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Preface

With the increase in availability of data from different sources, 
there is a growing need of data driven fields such as analytics 
and machine learning. This book intends to cover basic concepts 
of machine learning, various learning paradigms and different 
architectures and algorithms used in these paradigms. 

This book is meant for the beginners who want to get knowledge 
about  machine learning in detail. This book can also be used by  
machine learning users for a quick reference for fundamentals in  
machine learning.

Following are the chapters covered in this book:
Chapter 1: Introduction to Machine Learning
Description: This chapter covers basic concepts of  machine 
learning, areas in which ML is performed, input-output functions
Topics to be covered: 
 1. What is  machine learning?
 2. Utility of ML
 3. Applications of ML

Chapter 2: Linear Regression
Description: This chapter discusses about Linear Regression
Topics to be covered: List of topics covered in this chapter are:
 1. Linear Regression in one variable
 2. Linear Regression in multiple variables
 3. Gradient descent
 4. Polynomial Regression

Chapter 3: Classification using Logistic Regression
Description: This chapter discusses about classification using 
Logistic Regression
Topics to be covered: List of topics covered in this book are:
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 1. Binary Classification
 2. Logistic Regression
 3. Multi class Classification

Chapter 4: Overfitting and Regularization
Description: This chapter discusses about overfitting and 
regularization
Topics to be covered: List of topics covered in this chapter are:
 1. Overfitting and regularization in linear regression
 2. Overfitting and regularization in logistic regression

Chapter 5: Feasibility of Learning
Description: This chapter discusses about feasibility of learning
Topics to be covered: Topics covered in this chapter are:
 1. Feasibility of learning an unknown target function
 2. In-sample error
 3. Out-of-sample error

Chapter 6: Support Vector Machine
Description: This chapter discusses about Support Vector Machine
Topics to be covered: Please provide the list of topics to be covered 
through the book:
 1. Introduction
      1.1    Margin
       1.2    Large Margin methods
 2. Kernel methods

Chapter 7: Neural Network
Description: This chapter discusses about Neural Network
Topics to be covered: List of topics covered in this chapter are:
 1. Introduction
 2. Early models
 3. Perceptron learning
 4. Backpropagation
 5. Stochastic Gradient Descent
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Chapter 8: Decision Trees
Description: This chapter discusses about decision trees
Topics to be covered: List of topics covered in this chapter are:
 1. Decision Trees
 2. Regression Tree
 3. Stopping Criterion and Pruning Loss functions in Decision 

Tree
 4. Categorical Attributes, Multiway Splits and Missing Values 

in Decision Trees
 5. Instability in Decision Trees

Chapter 9: Unsupervised Learning
Description: This chapter discusses about Unsupervised Learning
Topics to be covered: List of topics covered in this chapter are:
 1. Introduction
 2. Clustering
     2.1 K-means Clustering
     2.2 Hierarchical Clustering
 3. Principal Component Analysis'

Chapter 10: Theory of Generalization
Description: This chapter discusses about theory of generalization
Topics to be covered: List of topics covered in this chapter are:
 1. Training versus Testing
 2. Bounding the testing error
 3. Vapnik Chervonenkis inequality
 4. VC Dimension
 5. Proof of VC inequality

Chapter 11: Bias and Fairness in ML
Description: This chapter discusses about bias and fairness in ML
Topics to be covered: List of topics covered in this chapter are:
 1. Introduction
 2. How to detect bias?
 3. How to fix biases or achieve fairness in ML?
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Chapter 1
Introduction

Machine learning is one of the applications of artificial intelligence. 
Machine learning may be defined as the ability of the system 

to learn automatically through experience without being explicitly 
programmed. It is based on the development of programs that can 
access data and use this data to perform learning on their own. In this 
chapter, we will discuss the classification of machine learning, the 
various challenges faced in machine learning, and the applications 
of machine learning.

Structure
•	 History of machine learning
•	 Classification of machine learning
•	 Challenges faced in adopting machine learning
•	 Applications

Objectives
•	 Understanding the origin of machine learning
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•	 Understanding the classification of machine learning 
algorithm

•	 Challenges faced in machine learning

•	 Applications of machine learning

History of machine learning
In 1940s, the first manually-operated computer, ENIAC (Electronic 
Numerical Integrator and Computer), was invented. At this time, 
the word computer was used which meant, 'a machine having intensive 
numerical computation capabilities'. Since 1940s, the idea was to build a 
machine that could mimic human behavior of learning and thinking. 
In 1950s, the first computer game program was developed that could 
beat the checkers world champion. This helped checker players 
in improving their skills. At this time, Frank Rosenblatt invented 
Perceptron, which is a very simple classifier. Machine learning 
became popular in 1990s when probabilistic approaches of AI were 
born as a result of the combination of statistics and computer science. 
Because of the large data available, scientists started building 
intelligent systems that could analyze and learn from a large amount 
of data. For example, the IBMs Deep Blue could beat the World Chess 
Champion, Garry Kasparov. Machine learning is a kind of algorithm in 
which the software applications can accurately predict the outcomes 
without being explicitly programmed. The basic essence of machine 
learning is to build algorithms that, on receiving input data, predicts 
the output using statistical analysis and updates the output as the 
new data is made available. The term Machine learning was coined 
by an American scientist, Arthur Samuel, in 1959 who had expertise 
in computer gaming and artificial intelligence. According to Arthur 
Samuel, "It gives computers the ability to learn without being explicitly 
programmed". According to Tom Mitchell in 1997, "A computer program 
is said to learn from experience E with respect to some task T and some 
performance measure P, if its performance on T, as measured by P, improves 
with experience E."

Consider a machine learning based system which can help us find 
the traffic patterns in the busiest location. We can run a machine 
learning algorithm and use the traffic patterns of the past experience 
for training the system. If the system has learned successfully, then 
it will predict the traffic patterns in a better way with performance 
measure, P.
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As machine learning is in boom in today's era, it is conducive to know 
the various applications as well as the challenges faced in machine 
learning. In this chapter, we will discuss the different machine 
learning techniques, the challenges faced in adopting machine 
learning, and the various application areas of machine learning.

Classification of machine learning
On the basis of the nature of learning and the response or output 
available to the learning system, machine learning implementations 
are of three types:

•	 Supervised learning: In supervised learning, the learning is 
performed using example data and its corresponding target 
response. During testing, when new examples are provided, it 
predicts the corresponding response. This learning is similar 
to how a student learns from a teacher. A teacher provides 
some good examples for the student to memorize. The 
student is then able to frame general rules to solve problems 
and draw useful conclusions.

•	 Unsupervised learning: In unsupervised learning, the 
learning is performed using example data without its 
associated target response. In this type of algorithm, 
a restructuring of data is performed where the data is 
segmented into different classes. The objects that belong to 
the same class have a high degree of similarity.

•	 Reinforcement learning: Reinforcement learning is similar 
to unsupervised learning in which, corresponding to the 
example data, there is no target response and each example 
is accompanied by a positive or a negative feedback. A 
positive feedback or credit is given when, during testing, a 
correct response is obtained corresponding to the example 
data. In a negative feedback, the error or penalty is awarded 
because, during testing, an incorrect response is obtained 
corresponding to the example data.

•	 Semi-supervised learning: In semi-supervised learning, 
during training, we have example data and some of the 
corresponding target responses are missing. It is a combination 
of supervised and unsupervised learning.

On the basis of the desired output, machine learning implementation 
is divided into the following types:
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•	 Classification: In this type of learning, two or more classes 
are assigned to the input present in the training data. During 
testing, when we provide the input, it is classified into two 
or more classes. For example, in spam filtering, it classifies 
whether an email is spam or not spam.

•	 Regression: Regression is performed during supervised 
learning. In this type of learning, the output is continuous 
rather than discrete.

•	 Clustering: Clustering is performed during unsupervised 
learning in which the testing data is classified into groups 
and, unlike the task of classification, these groups or classes 
are not known beforehand.

The different types of machine learning algorithms are depicted in 
Figure 1.1 as follows:

Figure 1.1: Classification of machine learning algorithm

Challenges faced in adopting 
machine learning
There are various challenges in adopting machine learning for 
developing projects. Some of these are as follows:

•	 Requirement of proper experimentation and testing: 
We need to conduct frequent tests in a machine learning 
system in order to obtain the desired outcome with proper 
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experimentation. The method used to test the machine 
learning algorithm is referred to as stratification. In this 
method, we randomly split the data set mainly into two 
subsets, training set and testing set.

•	 Inflexible business models: We should follow an agile and 
flexible business policy in implementing machine learning. 
If one of the machine learning strategies is not working, then 
we need to perform more experimentation and consequently 
build a new robust machine learning model.

Is the machine learning results ethical? Google is developing software 
that is used in military project called Project Maven. This project makes 
use of drone and will create autonomous weapons. Consequently, 12 
employees of Google resigned in protest and more than 4000, along 
with over 1000 well-known scientists, signed a petition requesting 
the company to abandon the project. 

•	 Impact of machine learning on humans: A machine learning 
based system such as a movie recommendation system 
changes the choice of human over time and narrows them 
with time. It is interesting to know that people don't notice 
how they get manipulated by algorithms. Examples include 
movie recommendation systems, news, propaganda, etc.

•	 False correlation: A false correlation comes into play when 
two parameters that are completely independent of each 
other show similar behavior. This creates an illusion that 
these parameters are somehow connected to each other. 
They are also known as spurious correlation. For example, 
if there is an increase in the number of car seat belts, there 
is a decrease in the number of astronaut deaths. This is a 
false correlation since a car seat belt has nothing to do with 
accidents occurring in space.

•	 Feedback loops: Feedback loops are worse than false 
correlations. It is a condition where the decision of an 
algorithm affects reality while convincing that the conclusion 
is correct. For example, a crime prevention program 
suggested that more police officials to be sent to a particular 
area on the basis of an increase in the crime rate. This led 
to the local residents reporting crimes more frequently as 
somebody was right there they can report them. This also led 
to the police officials writing more reports and implementing 
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protocols resulting in a higher crime rate, which meant that 
more police had to be sent to the area. Earlier, when police 
officials were not present in the area, people didn't report 
crimes frequently.

•	 Poisoned or contaminated reference data: The outcome of a 
machine learning algorithm purely depends on the reference 
data or training data that a machine learns. If the training 
data or reference data is poisoned or contaminated, then 
the outcome of machine learning will also be incorrect. For 
example, if we want to develop a machine translation system, 
and if the training file consists of incorrect translations, then 
the output will also be incorrect.

•	 Trickery: Even if a machine learning algorithm is working 
perfectly, it can be tricked. A noise or distortion can completely 
alter the outcome of the algorithm. In the near future, if a 
machine learning algorithm is used for the analyses of X-rays 
emitted from the luggage at the airport and an object is placed 
next to a gun, then the algorithm will not be able to detect the 
gun.

•	 Mastering machine learning: A data scientist is a person 
who has expertise in machine learning. Those who are not 
data scientists may not acquire all of the knowledge related 
to machine learning. They need to find the key issues in a 
particular domain of machine learning and then try to 
overcome these issues. For example, a person who is working 
on predictive modeling may not have a complete knowledge 
of a Natural Language Processing (NLP) task.

•	 Wrong assumptions are drawn: A machine learning based 
system needs to deal with missing values in the data sets. 
For example, the missing value issue can be resolved by 
using the mean value as the replacement to the missing 
value. Here, reliable assumptions need to be drawn related 
to the replacement of the missing values. So, we must make 
sure that the data doesn't come with the missing values and 
assumptions drawn are of substantial amount.

•	 Machine learning based systems are still not intelligent: 
While machine learning based systems are constantly 
evolving, there exists failure as well in the current machine 
learning based systems. For example, as an experiment, 
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Microsoft's chatbot Tay was released on Twitter that 
mimicked a teenage girl. It was a failure and consequently 
the company had to close the experiment and apologize to 
the whole internet crowd for the hurtful and offensive tweets 
by chatbot Tay. 

•	 Computational needs are expensive: In order to perform 
large data processing, GPUs are used instead of CPUs. Some 
companies don't have GPUs, so it takes a longer time for 
the conventional CPUs to process large amounts of data. In 
some situations, even with GPUs, it may take days or weeks 
to complete the processing as compared to the traditional 
software development that may take a few minutes or hours 
to complete the task.

Applications
Machine learning is a buzzword today. There are numerous 
applications of machine learning. Some of the applications are shown 
in Figure 1.2:

Figure 1.2: Applications of machine learning
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•	 Virtual personal assistants: Some of the most popular 
examples of virtual personal assistants used today include 
Alexa, Siri, and Google Now. These virtual personal assistants 
help in finding information, whenever asked over voice. We 
can activate these virtual personal assistants and ask questions 
like "Which are the flights from London to Germany?”, “What are 
the tasks that need to be performed today?" For answering such 
queries, virtual personal assistants collect information or 
search previously asked queries or collect information from 
phone apps. Machine learning is an integral part of virtual 
personal assistants as they collect information and refine 
it based on the previous information which is then used 
to generate results based on the given preferences. Virtual 
personal assistants are integrated to various platforms such 
as mobile apps (for example, Google Allo), smartphones (for 
example, Samsung Bixby on Samsung S8), smart speakers 
(for example, Amazon Echo, Google Home), etc. Virtual 
personal assistants are small, portable devices. Google Home 
is shown in Figure 1.3.

Figure 1.3: Google Home

•	 Traffic prediction: In order to manage traffic, GPS navigation 
devices are used. GPS devices track the current location and 
velocity of a vehicle, and store the information in the central 
server. This information is used to generate the current traffic 
report. This prevents traffic and helps in congestion analysis. 
A GPS device equipped in a car is shown in Figure 1.4. So, 
machine learning is used for estimating the areas where 
congestion can be found on the basis of daily GPS reports.
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Figure 1.4: A GPS device equipped in a car

•	 Online transportation networks: When we book a cab using 
an app, it estimates the price of the ride. Machine learning is 
used to minimize the detour. It plays a very important role 
in predicting the travel time, price of the ride, and reduce 
detour.

•	 Video surveillance system: A single person cannot monitor 
multiple video cameras. A video surveillance system uses 
machine learning at its back end to detect unusual behavior 
in people, like napping, stumbling, standing, etc. The video 
surveillance system on detecting unusual behavior will alert 
a human attendant and prevent any mishap from taking 
place.

