ θ3 X3…….θn Xn

Here, θ represents the coefficients of the independent variable X.
Residual Sum of Squares is used to reduce the error existing in the
coefficients. Residual Sum of Squares (R) may be defined as follows:

R=Σi=1to n(yi-θ0- Σj=1to pθjxij)2

Ridge Regression may be defined as a technique that can be used to
analyze multiple regression data that exhibit multicollinearity. Ridge
Regression may be defined as follows:

Ridge Regression=Σi=1to n(yi-θ0- Σj=1to pθjxij)2+λΣi=1to pθj
2 = R+λΣi=1to pθj

2

The value of λ is very crucial for our outcome. If the value of λ is zero
then there is no affect in the outcome, but if it is equal to infinity then
it affects the result and it is not desirable.

Lasso regression helps in shrinking the coefficients to zero and hence,
remove them from the model. If there are many features which seem
to be irrelevant and can be ignored, then Lasso regression is used.
Lasso regression is computationally more intensive. Elastic-net
regression is a combination of Lasso regression and ridge regression.

Ridge regression helps in shrinking the coefficients to almost zero
but not completely zero.

Consider following code on Lasso regression:
import numpy as np
import pandas as pd
import matplotlib.pyplot
%matplotlib inline
import seaborn as sns
from sklearn.linear_model import Lasso
url 1= 'http://archive.ics.uci.edu/ml/machine-learning-
databases/communities/communities.data'

Overfitting and Regularization 51

data = pd.read_csv(url1, header=None, na_values=['?'])
X = data.drop(127, axis=1)
y = data[127]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,
y,test_size = 0.3, random_state=1)
from sklearn.linear_model import LinearRegression
linearreg = LinearRegression()
linearreg.fit(X_train, y_train)
from sklearn import metrics
print("R-Square Value",r2_score(y_test,y_pred))
print ("\nmean_absolute_error :",metrics.mean_absolute_
error(y_test, y_pred))
print ("\nmean_squared_error : ",metrics.mean_squared_
error(y_test, y_pred))
print ("\nroot_mean_squared_error : ",np.sqrt(metrics.
mean_squared_error(y_test, y_pred)))

lassoregre = Lasso(alpha=0.005, normalize=True)
lassoregre.fit(X_train, y_train)
print(lassoregre.coef_)

lassoregre = Lasso(alpha=0.05, normalize=True)

52 Building Machine Learning Systems Using Python

lassoregre.fit(X_train, y_train)
print(lassoregre.coef_)

compute RMSE (for alpha=0.01)
y_pred = lassoregre.predict(X_test)
compute MAE, MSE, RMSE
compute R square value, MAE, MSE, RMSE
from sklearn.metrics import r2_score
from sklearn import metrics
print("R-Square Value",r2_score(y_test,y_pred))
print ("mean_absolute_error :",metrics.mean_absolute_
error(y_test, y_pred))
print ("\nmean_squared_error : ",metrics.mean_squared_
error(y_test, y_pred))
print ("\nroot_mean_squared_error : ",np.sqrt(metrics.
mean_squared_error(y_test, y_pred)))

from sklearn.linear_model import LassoCV
lassoregrecv = LassoCV(n_alphas=100, normalize=True,
random_state=1)
lassoregrecv.fit(X_train, y_train)
print('alpha : ',lassoregrecv.alpha_)

alpha : 0.001687868294707203

print(lassoregrecv.coef_)

Overfitting and Regularization 53

the best alpha value is predicted using the predict
method
y_pred = lassoregrecv.predict(X_test)
Compute R square value, MAE, MSE, RMS
print("R-Square Value",r2_score(y_test,y_pred))
print("\n")
print ("\nmean_absolute_error :",metrics.mean_absolute_
error(y_test, y_pred))
print ("\nmean_squared_error : ",metrics.mean_squared_
error(y_test, y_pred))
print ("\nroot_mean_squared_error : ",np.sqrt(metrics.
mean_squared_error(y_test, y_pred)))

In the above code, the value of alpha should be positive. The value
of alpha can be increased for achieving high regularization. In the
above code, normalize is set to true. It is used to scale the features.

54 Building Machine Learning Systems Using Python

The value of R-Square increases when we apply regularization. The
value of mean absolute error, mean squared error, and root mean
squared error decreases when we apply regularization.

Consider the following code on Ridge regression:
from sklearn.linear_model import Ridge
ridgereg = Ridge(alpha=0, normalize=True)
ridgereg.fit(X_train, y_train)
y_pred = ridgereg.predict(X_test)
calculate R square value, MAE, MSE, RMSE
from sklearn import metrics
print("R-Square Value",r2_score(y_test,y_pred))
print ("\nmean_absolute_error :",metrics.mean_absolute_
error(y_test, y_pred))
print ("\nmean_squared_error : ",metrics.mean_squared_
error(y_test, y_pred))
print ("\nroot_mean_squared_error : ",np.sqrt(metrics.
mean_squared_error(y_test, y_pred)))

ridgeregre = Ridge(alpha=0.1, normalize=True)
ridgeregre.fit(X_train, y_train)
y_pred = ridgeregre.predict(X_test)
calculate R square value, MAE, MSE, RMSE
from sklearn import metrics
print("R-Square Value",r2_score(y_test,y_pred))
print ("\nmean_absolute_error :",metrics.mean_absolute_
error(y_test, y_pred))
print ("\nmean_squared_error : ",metrics.mean_squared_
error(y_test, y_pred))
print ("\nroot_mean_squared_error : ",np.sqrt(metrics.

Overfitting and Regularization 55

mean_squared_error(y_test, y_pred)))

In the above code, we can see that the value of R square increases and
the value of mean squared error, mean absolute error, and root mean
squared error decreases when regularization is applied.

Overfitting and regularization in
logistic regression
Logistic regression may be defined as a generalized linear model, but
instead of continuous output, it produces a categorical output. One
of the common problems occurring in machine learning is overfitting
where a model is able to respond well on the training data rather than
the testing data. Overfitting takes place when the model is complex
due to the number of observations being more as compared to the
number of parameters.

Regularization is one way of dealing with overfitting. Regularization
can handle high correlation among various features, filtering out
noise from data and prevent overfitting. The regularization term
may be represented as follows:

Here, λ is the regularization parameter. In order to apply
regularization to logistic regression, the regularization term is added
to the cost function to shrink weights.

The inverse of regularization is represented by the parameter C as:

C=1/λ

If we decrease the value of the parameter C, then the regularization

56 Building Machine Learning Systems Using Python

strength λ increases and weight the coefficients or complexity
decreases. Consider the following Python code on regularization in
logistic regression:
%pylab inline
from sklearn import datasets
import numpy as np
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=0)

from sklearn.preprocessing import StandardScaler
ssc = StandardScaler()
ssc.fit(X_train)
X_train_std = ssc.transform(X_train)
X_test_std = ssc.transform(X_test)

from sklearn.linear_model import LogisticRegression

weights, params = [], []
for c in np.arange(1, 5):
lrr = LogisticRegression(C=10**c, random_state=0)
lrr.fit(X_train_std, y_train)
weights.append(lrr.coef_[1])
params.append(10**c)

weights = np.array(weights)

Decision region drawing
import matplotlib.pyplot as plt

plt.plot(params, weights[:, 0], color='blue', marker='x',
label='petal length')
plt.plot(params, weights[:, 1], color='green', marker='o',
label='petal width')
plt.ylabel('weight coefficient')

Overfitting and Regularization 57

plt.xlabel('C')
plt.legend(loc='right')
plt.xscale('log')
plt.show()

Figure 4.8

In the above code, we used 10 logistic regression models with
different values of C. The plot given above shows that as the value
of C (inverse regularization) decreases, the value of the weight
coefficient decreases.

Conclusion
In this chapter, we discussed about overfitting and regularization
in linear regression and overfitting and regularization in logistic
regression. We discussed how the R square, mean absolute error,
mean squared error, and root mean squared error changes by
applying regularization. In the next chapter, we will discuss about
the feasibility of learning an unknown target function, in-sample
error, and out-of-sample error.

Questions
 1. Explain overfitting and regularization in linear regression

with an example.
 2. Explain overfitting and regularization in logistic regression

with an example.

