

Agile Machine
Learning with
DataRobot

Automate each step of the machine learning
life cycle, from understanding problems to
delivering value

Bipin Chadha

Sylvester Juwe

BIRMINGHAM—MUMBAI

Agile Machine Learning with DataRobot
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Publishing Product Manager: Sunith Shetty
Senior Editor: Mohammed Yusuf Imaratwale
Content Development Editor: Nazia Shaikh
Technical Editor: Devanshi Ayare
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Sinhayna Bais

First published: December 2021

Production reference: 1191121

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-680-7

www.packt.com

http://www.packt.com

This book is dedicated to my father Satdevraj Chadha and my wife Madhumita Chadha,
who are the inspirations for this work – Bipin Chadha

This book is dedicated to my family and close friends who constantly supported and
encouraged me during this project - Sylvester Juwe

Contributors

About the authors
Bipin Chadha is a hands-on leader of data science teams who can find innovative
solutions to complex problems. He creates systemic data-driven models that enable
executives to understand how their business operates, analyze a broad range of scenarios
and strategies, and understand the likely implications of decisions and events prior to
implementing risky changes. His passion is to build data-driven cultures, develop effective
teams, and drive organizations to grow and succeed.

Sylvester Juwe is a highly accomplished executive, with hands-on technical expertise in
implementing complex big data and advanced analytics solutions, from conceptualization
to the commercial impact. He is a well-versed leader who leverages sophisticated data
capabilities, influences stakeholders, and creates a strong culture of governance and
curiosity in solving complex business challenges, thereby creating a commercial impact.

About the reviewer
Aman Sharma is a senior data scientist at DataRobot. Aman has a background in
computer science and has worked in various industries as a full stack data scientist. He
has extensive experience in demand forecasting, propensity, churn, credit risk, fraud,
marketing attribution, and optimization use cases. He works at DataRobot, which is a
leading end-to-end enterprise AI platform.

Table of Contents
Preface

Section 1: Foundations

1
What Is DataRobot and Why You Need It?

Technical requirements� 4
Data science processes for
generating business value� 4
Problem understanding� 6
Data preparation� 6
Model development� 7
Model deployment� 7
Model maintenance� 7

Challenges associated with
data science� 8
DataRobot architecture� 10
Hosting platform� 10
Data sources� 11
Core functions� 11

External interactions� 12
Users� 12

Navigating and using
DataRobot features� 13
Addressing data science
challenges with DataRobot� 29
Lack of good-quality data� 29
Explosion of data� 29
Shortage of experienced data scientists� 30
Immature tools and environments� 30
Black box models� 31
Bias and fairness� 31

Summary� 32

2
Machine Learning Basics

Data preparation� 34
Supervised learning dataset� 34
Time series datasets� 35
Data cleansing� 36

Data normalization and standardization� 36
Outliers� 37
Missing values� 37
Category encoding� 38

viii Table of Contents

Consolidate categories� 38
Target leakage� 38
Term-document matrix� 39
Data transformations� 39
Collinearity checks� 40
Data partitioning� 40

Data visualization� 41
Machine learning algorithms� 45
Unsupervised learning� 52
Reinforcement learning� 52
Ensemble/blended models� 52
Blueprints� 53

Performance metrics� 54
Understanding the results� 55
Lift chart � 56
Confusion matrix (binary and multiclass)�57
ROC� 58
Accuracy over time� 59
Feature impacts� 60
Feature Fit� 61
Feature Effects� 62
Prediction Explanations� 63
Shapley values� 64

Summary� 64

3
Understanding and Defining Business Problems

Understanding the
system context� 68
Understanding the why and
the how� 71
Process diagrams� 72
Interaction diagrams� 74
State diagrams� 75
Causal diagrams� 76

Getting to the root of the
business problem� 79
Defining the ML problem� 80
Determining predictions,
actions, and consequences for
Responsible AI� 83
Operationalizing and
generating value� 85
Summary� 86
Further reading� 87

Section 2: Full ML Life Cycle with DataRobot:
Concept to Value

4
Preparing Data for DataRobot

Technical requirements� 92
Automobile Dataset� 92
Appliances Energy Prediction Dataset� 93

Connecting to data sources� 93
Aggregating data for modeling� 97
Cleansing the dataset� 98

Table of Contents ix

Working with different types
of data� 100

Engineering features for
modeling� 102
Summary� 104

5
Exploratory Data Analysis with DataRobot

Data ingestion and
data cataloging� 106
Data quality assessment� 107
EDA� 108

Setting the target feature and
correlation analysis� 115
Feature selection� 126
Summary� 127

6
Model Building with DataRobot

Configuring a modeling project� 130
Building models and the model
leaderboard� 135

Understanding model
blueprints� 145
Building ensemble models� 151
Summary� 154

7
Model Understanding and Explainability

Reviewing and understanding
model details� 158
Assessing model performance
and metrics� 169