•	 Social media services: Machine learning is vastly used in 
social media platforms for personalizing news feed and 
targeting better ads. Other applications of machine learning 
in social media services include the following:

o People you may know: Machine learning is based on 
the concept of gaining knowledge with experience. 
Facebook notices people that we connect with, the 
profiles that we often visit, our workplace, groups 
that we share, our interest, etc. On the basis of all this 
information, Facebook gives a suggestion of the list of 
people we would like to become friends with.

o Face recognition: When we upload a photograph of 
ours along with a friend, Facebook can immediately 
recognize that friend. This is because Facebook 
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identifies unique features, poses, and projections and 
matches them with the photographs of the people in 
our friend list. It is a very complicated application at 
the back end as it considers the precision factor, but at 
the front end, it is a very simple application of machine 
learning. Facebook uses DeepFace, which is a deep 
learning project responsible for the identification of 
a person’s face in images. Facebook also provides a 
feature of alternative tags for an image that is already 
uploaded on Facebook.

o Similar pins: Computer vision involves extraction of 
useful information from videos and images. Machine 
learning is one of the applications of computer vision. 
Pinterest makes use of computer vision to detect pins 
or objects in an image and recommend pins which are 
similar to it.

o Sentiment analysis: Sentiment analysis is one of 
the applications of machine learning. It is a process 
of determining emotion or the opinion of a person 
from the given text. It is also referred to as opinion 
mining or sentiment classification. The application 
of sentiment analysis is found in decision-making 
applications, review-based websites, etc.

•	 Email spam and malware filtering: Email clients use 
numerous spam filtering techniques. In order to ensure 
that these approaches are continuously updated, machine 
learning is used. A rule-based spam filtering technique 
does not track the latest tricks adopted by the spammers. 
Examples of a spam filtering technique that is influenced by 
machine learning are multilayer perceptron, C 4.5 Decision 
Tree Induction, etc. Every day, nearly 325,000 malwares are 
detected and about 90-98% of the code is similar to its previous 
version. The system security programs that are based on 
machine learning are able to the coding pattern. Hence, they 
are able to find malware with a variation of 2-10% and also 
provide protection against them.

•	 Online customer support: Many websites today provide 
the facility to chat with the company’s customer support 
representatives while the user is scrolling the website. But not 
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all the websites provide live executives to answer the queries. 
In some websites, the user talks to a chatbot. These chatbots 
extract useful information from the website and present it 
to the customer as a response to their query. Chatbots have 
advanced with time. They are based on a machine learning 
algorithm that gains knowledge from past experiences. 
Chatbots try to understand the user queries and then serve 
them with better responses every time. 

•	 Result refinement of a search engine: Google and many 
other search engines make use of machine learning in order 
to improve the searching capability. Whenever we perform 
a search, an algorithm is run at the back end to see how we 
respond to the results provided by a search engine. If we open 
the top-most result and stay on the page for a very long time, 
then the search engine assumes that the result displayed is 
appropriate in accordance with the query. Also, if we reach 
the second or the third page of the search results but do not 
open any of the pages, then the search engine assumes that 
the result displayed is not in accordance with the query. 
In this way, the algorithm running at the back end tries to 
improve the performance of the search results.

•	 Product recommendations: When we shop an online 
product from a website, we notice that we start receiving 
emails containing shopping suggestions. Also, the app or the 
shopping website recommends items that match our choices. 
Product recommendations are displayed on the basis of past 
purchases, items browsed or added to the cart, or brand 
preferences. This magical shopping experience is due to 
machine learning. 

•	 Online fraud detection: With the help of machine learning, 
we can track online financial frauds. For example, to prevent 
money laundering, Paypal uses the machine learning 
approach. Using certain tools, Paypal can compare millions 
of transactions occurring between buyers and sellers, and be 
able to distinguish between legal and illegal transactions.

•	 Online gaming: Machine learning is used in online gaming. 
For example, in Chess, it uses machine learning. On the basis 
of previous moves that gave winning situations, the algorithm 
running at the back end tries to improve its performance and 
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make similar moves that it considers the best. In this way, 
machine learning tries to imbibe human-like intelligence in 
computer that can play like any human chess champion. 

•	 Financial services: According to the experts, online credit 
card fraud has risen to $32 billion in 2020. Companies that are 
related to the financial sector can see the flow of financial data 
and prevent financial fraud. This is possible using machine 
learning. Machine learning helps in the identification of 
opportunities in trading and investment. With the help of 
cyber surveillance, we can identify those institutions and 
individuals that are at financial risk and take timely action to 
prevent any cyber fraud.

•	 Healthcare: There has been an advancement in technology in 
the field of medical healthcare by the incorporation of machine 
learning. Wearable sensors and devices can provide real-time 
overall health conditions of a person, such as his heartbeat, 
blood pressure, etc. A doctor can use this information for 
analyzing the health condition of an individual, draw pattern 
using patient history, and predict any sort of ailment in the 
future. A machine may also be trained to have human-like 
intelligence. A machine may behave as a doctor and predict 
a disease or suggest medicine on the basis of past health 
condition records.

•	 Oil and gas: This industry requires the need of machine 
learning the most. Machine learning applications in oil and 
gas industry are vast. It not only includes streaming oil 
distribution but also finding new sources of energy and the 
analyzing of underground minerals.

•	 Self-driving cars: A self-driving car is one of the latest 
and most exciting applications of machine learning. Tesla 
is a famous car manufacturing firm, which is working on 
developing self-driving cars. It is building a self-driving car 
using an unsupervised machine learning algorithm that is 
able to detect objects and people while driving.

•	 Automatic text translation: Today, if you visit any new place, 
the language is not a barrier to understand the thoughts of 
the locals or to share your thoughts with them. With the 
help of machine learning, we can perform translation from 
one language into another, and also perform the conversion 
of text to speech and vice versa. GNMT (Google Neural 
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Machine Translation) is based on neural machine learning 
that performs the translation of text from one language into 
another language. GNMT is also referred to as automatic 
translation system. Complex English to Hindi translations 
given by Google Translator is shown in Figure 1.5:

Figure 1.5: Complex English to Hindi translation by Google Translator

•	 Dynamic pricing: Dynamic pricing refers to the pricing 
strategy that wholly depends on the objective thought. 
For example, plane ticket, movie ticket, cab fare, etc. are 
dynamically priced. Using machine learning, buying trends 
can be found out and the dynamic prices of products can 
be determined. Uber uses a machine learning model called 
Geosurge to perform the dynamic pricing of individual rides.

•	 Classification of news: Machine learning helps in the 
classification of vast news into different categories 
like National News, International News, Sports News, 
Entertainment, etc. These help the readers to choose the news 
from their desired category. Machine learning methods used 
for the classification of news are: Support Vector Machine, 
Naive Bayes, K-Nearest Neighbor, etc. 

•	 Information retrieval: It is one of the significant applications 
of machine learning as it involves the extraction of knowledge 
or structured data from unstructured data. Information 
retrieval plays a crucial role in the big data sector. In the 
machine learning approach, unstructured data is taken as 
input and knowledge or structured data as output.

•	 Robot control: One of the applications of machine learning 
is robot control. Recently, research was carried out to obtain 
control over helicopter aerobatics and flight. In a robot control 
based competition sponsored by Darpa, a robot that drove in 
a desert for one hundred miles won over robot that could 
notice distant objects.
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Conclusion
Machine learning is one of the applications of artificial intelligence that 
allows the system to automatically learn and improve its performance 
without being explicitly programmed. Machine learning involves 
the development of computer systems that can access data and use 
this data to perform learning by themselves. In this chapter, we 
have discussed about machine learning, the applications of machine 
learning, and the challenges of machine learning. In the next chapter, 
we will discuss about supervised learning and linear regression 
which is one of the types of supervised learning techniques.

Questions
 1. Explain the difference between supervised learning and 

unsupervised learning with examples.
 2. What are the challenges faced in adopting the machine 

learning technique?
 3. Explain with an example how machine learning is used in the 

healthcare sector.

 4. Explain with an example how machine learning is used in 
social media services.
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Chapter 2
Linear 

Regression

Supervised learning is a machine learning task of mapping the in-
put to the output on the basis of labeled input-output example 

pairs. Supervised learning may be of two types: classification and 
regression. In this chapter, we will discuss about linear regression 
in one variable, linear regression in multiple variables, gradient de-
scent, and polynomial regression.

Structure
•	 Linear regression in one variable
•	 Linear regression in multiple variables
•	 Gradient descent
•	 Polynomial regression

Objectives
•	 Understanding linear regression in one variable
•	 Understanding linear regression in multiple variables
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•	 Knowing gradient descent
•	 Understanding polynomial regression

Linear regression in one variable
Linear regression is a technique to depict the relationship between 
an independent variable x and a dependent variable y. Linear regres-
sion states that the relationship that exists between one or more input 
features and the relative output or target vector is approximately lin-
ear in nature. Linear regression finds the weighted sum of the input 
features along with the constant referred to as bias term or intercept. 
Linear regression has numerous real-life applications. These applica-
tions fall into two categories:

•	 If the application comprises forecasting, prediction, or error 
reduction, then linear regression may be applied to the data 
set values and make predictions in the response.

•	 When there is a need of variations in the response, then it may 
be attributed by the presence of other explanatory variables.

Linear regression is used to find possible relationships between the 
variables in the field of behavioral, biological, and social sciences. In 
linear regression with one variable, hypothesis is defined as:

hθ (x) = θ0+θ1*x

Here, x is referred to as an independent variable on which depends 
our hypothesis. For example, ‘Rainfall’ measured in mm could be x 
and ‘The Number of Umbrellas sold’ could be the hypothesis that we 
are trying to predict. θ0 and θ1 are referred to as the bias variable and 
weight variable, respectively and they together constitute the weight 
matrix.

Cost function is an equation that gives an estimate of how close we 
are to the hypothesis. Smaller the value of cost function, closer we 
are from the required curve. So, we try to minimize the cost function 
in order to reduce error. The mean squared error cost function is de-
fined as follows:

Here, J is a cost function, m refers to the number of data points in our 
data set, and y refers to the actual values that we will like to predict. 
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To add normalization to the cost function, we introduce a constant 
1/2m to it.

The code for linear regression in one variable in Python is as follows:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import __future__
df=pd.read_csv("C:\\Users\\computer\\Desktop\\umbrella.
csv")  # Data is uploaded and a DataFrame is #created 
using Pandas pd object
df

# The strength of the relationship is found between 
Rainfall and Umbrellas Sold
X = np.asarray(df.Rainfall.values)
y = np.asarray(df.UmbrellasSold.values)
# Scaling and Normalization of the features are performed
def FeatureScalingNormalization(X):
# Xnorm is a copy of X vector
Xnorm = X 
# avgx will the contain average value of x in the training 
set
 avgx = np.zeros(X.shape[0]) 
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# rangex will contain the standard deviation values of x
rangex = np.zeros(X.shape[0]) 
avgx = X.mean()
rangex = X.std(ddof=1)  # Calculated with NumPy. It 
requires degreeoffreedom=1
# The number of training examples is stored in p
p = X.shape[0] 
# a vector of size p with the average values of x
avgx_matrix = np.multiply(np.ones(p), avgx).T 
# a vector of size p with the standard deviation values    
rangex_matrix = np.multiply(np.ones(p), rangex).T
# Normalization is applied on x values
Xnorm = np.subtract(X, avgx).T
Xnorm = Xnorm /rangex.T
return [Xnorm, avgx, rangex]
featuresNormalizeresults = FeatureScalingNormalization(X)
# normalized X matrix is obtained
X = np.asarray(featuresNormalizeresults[0]).T
# mean values are obtained
avgx = featuresNormalizeresults[1]
# standard deviation values are obtained
rangex = featuresNormalizeresults[2]
X

p = len(y) # number of training examples
X = np.vstack((np.ones(p), X.T)).T # Training Examples, 
column of 1's is added to X
X
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plt.scatter(X[:,[1]], y,  color='blue') # Data is plotted 
and the Scatter plot is obtained
plt.xlabel("Rainfall")
plt.ylabel("Umbrellas Sold")

Figure 2.1: Linear regression plot showing the relationship between  
Umbrellas Sold and Rainfall

In the above graph (Figure 2.1), we can visualize an increasing pat-
tern in the relationship between rainfall and the umbrellas sold.

# We calculate the plot when two parameters, Theta is 
randomly chosen as [140.0,5.0]

theta_0 = 140.0

theta_1 = 5.0

theta = np.asarray([theta_0,theta_1]).astype(float)
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# Plot the data

plt.scatter(X[:,[1]], y,  color='black') 

# corresponding to the Hypothesis model, the red line is 
plotted.

plt.plot(X[:,[1]], np.sum(np.multiply(X,theta), axis=1), 
color='red', linewidth=1)

plt.xlabel("Rainfall")

plt.ylabel("Umbrellas Sold")

Figure 2.2: Linear regression plot when theta is randomly chosen

# Calculate the Cost Function using 3 values in a Data set. 
We have taken random values of theta as [120.0, 10.0].

X1=X[0:3]

y1=y[0:3]

m1=3

theta_0 = 120.0

theta_1 = 10.0

theta = np.asarray([theta_0,theta_1]).astype(float)

plt.scatter(X1[:,[1]], y1,  color='blue') 

plt.plot(X1[:,[1]], np.sum(np.multiply(X1,theta), axis=1), 
color='red', linewidth=1)

# Plot red points corresponding to the predicted values.

plt.scatter(X1[:,[1]], np.sum(np.multiply(X1,theta), 
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axis=1),  color='red') 

plt.xlabel("Rainfall")

plt.ylabel("Umbrella Sold")plt.ylabel("Umbrellas Sold")

Figure 2.3: Linear regression plot for the calculation of cost function

As seen in the above graph (Figure 2.3), the blue dots show the value 
of y as [18.0,20.0,25.0].

# Cost Function is Calculated
def calcCostFunction(X, y, theta):
    # number of training examples
    p = len(y) 
    # Cost J is initialized
    J = 0 
    # Calculate h = X * theta
    h = np.sum(np.multiply(X, theta), axis=1)
    # Squared Error = (h - y)^2 (vectorized)
    SquaredError = np.power(np.subtract(h,y), 2)

    # Calculate the Cost J
    J = 1/(2*p) * np.sum(SquaredError)
    return J
calcCostFunction(X,y,theta)
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3791.297245862391

# The following code calculates 10 random theta values and 
generates corresponding Cost Function values.
import random # import the random library 
print("[Th0 Th1]", "\tJ") 
for x in range(10):
    theta_0 = random.randint(1,101)
    theta_1 = random.randint(1,101)   
    theta = np.asarray([theta_0, theta_1]).astype(float)
    # Calculate J and print the table

    print(theta, calcCostFunction(X, y, theta))

In the above output, we find 10 J values corresponding to 10 ran-
domly chosen theta values. We need an algorithm that can minimize 
the value of J for the given theta values. We can find the minimum 
value of J using the gradient descent algorithm.

Linear regression in multiple 
variables
Linear regression in multiple variables explains the relationship be-
tween a dependent variable y and many independent variables. It 
may be represented as follows:

Instead of a 'Yes' or 'No' reply, the value of Y will be a number. It is a 
continuous dependent variable. Here, the theta values are referred to 
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as regression weights and computed in such a way so as to minimize 
the sum of the squared deviations.