58 Building Machine Learning Systems Using Python

Feasibility of Learning 59

Chapter 5
Feasibility of

Learning

Introduction
Regularization is one way of dealing with overfitting. Regularization
can handle high correlation among various features, filtering out
noise from data, and prevent overfitting. In the previous chapter, we
discussed about overfitting and regularization in linear regression
and overfitting and regularization in logistic regression. In this
chapter, we will discuss about the Feasibility of Learning an unknown
target function, in-sample error, and out-of-sample error.

Structure
In this chapter, we will study the following topics:

•	 Feasibility of learning an unknown target function
•	 In-sample error
•	 Out-of-sample error

60 Building Machine Learning Systems Using Python

Objectives
•	 To know the steps involved in building a machine learning

model

•	 Understanding feasibility of learning using Hoeffding's
Inequality

•	 Understanding in-sample error

•	 Understanding generalization error

Feasibility of learning an unknown
target function
For building a machine learning model, the following hierarchy is
followed:
 1. Collection of data: It involves gathering of data on the basis

of the machine learning project that we desire to make. Data
may be gathered from various sources such as files, sensors,
databases, etc.

 2. Pre-processing of data: The data collected from different
sources for building the machine learning model cannot be
directly used for analysis purpose, as it may contain a large
amount of noisy data, unorganized text, missing values,
large values, or irrelevant text. All such unwanted data may
be eliminated in order to obtain clean data. While developing
a machine learning model, we must follow the 80/20 rule.
According to this rule, we must spend 80% of time in pre-
processing of the data and 20% of time in analysis. Data may
be classified into the following categories:

 a. Numerical: For e.g., age, salary, etc.
 b. Categorical: For e.g., nationality, gender, etc.
 c. Ordinal: For e.g., high, medium, low, etc.

Data pre-processing may be performed in the following ways:
 a. Dealing with null values: We can solve the problem of

null values by either deleting the rows and columns that
comprise null values or by using imputation, which is
a process of substituting the missing values with some
substituted values.

Feasibility of Learning 61

 b. Standardization: It is a process that involves the
manipulation of values so that the mean of all the
values is 0 and the standard deviation is 1.

 c. Dealing with categorical variables: Categorical
variables are those which are discrete and not
continuous.

 d. Feature scaling: It is technique in which we make the
values of all the features same by scaling down the
features that are insignificant and have a large range of
values.

 e. Splitting the data: In machine learning, we usually
split the data in 70:30, meaning 70% of the data is used
for training and 30% of the data is used for testing.

 3. Finding the model that will be best for the data: Find the
machine learning model which is best suited for our problem.

 4. Training and testing of the developed model

 5. Evaluation

Steps involved in building a machine learning model are depicted in
Figure 5.1:

Figure 5.1: Building a machine learning model

62 Building Machine Learning Systems Using Python

In the above figure, data preparation refers to data pre-processing
and prediction refers to the testing phase of the developed machine
learning model. Feasibility of machine learning may also be expressed
using Hoeffding's Inequality. According to Hoeffding's Inequality,
for a given sample size M and Є as tolerance, the probability of the
difference of in-sample estimation (µ) and the expected outcome (v)
is smaller than a constant quantity.

It is defined as follows:

P(|v-µ|>Є)<=2exp-2Є2M

In a given binary classification problem, the output is 1 or -1. Here, µ
represents out-of-sample error Eout(h), which is an expected error as
a result of the preferred hypothesis h and v represents the in-sample
error Ein(h), which is an error arising as a result of the classification of
data points by hypothesis.

It is represented as follows:

P(|Ein(h) - Eout(h)|> Є) <= 2exp-2Є2M

In-sample error and out-of-sample
error
The data points that are used for making a model are referred to as
in-sample data. In-sample error may be defined as the error that is
obtained on the same data set that is used for building the machine
learning model.

The data points that are new and do not belong to any of the training
data sample are referred to as out-of-sample data. Out-of-sample
error may be defined as the error that is obtained on the new data
set. It is also referred to as the generalization error.

In the previous chapter, we had discussed about overfitting and
underfitting. Consider the following table that distinguishes under-
fitting, overfitting, and just right fit condition in terms of training
error and testing error:

Feasibility of Learning 63

Underfitting Overfitting Just right fit
Symptoms •	 Training Error is

High.

•	 Training Error is
very close to the
Test Error.

•	High Bias

•	 Training Error
is Low.

•	 Training Error
is much lower
than the Test
Error.

•	High Variance

•	 Training
Error is Low.

•	 Training
Error is
slightly
lower than
the Test
Error.

Table 5.1: Comparison of underfitting, overfitting, and just right fit

Consider the following code on in-sample error and out-of-sample
error:
print(__doc__)

import numpy as np
from sklearn import linear_model
train_samples, test_samples, n_features = 80, 200, 700
np.random.seed(0)
coefficient = np.random.randn(n_features)
coefficient[50:] = 0.0
X = np.random.randn(train_samples + test_samples, n_
features)
y = np.dot(X, coefficient)

Splitting train and test data
train_X, test_X = X[:train_samples], X[train_samples:]
train_y, test_y = y[:train_samples], y[train_samples:]
Finding train and test errors
alphas = np.logspace(-5, 1, 60)
enet = linear_model.ElasticNet(l1_ratio=0.7, max_
iter=10000)
train_errors = list()
test_errors = list()
for alpha in alphas:
 enet.set_params(alpha=alpha)
 enet.fit(train_X, train_y)

64 Building Machine Learning Systems Using Python

 train_errors.append(enet.score(train_X, train_y))
 test_errors.append(enet.score(test_X, test_y))

i_alpha_optimum = np.argmax(test_errors)
alphaoptimum = alphas[i_alpha_optimum]
print("Optimal regularization parameter is: %s" %
alphaoptimum)

Finding the coefficient on full data with optimal
regularization parameter

enet.set_params(alpha=alphaoptimum)
coefficient1 = enet.fit(X, y).coef_

Plotting results functions

import matplotlib.pyplot as plt
plt.subplot(2, 1, 1)
plt.semilogx(alphas, train_errors, label='Train')
plt.semilogx(alphas, test_errors, label='Test')
plt.vlines(alphaoptimum, plt.ylim()[0], np.max(test_
errors), color='k',
linewidth=3, label='Optimum on test')
plt.legend(loc='lower left')
plt.ylim([0, 1.2])
plt.xlabel('Regularization parameter')
plt.ylabel('Performance')

Show the estimated coef_ versus true coef
plt.subplot(2, 1, 2)
plt.plot(coefficient, label='True coef')
plt.plot(coefficient1, label='Estimated coef')
plt.legend()
plt.subplots_adjust(0.07, 0.05, 0.87, 0.87, 0.22, 0.29)
plt.show()

Feasibility of Learning 65

The above code gives the following output:

Figure 5.2: Test error and train error

The above code illustrates that the performance on the unseen or test
data is different from the performance on the training data. It is seen
that as we increase regularization, the performance on the training
data degrades and the performance on the test data is optimal within
the given range of values.

Conclusion
In this chapter, we discussed the feasibility of learning an unknown
target function and in-sample error and out-of-sample error with
example of its value is affected by increasing regularization.

In the next chapter, we will discuss about Support Vector Machine,
margin, large margin methods, and kernel methods in terms of
Support Vector Machine.

Questions
 1. Explain the feasibility of learning an unknown target function

with an example.

 2. Explain out-of-sample error with an example.

 3. Explain in-sample error with an example.

66 Building Machine Learning Systems Using Python

Support Vector Machine 67

Chapter 6
Support Vector

Machine

Introduction
Support Vector Machine (SVM) may be defined as a machine
learning algorithm that can be used for regression and classification.
It is generally used for classification purpose. In this chapter, we
will discuss about Margin and Large Margin Methods and Kernel
Methods.