Generating model explanations�175
Understanding model learning
curves and trade-offs� 177
Summary� 182

8
Model Scoring and Deployment

Scoring and prediction methods�184
Generating prediction
explanations� 186

Analyzing predictions and
postprocessing� 188
Deploying DataRobot models� 192
Monitoring deployed models� 198
Summary� 202

x Table of Contents

Section 3: Advanced Topics

9
Forecasting and Time Series Modeling

Technical requirements� 206
Appliances energy prediction dataset� 206

Conceptual introduction to time
series forecasting modeling� 207
Defining and setting up time
series projects� 209

Building time series forecasting
models and understanding
their model outcomes� 213
Making predictions with time
series models� 219
Advanced topics in time
series modeling� 223
Summary� 227

10
Recommender Systems

Technical requirements� 230
Book-Crossing dataset� 230

A conceptual introduction to
recommender systems� 231
Approaches to building
recommender systems� 232
Collaborative filtering recommender
systems� 232
Content-based recommender systems� 234

Hybrid recommender systems� 235

Defining and setting up
recommender systems in
DataRobot� 236
Building recommender systems
in DataRobot� 238
Making recommender system
predictions with DataRobot� 243
Summary� 245

11
Working with Geospatial Data, NLP, and Image Processing

Technical requirements� 248
House Dataset� 248

A conceptual introduction
to geospatial, text, and
image data� 249

Geospatial AI� 249
Natural language processing� 250
Image processing� 252

Defining and setting up
multimodal data in DataRobot� 253

Table of Contents xi

Building models using
multimodal datasets in
DataRobot� 255

Making predictions using
a multimodal dataset on
DataRobot� 264
Summary� 266

12
DataRobot Python API

Technical requirements� 268
Automobile Dataset� 268

Accessing the DataRobot API� 268
Using the DataRobot
Python client � 271

Programming in Python using the
Jupyter IDE. � 271

Building models
programmatically� 272
Making predictions
programmatically � 281
Summary� 283

13
Model Governance and MLOps

Technical requirements� 286
Book-Crossing dataset� 286

Governing models� 287
Addressing model bias
and fairness� 289

Implementing MLOps� 296
Notifications and changing
models in production� 303
Summary� 308

14
Conclusion

Finding out additional
information about DataRobot� 310

Future of automated
machine learning� 311
Future of DataRobot� 312

Other Books You May Enjoy
Index

Preface
DataRobot enables data science teams to become more efficient and productive. This
book helps you address machine learning (ML) challenges with DataRobot's enterprise
platform, enabling you to extract business value from data and rapidly generate
commercial impact for your organization.

You'll begin by learning how to use DataRobot's features to perform data prep and
cleansing tasks automatically. The book covers best practices for building and deploying
ML models, along with challenges faced while scaling them to handle complex business
problems. Moving on, you'll perform exploratory data analysis (EDA) tasks to prepare
your data to build ML models and ways to interpret results. You'll also discover how to
analyze the model's predictions and turn them into actionable insights for business users.
After that, you'll create model documentation for internal as well as compliance purposes
and learn how the model gets deployed as an API. In addition, you'll find out how to
operationalize and monitor the model's performance. Finally, you'll work with examples
of time series forecasting, NLP, image processing, MLOps, and more using advanced
DataRobot capabilities.

By the end of this book, you'll have learned how to use some of the AutoML and MLOps
features DataRobot offers to scale ML model building by avoiding repetitive tasks and
common errors.

Who this book is for
This book is for data scientists, data analysts, and data enthusiasts looking for a practical
guide to building and deploying robust ML models using DataRobot. Experienced data
scientists will also find this book helpful for rapidly exploring and building and deploying
a broader range of models. The book assumes a basic understanding of ML.

xiv Preface

What this book covers
Chapter 1, What Is DataRobot and Why You Need It, describes the current practices and
process of building and deploying ML models, and some of the challenges in scaling
that approach. This chapter will then describe what DataRobot is and how DataRobot
addresses many of these challenges, thus allowing analysts and data scientists to quickly
add value to their organization. This also helps executives understand how they can use
DataRobot to efficiently scale their data science practice without a need to hire a large staff
with hard-to-find skills. This chapter also describes various components of DataRobot,
how it is architected, how it integrates with other tools, and different options to set it
up on-premises or in the cloud. It also describes, at a high level, various user interface
components and what they signify.

Chapter 2, Machine Learning Basics, covers some basic concepts of ML that will be
used and referenced in this book. This is the bare minimum you need to know to use
DataRobot effectively. It is not the intent of this chapter to give you a comprehensive
understanding of ML, but just a refresher of some key ideas.

Chapter 3, Understanding and Defining Business Problems, will show you examples of how
to get to the root of a problem and then set it up as an ML project. A business problem
needs to be carefully defined and turned into an ML problem for it to be solved with
DataRobot. This is a critical step that is often ignored, resulting in problems and failures
downstream. Please review this chapter carefully to prevent the wastage of a lot of hard
work. This chapter is tool- and ML method-agnostic.