Consider the following code that implements linear regression in 
multiple variables using scikitlearn and statsmodels:

import pandas as pd

from sklearn import linear_model

import statsmodels.api as sm

Stock_Market = {'Year': [2018,2019,2018,2017,2017,2016,201
7,2019,2018,2018,2019,2019,2016,2017,2017,2018,2018,2018,2
018,2018,2016,2016,2016,2016], 'Month': [10, 12,10,9,8,4,6
,5,7,5,1,2,12,10,11,12,8,9,6,4,5,1,3,2],  'Rateofinterest': 
[3.25,4.5,3.5,5.5,4.5,4.5,3.5,5.25,6.25,4.25,5,5,6,5.7
5, 4.75, 5.75,5.75,4.75,5.75,4.75,3.75,4.75,5.75,5.75
],  'RateofUnemployment':[7.3,4.3,3.3,4.3,6.4,5.6,4.5 
,5.5,6.5,4.6,6.7,5.9,6,4.9,6.8,5.1,7.2,5.
1,6.1,7 .1,6.9,5.2,7.2,5.1],'Stock_price_
index':[1764,1594,1457,1493,1756,1244,1254,1175,13 29,1 54
7,1230,1375,1057,945,947,958,918,935,834,786,815,852,724,7
49]    }

df = pd.DataFrame(Stock_
Market,columns=['Year','Month','Rateofinterest', 
'RateofUnemployment','Stock_price_index'])

X = df[['Rateofinterest','RateofUnemployment']] # here we 
have used 2 variables in Linear Regression using #Multiple 
Variables

Y = df['Stock_price_index']

# Using sklearn

regr = linear_model.LinearRegression()

regr.fit(X, Y)

print('Intercept: \n', regr.intercept_)

print('Coefficients: \n', regr.coef_)

# prediction using sklearn

New_Rateofinterest = 3.25

New_RateofUnemployment = 7.3

print ('Predicted Stock Price Index: \n', regr.
predict([[New_Rateofinterest ,New_RateofUnemployment]]))
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# using statsmodels

X = sm.add_constant(X) # adding a constant

model = sm.OLS(Y, X).fit()

predictions = model.predict(X)  

printmodel = model.summary()

print(printmodel)

The output of the above code is shown as follows:

In the above output, it shows the values of intercept, coefficient, and 
predicted stock price index using sklearn and statsmodels:
StockPrice_Index = Intercept + (Rate of interest_Coefficient)*X1  + (Rate of 
Unemployment_Coefficient)*X2

Substituting the values of intercept and coefficient from sklearn, we 
get:
Stock Price_Index=2270.9128 + (-158.9578)*X1  + (-57.9007)*X2

From the table above, we infer that we get the same values of inter-
cept, coefficient, and predicted stock price index using sklearn and 
statsmodels.
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Gradient descent
Gradient descent is a method to minimize the value of Cost Function. 
It can alter the values of Theta 0 and Theta 1 of a point based on the 
slope or gradient of the Cost Function curve. The changes introduced 
in the values of Theta 0 and Theta 1 also bring changes to the hy-
pothesis, thereby bringing a better fit to the data. Gradient descent 
estimates the derivative of cost function.  It is represented by the fol-
lowing formula:

Here, hθ X-y is referred to as error.

 is referred to as the learning rate. In this method, we first fetch and 
clean the data and analyze it. Then, we define the hypothesis, re-
gression parameters, and cost function. Then, we run the gradient 
descent algorithm on all the data points and update the hypothesis. 
This algorithm is implemented in Python as follows:

def gradientDescent(X, y, theta, alpha, numiters):
    # number of training examples
    p = len(y) 
    # Initialize J_history and Theta_history
    Jhistory = []
    Thetahistory = []
    for i in range(numiters):
        # Calculate h = X * theta 
        h = np.sum(np.multiply(X,theta), axis=1)
        # Calculate the error = (h - y) 
        error = np.subtract(h, y)
        # Calculate the new theta 
        thetanew = alpha * 1/p * np.sum(np.multiply(X.T, 
error), axis=1)
        # Update theta
        theta = np.subtract(theta, thetanew)
        # Collect all the theta and J
        Thetahistory.append(theta.tolist())        
        Jhistory.append(calcCostFunction(X,y,theta).
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tolist())
    return theta, Thetahistory, Jhistory
# Running the Gradient Descent
# Initialize theta
theta = np.asarray([0,0]).astype(float)
# Set the number of iterations for the Gradient Descent
iterations = 2000
# Set the Learning Rate
alpha = 0.01
# Run the gradientDescent() function, and collect the 
output in "results"
results = gradientDescent(X, y, theta, alpha, iterations)
# Get the theta from the results
theta = results[0] # new theta
# Get the theta history 
Thetahistory = results[1] # Theta history
# Get the J history 
Jhistory = results[2] # Cost function history
plt.scatter(X[:,[1]], y,  color='blue')
# Plot Hypothesis (theta as calculated with the Gradient 
Descent)
plt.plot(X[:,[1]], np.sum(np.multiply(X,theta), axis=1), 
color='red', linewidth=1)
plt.xlabel("Rainfall")

plt.ylabel("Umbrellas Sold")

Figure 2.4: Plot between rainfall and umbrellas
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Now, we'll plot the Theta history as follows:

theta_0 = np.asarray(Thetahistory)[:,[0]]
theta_1 = np.asarray(Thetahistory)[:,[1]]
plt.plot(theta_0[0:len(theta_0)], color='red', linewidth=1)
plt.plot(theta_1[0:len(theta_1)], color='green', 
linewidth=1)
plt.xlabel("Iterations")
plt.ylabel("theta")

Figure 2.5: Plot of Theta0 and Theta1 values

We have performed 2000 iterations. In the above figure, the red 
curve represents θ0 and the green curve represents θ1. After 2000 it-
erations, the value of θ is [37.5,11.0]. Next, we'll plot the J history 
as follows:

plt.plot(Jhistory[0:len(Jhistory)], color='blue', 
linewidth=1)

# Put labels
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plt.xlabel("Iterations")

plt.ylabel("J")

Figure 2.6: J history plot

The above graph is a J history plot that shows the value of cost 
function falls down after 200 iterations and then becomes stable till 
1500 iterations. The minimum value of J is 57.5:

# Now if we predict the rainfall in mm to be 82mm, we 
predict the corresponding number of umbrellas sold.

query = [1, 82]

# Scale and Normalize the query

queryNormalized = [1, ((query[1]-avgx)/rangex)]

prediction = np.sum(np.multiply(queryNormalized, theta))

prediction

20.373966510153515

So, approximately 20 umbrellas are sold:

# Drawing a contour plot of J and θ

nslice = 50

theta0_vals = np.linspace(-100, 200, num=nslice)

theta1_vals = np.linspace(-400, 400, num=nslice)

# Initialize J_val that will collect all the J values
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# calculated by calcCostFunction()

J_vals = []

for i in range(len(theta0_vals)):

    for j in range(len(theta1_vals)):

        t = np.asarray([theta0_vals[i], theta1_vals[j]]).
astype(float)

        J_vals.append(calcCostFunction(X, y, t).tolist())

J_vals = np.asarray(J_vals)

J_vals = J_vals.reshape((nslice, nslice)).T        

levels = nslice

s = 1

# plot the contour with theta and the J values

plt.contour(theta0_vals, theta1_vals, J_vals, levels)

# Draw the path of the Gradient Descent convergence

for k in range(0, iterations, 10):

    plt.scatter(np.asarray(Thetahistory)[k][0],\

            np.asarray(Thetahistory)[k][1], color='blue', 
s=s)

# Draw a red dot i correspondence of the theta associated 
to the minimum J    

plt.scatter(theta[0], theta[1], color='red', s=10)

plt.xlabel("theta_0")

plt.ylabel("theta_1")

Figure 2.7: Contour plot of J and Theta
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In the above plot, the red dot at the center represents minimum value 
of J, J=57.5 at θ=[37.5,11.0].

Polynomial regression
Polynomial regression is a type of regression analysis in which the 
relationship that exists between a dependent variable y and an inde-
pendent variable x is modeled by the nth degree of the polynomial 
x. It fits a nonlinear relation that exists between x and its correspond-
ing conditional mean of y. This is denoted as E(y|x). In some of the 
cases, for the unknown parameters that are collected from the data, 
E(y|x) is linear. So, polynomial regression is referred to as a special 
case of linear regression with multiple variables.

Polynomial regression is represented as follows:

Y= θ0+θ1 X+ θ2 X2+ θ3 X3…….θn Xn

Consider the following code in Python on polynomial regression:

import operator

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.preprocessing import PolynomialFeatures

np.random.seed(0)

x = 1 - 3 * np.random.normal(0, 1, 50)

y = x - 3 * (x ** 2) + 0.5 * (x ** 3) + np.random.
normal(-3, 3, 50)

# Data is transformed to include another axis

x = x[:, np.newaxis]

y = y[:, np.newaxis]

polyfeatures= PolynomialFeatures(degree=3)

xpoly = polyfeatures.fit_transform(x)

model = LinearRegression()

model.fit(xpoly, y)

ypoly_pred = model.predict(xpoly)
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rmse = np.sqrt(mean_squared_error(y,ypoly_pred))

r2 = r2_score(y,ypoly_pred)

print(rmse)

print(r2)

plt.scatter(x, y, s=20)

# The values of x are sorted according to the degree 
before the line plot

sort_axis = operator.itemgetter(0)

sorted_zip = sorted(zip(x,ypoly_pred), key=sort_axis)

x, y_poly_pred = zip(*sorted_zip)

plt.plot(x, ypoly_pred, color='m')

plt.show()

In the above code, we performed a polynomial regression, where the 
degree of the independent variable x is 2. We also plotted the graph 
and generated the RMSE and the R2 Score of the resultant curve. The 
output of the above code is as follows:

Figure 2.8: Plot on polynomial regression
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The RMSE score and the R2 Score obtained are 2.5898697824172037 
and 0.9974338440099649, respectively.

Conclusion
In this chapter, we discussed about linear regression in one variable, 
linear regression in multiple variables, gradient descent, and polyno-
mial regression. We also discussed their implementation in python 
using scikitlearn, statsmodels, etc. In the next chapter, we will 
discuss about the classification using logistic regression.

Questions
 1. Explain linear regression in one variable using an example.

 2. Explain linear regression in multiple variables using an 
example.

 3. Explain polynomial regression with an example.

 4. Explain gradient descent with an example.
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Chapter 3
Classification 

Using Logistic 
Regression

Introduction
Logistic regression is a kind of regression analysis that comes into 
play when the dependent variable is binary. It is a kind of predictive 
analysis that explains the relationship between one dependent 
variable and one or several nominal, interval, ordinal, or ratio-level 
independent variables. In this chapter, we will discuss about binary 
classification, logistic regression, and multi-class classification. 

Structure
•	 Binary classification
•	 Logistic regression
•	 Multi-class classification

Objectives
•	 Understanding binary classification
•	 Understanding logistic regression
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•	 Understanding multi-class classification

Binary classification
Binary classification, also referred to as binomial classification, may 
be defined as the process of classification of elements into two groups 
on the basis of the classification rule.  It is found in the following 
fields:

•	 In the medical field, it is used to test whether a patient has 
any disease or not.

•	 In factories, it is used to decide whether a product is in 
accordance with the quality standards or not, or to check if 
some specification is met or not.

•	 In information retrieval, it is used in deciding whether a given 
page or an article should be in the result set of a search or not 
on the basis of the relevance of an article or the usefulness to 
the user.

•	 In spam filtering, it is used in deciding whether an email 
message received is a spam mail or not.

•	 It is also used in credit card fraudulent transaction detection.

Some of the techniques used for learning binary classifiers include 
the following:

•	 Decision trees

•	 Neural networks

•	 Support vector machines

•	 Bayesian classification

Consider the following code in Python that performs a binary 
classification. Here, we have considered breast_cancer, which is a 
predefined data set in sklearn. This data set comprises 569 instances 
of tumors, 30 features or attributes such as texture, radius, area, and 
the smoothness of the tumor. It comprises two classes of tumors such 
as malignant and benign. Malignant tumors are represented by 0 and 
benign tumors are represented by 1:

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
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from sklearn.metrics import accuracy_score
# Loading the predefined iris data set from Sklearn
data = load_breast_cancer()
# Organizing the data
labelnames = data['target_names']
labels = data['target']
featurenames = data['feature_names']
features = data['data']
# data
print(labelnames)
print('Class label = ', labels[0])
print(featurenames)
print(features[0])
# Splitting the data
train, test, train_labels, test_labels = train_test_
split(features,labels,test_size=0.33,random_state=42)
# Initializing the classifier
gnb = GaussianNB()
# Training the classifier
model = gnb.fit(train, train_labels)
# Making predictions
prediction = gnb.predict(test)
print(prediction)
# Evaluating the accuracy
print(accuracy_score(test_labels, prediction))
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The output of the above code is shown below:

From the above code, we infer that the first data instance represents 
0. So, it is a malignant tumor and its mean radius is 1.799e+01. There 
are different testing analysis methods used in binary classification. 
Consider the following testing data on which we will apply the 
testing analysis methods:

Instance Target Outcome
1 1 0.89
2 1 0.75
3 1 0.60
4 1 0.50
5 0 0.45
6 1 0.44
7 0 0.42
8 1 0.41
9 0 0.42
10 1 0.39
11 1 0.31
12 0 0.30
13 0 0.18
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Instance Target Outcome
14 0 0.17
15 0 0.16
16 0 0.15
17 0 0.14
18 0 0.13
19 0 0.10
20 0 0.10

Let us now consider the following testing analysis methods:
•	 Confusion matrix: It is used to present the performance of a 

binary classifier. The decision threshold, T may be used to find 
out whether the given set of instances is positive or negative. 
If the probability allotted to the given instance of a classifier 
is greater than T, then it is referred to as positive otherwise, it 
is referred to as negative. When all the given testing instances 
are classified, then the target labels are compared with the 
outcome labels to generate the following four terms:

o True positives (TP) – The total number of instances 
that are positive and are classified as positive

o False positives (FP) – The total number of instances 
that are negative and are classified as positive

o False negatives (FN) – The total number of instances 
that are positive and are classified as negative

o True negatives (TN) – The total number of instances 
that are negative and are classified as negative

The confusion matrix is represented as follows:

Predicted Positive Predicted Negative
Real Positive True Positives False Negatives
Real Negative False Positives True Negatives

Here, the column represents the outcome classes and the 
rows represent the target classes. The diagonal cells show 
the number of cases that are classified correctly and the off-
diagonal cells show the number of cases that are not classified 
correctly.
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Let the value of the decision threshold be T=0.4. Consider 
the testing data table given above. We get the following 
confusion matrix:

Predicted Positive Predicted Negative
Real Positive 6 2
Real Negative 3 9

•	 Binary classification tests: These are the parameters that 
are derived from the confusion matrix. They involve the 
following parameters:

o Classification accuracy: It may be stated as the ratio 
of the instances that are correctly classified. It can be 
depicted as follows:

(True_Positives + True_Negatives)

(Total instances)
Classification_Accuracy =

o Error rate: It may be stated as the ratio of instances 
that will not be classified correctly. It can be depicted 
as follows:

Error Rate= 
(False_Positives + False_Negatives)

(Total instances)

o Sensitivity: It can be stated as the ratio of the correct 
positives and the total number of positives. It is also 
referred to as recall or true positive rate. It can be 
depicted as follows:

Sensitivity= 
(True_Positives )

(Total Positive instances)

o Specificity: It can be stated as the ratio of the correct 
negatives and the total number of negatives. It is also 
referred to as the true negative rate. It can be depicted 
as follows:

Specificity = 
(True_Negatives)

(Total Negative instances)

From the above mentioned confusion matrix, we obtain 25% 
error rate, 75% accuracy, 75% sensitivity, and 75% specificity.
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Logistic regression
Logistic regression is a statistical model that makes use of the 
logistic function to model a binary dependent variable. It may be 
defined as the transformation of linear regression mot del that can 
probabilistically model the binary variables.