Structure
•	 Margin and Large Margin methods

•	 Kernel methods

Objectives
•	 To know the significance of Margin and Large Margin

methods

•	 Understanding Kernel methods

68 Building Machine Learning Systems Using Python

Margin and Large Margin methods
In SVM, the data item is plotted in an n-dimensional space, where
n represents the number of features. A classification is performed
by finding the hyperplane that can differentiate the two classes.
Consider Figure 6.1. Here, the classification of two different shapes is
performed by finding the hyperplane:

Figure 6.1: The classification of shapes using hyperplane in SVM

Selecting the right hyperplane for a given problem can be done in the
following ways:

1. Choose the hyperplane that classifies the data points in a better
way. Consider Figure 6.2. Here, we have three hyperplanes,
namely A, B and C. We need to choose one hyperplane out of
these. We choose hyperplane A as it classifies the data points
efficiently as compared to the other hyperplanes:

Support Vector Machine 69

Figure 6.2: Hyperplane A classifies the data points efficiently

2. Use Margin and Large Margin Methods to find the appropriate
hyperplane. The distance between the nearest data point and
the hyperplane is referred to as margin. We must select the
hyperplane that has a larger margin; this prevents a chance
of miss classification. Consider Figure 6.3. Here, the margin
of hyperplane B is the largest as compared to the margin of
the hyperplanes A and C. So, we choose hyperplane B for
classifying our data points:

Figure 6.3: Margin and Large Margin Methods

70 Building Machine Learning Systems Using Python

3. Identify the correct hyperplane that can classify all the data
points correctly without any error. Consider Figure 6.4. Here,
if we choose the hyperplane B instead of hyperplane A, since
hyperplane B has a larger margin as compared to hyperplane
A, then hyperplane B doesn't classify all the data points
correctly resulting in an error. Hyperplane A has a smaller
margin but it classifies all the data points correctly. So, SVM
will choose hyper plane A over hyper plane B.

Figure 6.4: Choosing hyperplane A over hyperplane B for classification

4. SVM has a characteristic of ignoring the outliers or the noise.
Consider Figure 6.5. Here, the hyperplane chosen has a large
margin and at the same time, the SVM ignores the star that
lies in the other boundary and this star is treated as a noise
or an outlier.

Figure 6.5: Classification by SVM is robust to outliers

Support Vector Machine 71

Consider the following code that depicts the data points that are
classified correctly using SVM:
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import seaborn as sns; sns.set()
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=100, centers=2, random_state=0,
cluster_std=0.60)
plt.scatter(X[:, 0], X[:, 1], c=y, s=100, cmap='autumn');

It gives the following output as shown in figure 6.6:

Figure 6.6: Classification of data points using SVM

Consider the following code that displays straight lines and separates
or classifies the different sets of data. This is shown in figure 6.7:

fit = np.linspace(-1, 3.5)

plt.scatter(P[:, 0], P[:, 1], c=q, s=100, cmap='autumn')

plt.plot([0.6], [2.1], 'x', color='green',
markeredgewidth=2, markersize=10)

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:

 plt.plot(fit, m * fit + b, '-k')

plt.xlim(-1, 3.5);

72 Building Machine Learning Systems Using Python

Figure 6.7: Straight lines separating different sets of data

Instead of drawing zero width straight lines, margins may be drawn
around straight lines up to the nearest data point. This is shown in
figure 6.8:
fit = np.linspace(-1, 3.5)
plt.scatter(P[:, 0], P[:, 1], c=q, s=100, cmap='autumn')
for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2,
2.9, 0.2)]:
 fit2 = m * fit + b
 plt.plot(fit, fit2, '-k')
 plt.fill_between(fit, fit2 - d, fit2 + d, edgecolor='none',
 color='#AAAAAA', alpha=0.4)
plt.xlim(-1, 3.5);

Figure 6.8: Margins drawn around straight lines for classification in SVM

Support Vector Machine 73

Consider the following code using Scikit Learn that can be used to
train the SVM model. This is depicted in figure 6.9:

from sklearn.svm import SVC # "Support vector classifier"
model = SVC(kernel='linear', C=1E10)
model.fit(P,q)
SVC(C=10000000000.0, break_ties=False, cache_size=200,
class_weight=None, coef0=0.0, decision_function_
shape='ovr', degree=3, gamma='scale',kernel='linear',
max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
def plot_svc_decision_function(model, px=None, plot_
support=True):
 """Decision function is plotted for a 2D SVC"""
 if px is None:
 px = plt.gca()
 limx = px.get_xlim()
 limy = px.get_ylim()
 # To evaluate model, grid is created
 p = np.linspace(limx[0], limx[1], 30)
 q = np.linspace(limy[0], limy[1], 30)
 Q, P = np.meshgrid(q, p)
 pq = np.vstack([P.ravel(), Q.ravel()]).T
 P = model.decision_function(pq).reshape(P.shape)

 # Margins and decision boundary are plotted
 px.contour(P, Q, P, colors='k',
 levels=[-1, 0, 1], alpha=0.5,
 linestyles=['--', '-', '--'])
 # plot support vectors
 if plot_support:
 px.scatter(model.support_vectors_[:, 0],
 model.support_vectors_[:, 1],
 s=400, linewidth=1, facecolors='none');
 px.set_xlim(limx)
 px.set_ylim(limy)
plt.scatter(P[:, 0], P[:, 1], c=q, s=100, cmap='autumn')

74 Building Machine Learning Systems Using Python

plot_svc_decision_function(model);
model.support_vectors_
array([[0.44359863, 3.11530945],
 [2.33812285, 3.43116792],

 [2.06156753, 1.96918596]])

Figure 6.9: Classification of the outcome using SVM

Consider the following code that considers the first 50 and 130 points
of the data set. This is shown in figure 6.10:

def plot_svm(N=10, ax=None):
 P, q = make_blobs(n_samples=200, centers=2,
 random_state=0, cluster_std=0.60)
 P = P[:N]
 q = q[:N]
 model = SVC(kernel='linear', C=1E10)
 model.fit(X, q)

 px = px or plt.gca()
 px.scatter(X[:, 0], X[:, 1], c=q, s=100, cmap='autumn')
 px.set_xlim(-1, 4)
 px.set_ylim(-1, 6)
 plot_svc_decision_function(model, px)

fig, px = plt.subplots(1, 2, figsize=(16, 6))

Support Vector Machine 75

fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
for pxi, N in zip(px, [50, 130]):
 plot_svm(N, pxi)
 pxi.set_title('N = {0}'.format(N))

Figure 6.10: Classification of the first 50 and 130 data points using SVM

Consider the following code that shows the classification of data set
which is not linearly separable. This is shown in figure 6.11:
from sklearn.datasets.samples_generator import make_circles
P, q = make_circles(200, factor=.1, noise=.1)
clf1 = SVC(kernel='linear').fit(P, q)
plt.scatter(P[:, 0], P[:, 1], c=q, s=50, cmap='autumn')

plot_svc_decision_function(clf1, plot_support=False);

Figure 6.11: Classification of data which is not linearly separable

76 Building Machine Learning Systems Using Python

Kernel methods
Support Vector Machine kernel is a function that accepts low
dimensional input space and converts it into a higher dimensional
space. SVM performs the conversion of a not separable problem into
a separable problem. It is generally used in non-linear separation
problems. Consider the following figure 6.12. Here, we have a circular
hyperplane that separates the stars and the triangles. We can convert
the circular hyperplane into a linear hyperplane by introducing a
new feature z, z=x^2+y^2. This is shown in figure 6.13:

Figure 6.12: Circular hyperplane separating the stars and the triangles

Figure 6.13: Linear hyperplane separating the stars and the triangles

Support Vector Machine 77

Conclusion
In this chapter, we discussed the feasibility of learning an unknown
target function and in-sample error and out-of-sample error with
example of its value is affected by increasing Regularization.

Questions
 1. Explain the significance of a large margin in SVM.

 2. Explain SVM kernel.

78 Building Machine Learning Systems Using Python

Neural Network 79

Chapter 7
Neural

Network

Introduction
Support Vector Machine is used for the purpose of classification and
regression. In the previous chapter, we discussed about Support Vector
Machine, margin and large margin methods, and kernel methods.
Neural network refers to the parallel computing device that attempts
to mimic the model of the brain. In the following chapter, we will
discuss the early models of Neural Network as well as Perceptron
learning model, back propagation, and Stochastic Gradient Descent.
We discussed the implementation of perceptron learning, back
propagation, and stochastic gradient descent in Python.