Chapter 4, Preparing Data for DataRobot, covers how to stitch data together from multiple
disparate sources at a high level. Depending on the data, DataRobot might perform data
prep and cleansing tasks automatically, or you might have to do some of these on your
own. This chapter covers concepts and examples to show how to cleanse and prepare your
data and the features that DataRobot provides to help with these tasks.

Chapter 5, Exploratory Data Analysis with DataRobot, will show you how to use
DataRobot to perform various data analyses and get data ready to start building models.
We provide detailed examples of the kinds of analysis that should be done and what to
be aware of to prevent issues downstream. Done right, this analysis can help catch data
problems and also generate useful business insights.

Chapter 6, Model Building with DataRobot, shows step-by-step examples of building different
types of models with DataRobot. We cover details such as what settings to use under
different circumstances, how to select specific model types, setting up cross validation,
building ensemble models, and tracking the top-performing models on the leaderboard.

Preface xv

Chapter 7, Model Understanding and Explainability, will show you examples of various
functions and outputs that DataRobot provides to help you understand the models and
select the one that best solves the business problem. In this chapter, we will cover, via
examples, what aspects you need to watch out for, and the trade-offs you have to make in
model selection.

Chapter 8, Model Scoring and Deployment, covers how to use models to score input
datasets, create predictions to be used in the intended applications, deploy models in
production, and monitor models.

Chapter 9, Forecasting and Time Series Modeling, describes how you go about building
time series models. These types of models are typically used for forecasting applications.
The chapter shows examples of how different time series problems are handled with
DataRobot. We cover single- as well as multi-series problems.

Chapter 10, Recommender Systems, covers examples of how you go about building
recommender systems with DataRobot. These types of models are typically used for
recommending products or services to users. The chapter covers the strategies and
functionality differences in how a recommendation problem is handled with DataRobot.
We cover trade-offs associated with building different recommender models.

Chapter 11, Working with Geospatial Data, NLP, and Image Processing, covers various
DataRobot functions relating to visualization and analysis of geospatial, text, and image
features, as well as building ML models that incorporate such features. This chapter
describes DataRobot capabilities to automatically incorporate text and image data into ML
models, thereby improving the performance of these models.

Chapter 12, DataRobot Python API, describes when and how to use the DataRobot
Python API. While DataRobot automates many aspects of model building, there are many
scenarios where you need to use programming languages such as Python to efficiently and
scalably perform ML tasks. DataRobot provides a convenient API that allows experienced
data scientists to execute DataRobot functions programmatically.

Chapter 13, Model Governance and MLOps, covers some recent topics that are beginning
to get a lot of attention. Once a model has been developed and deployed, it needs to
be governed and maintained over time. While this is similar to an IT system in many
ways, there are some critical differences that need to be understood and operationalized.
This chapter covers several features and functions that DataRobot provides to assist in
governing and maintaining ML models.

Chapter 14, Conclusion, covers where to go for additional information and other topics
that might be outside the scope of this book. We also describe where we see automated
ML and DataRobot heading in the future.

xvi Preface

To get the most out of this book
To get the most out of this book, you will need access to the DataRobot software. The
commercial version has all the functionality. If you do not have access to a commercial
version, you can get an evaluation version that works for a limited time and does not
have all the capabilities discussed. For some of the advanced capabilities and the API to
work, you will need to know some Python and have access to an open source Python
environment (for instance, Anaconda or Jupyter Notebooks).

Even though most of what we describe in this book can be done without knowing Python,
we highly encourage you to learn Python as a next step. Knowing programming languages
such as Python will open up a lot more possibilities for you and enable you to take better
advantage of tools such as DataRobot.

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3cj2qp1.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801076807_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "For our purposes, we simply created a copy of our imports-85-
data.xlsx dataset file and named it imports-85-data-score.xlsx."

https://bit.ly/3cj2qp1
https://static.packt-cdn.com/downloads/9781801076807_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801076807_ColorImages.pdf

Preface xvii

A block of code is set as follows:

deployment = dr.Deployment.create_from_learning_model(

 MODEL_ID, label='DEPLOYMENT_LABEL',

 description='DEPLOYMENT_DESCRIPTION',

 default_prediction_server_id=PREDICTION_SERVER_ID)

deployment

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "After
selecting the options, we can click on the Compute and download predictions button."

Tips or Important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us
at customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report
this to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

xviii Preface

Share Your Thoughts
Once you've read Agile Machine Learning with DataRobot, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1801076804

Section 1:
Foundations

This section will cover some basic but critical items for the success of an ML project.
Whether you are just starting or are an experienced data scientist, you will find some
topics that you might not be familiar with or have skipped in the past.