It may be represented by the following probability:

The output in linear regression is continuous, whereas in logistic 
regression, the output is discrete. Assumptions of logistic regression 
include the following:

•	 In logistic regression, the dependent variable should be 
binary.

•	 In logistic regression, Linearity must exist between logit 
and independent variables.

•	 There is no chance of multicollinearity.

•	 It requires a large sample size.

•	 It remove outliers and misclassified instances from the 
training data. Logistic regression assumes that there is no 
error in the output variable.

Consider an example of a logistic regression, given number of hours, 
a student studied for exams and number of hours, a student slept. 
We have to predict whether a student will pass (represented by 1) 
or fail (represented by 0). It is represented by the following Python 
code:

import pandas as pd

import numpy as np

from sklearn import metrics 

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

df = pd.read_csv("C:\\Users\\computer\\Desktop\\student.
csv")

df.head()
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x = df.drop("PassorFail",axis = 1)

y = df.PassorFail

In the above code, the drop method is used to remove PassorFail 
attribute from x and, x is assigned to other attributes. PassorFail 
attribute is assigned to y.

x_train, x_test, y_train, y_test = train_test_split(x, y, 
random_state=4)

The above code splits the data set into 75% training data and 25% 
testing data:

logistic_regression = LogisticRegression()

logistic_regression.fit(x_train,y_train)

Here, the fit method is used to train the model. The predict method 
is used to perform predictions on x_test values. The output of the 
prediction is stored in y_prediction. The accuracy_score method 
of metrics class is used to estimate the accuracy of the model. The 
accuracy obtained in the logistic regression model is 50%.
y_prediction = logistic_regression.predict(x_test)

accuracy = metrics.accuracy_score(y_test, y_prediction)
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accuracy_percentage = 100 * accuracy

accuracy_percentage

50.0

first_student = logistic_regression.predict((np.array([7, 
5]).reshape(1, -1)))

first_student

array([1], dtype= int64)

In the above code, we predict whether the first student will pass 
or fail on the basis of the number of hours studied; the number of 
hours slept is 7 and 5. The prediction result is that the first student 
will pass as indicated by the array([1],dtype=int64). Also, we 
predict whether the second student will pass or fail on the basis of 
the number of hours studied; the number of hours slept is 2 and 10. 
The prediction result is that the second student will fail as indicated 
by the array([0],dtype=int64).

second_student = logistic_regression.predict((np.array([2, 
10]).reshape(1, -1)))

second_student

array([0], dtype=int64)

Multiclass classification
Multinomial or multiclass classification may be defined as the 
problem of the classification of instances into two or more classes. 
Multiclass classification makes sure that each sample is assigned 
only one label.

Consider the following Python code on multiclass classification. 
Here, we use a predefined data set wine from sklearn. This data set 
comprises 178 instances of wine and 13 features or attributes related 
to the wine, such as the amount of alcohol, malic acid, ash, alkalinity 
of ash, the amount of magnesium, total phenol, flavonoids, non-
flavonoid phenols, color intensity, hue, etc.

from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
# Predefined Sklearn Wine data set is loaded
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data = load_wine()
# The data is organized
labelnames = data['target_names']
labels = data['target']
featurenames = data['feature_names']
features = data['data']
# Look at our data
print(labelnames)
print('Class label = ', labels[0])
print(featurenames)
print(features[0])
# Splitting our data
train, test, train_labels, test_labels = train_test_
split(features,labels,test_size=0.33,random_state=42)
# Initializing our classifier
gnb = GaussianNB()
# Training our classifier
model = gnb.fit(train, train_labels)
# Making predictions
prediction = gnb.predict(test)
print(prediction)
# Evaluate the accuracy
print(accuracy_score(test_labels, prediction))

The following is the output obtained from the above code:

In the above code, it shows that sample 1 is of class 0 and the amount 
of alcohol in it is 1.423e+01. Here, the sample is classified into 3 classes 
of wines, such as class 0, class 1 and class 2.

Consider another code on multiclass classification. Here, we have 
taken iris, a predefine data set from sklearn. The iris data set 
comprises 150 instances of iris (a kind of flower) and 4 features or 
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attributes of iris, such as the sepal length, sepal width, petal length, 
and petal width:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
# Loading the predefined iris data set from Sklearn
data = load_iris()
# Organizing the data
labelnames = data['target_names']
labels = data['target']
featurenames = data['feature_names']
features = data['data']
# data
print(labelnames)
print('Class label = ', labels[0])
print(featurenames)
print(features[0])
# Splitting the data
train, test, train_labels, test_labels = train_test_
split(features,labels, test_size=0.33, random_state=42)
# Initializing the classifier
gnb = GaussianNB()
# Training the classifier
model = gnb.fit(train, train_labels)
# Making predictions
prediction = gnb.predict(test)
print(prediction)
# Evaluating the accuracy
print(accuracy_score(test_labels, prediction))
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The above code divides the sample into 3 classes of iris, such as 
setosa, versicolor, and virginica. It shows that the first sample 
of iris is of type setosa and its sepal length is 5.1 cm. 

Conclusion
In this chapter, we discussed about binary classification, logistic 
regression, and multi-class classification. We also discussed their 
implementation in Python using scikitlearn. In the next chapter, 
we will discuss about overfitting and regularization in linear 
regression, and overfitting and regularization in logistic regression.

Questions
 1. Explain binary classification with an example.

 2. Explain logistic regression using an example.

 3. Explain multiclass classification with an example.
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Chapter 4
Overfitting and 
Regularization

Logistic regression is a regression analysis that occurs when the 
dependent variable is binary. Binary classification involves the 

classification of elements on the basis of the classification rule into 
two groups. In the previous chapter, we discussed about binary 
classification, logistic regression, and multi class classification and 
their implementation in Python using scikitlearn. Overfitting 
is one of the common problems in machine learning, and it can be 
handled using regularization. In this chapter, we will discuss about 
overfitting and regularization in linear regression and overfitting 
and regularization in logistic regression.

Structure
•	 Overfitting and regularization in linear regression
•	 Overfitting and regularization in logistic regression

Objectives
•	 Understanding overfitting and regularization in linear 

regression
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•	 Understanding overfitting and regularization in logistic 
regression

Overfitting and regularization in 
linear regression
In a linear model, a straight line is drawn in a prediction model. A 
linear model can be depicted using a single attribute that can predict 
a value or multiple attributes that can predict a value. The equation 
is given as follows:

For single variable:
h(X) = θ0+θ1 X

For multiple variables:
h(X)= θ0+θ1 X1+ θ2 X2+ θ3 X3…….θn Xn

In the above equations,  is the intercept and  to  are the slopes of the 
respective attributes from  to . Consider the 2 graphs given below 
based on the linear model:

Figure 4.1: Linear model having two points
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Figure 4.2: Linear model having multiple points

Figure 4.1 represents two points and Figure 4.2 represents multiple 
points. Consider the following equation that can be used to represent 
many possibilities that can fit a straight line:

h(X)= θ0+θ1 X+ θ2 X2+ θ3 X3…….θn Xn

Figure 4.3 shown below may represent the above equation:

Figure 4.3: Linear model having multiple points & multiple straight lines
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If there is one theta, then it represents one slope of direction and we 
obtain a straight line. If there are multiple thetas, then they represent 
multiple slopes of direction and we obtain a curved line. A linear 
model having multiple points, multiple curves, and multiple theta 
values is shown in Figure 4.4:

Figure 4.4: Linear model having multiple points & multiple curves

We need regularization in order to prevent overfitting in a model. 
Our model may be in one of the following states:

•	 Overfitting

•	 Appropriate fitting or good fitting

•	 Under-fitting

Overfitting, appropriate fitting, and under-fitting are shown in Figure 
4.5, Figure 4.6, and Figure 4.7. In a classification problem, when we 
work on a data set to perform the task of prediction, we calculate 
the accuracy by implementing on the training data and the testing 
data. If it obtains a satisfactory performance, we try to enhance 
the performance by either adding or removing certain features set. 
Sometimes, the designed model may behave poorly. It shows poor 
performance when either the designed model is too simple or too 
complex to address the target:
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Figure 4.5: Under-fitting

In Figure 4.5, under-fitting of data takes place as all the points are not 
covered by the line. It is also referred to as high bias. We can avoid 
under-fitting by using a polynomial equation that generates a curved 
line instead of a straight line:

Figure 4.6: Appropriate fitting or good fitting

In Figure 4.6, almost all the points are covered by the line. So, it is 
referred to as good fitting or appropriate fitting. Also, it maintains a 
balance between variance and bias:

Figure 4.7: Overfitting
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In Figure 4.7, all the points including outliers and noise are covered 
by the line. So, it is also referred to as overfitting. As this model is 
too complex, it gives a poor result. It is also known as high variance. 
In order to avoid overfitting, we have to use regularization. 
Regularization performs the task of reducing the variance by 
increasing bias, which thereby decreases the expected error.

The general equation for linear regression is given as follows:

h(X)= θ0+θ1 X1+ θ2 X2+ θ3 X3…….θn Xn

Here, θ represents the coefficients of the independent variable X. 
Residual Sum of Squares is used to reduce the error existing in the 
coefficients. Residual Sum of Squares (R) may be defined as follows:

R=Σi=1to n(yi-θ0- Σj=1to pθjxij)2

Ridge Regression may be defined as a technique that can be used to 
analyze multiple regression data that exhibit multicollinearity. Ridge 
Regression may be defined as follows:

Ridge Regression=Σi=1to n(yi-θ0- Σj=1to pθjxij)2+λΣi=1to pθj
2 = R+λΣi=1to pθj

2

The value of λ is very crucial for our outcome. If the value of λ is zero 
then there is no affect in the outcome, but if it is equal to infinity then 
it affects the result and it is not desirable.

Lasso regression helps in shrinking the coefficients to zero and hence, 
remove them from the model. If there are many features which seem 
to be irrelevant and can be ignored, then Lasso regression is used. 
Lasso regression is computationally more intensive. Elastic-net 
regression is a combination of Lasso regression and ridge regression.

Ridge regression helps in shrinking the coefficients to almost zero 
but not completely zero.

Consider following code on Lasso regression:
import numpy as np 
import pandas as pd
import matplotlib.pyplot
%matplotlib inline
import seaborn as sns
from sklearn.linear_model import Lasso
url 1= 'http://archive.ics.uci.edu/ml/machine-learning-
databases/communities/communities.data'
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data = pd.read_csv(url1, header=None, na_values=['?'])
X = data.drop(127, axis=1)
y = data[127]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, 
y,test_size = 0.3, random_state=1)
from sklearn.linear_model import LinearRegression
linearreg = LinearRegression()
linearreg.fit(X_train, y_train)
from sklearn import metrics
print("R-Square Value",r2_score(y_test,y_pred))
print ("\nmean_absolute_error :",metrics.mean_absolute_
error(y_test, y_pred))
print ("\nmean_squared_error : ",metrics.mean_squared_
error(y_test, y_pred))
print ("\nroot_mean_squared_error : ",np.sqrt(metrics.
mean_squared_error(y_test, y_pred)))

lassoregre = Lasso(alpha=0.005, normalize=True)
lassoregre.fit(X_train, y_train)
print(lassoregre.coef_)

lassoregre = Lasso(alpha=0.05, normalize=True)
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lassoregre.fit(X_train, y_train)
print(lassoregre.coef_)

# compute RMSE (for alpha=0.01)
y_pred = lassoregre.predict(X_test)
# compute MAE, MSE, RMSE
# compute R square value, MAE, MSE, RMSE
from sklearn.metrics import r2_score
from sklearn import metrics
print("R-Square Value",r2_score(y_test,y_pred))
print ("mean_absolute_error :",metrics.mean_absolute_
error(y_test, y_pred))
print ("\nmean_squared_error : ",metrics.mean_squared_
error(y_test, y_pred))
print ("\nroot_mean_squared_error : ",np.sqrt(metrics.
mean_squared_error(y_test, y_pred)))

from sklearn.linear_model import LassoCV
lassoregrecv = LassoCV(n_alphas=100, normalize=True, 
random_state=1)
lassoregrecv.fit(X_train, y_train)
print('alpha : ',lassoregrecv.alpha_)

alpha : 0.001687868294707203

print(lassoregrecv.coef_)
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#  the best alpha value is predicted using the predict 
method
y_pred = lassoregrecv.predict(X_test)
# Compute R square value, MAE, MSE, RMS
print("R-Square Value",r2_score(y_test,y_pred))
print("\n")
print ("\nmean_absolute_error :",metrics.mean_absolute_
error(y_test, y_pred))
print ("\nmean_squared_error : ",metrics.mean_squared_
error(y_test, y_pred))
print ("\nroot_mean_squared_error : ",np.sqrt(metrics.
mean_squared_error(y_test, y_pred)))

In the above code, the value of alpha should be positive. The value 
of alpha can be increased for achieving high regularization. In the 
above code, normalize is set to true. It is used to scale the features. 
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The value of R-Square increases when we apply regularization. The 
value of mean absolute error, mean squared error, and root mean 
squared error decreases when we apply regularization.