Structure
Neural network refers to a collection of algorithms that recognizes
the relationships in data sets and mimics the working of a human
brain. In this chapter, we will cover the following topics:

•	 Early Models
•	 Perceptron Learning

80 Building Machine Learning Systems Using Python

•	 Back propagation

•	 Stochastic Gradient Descent

Objectives
Neural network is a means of performing a machine learning task,
in which a computer learns by the analysis of training examples.
Following are the objectives covered in this chapter:

•	 To know early models and perceptron learning
•	 Understanding back propagation
•	 Understanding stochastic gradient descent

Early models
Neural network is one of the subfields of machine learning. Neural
network accepts the input data, performs training on the data, and
produces the output based on the training performed. In 1943, Warren
Mc Culloch and Walter Pits described the working of neurons. They
modeled neural networks with the help of electrical circuits in order
to explain the working of neurons in the brain. In 1949, Donald Hebb
wrote The Organization of Behavior, which pointed that the connection
between the two neurons is enhanced if they are fired together. In
1959, Bernard Widrow and Marcian Hoff at Stanford developed neural
network based models called 'ADALINE' and 'MADALINE'.
ADALINE stands for Adaptive Linear Elements and MADALINE
stands for Multiple Adaptive Linear Elements. ADALINE was used
for the recognition of binary patterns. For a given stream of bits, it
can predict the occurrence of the next bit. MADALINE stands for
Multiple Adaptive Linear Elements. It is the first neural network that
is applied to real-world problems and is still in use for commercial
purposes.

Perceptron learning
Perceptron is based on a neuron, which is the basic processing unit of
a brain. A neuron comprises of dendrites, cell body, and axon. Signal
flows from the axon to the dendrites. An action signal is fired by a
neuron when a particular threshold is met by a cell. This action either

Neural Network 81

takes place or it does not. There is no concept of partial firing by a
neuron. Consider Figure 7.1 depicting the Perceptron model:

Figure 7.1: Perceptron model

Perceptron can be used for solving binary classification problems
where the sample that needs to be identified belongs to two classes.
Many features or inputs are sent to the linear unit of a Perceptron
and it generates one binary output. Consider the following code on
Perceptron learning. In this code, we have added 1 to the input_
size in order to include bias in the weight vector:
import numpy as np

class Perceptronlearning(object):
 """Implementation of a perceptron learning network"""
 def __init__(self, input_size):
 self.W = np.zeros(input_size+1)
def activation_fn(self, p):
""" 1 is returned if p>=0 otherwise it returns 0”””
 return 1 if p >= 0 else 0
""" Prediction is a process of sending an input to the
perceptron and returning an output. Bias is added to the

82 Building Machine Learning Systems Using Python

input vector. We can compute the inner product, and the
activation function is applied ”””
def predict(self, p):
 p = np.insert(p, 0, 1)
 q = self.W.T.dot(p)
 r = self.activation_fn(q)
 return r
def __init__(self, input_size, lr=1, epochs=10):
 self.W = np.zeros(input_size+1)
 # add one for bias
 self.epochs = epochs
 self.lr = lr
def fit(self, P, d):
 for _ in range(self.epochs):
 for i in range(d.shape[0]):
 y = self.predict(P[i])
 e = d[i] - y
 self.W = self.W + self.lr * e * np.insert(P[i],
0, 1)
class Perceptronlearning(object):
 """Implements a perceptron network"""
 def __init__(self, input_size, lr=1, epochs=100):
 self.W = np.zeros(input_size+1)
 # add one for bias
 self.epochs = epochs
 self.lr = lr

 def activation_fn(self, p):
 #return (p >= 0).astype(np.float32)
 return 1 if p >= 0 else 0

 def predict(self, p):
 q = self.W.T.dot(p)
 r = self.activation_fn(q)
 return r

 def fit(self, P, d):

Neural Network 83

 for _ in range(self.epochs):
 for i in range(d.shape[0]):
 p = np.insert(P[i], 0, 1)
 y = self.predict(p)
 e = d[i] - y
 self.W = self.W + self.lr * e * p
if __name__ == '__main__':
 P = np.array([
 [0, 0],
 [0, 1],
 [1, 0],
 [1, 1]
])
 d = np.array([1, 1, 0, 1])

 perceptron = Perceptronlearning(input_size=2)
 perceptron.fit(P, d)
 print(perceptron.W)
[0. -1. 2.]

So, a single neuron neural network is referred to as a Perceptron.
It accepts the input and the weight, performs the weighted sum of
the inputs, and applies an activation function over it. It accepts and
generates only binary values. One of the limitations of the Perceptron
learning model is that it can solve only linearly separable problems.

Back propagation
Back propagation is also referred to as Gradient Computation. Back
propagation learning algorithm comprises two phases, namely:
Gradient Computation Phase and Weight Updation Phase. The first
phase is the Propagation phase. It involves the following steps:

1. Forward Propagation - Here, the training input pattern is
sent to the neural network and the propagation's output
activation is generated.

2. Backward Propagation – Here, the input is the propagation's
output activation that is sent to the neural network, and it
generates the deltas of all the output and hidden neurons.

84 Building Machine Learning Systems Using Python

Second phase is the Weight Updation phase. It involves the following
steps:

1. Gradient of the weight is calculated by multiplying the
output delta and the input activation.

2. A ratio or percentage of the gradient is subtracted from the
weight. This ratio or percentage affects the quality of learning
and speed. It is referred to as the learning rate. A neuron is
able to train faster if the learning rate is higher. If the learning
rate is lower, then the training is considered accurate.

Consider the following code on back propagation.
import numpy as np
def sigmoidfun(x):
 return 1.0/(1.0 + np.exp(-x))
def sigmoid_primefun(x):
 return sigmoidfun(x)*(1.0-sigmoidfun(x))
def tanh(x):
 return np.tanh(x)
def tanh_prime(x):
 return 1.0 - x**2

class NeuralNetwork:
 def __init__(self, layers, activation='tanh'):
 if activation == 'sigmoid':
 self.activation = sigmoidfun
 self.activation_prime = sigmoid_primefun
 elif activation == 'tanh':
 self.activation = tanh
 self.activation_prime = tanh_prime
 # Setting weights
 self.weights = []
 # let layers is [2,2,1]
 # weight values range= (-1,1)
 # hidden and input layers - random((2+1, 2+1)) : 3 x 3
 for i in range(1, len(layers) - 1):
 r = 2*np.random.random((layers[i-1] + 1,
layers[i] + 1)) -1

Neural Network 85

 self.weights.append(r)
 # output layer - random
 r = 2*np.random.random((layers[i] + 1,
layers[i+1])) - 1
 self.weights.append(r)

 def fit(self, P, q, learning_rate=0.2, epochs=100000):
 # Adding the column of ones to P
 # This is to add the bias unit to the input layer
 ones = np.atleast_2d(np.ones(P.shape[0]))
 P = np.concatenate((ones.T, P), axis=1)
 for k in range(epochs):
 i = np.random.randint(X.shape[0])
 a = [P[i]]
 for l in range(len(self.weights)):
 dot_value = np.dot(a[l], self.weights[l])
 activation = self.activation(dot_value)
 a.append(activation)
 # output layer
 error = q[i] - a[-1]
 deltas = [error * self.activation_prime(a[-1])]
 # we need to begin at the second to last layer
 # (a layer before the output layer)
 for l in range(len(a) - 2, 0, -1):
 deltas.append(deltas[-1].dot(self.
weights[l].T)*self.activation_prime(a[l]))

 # reverse
 # [level3(output)->level2(hidden)] =>
[level2(hidden)->level3(output)]
 deltas.reverse()

 # backpropagation
 # 1. Multiply its output delta and input activation
 # to get the gradient of the weight.
 # 2. Subtract a ratio (percentage) of the
gradient from the weight.

86 Building Machine Learning Systems Using Python

 for i in range(len(self.weights)):
 layer = np.atleast_2d(a[i])
 delta = np.atleast_2d(deltas[i])
 self.weights[i] += learning_rate *
layer.T.dot(delta)
 if k % 10000 == 0: print('epochs:', k)
 def predict(self, x):
 c = np.concatenate((np.ones(1).T, np.array(x)))
 for l in range(0, len(self.weights)):
 c = self.activation(np.dot(c, self.weights[l]))
 return c

if __name__ == '__main__':
 neu = NeuralNetwork([2,2,1])
 P = np.array([[0, 0],
 [0, 1],
 [1, 0],
 [1, 1]])
 q= np.array([0, 1, 1, 0])
 neu.fit(P,q)
 for x in P:
 print(x,neu.predict(x))
epochs: 0
epochs: 10000
epochs: 20000
epochs: 30000
epochs: 40000
epochs: 50000
epochs: 60000
epochs: 70000
epochs: 80000
epochs: 90000
[0 0] [4.28817961e-05]
[0 1] [0.99667242]
[1 0] [0.99666444]
[1 1] [4.62864326e-05]