This section comprises the following chapters:

•	 Chapter 1, What Is DataRobot and Why You Need It

•	 Chapter 2, Machine Learning Basics

•	 Chapter 3, Understanding and Defining Business Problems

1
What Is DataRobot

and Why You
Need It?

Machine learning (ML) and AI are all the rage these days, and it is clear that these
technologies will play a critical role in the success and competitiveness of most
organizations. This will create considerable demand for people with data science skills.

This chapter describes the current practices and processes of building and deploying
ML models and some of the challenges in scaling these approaches to meet the expected
demand. The chapter then describes what DataRobot is and how DataRobot addresses
many of these challenges, thus allowing analysts and data scientists to quickly add value
to their organizations. This chapter also helps executives understand how they can use
DataRobot to efficiently scale their data science practice without the need to hire a
large staff with hard-to-find skills, and how DataRobot can be leveraged to increase the
effectiveness of your existing data science team. This chapter covers various components
of DataRobot, how it is architected, how it integrates with other tools, and different
options to set it up on-premises or in the cloud. It also describes, at a high level, various
user interface components and what they signify.

4 What Is DataRobot and Why You Need It?

By the end of this chapter, you will have learned about the core functions and architecture
of DataRobot and why it is a great enabler for data analysts as well as experienced data
scientists for solving the most critical challenges facing organizations as they try to extract
value from data.

In this chapter, we're going to cover the following topics:

•	 Data science practices and processes

•	 Challenges associated with data science

•	 DataRobot architecture

•	 DataRobot features and how to use them

•	 How DataRobot addresses data science challenges

Technical requirements
This book requires that you have access to DataRobot. DataRobot is a commercial piece of
software, and you will need to purchase a license for it. Most likely your organization has
already purchased DataRobot licenses, and your administrator can set up your account on
a DataRobot instance and provide you with the appropriate URL to access DataRobot.

A trial version is available, at the time of the writing of this book, that you can access from
DataRobot's website: https://www.datarobot.com/trial/. Please be aware that
the trial version does not provide all of the functionality of the commercial version, and
what it provides may change over time.

Data science processes for generating
business value
Data science is an emerging practice that has seen a lot of hype. Much of what it means
is under debate and the practice is evolving rapidly. Regardless of these debates, there
is no doubt that data science methods can provide business benefits if used properly.
While following a process is no guarantee of success, it can certainly improve the odds of
success and allow for improvement. Data science processes are inherently iterative, and it
is important to not get stuck in a specific step for too long. People looking for predictable
and predetermined timelines and results are bound to be disappointed. By all means,
create a plan, but be ready to be nimble and agile as you proceed. A data science project
is also a discovery project: you are never sure of what you will find. Your expectations or
your hypotheses might turn out to be false and you might uncover interesting insights
from unexpected sources.

https://www.datarobot.com/trial/

Data science processes for generating business value 5

There are many known applications of data science and new ones are being discovered
every day. Some example applications are listed here:

•	 Predicting which customer is most likely to buy a product

•	 Predicting which customer will come back

•	 Predicting what a customer will want next

•	 Predicting which customer might default on a loan

•	 Predicting which customer is likely to have an accident

•	 Predicting which component of a machine might fail

•	 Forecasting how many items will be sold in a store

•	 Forecasting how many calls the call center will receive tomorrow

•	 Forecasting how much energy will be consumed next month

Figure 1.1 shows a high-level process that describes how a data science project might go
from concept to value generation:

Figure 1.1 – Typical process steps with details about what happens during each step

6 What Is DataRobot and Why You Need It?

Following these steps is critical for a successful machine learning project. Sometimes these
steps get skipped due to deadlines or issues that inevitably surface during development
and debugging. We will show how using DataRobot helps you avoid some of the problems
and ensure that your teams are following best practices. These steps will be covered in
great detail, with examples, in other chapters of this book, but let's get familiar with them
at a high level.

Problem understanding
This is perhaps the most important step and also the step that is given the least attention.
Most data science projects fail because this step is rushed. This is also the task where you
have the least methods and tools available from the data science disciplines. This step
involves the following:

•	 Understanding the business problem from a systemic perspective

•	 Understanding what it is that the end users or consumers of the model's
results expect

•	 Understanding what the stakeholders will do with the results

•	 Understanding what the potential sources of data are and how the data is captured
and modified before it reaches you

•	 Assessing whether there are any legal concerns regarding the use of data and
data sources

•	 Developing a detailed understanding of what various features of the datasets mean

Data preparation
This step is well known in the data science community as data science teams typically
spend most of their time in this step. This is a task where DataRobot's capabilities start
coming into play, but not completely. There is still a lot of work that the data science or data
engineering teams have to do using SQL, Python, or R. There are also many tasks in this
step that require a data scientist's skill and experience (for example, feature engineering),
even though DataRobot is beginning to provide capabilities in this area. For example,
DataRobot provides a lot of useful data visualizations and notifications about data quality,
but it is up to the analyst to make sense out of them and take appropriate actions.