Consider the following code on Ridge regression:
from sklearn.linear_model import Ridge
ridgereg = Ridge(alpha=0, normalize=True)
ridgereg.fit(X_train, y_train)
y_pred = ridgereg.predict(X_test)
# calculate R square value, MAE, MSE, RMSE
from sklearn import metrics
print("R-Square Value",r2_score(y_test,y_pred))
print ("\nmean_absolute_error :",metrics.mean_absolute_
error(y_test, y_pred))
print ("\nmean_squared_error : ",metrics.mean_squared_
error(y_test, y_pred))
print ("\nroot_mean_squared_error : ",np.sqrt(metrics.
mean_squared_error(y_test, y_pred)))

ridgeregre = Ridge(alpha=0.1, normalize=True)
ridgeregre.fit(X_train, y_train)
y_pred = ridgeregre.predict(X_test)
# calculate R square value, MAE, MSE, RMSE
from sklearn import metrics
print("R-Square Value",r2_score(y_test,y_pred))
print ("\nmean_absolute_error :",metrics.mean_absolute_
error(y_test, y_pred))
print ("\nmean_squared_error : ",metrics.mean_squared_
error(y_test, y_pred))
print ("\nroot_mean_squared_error : ",np.sqrt(metrics.
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mean_squared_error(y_test, y_pred)))

In the above code, we can see that the value of R square increases and 
the value of mean squared error, mean absolute error, and root mean 
squared error decreases when regularization is applied.

Overfitting and regularization in 
logistic regression
Logistic regression may be defined as a generalized linear model, but 
instead of continuous output, it produces a categorical output. One 
of the common problems occurring in machine learning is overfitting 
where a model is able to respond well on the training data rather than 
the testing data. Overfitting takes place when the model is complex 
due to the number of observations being more as compared to the 
number of parameters.

Regularization is one way of dealing with overfitting. Regularization 
can handle high correlation among various features, filtering out 
noise from data and prevent overfitting. The regularization term 
may be represented as follows:

Here, λ is the regularization parameter. In order to apply 
regularization to logistic regression, the regularization term is added 
to the cost function to shrink weights.

The inverse of regularization is represented by the parameter C as:

C=1/λ

If we decrease the value of the parameter C, then the regularization 
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strength λ increases and weight the coefficients or complexity 
decreases. Consider the following Python code on regularization in 
logistic regression:
%pylab inline
from sklearn import datasets
import numpy as np
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.3, random_state=0)

from sklearn.preprocessing import StandardScaler
ssc = StandardScaler()
ssc.fit(X_train)
X_train_std = ssc.transform(X_train)
X_test_std = ssc.transform(X_test)

from sklearn.linear_model import LogisticRegression

weights, params = [], []
for c in np.arange(1, 5):
lrr = LogisticRegression(C=10**c, random_state=0)
lrr.fit(X_train_std, y_train)
weights.append(lrr.coef_[1])
params.append(10**c)

weights = np.array(weights)

# Decision region drawing
import matplotlib.pyplot as plt

plt.plot(params, weights[:, 0], color='blue', marker='x', 
label='petal length')
plt.plot(params, weights[:, 1], color='green',  marker='o', 
label='petal width')
plt.ylabel('weight coefficient')
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plt.xlabel('C')
plt.legend(loc='right')
plt.xscale('log')
plt.show()

Figure 4.8

In the above code, we used 10 logistic regression models with 
different values of C. The plot given above shows that as the value 
of C (inverse regularization) decreases, the value of the weight 
coefficient decreases.

Conclusion
In this chapter, we discussed about overfitting and regularization 
in linear regression and overfitting and regularization in logistic 
regression. We discussed how the R square, mean absolute error, 
mean squared error, and root mean squared error changes by 
applying regularization. In the next chapter, we will discuss about 
the feasibility of learning an unknown target function, in-sample 
error, and out-of-sample error.

Questions
 1. Explain overfitting and regularization in linear regression 

with an example.
 2. Explain overfitting and regularization in logistic regression 

with an example.
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Chapter 5
Feasibility of 

Learning

Introduction
Regularization is one way of dealing with overfitting. Regularization 
can handle high correlation among various features, filtering out 
noise from data, and prevent overfitting. In the previous chapter, we 
discussed about overfitting and regularization in linear regression 
and overfitting and regularization in logistic regression. In this 
chapter, we will discuss about the Feasibility of Learning an unknown 
target function, in-sample error, and out-of-sample error.

Structure
In this chapter, we will study the following topics:

•	 Feasibility of learning an unknown target function
•	 In-sample error
•	 Out-of-sample error



60      Building Machine Learning Systems Using Python

Objectives
•	 To know the steps involved in building a machine learning 

model

•	 Understanding feasibility of learning using Hoeffding's 
Inequality

•	 Understanding in-sample error

•	 Understanding generalization error

Feasibility of learning an unknown 
target function
For building a machine learning model, the following hierarchy is 
followed:
 1. Collection of data: It involves gathering of data on the basis 

of the machine learning project that we desire to make. Data 
may be gathered from various sources such as files, sensors, 
databases, etc.

 2. Pre-processing of data: The data collected from different 
sources for building the machine learning model cannot be 
directly used for analysis purpose, as it may contain a large 
amount of noisy data, unorganized text, missing values, 
large values, or irrelevant text. All such unwanted data may 
be eliminated in order to obtain clean data. While developing 
a machine learning model, we must follow the 80/20 rule. 
According to this rule, we must spend 80% of time in pre-
processing of the data and 20% of time in analysis. Data may 
be classified into the following categories:

 a. Numerical: For e.g., age, salary, etc.
 b. Categorical: For e.g., nationality, gender, etc.
 c. Ordinal: For e.g., high, medium, low, etc.

Data pre-processing may be performed in the following ways:
 a. Dealing with null values: We can solve the problem of 

null values by either deleting the rows and columns that 
comprise null values or by using imputation, which is 
a process of substituting the missing values with some 
substituted values.
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 b. Standardization: It is a process that involves the 
manipulation of values so that the mean of all the 
values is 0 and the standard deviation is 1.

 c. Dealing with categorical variables: Categorical 
variables are those which are discrete and not 
continuous.

 d. Feature scaling: It is technique in which we make the 
values of all the features same by scaling down the 
features that are insignificant and have a large range of 
values.

 e. Splitting the data: In machine learning, we usually 
split the data in 70:30, meaning 70% of the data is used 
for training and 30% of the data is used for testing.

 3. Finding the model that will be best for the data: Find the 
machine learning model which is best suited for our problem.

 4. Training and testing of the developed model

 5. Evaluation

Steps involved in building a machine learning model are depicted in 
Figure 5.1:

Figure 5.1: Building a machine learning model
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In the above figure, data preparation refers to data pre-processing 
and prediction refers to the testing phase of the developed machine 
learning model. Feasibility of machine learning may also be expressed 
using Hoeffding's Inequality. According to Hoeffding's Inequality, 
for a given sample size M and Є as tolerance, the probability of the 
difference of in-sample estimation (µ) and the expected outcome (v) 
is smaller than a constant quantity. 

It is defined as follows:

P(|v-µ|>Є)<=2exp-2Є2M

In a given binary classification problem, the output is 1 or -1. Here, µ 
represents out-of-sample error Eout(h), which is an expected error as 
a result of the preferred hypothesis h and v represents the in-sample 
error Ein(h), which is an error arising as a result of the classification of 
data points by hypothesis.

It is represented as follows:

P(|Ein(h) - Eout(h)|> Є) <= 2exp-2Є2M

In-sample error and out-of-sample 
error
The data points that are used for making a model are referred to as 
in-sample data. In-sample error may be defined as the error that is 
obtained on the same data set that is used for building the machine 
learning model.

The data points that are new and do not belong to any of the training 
data sample are referred to as out-of-sample data. Out-of-sample 
error may be defined as the error that is obtained on the new data 
set. It is also referred to as the generalization error.

In the previous chapter, we had discussed about overfitting and 
underfitting. Consider the following table that distinguishes under-
fitting, overfitting, and just right fit condition in terms of training 
error and testing error:
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Underfitting Overfitting Just right fit
Symptoms •	 Training Error is 

High.

•	 Training Error is 
very close to the 
Test Error.

•	High Bias 

•	 Training Error 
is Low.

•	 Training Error 
is much lower 
than the Test 
Error.

•	High Variance

•	 Training 
Error is Low.

•	 Training 
Error is 
slightly 
lower than 
the Test 
Error.

Table 5.1: Comparison of underfitting, overfitting, and just right fit

Consider the following code on in-sample error and out-of-sample 
error:
print(__doc__)

import numpy as np
from sklearn import linear_model
train_samples, test_samples, n_features = 80, 200, 700
np.random.seed(0)
coefficient = np.random.randn(n_features)
coefficient[50:] = 0.0  
X = np.random.randn(train_samples + test_samples, n_
features)
y = np.dot(X, coefficient)

# Splitting train and test data
train_X, test_X = X[:train_samples], X[train_samples:]
train_y, test_y = y[:train_samples], y[train_samples:]
# Finding train and test errors
alphas = np.logspace(-5, 1, 60)
enet = linear_model.ElasticNet(l1_ratio=0.7, max_
iter=10000)
train_errors = list()
test_errors = list()
for alpha in alphas:
    enet.set_params(alpha=alpha)
    enet.fit(train_X, train_y)
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    train_errors.append(enet.score(train_X, train_y))
    test_errors.append(enet.score(test_X, test_y))

i_alpha_optimum = np.argmax(test_errors)
alphaoptimum = alphas[i_alpha_optimum]
print("Optimal regularization parameter is: %s" % 
alphaoptimum)

# Finding the coefficient on full data with optimal 
regularization parameter

enet.set_params(alpha=alphaoptimum)
coefficient1 = enet.fit(X, y).coef_

# Plotting results functions

import matplotlib.pyplot as plt
plt.subplot(2, 1, 1)
plt.semilogx(alphas, train_errors, label='Train')
plt.semilogx(alphas, test_errors, label='Test')
plt.vlines(alphaoptimum, plt.ylim()[0], np.max(test_
errors), color='k',
linewidth=3, label='Optimum on test')
plt.legend(loc='lower left')
plt.ylim([0, 1.2])
plt.xlabel('Regularization parameter')
plt.ylabel('Performance')

# Show the estimated coef_ versus true coef
plt.subplot(2, 1, 2)
plt.plot(coefficient, label='True coef')
plt.plot(coefficient1, label='Estimated coef')
plt.legend()
plt.subplots_adjust(0.07, 0.05, 0.87, 0.87, 0.22, 0.29)
plt.show()
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The above code gives the following output:

Figure 5.2: Test error and train error

The above code illustrates that the performance on the unseen or test 
data is different from the performance on the training data. It is seen 
that as we increase regularization, the performance on the training 
data degrades and the performance on the test data is optimal within 
the given range of values.

Conclusion
In this chapter, we discussed the feasibility of learning an unknown 
target function and in-sample error and out-of-sample error with 
example of its value is affected by increasing regularization.

In the next chapter, we will discuss about Support Vector Machine, 
margin, large margin methods, and kernel methods in terms of 
Support Vector Machine.

Questions
 1. Explain the feasibility of learning an unknown target function 

with an example.

 2. Explain out-of-sample error with an example.

 3. Explain in-sample error with an example.
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Chapter 6
Support Vector 

Machine

Introduction
Support Vector Machine (SVM) may be defined as a machine 
learning algorithm that can be used for regression and classification. 
It is generally used for classification purpose. In this chapter, we 
will discuss about Margin and Large Margin Methods and Kernel 
Methods. 

Structure
•	 Margin and Large Margin methods

•	 Kernel methods

Objectives
•	 To know the significance of Margin and Large Margin 

methods

•	 Understanding Kernel methods
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Margin and Large Margin methods
In SVM, the data item is plotted in an n-dimensional space, where 
n represents the number of features. A classification is performed 
by finding the hyperplane that can differentiate the two classes. 
Consider Figure 6.1. Here, the classification of two different shapes is 
performed by finding the hyperplane:

Figure 6.1: The classification of shapes using hyperplane in SVM

Selecting the right hyperplane for a given problem can be done in the 
following ways:

1. Choose the hyperplane that classifies the data points in a better 
way. Consider Figure 6.2. Here, we have three hyperplanes, 
namely A, B and C. We need to choose one hyperplane out of 
these. We choose hyperplane A as it classifies the data points 
efficiently as compared to the other hyperplanes:
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Figure 6.2: Hyperplane A classifies the data points efficiently

2. Use Margin and Large Margin Methods to find the appropriate 
hyperplane. The distance between the nearest data point and 
the hyperplane is referred to as margin. We must select the 
hyperplane that has a larger margin; this prevents a chance 
of miss classification. Consider Figure 6.3. Here, the margin 
of hyperplane B is the largest as compared to the margin of 
the hyperplanes A and C. So, we choose hyperplane B for 
classifying our data points:

Figure 6.3: Margin and Large Margin Methods
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3. Identify the correct hyperplane that can classify all the data 
points correctly without any error. Consider Figure 6.4. Here, 
if we choose the hyperplane B instead of hyperplane A, since 
hyperplane B has a larger margin as compared to hyperplane 
A, then hyperplane B doesn't classify all the data points 
correctly resulting in an error. Hyperplane A has a smaller 
margin but it classifies all the data points correctly. So, SVM 
will choose hyper plane A over hyper plane B.

Figure 6.4: Choosing hyperplane A over hyperplane B for classification

4. SVM has a characteristic of ignoring the outliers or the noise. 
Consider Figure 6.5. Here, the hyperplane chosen has a large 
margin and at the same time, the SVM ignores the star that 
lies in the other boundary and this star is treated as a noise 
or an outlier.