Neural Network 87

Stochastic Gradient Descent
Stochastic gradient descent is referred to as an iterative method that
can be used for the optimization of an objective function with the
necessary properties (subdifferentiable or differentiable). Stochastic
gradient descent may be used to minimize the computations to be
performed. It randomly selects a data point at a given iteration that
reduces the computations enormously. Consider the following code
using stochastic gradient descent. Here, we take 2 arrays, P and Q.
Array P comprises the training samples. Array Q holds the target
values.
import numpy as np
from sklearn import linear_model
P = np.array([[-1, 2], [1, -1], [2, 1], [2, 2]])
Q = np.array([1, 2, 1, 1])
SGDClassif = linear_model.SGDClassifier(max_iter = 1000,
tol=1e-3,penalty = "elasticnet")
SGDClassif.fit(P, Q)
SGDClassifier(alpha=0.0001, average=False, class_weight=None,
 early_stopping=False, epsilon=0.1, eta0=0.0,
fit_intercept=True,
 l1_ratio=0.15, learning_rate='optimal',
loss='hinge',
 max_iter=1000, n_iter_no_change=5, n_jobs=None,
 penalty='elasticnet', power_t=0.5, random_
state=None,
 shuffle=True, tol=0.001, validation_
fraction=0.1, verbose=0,
 warm_start=False)
SGDClassif.predict([[3.,3.]])
array([1])
SGDClassif.coef_
array([[9.77200712, -19.54811198]])
SGDClassif.intercept_
array([-10.])
SGDClassif.decision_function([[3., 3.]])
array([-39.32831456])
import numpy as np
from sklearn import linear_model

88 Building Machine Learning Systems Using Python

nsamples, nfeatures = 9, 4
rng = np.random.RandomState(0)
q = rng.randn(nsamples)
p = rng.randn(nsamples, nfeatures)
SGDReg =linear_model.SGDRegressor(
 max_iter = 1000,penalty = "elasticnet",loss =
'huber',tol = 1e-3, average = True
)
SGDReg.fit(p, q)
SGDRegressor(alpha=0.0001, average=True, early_
stopping=False, epsilon=0.1,
 eta0=0.01, fit_intercept=True, l1_ratio=0.15,
 learning_rate='invscaling', loss='huber',
max_iter=1000,
 n_iter_no_change=5, penalty='elasticnet',
power_t=0.25,
 random_state=None, shuffle=True, tol=0.001,
 validation_fraction=0.1, verbose=0, warm_
start=False)
SGDReg.coef_
array([-0.00602635, 0.00566224, -0.00235155, 0.01238438])
SGDReg.intercept_
array([0.0043785])
SGDReg.t_
55.0

Conclusion
In this chapter, we learned about the early models of neural network,
Perceptron model, back propagation, and stochastic gradient
descent. In the next chapter, we will discuss about decision trees and
regression trees, and their implementation in Python.

Questions
 1. Explain the steps involved in back propagation.
 2. Explain stochastic gradient descent.
 3. Explain the early neuron models.
 4. Write the disadvantage of the Perceptron model.

Decision Trees 89

Introduction
Neural networks are a way to mimic the working of a human brain.
Decision trees refer to the decision support structure that uses a tree
to make decisions and draw all possible consequences. Decision
trees are a way to display conditional control statements. In the
following chapter, we will discuss about decision trees, regression
trees, stopping criterion and pruning loss functions in a decision tree,
categorical attributes, multiway splits and missing values in decision
trees, and instability in decision trees.

Structure
Decision trees may be used for representing decisions and decision-
making. This chapter will comprise the following topics:

•	 Decision trees

•	 Regression trees

•	 Stopping criterion and pruning loss functions in a decision
tree

Chapter 8
Decision

Trees

90 Building Machine Learning Systems Using Python

•	 Categorical attributes, multiway splits, and missing values in
decision trees

•	 Instability in decision trees

Objectives
Decision trees refer to a popular and powerful tool for the purpose
of prediction and classification. Following are the objectives of this
chapter:

•	 To know about decision trees and regression trees

•	 Understanding the stopping criterion and pruning loss
functions in decision trees

•	 Understanding categorical attributes, multiway splits, and
missing values in decision trees

•	 Understanding the instability in decision trees

Decision trees
Decision trees refer to the non-parametric method of supervised
learning. Decision trees are used for the purpose of regression and
classification.

Consider the following code on decision trees using scikit learn.
Here, DecisionTreeClassifier is a class that can perform multi-
class classification on a given data set. DecisionTreeClassifier
takes two arrays as input, namely P and Q.

from sklearn import tree
P = [[0, 0], [1, 1]]
Q = [0, 1]
DTclf = tree.DecisionTreeClassifier()
DTclf = DTclf.fit(X, Y)
DTclf.predict([[2., 2.]])
array([1])

DTclf.predict_proba([[2., 2.]])
array([[0., 1.]])

Decision Trees 91

from sklearn.datasets import load_iris
from sklearn import tree
P, q = load_iris(return_X_y=True)
DTclf = tree.DecisionTreeClassifier()
DTclf = DTclf.fit(P, q)
tree.plot_tree(DTclf)
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_text
iris = load_iris()
decisiontree = DecisionTreeClassifier(random_state=0, max_
depth=2)
decisiontree = decisiontree.fit(iris.data, iris.target)
er = export_text(decisiontree, feature_names=iris['feature_
names'])
print(er)

from sklearn import tree
X = [[0, 0], [2, 2]]
y = [0.5, 2.5]
DTclf = tree.DecisionTreeRegressor()
DTclf = DTclf.fit(X, y)
DTclf.predict([[1, 1]])
array([0.5])

In the above code, DTclf.predict() is used for the prediction of
the samples of a class. DTclf.predict_proba() is used to find the
probability of each class. DecisionTreeClassifier can be used
for binary classification and multi-class classification. plot_tree
function can be used to plot the tree.

92 Building Machine Learning Systems Using Python

Regression trees
Decision tree algorithms may be used for the process of the prediction
of results based on the given data. Decision tree algorithms are of
two types, namely: classification tree and regression tree algorithm.
Classification and Regression Tree (CART) methodology came into
existence in 1984. It was introduced by Leo Breiman, Jerome Friedman,
Richard Olshen, and Charles Stone. In a classification tree algorithm,
the outcome variable is categorical or fixed. For example, using
the classification tree algorithm, we may decide what type of car
a customer will purchase. In regression tree algorithm, the target
outcome value is a real number. For example, the selling price
of residential places may be predicted using the regression tree
algorithm. In the classification tree algorithm, the data set is split
into classes such as Yes or No. In regression tree algorithm, the target
variable is continuous, for example, temperature, price, etc. The
classification of decision tree algorithms is shown in figure 8.1:

Figure 8.1: Classification of decision trees algorithms

Decision Trees 93

Stopping criterion and pruning
loss functions in decision trees
The pruning technique is associated with the decision trees that can
perform a reduction in the size of the decision trees by eliminating
the parts of the tree that do not classify instances. Overfitting can
be prevented by including pruning along with the decision trees.
Overfitting occurs when the training is done so thoroughly that it
also learns noise along with the pattern. Under-fitting occurs when
the amount of training is so insufficient that all the patterns cannot
be identified. Pruning means that the tree is cut back. Quinlan in
1987 suggested a simple method for pruning decision trees, referred
to as the reduced error pruning. In reduced error pruning, internal
nodes are traversed from bottom to top and pruned only if it doesn't
reduce the tree's accuracy. Olaru and Wehenkel in 2003 suggested the
use of minimum error pruning. In minimum error pruning, for every
node we perform a comparison of 1-probability error rate estimation
without and with pruning. Pessimistic pruning is a fast method of
pruning in which the nodes are traversed in a top to down manner.
If a given internal node is pruned then all the descendents of this
internal node are not sent for the pruning process. Optimal pruning is
used to guarantee optimality and is based on the concept of dynamic
programming. In optimal pruning, the tree obtained after pruning
is much smaller as compared to the original tree and the number
of internal nodes are much smaller as compared to the number of
leaves.

Categorical attributes, multiway
splits, and missing values in
decision trees
CART refers to the decision tree algorithm that either generates
binary regression or classification trees based on whether the target
variable is numeric or categorical. Optimal partitioning must be
followed while performing partitioning of decision trees. In CART,
same variables may be reused in the different parts of decision trees.
Splitting may be binary or multiway.

94 Building Machine Learning Systems Using Python

In a binary splitting, each node is further divided into at most two
subgroups, whereas in the case of multiway splitting, each node is
further split into multiple subgroups. Decision trees are very easy to
comprehend if we follow multiway splitting as a particular attribute
rarely reappears while traversing a path from the root to the leaf.