This step also involves defining the expected result (such as predicting how many items
will be sold next week or determining the probability of default on a loan) of the model
and how the quality of results will be measured during model development, validation,
and testing stages.

Data science processes for generating business value 7

Model development
This step involves the development of several models using different algorithms and
optimizing or tuning hyperparameters of the algorithms. Results produced by the models
are then evaluated to narrow down the model list, potentially drop some of the features,
and fine-tune the hyperparameters.

It is also common to look at feature effects, feature importance, and partial dependence
plots to engineer additional features. Once you are satisfied with the results, you
start thinking about how to turn the predictions and explanations into useable and
actionable information.

Model deployment
Upon completion of model development, the model results are reviewed with users and
stakeholders. This is the point at which you should carefully assess how the results will
be turned into actions. What will the consequences of those actions be, and are there any
unintended consequences that could emerge? This is also the time to assess any fairness
or bias issues resulting from the models. Make sure to discuss any concerns with the users
and business leaders.

DataRobot provides several mechanisms to rapidly deploy the models as REST APIs or
executable Java objects that can be deployed anywhere in the organization's infrastructure
or in the cloud. Once the model is operational as an API, the hard part of change
management starts. Here you have to make sure that the organization is ready for the
change associated with the new way of doing business. This is typically hard on people
who are used to doing things a certain way. Communicating why this is necessary, why it is
better, and how to perform new functions are important aspects that frequently get missed.

Model maintenance
Once the model is successfully deployed and operating, the focus shifts to managing
the model operations and maintenance. This includes identifying data gaps and other
recommendations to improve the model over time as well as refining and retraining
the models as needed. Monitoring involves evaluating incoming data to see whether
the data has drifted and whether the drift requires action, monitoring the health of the
prediction services, and monitoring the results and accuracy of the model outputs. It
is also important to periodically meet with users to understand what the model does
well and where it can be improved. It is also common to sometimes employ champion
and challenger models to see whether a different model is able to perform better in the
production setting.

8 What Is DataRobot and Why You Need It?

As we outlined before, although these steps are presented in a linear fashion, in practice
these steps do not occur in this exact sequence and there is typically plenty of iteration
before you get to the final result. ML model development is a challenging process, and we
will now discuss what some of the challenges are and how to address them.

Challenges associated with data science
It is no secret that getting value from data science projects is hard, and many projects end
in failure. While some of the reasons are common to any type of project, there are some
unique challenges associated with data science projects. Data science is still a relatively
young and immature discipline and therefore suffers from problems that any emerging
discipline encounters. Data science practitioners can learn from other mature disciplines
to avoid some of the mistakes that others have learned to avoid. Let's review some of the
key issues that make data science projects challenging:

•	 Lack of good-quality data: This is a common refrain, but this is a problem that is
not likely to go away anytime soon. The key reason is that most organizations are
used to collecting data for reporting. This tends to be aggregate, success-oriented
information. Data needed for building models, on the other hand, needs to be
detailed and should capture all outcomes. Many organizations invest heavily in
data and data warehouses in response to the need for data; the mistake they make
is collecting it from the perspective of reporting rather than modeling. Hence, even
after all the time and costs spent, they end up in a place where enough useable data
is not available. This leads to frustration in senior leadership as to why their teams
cannot make use of these large data warehouses built at enormous expense. Taking
some time in developing a systemic understanding of the business can help mitigate
this problem, as discussed in the following chapters.

•	 Explosion of data: Data is being generated and collected on an exponential scale.
As more data is collected, the scale of the data makes it harder to be analyzed
and understood through traditional reporting methods. New data also spawns
new use cases that were previously not possible. The scaling of data also increases
noise. This makes it increasingly difficult to extract meaningful insights with
traditional methods.

Challenges associated with data science 9

•	 Shortage of experienced data scientists: This is another topic that gets a lot of
press. The reason for the shortage is that it is a relatively new field where techniques
and methods are still rapidly evolving. Another factor is that data science is a
multi-disciplinary field that requires expertise in multiple areas, such as statistics,
computer science, and business, as well as knowledge of the domain where it is to
be applied. Most of the talent pool today is relatively inexperienced and therefore
most data scientists have not had a chance to work on a variety of use cases with a
broad range of methods and data types. Best practices are still evolving and are not
in widespread use. As more and more jobs become data-driven, it will also become
important for a broad range of employees to become data-savvy.

•	 Immature tools and environments: Most of the tools and environments being
used are relatively immature, and that makes it difficult to efficiently build and
deploy models. Most of a data scientist's time is spent wrestling with data and
infrastructure issues, which limits the time spent understanding the business
problem and evaluating the business and ethical implications of models. This in
turn increases the odds of failure to produce lasting business value.