Figure 6.5: Classification by SVM is robust to outliers
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Consider the following code that depicts the data points that are 
classified correctly using SVM:
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import seaborn as sns; sns.set() 
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=100, centers=2, random_state=0, 
cluster_std=0.60)
plt.scatter(X[:, 0], X[:, 1], c=y, s=100, cmap='autumn');

It gives the following output as shown in figure 6.6:

Figure 6.6: Classification of data points using SVM

Consider the following code that displays straight lines and separates 
or classifies the different sets of data. This is shown in figure 6.7:

fit = np.linspace(-1, 3.5)

plt.scatter(P[:, 0], P[:, 1], c=q, s=100, cmap='autumn')

plt.plot([0.6], [2.1], 'x', color='green', 
markeredgewidth=2, markersize=10)

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:

    plt.plot(fit, m * fit + b, '-k')

plt.xlim(-1, 3.5);
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Figure 6.7: Straight lines separating different sets of data

Instead of drawing zero width straight lines, margins may be drawn 
around straight lines up to the nearest data point. This is shown in 
figure 6.8:
fit = np.linspace(-1, 3.5)
plt.scatter(P[:, 0], P[:, 1], c=q, s=100, cmap='autumn')
for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 
2.9, 0.2)]:
    fit2 = m * fit + b
    plt.plot(fit, fit2, '-k')
    plt.fill_between(fit, fit2 - d, fit2 + d, edgecolor='none',
                     color='#AAAAAA', alpha=0.4)
plt.xlim(-1, 3.5);

Figure 6.8: Margins drawn around straight lines for classification in SVM
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Consider the following code using Scikit Learn that can be used to 
train the SVM model. This is depicted in figure 6.9:

from sklearn.svm import SVC # "Support vector classifier"
model = SVC(kernel='linear', C=1E10)
model.fit(P,q)
SVC(C=10000000000.0, break_ties=False, cache_size=200, 
class_weight=None, coef0=0.0, decision_function_
shape='ovr', degree=3, gamma='scale',kernel='linear', 
max_iter=-1, probability=False, random_state=None, 
shrinking=True, tol=0.001, verbose=False)
def plot_svc_decision_function(model, px=None, plot_
support=True):
    """Decision function is plotted for a 2D SVC"""
    if px is None:
        px = plt.gca()
    limx = px.get_xlim()
    limy = px.get_ylim()
    # To evaluate model, grid is created
    p = np.linspace(limx[0], limx[1], 30)
    q = np.linspace(limy[0], limy[1], 30)
    Q, P = np.meshgrid(q, p)
    pq = np.vstack([P.ravel(), Q.ravel()]).T
    P = model.decision_function(pq).reshape(P.shape)
    
    # Margins and decision boundary are plotted
    px.contour(P, Q, P, colors='k',
               levels=[-1, 0, 1], alpha=0.5,
               linestyles=['--', '-', '--'])
    # plot support vectors
    if plot_support:
        px.scatter(model.support_vectors_[:, 0],
                   model.support_vectors_[:, 1],
                   s=400, linewidth=1, facecolors='none');
    px.set_xlim(limx)
    px.set_ylim(limy)
plt.scatter(P[:, 0], P[:, 1], c=q, s=100, cmap='autumn')
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plot_svc_decision_function(model);
model.support_vectors_
array([[0.44359863, 3.11530945],
       [2.33812285, 3.43116792],

       [2.06156753, 1.96918596]])

Figure 6.9: Classification of the outcome using SVM

Consider the following code that considers the first 50 and 130 points 
of the data set. This is shown in figure 6.10:

def plot_svm(N=10, ax=None):
    P, q = make_blobs(n_samples=200, centers=2,
                      random_state=0, cluster_std=0.60)
    P = P[:N]
    q = q[:N]
    model = SVC(kernel='linear', C=1E10)
    model.fit(X, q)
    
    px = px or plt.gca()
    px.scatter(X[:, 0], X[:, 1], c=q, s=100, cmap='autumn')
    px.set_xlim(-1, 4)
    px.set_ylim(-1, 6)
    plot_svc_decision_function(model, px)

fig, px = plt.subplots(1, 2, figsize=(16, 6))
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fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
for pxi, N in zip(px, [50, 130]):
    plot_svm(N, pxi)
    pxi.set_title('N = {0}'.format(N))

Figure 6.10: Classification of the first 50 and 130 data points using SVM

Consider the following code that shows the classification of data set 
which is not linearly separable. This is shown in figure 6.11:
from sklearn.datasets.samples_generator import make_circles
P, q = make_circles(200, factor=.1, noise=.1)
clf1 = SVC(kernel='linear').fit(P, q)
plt.scatter(P[:, 0], P[:, 1], c=q, s=50, cmap='autumn')

plot_svc_decision_function(clf1, plot_support=False);

Figure 6.11: Classification of data which is not linearly separable
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Kernel methods
Support Vector Machine kernel is a function that accepts low 
dimensional input space and converts it into a higher dimensional 
space. SVM performs the conversion of a not separable problem into 
a separable problem. It is generally used in non-linear separation 
problems. Consider the following figure 6.12. Here, we have a circular 
hyperplane that separates the stars and the triangles. We can convert 
the circular hyperplane into a linear hyperplane by introducing a 
new feature z, z=x^2+y^2. This is shown in figure 6.13:

Figure 6.12: Circular hyperplane separating the stars and the triangles

Figure 6.13: Linear hyperplane separating the stars and the triangles
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Conclusion
In this chapter, we discussed the feasibility of learning an unknown 
target function and in-sample error and out-of-sample error with 
example of its value is affected by increasing Regularization.

Questions
 1. Explain the significance of a large margin in SVM.

 2. Explain SVM kernel.
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Chapter 7
Neural 

Network

Introduction
Support Vector Machine is used for the purpose of classification and 
regression. In the previous chapter, we discussed about Support Vector 
Machine, margin and large margin methods, and kernel methods. 
Neural network refers to the parallel computing device that attempts 
to mimic the model of the brain. In the following chapter, we will 
discuss the early models of Neural Network as well as Perceptron 
learning model, back propagation, and Stochastic Gradient Descent. 
We discussed the implementation of perceptron learning, back 
propagation, and stochastic gradient descent in Python.

Structure
Neural network refers to a collection of algorithms that recognizes 
the relationships in data sets and mimics the working of a human 
brain. In this chapter, we will cover the following topics:

•	 Early Models
•	 Perceptron Learning
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•	 Back propagation

•	 Stochastic Gradient Descent

Objectives
Neural network is a means of performing a machine learning task, 
in which a computer learns by the analysis of training examples. 
Following are the objectives covered in this chapter:

•	 To know early models and perceptron learning
•	 Understanding back propagation
•	 Understanding stochastic gradient descent

Early models
Neural network is one of the subfields of machine learning. Neural 
network accepts the input data, performs training on the data, and 
produces the output based on the training performed. In 1943, Warren 
Mc Culloch and Walter Pits described the working of neurons. They 
modeled neural networks with the help of electrical circuits in order 
to explain the working of neurons in the brain. In 1949, Donald Hebb 
wrote The Organization of Behavior, which pointed that the connection 
between the two neurons is enhanced if they are fired together. In 
1959, Bernard Widrow and Marcian Hoff at Stanford developed neural 
network based models called 'ADALINE' and 'MADALINE'. 
ADALINE stands for Adaptive Linear Elements and MADALINE 
stands for Multiple Adaptive Linear Elements. ADALINE was used 
for the recognition of binary patterns. For a given stream of bits, it 
can predict the occurrence of the next bit. MADALINE stands for 
Multiple Adaptive Linear Elements. It is the first neural network that 
is applied to real-world problems and is still in use for commercial 
purposes.

Perceptron learning
Perceptron is based on a neuron, which is the basic processing unit of 
a brain. A neuron comprises of dendrites, cell body, and axon. Signal 
flows from the axon to the dendrites. An action signal is fired by a 
neuron when a particular threshold is met by a cell. This action either 
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takes place or it does not. There is no concept of partial firing by a 
neuron. Consider Figure 7.1 depicting the Perceptron model:

Figure 7.1: Perceptron model

Perceptron can be used for solving binary classification problems 
where the sample that needs to be identified belongs to two classes. 
Many features or inputs are sent to the linear unit of a Perceptron 
and it generates one binary output. Consider the following code on 
Perceptron learning. In this code, we have added 1 to the input_
size in order to include bias in the weight vector:
import numpy as np
 
class Perceptronlearning(object):
    """Implementation of  a perceptron learning network"""
    def __init__(self, input_size):
        self.W = np.zeros(input_size+1)
def activation_fn(self, p):
""" 1 is returned if p>=0 otherwise it returns 0”””
    return 1 if p >= 0 else 0
""" Prediction is a process of sending an input to the 
perceptron and returning an output. Bias is added to the 
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input vector. We can compute the inner product, and the 
activation function is applied ”””
def predict(self, p):
    p = np.insert(p, 0, 1)
    q = self.W.T.dot(p)
    r = self.activation_fn(q)
    return r
def __init__(self, input_size, lr=1, epochs=10):
    self.W = np.zeros(input_size+1)
    # add one for bias
    self.epochs = epochs
    self.lr = lr
def fit(self, P, d):
    for _ in range(self.epochs):
        for i in range(d.shape[0]):
            y = self.predict(P[i])
            e = d[i] - y
            self.W = self.W + self.lr * e * np.insert(P[i], 
0, 1)
class Perceptronlearning(object):
    """Implements a perceptron network"""
    def __init__(self, input_size, lr=1, epochs=100):
        self.W = np.zeros(input_size+1)
        # add one for bias
        self.epochs = epochs
        self.lr = lr
    

    def activation_fn(self, p):
        #return (p >= 0).astype(np.float32)
        return 1 if p >= 0 else 0
    

    def predict(self, p):
        q = self.W.T.dot(p)
        r = self.activation_fn(q)
        return r
    

    def fit(self, P, d):
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        for _ in range(self.epochs):
            for i in range(d.shape[0]):
                p = np.insert(P[i], 0, 1)
                y = self.predict(p)
                e = d[i] - y
                self.W = self.W + self.lr * e * p
if __name__ == '__main__':
    P = np.array([
        [0, 0],
        [0, 1],
        [1, 0],
        [1, 1]
    ])
    d = np.array([1, 1, 0, 1])
    

    perceptron = Perceptronlearning(input_size=2)
    perceptron.fit(P, d)
    print(perceptron.W)
[ 0. -1.  2.]

So, a single neuron neural network is referred to as a Perceptron. 
It accepts the input and the weight, performs the weighted sum of 
the inputs, and applies an activation function over it.  It accepts and 
generates only binary values. One of the limitations of the Perceptron 
learning model is that it can solve only linearly separable problems.

Back propagation
Back propagation is also referred to as Gradient Computation. Back 
propagation learning algorithm comprises two phases, namely: 
Gradient Computation Phase and Weight Updation Phase. The first 
phase is the Propagation phase. It involves the following steps:

1. Forward Propagation - Here, the training input pattern is 
sent to the neural network and the propagation's output 
activation is generated.

2. Backward Propagation – Here, the input is the propagation's 
output activation that is sent to the neural network, and it 
generates the deltas of all the output and hidden neurons.
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Second phase is the Weight Updation phase. It involves the following 
steps:

1. Gradient of the weight is calculated by multiplying the 
output delta and the input activation.

2. A ratio or percentage of the gradient is subtracted from the 
weight. This ratio or percentage affects the quality of learning 
and speed. It is referred to as the learning rate. A neuron is 
able to train faster if the learning rate is higher. If the learning 
rate is lower, then the training is considered accurate.

Consider the following code on back propagation.
import numpy as np
def sigmoidfun(x):
    return 1.0/(1.0 + np.exp(-x))
def sigmoid_primefun(x):
    return sigmoidfun(x)*(1.0-sigmoidfun(x))
def tanh(x):
    return np.tanh(x)
def tanh_prime(x):
    return 1.0 - x**2

class NeuralNetwork:
    def __init__(self, layers, activation='tanh'):
        if activation == 'sigmoid':
            self.activation = sigmoidfun
            self.activation_prime = sigmoid_primefun
        elif activation == 'tanh':
            self.activation = tanh
            self.activation_prime = tanh_prime
        # Setting weights
        self.weights = []
        # let layers is [2,2,1]
        # weight values range= (-1,1)
        # hidden and input layers - random((2+1, 2+1)) : 3 x 3
        for i in range(1, len(layers) - 1):
            r = 2*np.random.random((layers[i-1] + 1, 
layers[i] + 1)) -1
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            self.weights.append(r)
        # output layer - random
        r = 2*np.random.random( (layers[i] + 1, 
layers[i+1])) - 1
        self.weights.append(r)

    def fit(self, P, q, learning_rate=0.2, epochs=100000):
        # Adding the column of ones to P
        # This is to add the bias unit to the input layer
        ones = np.atleast_2d(np.ones(P.shape[0]))
        P = np.concatenate((ones.T, P), axis=1)
        for k in range(epochs):
            i = np.random.randint(X.shape[0])
            a = [P[i]]
            for l in range(len(self.weights)):
                    dot_value = np.dot(a[l], self.weights[l])
                    activation = self.activation(dot_value)
                    a.append(activation)
            # output layer
            error = q[i] - a[-1]
            deltas = [error * self.activation_prime(a[-1])]
            # we need to begin at the second to last layer 
            # (a layer before the output layer)
            for l in range(len(a) - 2, 0, -1): 
                deltas.append(deltas[-1].dot(self.
weights[l].T)*self.activation_prime(a[l]))

            # reverse
            # [level3(output)->level2(hidden)]  => 
[level2(hidden)->level3(output)]
            deltas.reverse()

            # backpropagation
            # 1. Multiply its output delta and input activation 
            #    to get the gradient of the weight.
            # 2. Subtract a ratio (percentage) of the 
gradient from the weight.
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            for i in range(len(self.weights)):
                layer = np.atleast_2d(a[i])
                delta = np.atleast_2d(deltas[i])
                self.weights[i] += learning_rate * 
layer.T.dot(delta)
            if k % 10000 == 0: print('epochs:', k)
    def predict(self, x): 
        c = np.concatenate((np.ones(1).T, np.array(x)))      
        for l in range(0, len(self.weights)):
            c = self.activation(np.dot(c, self.weights[l]))
        return c

if __name__ == '__main__':
    neu = NeuralNetwork([2,2,1])
    P = np.array([[0, 0],
                  [0, 1],
                  [1, 0],
                  [1, 1]])
    q= np.array([0, 1, 1, 0])
    neu.fit(P,q)
    for x in P:
        print(x,neu.predict(x))
epochs: 0
epochs: 10000
epochs: 20000
epochs: 30000
epochs: 40000
epochs: 50000
epochs: 60000
epochs: 70000
epochs: 80000
epochs: 90000
[0 0] [4.28817961e-05]
[0 1] [0.99667242]
[1 0] [0.99666444]
[1 1] [4.62864326e-05]
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Stochastic Gradient Descent
Stochastic gradient descent is referred to as an iterative method that 
can be used for the optimization of an objective function with the 
necessary properties (subdifferentiable or differentiable). Stochastic 
gradient descent may be used to minimize the computations to be 
performed. It randomly selects a data point at a given iteration that 
reduces the computations enormously. Consider the following code 
using stochastic gradient descent. Here, we take 2 arrays, P and Q. 
Array P comprises the training samples. Array Q holds the target 
values.
import numpy as np
from sklearn import linear_model
P = np.array([[-1, 2], [1, -1], [2, 1], [2, 2]])
Q = np.array([1, 2, 1, 1])
SGDClassif = linear_model.SGDClassifier(max_iter = 1000, 
tol=1e-3,penalty = "elasticnet")
SGDClassif.fit(P, Q)
SGDClassifier(alpha=0.0001, average=False, class_weight=None,
              early_stopping=False, epsilon=0.1, eta0=0.0, 
fit_intercept=True,
              l1_ratio=0.15, learning_rate='optimal', 
loss='hinge',
              max_iter=1000, n_iter_no_change=5, n_jobs=None,
              penalty='elasticnet', power_t=0.5, random_
state=None,
              shuffle=True, tol=0.001, validation_
fraction=0.1, verbose=0,
              warm_start=False)
SGDClassif.predict([[3.,3.]])
array([1])
SGDClassif.coef_
array([[  9.77200712, -19.54811198]])
SGDClassif.intercept_
array([-10.])
SGDClassif.decision_function([[3., 3.]])
array([-39.32831456])
import numpy as np
from sklearn import linear_model
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nsamples, nfeatures = 9, 4
rng = np.random.RandomState(0)
q = rng.randn(nsamples)
p = rng.randn(nsamples, nfeatures)
SGDReg =linear_model.SGDRegressor(
   max_iter = 1000,penalty = "elasticnet",loss = 
'huber',tol = 1e-3, average = True
)
SGDReg.fit(p, q)
SGDRegressor(alpha=0.0001, average=True, early_
stopping=False, epsilon=0.1,
             eta0=0.01, fit_intercept=True, l1_ratio=0.15,
             learning_rate='invscaling', loss='huber', 
max_iter=1000,
             n_iter_no_change=5, penalty='elasticnet', 
power_t=0.25,
             random_state=None, shuffle=True, tol=0.001,
             validation_fraction=0.1, verbose=0, warm_
start=False)
SGDReg.coef_
array([-0.00602635,  0.00566224, -0.00235155,  0.01238438])
SGDReg.intercept_
array([0.0043785])
SGDReg.t_
55.0

Conclusion
In this chapter, we learned about the early models of neural network, 
Perceptron model, back propagation, and stochastic gradient 
descent. In the next chapter, we will discuss about decision trees and 
regression trees, and their implementation in Python.