There are several methods used for dealing with missing values in
decision trees. Missing values may be ignored or may be assigned
some other category.

Missing values instances may be distributed among the child nodes
as follows:

1. Everything goes to a node having the largest number of
instances.

2. Distribution is done among all child nodes but with minimum
weights, which is proportional to the number of instances
from every child node.

3. Distribution is done randomly according to the categorical
distribution to a single child node.

4. Sort, build, and use input features that decide how the
distribution of instances is done in a child node.

Instability in decision trees
The instability problem in a decision tree classifier means the
resulting constructed rules might be different from the original or
the actual ones if there is a modification in the training sample. This
instability is caused due to invalid selection of the split candidate.
The split candidate is found using a split evaluation function that
can be used to partition the data. If at a particular stage, no dominant
split is found, then the split candidate is used to partition the node. If
a different split is selected at any stage, then it results in a tree which
is absolutely different from the original tree. So, the selection of the
correct splitting candidate is very important in order to prevent
inaccuracy or instability in decision trees.

Conclusion
In this chapter, we learned about decision trees, the difference
between regression trees and classification trees, stopping criterion

Decision Trees 95

and pruning loss functions in decision trees, categorical attributes,
multiway splits, and missing values in decision trees, and instability
in decision trees. In the next chapter, we will discuss about
unsupervised learning, clustering and principle component analysis.

Questions
 1. Explain the difference between classification trees and

regression trees.

 2. Explain the stopping criterion and pruning loss functions in
decision trees.

 3. What are multiway splits in decision trees?

 4. Explain instability in decision trees.

96 Building Machine Learning Systems Using Python

Unsupervised Learning 97

Chapter 9
Unsupervised

Learning

Introduction
Decision trees are a way to display conditional control statements. In
the previous chapter, we discussed about decision trees, regression
trees, stopping criterion and pruning loss functions in a decision tree,
categorical attributes, multiway splits and missing values in decision
trees, and instability in decision trees. Unsupervised learning is a
kind of machine learning algorithm that can be used to draw useful
conclusions without the presence of labeled responses in the input
data. In the following chapter, we will discuss about Clustering
(K-means Clustering, Hierarchical Clustering), and Principal
Component Analysis.

Structure
Unsupervised learning is a complex processing task involving
the identification of patterns in data sets having data points that
are neither labeled nor classified. This chapter will comprise the
following topics:

98 Building Machine Learning Systems Using Python

•	 Clustering
•	 Principal Component Analysis

Objectives
In unsupervised learning, an uncategorized and unlabeled data is
sent to the AI system and the algorithms act on this data without any
prior training. Following are the objectives of this chapter:

•	 To know about unsupervised learning

•	 Understanding Clustering and Clustering Algorithms
(K-means Clustering, Hierarchical Clustering)

•	 Understanding Principal Component Analysis

Clustering
The term Clustering was first used in 1932 in an anthropology by
Driver and Kroeber. It was used in 1938 in psychology by Joseph Zubin
and in 1939 by Robert Tryon. It was used for trait theory classification
in personality psychology in 1943 by Cattell. Clustering also referred
to as cluster analysis is a process of grouping together similar objects
into same group called as cluster in such a way that objects in one
cluster are not similar to the objects in another cluster. Cluster
analysis is used in many fields such as data compression, pattern
recognition and image processing, machine learning, computer
graphics, information retrieval, and bioinformatics. In the following
chapter, we will discuss about clustering algorithms such as k-means
clustering algorithm and hierarchical clustering algorithm.

K-means clustering
K-means clustering involves the partitioning of observations into k
clusters in which a given observation belongs to the cluster having
the closest mean. Consider the following code in python using
k-means clustering:

print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Unsupervised Learning 99

from sklearn.cluster import KMeans
from sklearn import datasets

np.random.seed(5)

irisdata = datasets.load_iris()
P = irisdata.data
q = irisdata.target

In the following code, n_init is set to 1 instead of 10 which is a default
value. So, this bad initialization has an impact on the classification
process as it reduces the number of times an algorithm runs with
different centroid seeds.

estimatorskmeans = [('k_means_iris_8', KMeans(n_
clusters=8)),
 ('k_means_iris_3', KMeans(n_clusters=3)),
 ('k_means_iris_bad_init', KMeans(n_
clusters=3, n_init=1,

init='random'))]
fignum=1
titles = ['8 clusters', '3 clusters', '3 clusters, bad
initialization']
for name, est in estimatorskmeans:
 fig = plt.figure(fignum,figsize=(4,3))
 px = Axes3D(fig, rect=[0, 0, .82,1], elev=52,azim=147)
 est.fit(P)
 labels = est.labels_

 px.scatter(P[:, 3], P[:, 0], P[:, 2],
 c=labels.astype(np.float), edgecolor='k')

 px.w_xaxis.set_ticklabels([])
 px.w_yaxis.set_ticklabels([])
 px.w_zaxis.set_ticklabels([])
 px.set_xlabel('Petal width')
 px.set_ylabel('Sepal length')

100 Building Machine Learning Systems Using Python

 px.set_zlabel('Petal length')
 px.set_title(titles[figno-1])
 px.dist = 12
 fignum=fignum+1

Plotting the ground truth values takes place:

fig = plt.figure(fignum, figsize=(4, 3))
px = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

for name, label in [('Setosa', 0),
 ('Versicolour', 1),
 ('Virginica', 2)]:
 px.text3D(P[q == label, 3].mean(),
 P[q == label, 0].mean(),
 P[q == label, 2].mean() + 2, name,
 horizontalalignment='center',
 bbox=dict(alpha=.2, edgecolor='w',
facecolor='w'))

Labels are reordered so that the colors are matched with the cluster
results:

q= np.choose(q,[1, 3, 0]).astype(np.float)
px.scatter(P[:, 3], P[:, 0], P[:, 2], c=q, edgecolor='k')

px.w_xaxis.set_ticklabels([])
px.w_yaxis.set_ticklabels([])
px.w_zaxis.set_ticklabels([])
px.set_xlabel('Petal width')
px.set_ylabel('Sepal length')
px.set_zlabel('Petal length')
px.set_title('Ground Truth')
px.dist = 12

fig.show()

Unsupervised Learning 101

The output of the above code is shown in figure 9.1:

Figure 9.1: K-means clustering

Hierarchical clustering
Hierarchical clustering is also referred to as Hierarchical Cluster
Analysis. This method involves building a hierarchy of clusters.
Two approaches used in hierarchical clustering analysis include the
following:

102 Building Machine Learning Systems Using Python

•	 Agglomerative clustering

•	 Divisive clustering

Agglomerative clustering is a ‘bottom-up’ approach that involves
each individual cluster, and the pairs of clusters merge and move
higher in the hierarchy. Divisive clustering is a ‘top-down’ approach
in which a single cluster is further split into multiple clusters as we
proceed down in the hierarchy.

Cluster dissimilarity is a metric that measures the distance between
the pair of observations and the linkage criterion that specifies a
dissimilarity between the pair of observations. Cluster dissimilarity
is used in agglomerative clustering to decide which cluster would
join together to form the bigger cluster. It is also used in divisive
clustering to decide which cluster would finally break.

Principal Component Analysis
(PCA)
PCA refers to the dimensionality reduction methodology that can be
used for reducing the dimensions of large data sets into smaller ones,
while still preserving as much as information as possible.

Steps performed in PCA include the following:
1. Standardization
2. Computation of Covariance Matrix
3. Identification of Principal Components by computing the

Eigen Values and Eigen Vectors of Covariance Matrix
4. Creating a Feature Vector
5. Recasting the data

In the first step, standardization is important because if there are
some values that are large and some that are small, then the larger
ranges would dominate over the smaller ranges. So, standardization
is performed to solve this problem. Standardization can be done by
subtracting the mean from the value and dividing by the standard
deviation. This is represented as follows:

Z=(value-mean)/standard deviation

Unsupervised Learning 103

In the second step, covariance matrix is computed to find whether
there exists redundant information in the input data. In the third
step, the principle components are generated, which are nothing but
the variables that are formed by the linear combination of the initial
variables. In the fourth step, a feature vector is created by considering
those principle components that are of a higher significance over the
ones with a lower significance.