•	 Black box models: As the complexity of models rises, our ability to understand
what they are doing goes down. This lack of transparency creates many problems
and can lead to models producing nonsensical results or, at worst, dangerous results.
To make matters worse, these models tend to have better accuracy on training and
validation datasets. Black box models tend to be difficult to explain to stakeholders
and are therefore less likely to be adopted by users.

•	 Bias and fairness: The issue of ML models being biased and unfair has been raised
recently and it is a key concern for anyone looking to develop and deploy ML
models. The biases can creep into the models via biased data, biased processes, or
even biased decision-making using model results. The use of black box models
makes this problem much harder to track and manage. Bias and fairness are hard to
detect but will be increasingly important not only for an organization's reputation
but also with regard to the regulatory or legal problems that they can create.

Before we discuss how to address these challenges, we need to introduce you to
DataRobot because, as you might have guessed, DataRobot helps in addressing many of
these challenges.

10 What Is DataRobot and Why You Need It?

DataRobot architecture
DataRobot is one of the most well-known commercial tools for automated ML
(AutoML). It only seems appropriate that the technology meant to automate everything
should itself benefit from automation. As you go through the data science process, you
will realize that there are many tasks that are repetitive in nature and standardized enough
to warrant automation. DataRobot has done an excellent job of capturing such tasks to
increase the speed, scale, and efficiency of building and deploying ML models. We will
cover these aspects in great detail in this book. Having said that, there are still many tasks
and aspects of this process that still require decisions, actions, and tradeoffs to be done
by data scientists and data analysts. We will highlight these as well. The following figure
shows a high-level view of the DataRobot architecture:

Figure 1.2 – Key components of the DataRobot architecture

The figure shows five key layers of the architecture and the corresponding components. In
the following sections, we will describe each layer and how it enables a data science project.

Hosting platform
The DataRobot environment is accessed via a web browser. The environment itself can
be hosted on an organization's servers, or within an organization's server instances on
a cloud platform, such as AWS or DataRobot's cloud. There are pros and cons to each
hosting option and which option you should choose depends on your organization's
needs. Some of these are discussed at a high level in Table 1.1:

DataRobot architecture 11

Figure 1.3 – Pros and cons of various hosting options

As you can gather from this table, DataRobot offers you a lot of choices, and you can pick
the option that suits your environment the best. It is important to get your IT, information
security, and legal teams involved in this conversation. Let's now look at how data comes
into DataRobot.

Data sources
Datasets can be brought into DataRobot via local files (csv, xlsx, and more), by
connecting to a relational database, from a URL, or from Hadoop Distributed File
System (HDFS) (if it is set up for your environment). The datasets can be brought directly
into a project or can be placed into an AI catalog. The datasets in the catalog can be shared
across multiple projects. DataRobot has integrations and technology alliances with several
data management system providers.

Core functions
DataRobot provides a fairly comprehensive set of capabilities to support the entire ML
process, either through the core product or through add-on components such as Paxata,
which provides easy-to-use data preparation and Exploratory Data Analysis (EDA)
capabilities. Discussion of Paxata is beyond the scope of this book, so we will provide
details of the capabilities of the core product. DataRobot automatically performs several
EDA analyses that are presented to the user for gaining insights into the datasets and
catching any data quality issues that may need to be fixed.

12 What Is DataRobot and Why You Need It?

The automated modeling functions are the most critical capability offered by DataRobot.
This includes determining the algorithms to be tried on the selected problem, performing
basic feature engineering, automatically building models, tuning hyperparameters,
building ensemble models, and presenting results. It must be noted that DataRobot
mostly supports supervised ML algorithms and time series algorithms. Although there are
capabilities to perform Natural Language Processing (NLP) and image processing, these
functions are not comprehensive. DataRobot has also been adding to MLOps capabilities
recently by providing functions for rapidly deploying models as REST APIs, monitoring
data drift and service health, and tracking model performance. DataRobot continues to
add capabilities such as support for geospatial data and bias detection.

These tasks are normally done by using programming languages such as R and Python
and can be fairly time-consuming. The time spent coding up data analysis, model
building, output analysis, and deployment can be significant. Typically, a lot of time is also
spent debugging and fixing errors and making the code robust. Depending on the size
and complexity of the model, this can take anywhere from weeks to months. DataRobot
can reduce this time to days. This time can in turn be used to deliver projects faster, build
more robust models, and better understand the problem being solved.

External interactions
DataRobot functions can be accessed via a comprehensive user interface (which we will
describe in the next section), a client library that can be used in a Python or R framework
to programmatically access DataRobot capabilities via an API, and a REST API for use by
external applications. DataRobot also provides the ability to create applications that can be
used by business users to enable them to make data-driven decisions.