Questions
 1. Explain the steps involved in back propagation.
 2. Explain stochastic gradient descent.
 3. Explain the early neuron models.
 4. Write the disadvantage of the Perceptron model.
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Introduction
Neural networks are a way to mimic the working of a human brain. 
Decision trees refer to the decision support structure that uses a tree 
to make decisions and draw all possible consequences. Decision 
trees are a way to display conditional control statements. In the 
following chapter, we will discuss about decision trees, regression 
trees, stopping criterion and pruning loss functions in a decision tree, 
categorical attributes, multiway splits and missing values in decision 
trees, and instability in decision trees.

Structure
Decision trees may be used for representing decisions and decision-
making. This chapter will comprise the following topics:

•	 Decision trees

•	 Regression trees

•	 Stopping criterion and pruning loss functions in a decision 
tree

Chapter 8
Decision

Trees
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•	 Categorical attributes, multiway splits, and missing values in 
decision trees

•	 Instability in decision trees

Objectives
Decision trees refer to a popular and powerful tool for the purpose 
of prediction and classification. Following are the objectives of this 
chapter:

•	 To know about decision trees and regression trees

•	 Understanding the stopping criterion and pruning loss 
functions in decision trees

•	 Understanding categorical attributes, multiway splits, and 
missing values in decision trees

•	 Understanding the instability in decision trees

Decision trees
Decision trees refer to the non-parametric method of supervised 
learning. Decision trees are used for the purpose of regression and 
classification. 

Consider the following code on decision trees using scikit learn. 
Here, DecisionTreeClassifier is a class that can perform multi-
class classification on a given data set. DecisionTreeClassifier 
takes two arrays as input, namely P and Q.

from sklearn import tree
P = [[0, 0], [1, 1]]
Q = [0, 1]
DTclf = tree.DecisionTreeClassifier()
DTclf = DTclf.fit(X, Y)
DTclf.predict([[2., 2.]])
array([1])

DTclf.predict_proba([[2., 2.]])
array([[0., 1.]])
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from sklearn.datasets import load_iris
from sklearn import tree
P, q = load_iris(return_X_y=True)
DTclf = tree.DecisionTreeClassifier()
DTclf = DTclf.fit(P, q)
tree.plot_tree(DTclf)
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_text
iris = load_iris()
decisiontree = DecisionTreeClassifier(random_state=0, max_
depth=2)
decisiontree = decisiontree.fit(iris.data, iris.target)
er = export_text(decisiontree, feature_names=iris['feature_
names'])
print(er)

from sklearn import tree
X = [[0, 0], [2, 2]]
y = [0.5, 2.5]
DTclf = tree.DecisionTreeRegressor()
DTclf = DTclf.fit(X, y)
DTclf.predict([[1, 1]])
array([0.5])

In the above code, DTclf.predict() is used for the prediction of 
the samples of a class. DTclf.predict_proba() is used to find the 
probability of each class. DecisionTreeClassifier can be used 
for binary classification and multi-class classification. plot_tree 
function can be used to plot the tree.
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Regression trees
Decision tree algorithms may be used for the process of the prediction 
of results based on the given data. Decision tree algorithms are of 
two types, namely: classification tree and regression tree algorithm. 
Classification and Regression Tree (CART) methodology came into 
existence in 1984. It was introduced by Leo Breiman, Jerome Friedman, 
Richard Olshen, and Charles Stone. In a classification tree algorithm, 
the outcome variable is categorical or fixed. For example, using 
the classification tree algorithm, we may decide what type of car 
a customer will purchase. In regression tree algorithm, the target 
outcome value is a real number. For example, the selling price 
of residential places may be predicted using the regression tree 
algorithm. In the classification tree algorithm, the data set is split 
into classes such as Yes or No. In regression tree algorithm, the target 
variable is continuous, for example, temperature, price, etc. The 
classification of decision tree algorithms is shown in figure 8.1:

Figure 8.1: Classification of decision trees algorithms
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Stopping criterion and pruning 
loss functions in decision trees
The pruning technique is associated with the decision trees that can 
perform a reduction in the size of the decision trees by eliminating 
the parts of the tree that do not classify instances. Overfitting can 
be prevented by including pruning along with the decision trees. 
Overfitting occurs when the training is done so thoroughly that it 
also learns noise along with the pattern. Under-fitting occurs when 
the amount of training is so insufficient that all the patterns cannot 
be identified. Pruning means that the tree is cut back. Quinlan in 
1987 suggested a simple method for pruning decision trees, referred 
to as the reduced error pruning. In reduced error pruning, internal 
nodes are traversed from bottom to top and pruned only if it doesn't 
reduce the tree's accuracy. Olaru and Wehenkel in 2003 suggested the 
use of minimum error pruning. In minimum error pruning, for every 
node we perform a comparison of 1-probability error rate estimation 
without and with pruning. Pessimistic pruning is a fast method of 
pruning in which the nodes are traversed in a top to down manner. 
If a given internal node is pruned then all the descendents of this 
internal node are not sent for the pruning process. Optimal pruning is 
used to guarantee optimality and is based on the concept of dynamic 
programming. In optimal pruning, the tree obtained after pruning 
is much smaller as compared to the original tree and the number 
of internal nodes are much smaller as compared to the number of 
leaves.

Categorical attributes, multiway 
splits, and missing values in 
decision trees
CART refers to the decision tree algorithm that either generates 
binary regression or classification trees based on whether the target 
variable is numeric or categorical. Optimal partitioning must be 
followed while performing partitioning of decision trees. In CART, 
same variables may be reused in the different parts of decision trees. 
Splitting may be binary or multiway.
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In a binary splitting, each node is further divided into at most two 
subgroups, whereas in the case of multiway splitting, each node is 
further split into multiple subgroups. Decision trees are very easy to 
comprehend if we follow multiway splitting as a particular attribute 
rarely reappears while traversing a path from the root to the leaf.

There are several methods used for dealing with missing values in 
decision trees. Missing values may be ignored or may be assigned 
some other category.

Missing values instances may be distributed among the child nodes 
as follows:

1. Everything goes to a node having the largest number of 
instances.

2. Distribution is done among all child nodes but with minimum 
weights, which is proportional to the number of instances 
from every child node.

3. Distribution is done randomly according to the categorical 
distribution to a single child node.

4. Sort, build, and use input features that decide how the 
distribution of instances is done in a child node.

Instability in decision trees
The instability problem in a decision tree classifier means the 
resulting constructed rules might be different from the original or 
the actual ones if there is a modification in the training sample. This 
instability is caused due to invalid selection of the split candidate. 
The split candidate is found using a split evaluation function that 
can be used to partition the data. If at a particular stage, no dominant 
split is found, then the split candidate is used to partition the node. If 
a different split is selected at any stage, then it results in a tree which 
is absolutely different from the original tree. So, the selection of the 
correct splitting candidate is very important in order to prevent 
inaccuracy or instability in decision trees.

Conclusion
In this chapter, we learned about decision trees, the difference 
between regression trees and classification trees, stopping criterion 
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and pruning loss functions in decision trees, categorical attributes, 
multiway splits, and missing values in decision trees, and instability 
in decision trees. In the next chapter, we will discuss about 
unsupervised learning, clustering and principle component analysis.

Questions
 1. Explain the difference between classification trees and 

regression trees.

 2. Explain the stopping criterion and pruning loss functions in 
decision trees.

 3. What are multiway splits in decision trees?

 4. Explain instability in decision trees.
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Chapter 9
Unsupervised 

Learning

Introduction
Decision trees are a way to display conditional control statements. In 
the previous chapter, we discussed about decision trees, regression 
trees, stopping criterion and pruning loss functions in a decision tree, 
categorical attributes, multiway splits and missing values in decision 
trees, and instability in decision trees. Unsupervised learning is a 
kind of machine learning algorithm that can be used to draw useful 
conclusions without the presence of labeled responses in the input 
data. In the following chapter, we will discuss about Clustering 
(K-means Clustering, Hierarchical Clustering), and Principal 
Component Analysis.

Structure
Unsupervised learning is a complex processing task involving 
the identification of patterns in data sets having data points that 
are neither labeled nor classified. This chapter will comprise the 
following topics:
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•	 Clustering
•	 Principal Component Analysis

Objectives
In unsupervised learning, an uncategorized and unlabeled data is 
sent to the AI system and the algorithms act on this data without any 
prior training. Following are the objectives of this chapter:

•	 To know about unsupervised learning

•	 Understanding Clustering and Clustering Algorithms 
(K-means Clustering, Hierarchical Clustering)

•	 Understanding Principal Component Analysis

Clustering
The term Clustering was first used in 1932 in an anthropology by 
Driver and Kroeber. It was used in 1938 in psychology by Joseph Zubin 
and in 1939 by Robert Tryon. It was used for trait theory classification 
in personality psychology in 1943 by Cattell. Clustering also referred 
to as cluster analysis is a process of grouping together similar objects 
into same group called as cluster in such a way that objects in one 
cluster are not similar to the objects in another cluster. Cluster 
analysis is used in many fields such as data compression, pattern 
recognition and image processing, machine learning, computer 
graphics, information retrieval, and bioinformatics. In the following 
chapter, we will discuss about clustering algorithms such as k-means 
clustering algorithm and hierarchical clustering algorithm.

K-means clustering
K-means clustering involves the partitioning of observations into k 
clusters in which a given observation belongs to the cluster having 
the closest mean. Consider the following code in python using 
k-means clustering:

print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
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from sklearn.cluster import KMeans
from sklearn import datasets

np.random.seed(5)

irisdata = datasets.load_iris()
P = irisdata.data
q = irisdata.target

In the following code, n_init is set to 1 instead of 10 which is a default 
value. So, this bad initialization has an impact on the classification 
process as it reduces the number of times an algorithm runs with 
different centroid seeds.

estimatorskmeans = [('k_means_iris_8', KMeans(n_
clusters=8)),
              ('k_means_iris_3', KMeans(n_clusters=3)),
              ('k_means_iris_bad_init', KMeans(n_
clusters=3, n_init=1,
                                               
init='random'))]
fignum=1
titles = ['8 clusters', '3 clusters', '3 clusters, bad 
initialization']
for name, est in estimatorskmeans:
    fig = plt.figure(fignum,figsize=(4,3))
    px = Axes3D(fig, rect=[0, 0, .82,1], elev=52,azim=147)
    est.fit(P)
    labels = est.labels_

    px.scatter(P[:, 3], P[:, 0], P[:, 2],
               c=labels.astype(np.float), edgecolor='k')

    px.w_xaxis.set_ticklabels([])
    px.w_yaxis.set_ticklabels([])
    px.w_zaxis.set_ticklabels([])
    px.set_xlabel('Petal width')
    px.set_ylabel('Sepal length')
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    px.set_zlabel('Petal length')
    px.set_title(titles[figno-1])
    px.dist = 12
    fignum=fignum+1

Plotting the ground truth values takes place:

fig = plt.figure(fignum, figsize=(4, 3))
px = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

for name, label in [('Setosa', 0),
                    ('Versicolour', 1),
                    ('Virginica', 2)]:
    px.text3D(P[q == label, 3].mean(),
              P[q == label, 0].mean(),
              P[q == label, 2].mean() + 2, name,
              horizontalalignment='center',
              bbox=dict(alpha=.2, edgecolor='w', 
facecolor='w'))

Labels are reordered so that the colors are matched with the cluster 
results:

q= np.choose(q,[1, 3, 0]).astype(np.float)
px.scatter(P[:, 3], P[:, 0], P[:, 2], c=q, edgecolor='k')

px.w_xaxis.set_ticklabels([])
px.w_yaxis.set_ticklabels([])
px.w_zaxis.set_ticklabels([])
px.set_xlabel('Petal width')
px.set_ylabel('Sepal length')
px.set_zlabel('Petal length')
px.set_title('Ground Truth')
px.dist = 12

fig.show()
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The output of the above code is shown in figure 9.1:

Figure 9.1: K-means clustering

Hierarchical clustering
Hierarchical clustering is also referred to as Hierarchical Cluster 
Analysis. This method involves building a hierarchy of clusters. 
Two approaches used in hierarchical clustering analysis include the 
following:
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•	 Agglomerative clustering

•	 Divisive clustering

Agglomerative clustering is a ‘bottom-up’ approach that involves 
each individual cluster, and the pairs of clusters merge and move 
higher in the hierarchy. Divisive clustering is a ‘top-down’ approach 
in which a single cluster is further split into multiple clusters as we 
proceed down in the hierarchy.

Cluster dissimilarity is a metric that measures the distance between 
the pair of observations and the linkage criterion that specifies a 
dissimilarity between the pair of observations. Cluster dissimilarity 
is used in agglomerative clustering to decide which cluster would 
join together to form the bigger cluster. It is also used in divisive 
clustering to decide which cluster would finally break. 

Principal Component Analysis 
(PCA)
PCA refers to the dimensionality reduction methodology that can be 
used for reducing the dimensions of large data sets into smaller ones, 
while still preserving as much as information as possible.