Consider the following code in Python on PCA. We are considering a
two-dimensional data set having 600 points:

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

ranstat = np.random.RandomState(1)

P = np.dot(ranstat.rand(2, 2), ranstat.randn(2, 600)).T

plt.scatter(P[:, 0], P[:, 1])

plt.axis('equal');

Figure 9.2: Example on Principal Component Analysis

In the above figure, there exists a linear relation between X and Y. In
Principal Component Analysis, a list of principal axes is found and
these axes are used to describe the data set. Using scikit-learn, we
can compute the principal axes as follows:

104 Building Machine Learning Systems Using Python

from sklearn.decomposition import PCA

principalaxis = PCA(n_components=2)

principalaxis.fit(P)

PCA(copy=True, iterated_power='auto', n_components=2,
random_state=None,

 svd_solver='auto', tol=0.0, whiten=False)

Principal axis fit learns components and explained variance as
follows:

print(principalaxis.components_)

[[0.9513521 0.3081058]

[0.3081058 -0.9513521]]

print(principalaxis.explained_variance_)

[0.70649509 0.02104542]

def draw_vector(n0, n1, px=None):

 px = px or plt.gca()

 arrowprops=dict(arrowstyle='->',

 linewidth=2,

 shrinkA=0, shrinkB=0)

 px.annotate('', n1, n0, arrowprops=arrowprops)

plot data

plt.scatter(P[:, 0], P[:, 1], alpha=0.2)

for length, vector in zip(principalaxis.explained_
variance_, principalaxis.components_):

 p = vector * 3 * np.sqrt(length)

 draw_vector(principalaxis.mean_, principalaxis.mean_ + p)

plt.axis('equal');

We can define the input data as vectors and represent the direction
of a vector using the components and squared length of vector is
defined using explained variance. The principal axis is represented
by the data. The variance of the data is represented by the length of
the vector. This is shown in the code given below:

Unsupervised Learning 105

def draw_vector(n0, n1, px=None):

 px = px or plt.gca()

 arrowprops=dict(arrowstyle='->',

 linewidth=2,

 shrinkA=0, shrinkB=0)

 px.annotate('', n1, n0, arrowprops=arrowprops)

plot data

plt.scatter(P[:, 0], P[:, 1], alpha=0.2)

for length, vector in zip(principalaxis.explained_
variance_, principalaxis.components_):

 p = vector * 3 * np.sqrt(length)

 draw_vector(principalaxis.mean_, principalaxis.mean_ + p)

plt.axis('equal');

Figure 9.3: Variance represented as the length of the vector

The value of one or more of the principal components are made ‘zero’
in order to perform dimensionality reduction. Inverse transform on
the reduced data can be found and the plot can be drawn on the
original data.

principalaxis = PCA(n_components=1)

principalaxis.fit(P)

X_principalaxis = principalaxis.transform(P)

106 Building Machine Learning Systems Using Python

print("original shape: ", P.shape)

print("transformed shape:", X_principalaxis.shape)

original shape: (600, 2)

transformed shape: (600, 1)

P_new = principalaxis.inverse_transform(X_principalaxis)

plt.scatter(P[:, 0], P[:, 1], alpha=0.2)

plt.scatter(P_new[:, 0], P_new[:, 1], alpha=0.8)

plt.axis('equal');

Figure 9.4: Inverse transform on the reduced data

Conclusion
In this chapter, we learnt about clustering, k-means clustering,
hierarchical clustering, and Principal Component Analysis. In the
next chapter, we will discuss the theory of generalization, training
versus testing, bounding the testing error, Vapnik Chervonenkis
inequality, VC Dimension, and the proof of VC inequality.

Questions
 1. Explain k-means clustering with an example.

 2. Explain hierarchical clustering.

 3. Explain Principal Component Analysis with an example.

Theory of Generalization 107

Chapter 10
Theory of

Generalization

Introduction
Unsupervised learning is a kind of machine learning algorithm that
can be used to draw useful conclusions without the presence of labeled
responses in the input data. In the previous chapter, we discussed
about clustering (k-means clustering, hierarchical clustering) and
Principal Component Analysis. In the following chapter, we will
discuss about training versus testing, bounding the testing error, and
VC dimension.

Structure
Unsupervised learning is a complex processing task involving
the identification of patterns in data sets having data points that
are neither labeled nor classified. This chapter will comprise the
following topics:

•	 Training versus testing

•	 Bounding the testing error

•	 VC dimension

108 Building Machine Learning Systems Using Python

Objectives
In unsupervised learning, an uncategorized and an unlabeled data
is sent to the AI system, and algorithms act on this data without any
prior training. Following are the objectives of this chapter:

•	 To know about the difference between training and testing in
machine learning

•	 Understanding VC dimension

Training versus testing
Training data helps the algorithm to learn from experience. In
supervised learning, each observation comprises input variable and
the corresponding target variable. For building a model, a training set
is implemented and for validating a test set, a testing set is required.
The data set is divided into the training set and the test set.

In machine learning, a model is created in order to perform testing
on the test data. To fit the model, training data is used and to perform
testing, test data is used. It is not necessary to use 70% of the data set
for developing the training set and the rest for the purpose of testing.
It depends on the data set that is being used and the task that needs
to be accomplished.

Bounding the testing error
Principal Component Analysis refers to the dimensionality reduction
methodology that can be used for reducing the dimensions of large
data sets into smaller ones, while still preserving as much as large
amounts of information possible.

Steps performed in Principal Component Analysis include the
following:

1. Standardization

2. Computation of Covariance Matrix

3. Identification of Principal Components by computing the
Eigen Values and the Eigen Vectors of Covariance Matrix

4. Creating a Feature Vector

5. Recasting the data

Theory of Generalization 109

The first step, Standardization, is important because if there are some
values that are large and some small, then the larger ranges would
dominate over the smaller ranges. So, Standardization is performed
to solve this problem. Standardization can be done by subtracting the
mean from the value and dividing by the standard deviation. This is
represented as follows:

Z=(value-mean)/standard deviation

In the second step, the covariance matrix is computed to find whether
there exists redundant i.

VC dimension
VC dimension was originally given by Vladimir Vapnik and Alexey
Chervonenkis. VC dimension may be defined as a measure of some of
the features in terms of complexity, flexibility, richness or expressive
power of the set of functions that may be learned using statistical
binary classification algorithm.

Uses of VC dimension include the following:

•	 VC dimension is used in the statistical learning theory for the
prediction of the probabilistic upper bound of the test error
of a classification model.

•	 VC dimension is also used in sample complexity bounds.
Sample complexity may be defined as the linear function of
the VC dimension of the hypothesis space.

•	 VC dimension is used in computational geometry for the
prediction of the complexity of approximation algorithms.

Conclusion
In this chapter, we learned about training versus testing, bounding
the testing error, and VC dimension. In the next chapter, we will
discuss how to detect bias and how to fix bias or achieve fairness in
ML.

Questions
 1. Explain the difference between training and testing in

machine learning.

 2. Explain bounding the testing error.

110 Building Machine Learning Systems Using Python

Bias and Fairness in Machine Learning 111

Chapter 11
Bias and

Fairness in
Machine Learning
Introduction
In machine learning and AI, future predictions are based on past
observations and bias is based on prior information. Harmful biases
occur because of human biases which are learnt by an algorithm from
the training data. In the previous chapter, we discussed about training
versus testing, bounding the testing error, and VC dimension. In the
following chapter, we will discuss about bias and fairness.

Structure
Human biases are most found in data sets such as medical, educational,
criminal, text, financial, etc. Human bias is little or no impacted on
the weather data. This chapter will comprise the following topics:

•	 Introduction of bias

•	 How to detect bias?

•	 How to fix bias or achieve fairness in ML?

112 Building Machine Learning Systems Using Python

Objectives
In machine learning, algorithmic biases are referred to as unwarranted
associations. Algorithmic biases are the bugs that can be harmful to
the business and people. Following are the objectives of this chapter:

•	 Understanding how to identify bias.
•	 Understanding how to achieve fairness in ML.

Introduction
Bias is referred to as a disproportionate prejudice or inclination
towards a particular thing or an idea. Bias may be found in the
following different fields:

•	 Research
•	 Statistics
•	 Social sciences

How to detect bias?
Bias is one of the popular topics that one encounters while building
AI-based models. Many uncommon and common biases may be
found in the following stages of AI model development:

•	 Data collection
•	 Data preprocessing
•	 Data analysis
•	 Modeling

During data collection, biases may take place. This happens due to
the occurrence of outliers and errors that happen while collecting
data.