Users
While most people believe that DataRobot is for data analysts and data scientists who
do not like to code, it offers significant capabilities for data scientists who can code and
can significantly increase the productivity of any data science team. There is also some
support for business users for some specific use cases. Other systems can integrate with
DataRobot models via the API, and this can be used to add intelligence to external
systems or to store predictions in external databases. Several tool integrations exist
through their partners program.

Navigating and using DataRobot features 13

Navigating and using DataRobot features
Now that you have some familiarity with the core functions, let's take a quick tour of
what DataRobot looks like and how you navigate the various functions. This section will
introduce DataRobot at a high level, but don't worry: we will get into details in subsequent
chapters. This section is only meant to familiarize you with DataRobot functionality.

Your DataRobot administrator will provide you with the appropriate URL and a username
and password to access your DataRobot instance. In my experience, Google Chrome
seems to work best with DataRobot, but you can certainly try other browsers as you see fit.

Note
Please note that the screens and options you see depend on the products you
have the license for and the privileges granted to you by your admin. For most
part, it will not affect the flow of this book. Since we will be focusing on the ML
development core of DataRobot, you should be able to follow along.

So, let's go ahead and launch the browser and go to your DataRobot URL. You will see a
login screen as shown in the following figure:

Figure 1.4 – DataRobot login screen

14 What Is DataRobot and Why You Need It?

Go ahead and log in using your credentials. Once you have logged in, you will be
presented with a welcome screen (Figure 1.4) that prompts you to select what you want to
do next. It is also possible that (depending on your setup) you will be directly taken to the
data input screen (Figure 1.5):

Figure 1.5 – Welcome screen

At this point, we will select the ML Development option and click the Continue button.
This prompts you to provide the dataset that you wish to build models with (Figure 1.5):

Navigating and using DataRobot features 15

Figure 1.6 – New project/drag dataset screen

At this point, you can drag a dataset file from your local machine onto the screen (or select
one of the other choices) and DataRobot will start the process of analyzing your data. You can
click on the View dataset requirements link to see the file format options available (Figure
1.6). The file size requirements for your instance might be different from what you see here:

Figure 1.7 – Dataset requirements

16 What Is DataRobot and Why You Need It?

At this point, you can upload any test dataset from your local drive. DataRobot will
immediately start evaluating your data (Figure 1.7):

Figure 1.8 – EDA

We will cover the process of building the project and associated models in later chapters;
for now, let's cover what other options we have. If you click on the ? icon in the top right,
you will see the DOCUMENTATION drop-down menu (Figure 1.8):

Figure 1.9 – DOCUMENTATION drop-down menu

Navigating and using DataRobot features 17

Here you see various options to learn more about different functions, contact customer
support, or interact with the DataRobot community. I highly recommend joining the
community to interact with and learn from other community members. You can reach
the community via https://community.datarobot.com. If you select Platform
Documentation from the dropdown, you will see extensive documentation on DataRobot
functions (Figure 1.9):

Figure 1.10 – DataRobot platform documentation

https://community.datarobot.com

18 What Is DataRobot and Why You Need It?

You can review the various topics at your leisure or come back to a specific topic as
needed according to the task you are working on. Let's click on the ? icon in the top right
again and this time select API Documentation from the dropdown. You will now see the
documentation for the DataRobot API (Figure 1.10):

Figure 1.11 – DataRobot API Documentation

We will cover the API in the advanced topics in later chapters. If you are not familiar
with programming or are relatively new to programming, you can ignore this part for
now. If you are an experienced data scientist with expertise in Python or R, you can start
reviewing the various functions available to you to automate your model-building tasks
even further.

Navigating and using DataRobot features 19

Let's go back to the main DataRobot page and this time select the folder icon in the top
right of the page (Figure 1.11):

Figure 1.12 – Project drop-down menu

If you do not see the folder icon, it simply means that you do not have any projects
defined. We will describe creating projects in more detail later. For now, just familiarize
yourself with different options and what they look like. Here you will see options to create
a new project or manage existing projects. In here, you will also see some details about the
currently active project as well as a list of recent projects.

20 What Is DataRobot and Why You Need It?

The Create New Project option takes you back to the new project page that we saw before
in Figure 1.5. If you select the Manage Projects menu, it will show all of your projects
listed by create date (Figure 1.12). Here you are able to select a project to see more details,
clone a project, share the project with other users, or delete a project as needed, as shown
in the following figure:

Figure 1.13 – Manage projects page

If you click on the very last menu item in the top right of the page that looks like a person,
you will see a dropdown (Figure 1.13):

Figure 1.14 – User account management dropdown

Navigating and using DataRobot features 21

From here you can manage your profile and adjust your account settings. If you have
admin privileges, you can view and manage other users and groups. You can also sign out
of DataRobot if needed.