Steps performed in PCA include the following:
1. Standardization
2. Computation of Covariance Matrix
3. Identification of Principal Components by computing the 

Eigen Values and Eigen Vectors of Covariance Matrix
4. Creating a Feature Vector
5. Recasting the data

In the first step, standardization is important because if there are 
some values that are large and some that are small, then the larger 
ranges would dominate over the smaller ranges. So, standardization 
is performed to solve this problem. Standardization can be done by 
subtracting the mean from the value and dividing by the standard 
deviation. This is represented as follows:

Z=(value-mean)/standard deviation
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In the second step, covariance matrix is computed to find whether 
there exists redundant information in the input data. In the third 
step, the principle components are generated, which are nothing but 
the variables that are formed by the linear combination of the initial 
variables. In the fourth step, a feature vector is created by considering 
those principle components that are of a higher significance over the 
ones with a lower significance.

Consider the following code in Python on PCA. We are considering a 
two-dimensional data set having 600 points:

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()  

ranstat = np.random.RandomState(1)

P = np.dot(ranstat.rand(2, 2), ranstat.randn(2, 600)).T

plt.scatter(P[:, 0], P[:, 1])

plt.axis('equal');

Figure 9.2: Example on Principal Component Analysis

In the above figure, there exists a linear relation between X and Y. In 
Principal Component Analysis, a list of principal axes is found and 
these axes are used to describe the data set. Using scikit-learn, we 
can compute the principal axes as follows:
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from sklearn.decomposition import PCA

principalaxis = PCA(n_components=2)

principalaxis.fit(P)

PCA(copy=True, iterated_power='auto', n_components=2, 
random_state=None,

    svd_solver='auto', tol=0.0, whiten=False)

Principal axis fit learns components and explained variance as 
follows:

print(principalaxis.components_)

[[ 0.9513521  0.3081058]

[ 0.3081058 -0.9513521]]

print(principalaxis.explained_variance_)

[0.70649509 0.02104542]

def draw_vector(n0, n1, px=None):

    px = px or plt.gca()

    arrowprops=dict(arrowstyle='->',

                    linewidth=2,

                    shrinkA=0, shrinkB=0)

    px.annotate('', n1, n0, arrowprops=arrowprops)

# plot data

plt.scatter(P[:, 0], P[:, 1], alpha=0.2)

for length, vector in zip(principalaxis.explained_
variance_, principalaxis.components_):

    p = vector * 3 * np.sqrt(length)

    draw_vector(principalaxis.mean_, principalaxis.mean_ + p)

plt.axis('equal');

We can define the input data as vectors and represent the direction 
of a vector using the components and squared length of vector is 
defined using explained variance. The principal axis is represented 
by the data. The variance of the data is represented by the length of 
the vector. This is shown in the code given below:
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def draw_vector(n0, n1, px=None):

    px = px or plt.gca()

    arrowprops=dict(arrowstyle='->',

                    linewidth=2,

                    shrinkA=0, shrinkB=0)

    px.annotate('', n1, n0, arrowprops=arrowprops)

# plot data

plt.scatter(P[:, 0], P[:, 1], alpha=0.2)

for length, vector in zip(principalaxis.explained_
variance_, principalaxis.components_):

    p = vector * 3 * np.sqrt(length)

    draw_vector(principalaxis.mean_, principalaxis.mean_ + p)

plt.axis('equal');

Figure 9.3: Variance represented as the length of the vector

The value of one or more of the principal components are made ‘zero’ 
in order to perform dimensionality reduction. Inverse transform on 
the reduced data can be found and the plot can be drawn on the 
original data.

principalaxis = PCA(n_components=1)

principalaxis.fit(P)

X_principalaxis = principalaxis.transform(P)
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print("original shape:   ", P.shape)

print("transformed shape:", X_principalaxis.shape)

original shape:    (600, 2)

transformed shape: (600, 1)

P_new = principalaxis.inverse_transform(X_principalaxis)

plt.scatter(P[:, 0], P[:, 1], alpha=0.2)

plt.scatter(P_new[:, 0], P_new[:, 1], alpha=0.8)

plt.axis('equal');

Figure 9.4: Inverse transform on the reduced data

Conclusion
In this chapter, we learnt about clustering, k-means clustering, 
hierarchical clustering, and Principal Component Analysis. In the 
next chapter, we will discuss the theory of generalization, training 
versus testing, bounding the testing error, Vapnik Chervonenkis 
inequality, VC Dimension, and the proof of VC inequality. 

Questions
 1. Explain k-means clustering with an example.

 2. Explain hierarchical clustering.

 3. Explain Principal Component Analysis with an example.
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Chapter 10
Theory of 

Generalization

Introduction
Unsupervised learning is a kind of machine learning algorithm that 
can be used to draw useful conclusions without the presence of labeled 
responses in the input data. In the previous chapter, we discussed 
about clustering (k-means clustering, hierarchical clustering) and 
Principal Component Analysis. In the following chapter, we will 
discuss about training versus testing, bounding the testing error, and 
VC dimension.

Structure
Unsupervised learning is a complex processing task involving 
the identification of patterns in data sets having data points that 
are neither labeled nor classified. This chapter will comprise the 
following topics:

•	 Training versus testing

•	 Bounding the testing error

•	 VC dimension
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Objectives
In unsupervised learning, an uncategorized and an unlabeled data 
is sent to the AI system, and algorithms act on this data without any 
prior training. Following are the objectives of this chapter:

•	 To know about the difference between training and testing in 
machine learning

•	 Understanding VC dimension

Training versus testing
Training data helps the algorithm to learn from experience. In 
supervised learning, each observation comprises input variable and 
the corresponding target variable. For building a model, a training set 
is implemented and for validating a test set, a testing set is required. 
The data set is divided into the training set and the test set. 

In machine learning, a model is created in order to perform testing 
on the test data. To fit the model, training data is used and to perform 
testing, test data is used. It is not necessary to use 70% of the data set 
for developing the training set and the rest for the purpose of testing. 
It depends on the data set that is being used and the task that needs 
to be accomplished.

Bounding the testing error
Principal Component Analysis refers to the dimensionality reduction 
methodology that can be used for reducing the dimensions of large 
data sets into smaller ones, while still preserving as much as large 
amounts of information possible.

Steps performed in Principal Component Analysis include the 
following:

1. Standardization

2. Computation of Covariance Matrix

3. Identification of Principal Components by computing the 
Eigen Values and the Eigen Vectors of Covariance Matrix

4. Creating a Feature Vector

5. Recasting the data 
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The first step, Standardization, is important because if there are some 
values that are large and some small, then the larger ranges would 
dominate over the smaller ranges. So, Standardization is performed 
to solve this problem. Standardization can be done by subtracting the 
mean from the value and dividing by the standard deviation. This is 
represented as follows:

Z=(value-mean)/standard deviation

In the second step, the covariance matrix is computed to find whether 
there exists redundant i.

VC dimension
VC dimension was originally given by Vladimir Vapnik and Alexey 
Chervonenkis. VC dimension may be defined as a measure of some of 
the features in terms of complexity, flexibility, richness or expressive 
power of the set of functions that may be learned using statistical 
binary classification algorithm.

Uses of VC dimension include the following:

•	 VC dimension is used in the statistical learning theory for the 
prediction of the probabilistic upper bound of the test error 
of a classification model.

•	 VC dimension is also used in sample complexity bounds. 
Sample complexity may be defined as the linear function of 
the VC dimension of the hypothesis space.

•	 VC dimension is used in computational geometry for the 
prediction of the complexity of approximation algorithms.

Conclusion
In this chapter, we learned about training versus testing, bounding 
the testing error, and VC dimension. In the next chapter, we will 
discuss how to detect bias and how to fix bias or achieve fairness in 
ML.

Questions
 1. Explain the difference between training and testing in 

machine learning.

 2. Explain bounding the testing error.
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Chapter 11
Bias and 

Fairness in 
Machine Learning
Introduction
In machine learning and AI, future predictions are based on past 
observations and bias is based on prior information. Harmful biases 
occur because of human biases which are learnt by an algorithm from 
the training data. In the previous chapter, we discussed about training 
versus testing, bounding the testing error, and VC dimension. In the 
following chapter, we will discuss about bias and fairness.

Structure
Human biases are most found in data sets such as medical, educational, 
criminal, text, financial, etc. Human bias is little or no impacted on 
the weather data. This chapter will comprise the following topics:

•	 Introduction of bias

•	 How to detect bias?

•	 How to fix bias or achieve fairness in ML?
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Objectives
In machine learning, algorithmic biases are referred to as unwarranted 
associations. Algorithmic biases are the bugs that can be harmful to 
the business and people. Following are the objectives of this chapter:

•	 Understanding how to identify bias.
•	 Understanding how to achieve fairness in ML.

Introduction
Bias is referred to as a disproportionate prejudice or inclination 
towards a particular thing or an idea. Bias may be found in the 
following different fields:

•	 Research
•	 Statistics
•	 Social sciences

How to detect bias?
Bias is one of the popular topics that one encounters while building 
AI-based models. Many uncommon and common biases may be 
found in the following stages of AI model development:

•	 Data collection
•	 Data preprocessing
•	 Data analysis
•	 Modeling

During data collection, biases may take place. This happens due to 
the occurrence of outliers and errors that happen while collecting 
data.

Biases that are found during the data collection process include the 
following:

•	 Selection bias: While preparing the sample data, selection 
of data must be done in a proper manner to avoid bias. For 
example, if the participants are students who are to undergo 
tests, then they may include the bias results.

•	 The Framing Effect: Survey questions are framed in such a 
manner that biases are avoided and displays positivity in 
sentences, else biases crop up.
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•	 Systematic bias: It occurs because of faulty equipment. It 
leads to repeatable and consistent errors.

•	 Response bias: It occurs due to questions that are answered 
incorrectly by the participants.

During data preprocessing, the following steps may be undertaken:

1. Outlier detection

2. Missing values

3. Filtering data

Outliers lead to a disproportionate effect on many of the analyses 
that are conducted.

While dealing with the missing values, if all the missing values 
are replaced by the mean values, then it would mean being biased 
towards a particular group that is closer to the mean.

Biases may be found during the process of data analysis. Biases may 
be found using the following approaches:

•	 Missing graphs: Incorrect conclusions may be drawn from a 
distorted graph that provides incorrect information.

•	 Confirmation bias: It involves the tendency to focus 
and confirm information that is related to someone's 
preconceptions.

When performing data modelling, it is very important to detect 
biases. For example, Amazon created a hiring algorithm that showed 
gender bias by favoring men as high potential candidates. A model 
that has high variance focuses on training data and doesn't generalize 
well. Data always behaves in the same way in high bias. When 
we increase bias, variance decreases and vice versa. In supervised 
machine learning, training is performed on the input variables in 
such a manner that there is closeness between the predicted values 
and the actual values. Error refers to the difference between the actual 
and the predicted values. There are 3 types of errors in supervised 
machine learning:

•	 Bias error

•	 Variance error

•	 Noise
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Bias and variance are reducible errors that we can minimize to a 
large extent. Noise is said to be an irreducible error that cannot be 
eliminated.

How to fix biases or achieve 
fairness in ML?
There are already many definitions of fairness as per literature and 
these cover the following elements:

•	 Equalized odds
•	 Unawareness
•	 Individual fairness
•	 Demographic parity
•	 Counterfactual fairness
•	 Predictive rate parity

We should avoid including sensitive attribute as one of the features 
in training data. There are many ways to mitigate biases. Some of 
these techniques include:

•	 Preprocessing
•	 In-processing
•	 Post-processing

The pre-processing approach takes place before the development of a 
model. Its main intent is to eliminate the underlying bias from the data 
set before modelling. This is one of the basic approaches of removing 
biases from the data. In-processing is the process of removing biases 
during the training phase. In post-processing, elimination of biases 
takes place after the training phase is over.

Conclusion
In this chapter, we learnt about biases, how to detect bias, and how to 
fix bias and achieve fairness.

Questions
 1. Explain how we can detect bias.

 2. Explain how we can fix bias.
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developed model, training  61
evaluation  61
model, finding  61

high variance  50
Hoeffding's Inequality  62
human bias  111

I
in-sample error  62, 63

K
kernel methods  76
k-means clustering  98-101

L
Lasso regression  50-53
linear regression

about  16
in multiple variables  22-24
in one variable  16-22
linear model, with multiple  

points  47
linear model, with multiple 

points and multiple 
curves  48

linear model, with two points  
46

overfitting  49
regularization  48, 50, 54, 55
under-fitting  49

logistic regression
about  33, 39, 45
assumptions  39
example  39-41
overfitting  55-57
regularization  55-57

M
machine learning

about  1
applications  7
challenges  4-7
classification  3
feasibility of learning  60-62
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history  2
machine learning 

implementations
classification  4
clustering  4
regression  4
reinforcement learning  3
semi-supervised learning  3
supervised learning  3
unsupervised learning  3

machine learning model
building  61, 62
hierarchy, for building  60

MADALINE  80
Margin and Large Margin 

methods
used, for classification of data 

points  71, 74, 75
used, for finding appropriate 

hyperplane  69
used, for separating different 

sets of data with straight 
lines  72

using  68-70
minimum error pruning  93
multiclass classification  41-44
multinomial classification 

. See multiclass 
classification

Multiple Adaptive 
Linear Elements. 
See MADALINE

N
Natural Language Processing  

(NLP)  6
Neural network

about  79, 80

early models  80
Perceptron learning  80-83

O
optimal pruning  93
out-of-sample error  62, 63
overfitting

in linear regression  46
in logistic regression  55

P
Perceptron learning  80-83
pessimistic pruning  93
polynomial regression

about  30
performing  30, 31

Principal Component Analysis 
(PCA)

about  102
computation of Covariance  

Matrix  103
example  103
feature vector, creating  103
inverse transform on reduced  

data  105
principal axis, computing   

103, 104
principle components,  

identifying  103
standardization  102
variance, as length of vector   

104, 105
Project Maven  5
propagation phase

backward propagation  83
forward propagation  83

pruning decision trees  93



Index      119

pruning technique  93
minimum error pruning  93
optimal pruning  93
pessimistic pruning  93
reduced error pruning  93

R
regression tree algorithm  92
regularization

about  59
in linear regression  46
in logistic regression  55

reinforcement learning  3
Residual Sum of Squares (R)  50
Ridge regression  50, 54, 55

S
semi-supervised learning  3
split candidate  94
standard deviation  109
stochastic gradient descent

about  87
using  87

supervised learning  3, 15
Support Vector Machine (SVM)

about  67
classification of shapes,  

hyperplane used  68
kernel  76
Margin and Large Margin 

methods, using  68
used, for data points 

classification  71
SVM model

training, with Scikit Learn  73

T
test error  65
testing analysis methods, binary 

classification
binary classification tests  38
confusion matrix  37, 38

testing error
bounding  108, 109

train error  65
training

versus, testing  108

U
unsupervised learning  3, 97, 

107

V
VC dimension

about  109
uses  109

W
Weight Updation phase  84
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