Biases that are found during the data collection process include the
following:

•	 Selection bias: While preparing the sample data, selection
of data must be done in a proper manner to avoid bias. For
example, if the participants are students who are to undergo
tests, then they may include the bias results.

•	 The Framing Effect: Survey questions are framed in such a
manner that biases are avoided and displays positivity in
sentences, else biases crop up.

Bias and Fairness in Machine Learning 113

•	 Systematic bias: It occurs because of faulty equipment. It
leads to repeatable and consistent errors.

•	 Response bias: It occurs due to questions that are answered
incorrectly by the participants.

During data preprocessing, the following steps may be undertaken:

1. Outlier detection

2. Missing values

3. Filtering data

Outliers lead to a disproportionate effect on many of the analyses
that are conducted.

While dealing with the missing values, if all the missing values
are replaced by the mean values, then it would mean being biased
towards a particular group that is closer to the mean.

Biases may be found during the process of data analysis. Biases may
be found using the following approaches:

•	 Missing graphs: Incorrect conclusions may be drawn from a
distorted graph that provides incorrect information.

•	 Confirmation bias: It involves the tendency to focus
and confirm information that is related to someone's
preconceptions.

When performing data modelling, it is very important to detect
biases. For example, Amazon created a hiring algorithm that showed
gender bias by favoring men as high potential candidates. A model
that has high variance focuses on training data and doesn't generalize
well. Data always behaves in the same way in high bias. When
we increase bias, variance decreases and vice versa. In supervised
machine learning, training is performed on the input variables in
such a manner that there is closeness between the predicted values
and the actual values. Error refers to the difference between the actual
and the predicted values. There are 3 types of errors in supervised
machine learning:

•	 Bias error

•	 Variance error

•	 Noise

114 Building Machine Learning Systems Using Python

Bias and variance are reducible errors that we can minimize to a
large extent. Noise is said to be an irreducible error that cannot be
eliminated.

How to fix biases or achieve
fairness in ML?
There are already many definitions of fairness as per literature and
these cover the following elements:

•	 Equalized odds
•	 Unawareness
•	 Individual fairness
•	 Demographic parity
•	 Counterfactual fairness
•	 Predictive rate parity

We should avoid including sensitive attribute as one of the features
in training data. There are many ways to mitigate biases. Some of
these techniques include:

•	 Preprocessing
•	 In-processing
•	 Post-processing

The pre-processing approach takes place before the development of a
model. Its main intent is to eliminate the underlying bias from the data
set before modelling. This is one of the basic approaches of removing
biases from the data. In-processing is the process of removing biases
during the training phase. In post-processing, elimination of biases
takes place after the training phase is over.

Conclusion
In this chapter, we learnt about biases, how to detect bias, and how to
fix bias and achieve fairness.

Questions
 1. Explain how we can detect bias.

 2. Explain how we can fix bias.

Index 115

Index

A
ADALINE 80
Adaptive Linear Elements

. See ADALINE
agglomerative clustering 102
algorithmic biases 112
applications, of machine

learning
about 7
automatic text translation 12
classification of news 13
dynamic pricing 13
email spam and malware

filtering 10
financial services 12
healthcare 12
information retrieval 13
oil and gas 12

online customer support 10, 11
online fraud detection 11
online gaming 11
online transportation

networks 9
product recommendations 11
result refinement of search

engine 11
robot control 13
self-driving cars 12
social media services 9, 10
traffic prediction 8
video surveillance system 9
virtual personal assistants 8

B
back propagation 83, 84
back propagation learning

116 Building Machine Learning Systems Using Python

algorithm
Gradient Computation Phase

83
Weight Updation Phase 83

bias
about 112
detecting 112
fixing 114

biases, in data analysis
confirmation bias 113
missing graphs 113

biases, in data collection process
Framing Effect 112
response bias 113
selection bias 112
systematic bias 113

biases, in data modelling 113
biases, in data preprocessing

data filtering 113
missing values 113
outlier detection 113

binary classification
about 34
performing 34-36
techniques, for binary

classifiers 34
testing analysis methods 37
uses 34

binary classification tests
about 38
classification accuracy 38
error rate 38
sensitivity 38
specificity 38

binomial classification.
See binary classification

C
circular hyperplane

converting, into linear
hyperplane 76

Classification and Regression
Tree (CART)
methodology 92

cluster dissimilarity 102
clustering

about 98
hierarchical clustering 101
k-means clustering 98-101

confusion matrix
about 37
false negatives (FN) 37
false positives (FP) 37
true negatives (TN) 37
true positives (TP) 37

D
data pre-processing, machine

learning model
categorical variables, dealing

with 61
data, splitting 61
feature scaling 61
null values, dealing with 60
standardization 61

decision tree algorithms
classification tree 92
regression tree algorithm 92

decision trees
about 89-91
categorical attributes 93
criterion, stopping 93
instability 94
loss functions, pruning 93

Index 117

missing values 94
multiway splits 93, 94

divisive clustering 102

E
ENIAC (Electronic Numerical

Integrator and Computer)
2

errors
bias error 113
noise 114
variance error 113

G
GNMT (Google Neural Machine

Translation) 13
gradient descent 25
gradient descent algorithm

implementing 25-30

H
hierarchical clustering

about 101
agglomerative clustering 102
divisive clustering 102

hierarchy, machine learning
model

data collection 60
data pre-processing 60
developed model, testing 61
developed model, training 61
evaluation 61
model, finding 61

high variance 50
Hoeffding's Inequality 62
human bias 111

I
in-sample error 62, 63

K
kernel methods 76
k-means clustering 98-101

L
Lasso regression 50-53
linear regression

about 16
in multiple variables 22-24
in one variable 16-22
linear model, with multiple

points 47
linear model, with multiple

points and multiple
curves 48

linear model, with two points
46

overfitting 49
regularization 48, 50, 54, 55
under-fitting 49

logistic regression
about 33, 39, 45
assumptions 39
example 39-41
overfitting 55-57
regularization 55-57

M
machine learning

about 1
applications 7
challenges 4-7
classification 3
feasibility of learning 60-62

118 Building Machine Learning Systems Using Python

history 2
machine learning

implementations
classification 4
clustering 4
regression 4
reinforcement learning 3
semi-supervised learning 3
supervised learning 3
unsupervised learning 3

machine learning model
building 61, 62
hierarchy, for building 60

MADALINE 80
Margin and Large Margin

methods
used, for classification of data

points 71, 74, 75
used, for finding appropriate

hyperplane 69
used, for separating different

sets of data with straight
lines 72

using 68-70
minimum error pruning 93
multiclass classification 41-44
multinomial classification

. See multiclass
classification

Multiple Adaptive
Linear Elements.
See MADALINE

N
Natural Language Processing

(NLP) 6
Neural network

about 79, 80

early models 80
Perceptron learning 80-83

O
optimal pruning 93
out-of-sample error 62, 63
overfitting

in linear regression 46
in logistic regression 55

P
Perceptron learning 80-83
pessimistic pruning 93
polynomial regression

about 30
performing 30, 31

Principal Component Analysis
(PCA)

about 102
computation of Covariance

Matrix 103
example 103
feature vector, creating 103
inverse transform on reduced

data 105
principal axis, computing

103, 104
principle components,

identifying 103
standardization 102
variance, as length of vector

104, 105
Project Maven 5
propagation phase

backward propagation 83
forward propagation 83

pruning decision trees 93

Index 119

pruning technique 93
minimum error pruning 93
optimal pruning 93
pessimistic pruning 93
reduced error pruning 93

R
regression tree algorithm 92
regularization

about 59
in linear regression 46
in logistic regression 55

reinforcement learning 3
Residual Sum of Squares (R) 50
Ridge regression 50, 54, 55

S
semi-supervised learning 3
split candidate 94
standard deviation 109
stochastic gradient descent

about 87
using 87

supervised learning 3, 15
Support Vector Machine (SVM)

about 67
classification of shapes,

hyperplane used 68
kernel 76
Margin and Large Margin

methods, using 68
used, for data points

classification 71
SVM model

training, with Scikit Learn 73

T
test error 65
testing analysis methods, binary

classification
binary classification tests 38
confusion matrix 37, 38

testing error
bounding 108, 109

train error 65
training

versus, testing 108

U
unsupervised learning 3, 97,

107

V
VC dimension

about 109
uses 109

W
Weight Updation phase 84

120 Building Machine Learning Systems Using Python

	1
	2