If you select the Profile menu, you will see details of your account (Figure 1.14):

Figure 1.15 – User profile page

22 What Is DataRobot and Why You Need It?

Here you can update some of your information. You will also see some new menu choices on
the second menu row at the top. This allows you to change settings or access some developer
options, and so on. If you select the Settings menu, you will see the following (Figure 1.15):

Figure 1.16 – User Settings

On this page, you can change your password, set up two-factor authentication, change the
theme, and set up notifications (you will see different options available to you based on
how your account was set up by your administrator).

Navigating and using DataRobot features 23

If you select Developer Tools, you will see the following (Figure 1.16):

Figure 1.17 – Developer Tools screen

Here you can create an API key associated with your account. This key is useful for
authentication if you will be using the DataRobot API. You can also download the API
package to set up a portable prediction server to deploy models within your organization's
infrastructure.

24 What Is DataRobot and Why You Need It?

If you click on the AI Catalog menu at the top, you will see a catalog of shareable datasets
available within DataRobot (Figure 1.17):

Figure 1.18 – AI Catalog

This page shows you a list of datasets available. If you do not see any datasets, you can
upload a test dataset here by clicking on the Add new data button (Figure 1.18). You can
also click on a dataset to explore the data available. You can search and sort by sources,
user-defined tags, or owner/creator:

Figure 1.19 – Dataset information page

Navigating and using DataRobot features 25

Normally a dataset is only available within a project. If you want to share datasets across
projects or iterations of projects, you can create the dataset within this catalog. This allows
you to share these datasets across projects and users. The datasets can be static, or they
can be dynamically created using a SQL query as needed. Datasets can also be modified or
blended via Spark SQL if you need data from multiple tables or sources for a project.

If you click on the Profile button, you will see profile-level information about the dataset
(Figure 1.19). This information is automatically compiled for you. We will describe these
capabilities and how to use them in more detail later:

Figure 1.20 – Dataset information page

This page shows details of the dataset that is part of the project that is active at that time.
This page is one of the key components of the DataRobot capability. The page shows
summary information as well as any data quality issues that DataRobot has detected.
Below that, it shows summaries of data features as well as a feature's importance relative to
the target feature. We will cover these capabilities in more detail in subsequent chapters.

26 What Is DataRobot and Why You Need It?

Let's now click on the Data menu at the top left of the page. This page (Figure 1.20) shows
a detailed analysis of the dataset for your currently active project:

Figure 1.21 – Project data page

This page shows the results of the analysis of your datasets, provides any warnings, relative
importance of the features, and the feature lists for use in your project. We will review the
functionality of this page in great detail in later chapters.

Navigating and using DataRobot features 27

Let's now click on the Models menu item at the top. This shows the model leaderboard for
the active project (Figure 1.21):

Figure 1.22 – Model leaderboard

This is another critical page where you will spend a lot of your time during the modeling
process. Here you can see the top-performing models that DataRobot has built and their
performance metrics for validation, cross-validation, and holdout samples. You can
drill down into the details of any selected model. It is important to note that DataRobot
mostly works with supervised learning problems; currently, it does not have support for
unsupervised learning (except for some anomaly detection) or reinforcement learning.
Also, support for NLP and image processing problems is limited. Similarly, there are
situations where either due to data limitations or extreme scales, you will find that the
automation adds a level of overhead that makes it impractical to use DataRobot. If your
project requires advanced capabilities in these areas, you will need to work in Python or R
directly. More on this in subsequent chapters.

28 What Is DataRobot and Why You Need It?

Let's now move to the next menu item, MLOps. When you click on MLOps, you will see
the screen shown in Figure 1.22:

Figure 1.23 – MLOps page

The MLOps page shows you your active deployments and their health. You can set up
alerts relating to data drift or model accuracy as needed for your use cases.

The next menu item is Model Registry. Now, Model registry is the mechanism by which
you can bring externally developed models into DataRobot. This capability is an add-on
that your organization may or may not have purchased. This aspect is an advanced topic
that is beyond the scope of this book.

Let's click on the next menu item, Applications. You will now see what's shown in
Figure 1.23:

Figure 1.24 – Applications page

Addressing data science challenges with DataRobot 29

Applications is a relatively new functionality in DataRobot that is meant to allow business
users to easily access model results without needing to get DataRobot user licenses.

This concludes our quick tour of what DataRobot is and what it looks like. We will revisit
many of these components in great detail and see examples of how these are used to take a
data science project from start to finish.

Addressing data science challenges with
DataRobot
Now that you know what DataRobot offers, let's revisit the data science process and
challenges to see how DataRobot helps in addressing these challenges and why this is a
valuable tool in your toolkit.

Lack of good-quality data
While DataRobot cannot do much to address this challenge, it does offer some capabilities
to handle data with quality problems:

•	 Automatically highlights data quality problems.

•	 Automated EDA and data visualization expose issues that could be missed.

•	 Handles and imputes missing values.

•	 Detection of data drift.

Explosion of data
While it is unlikely that the increase in the volume and variety will slow down any time
soon, DataRobot offers several capabilities to address these challenges:

•	 Support for SparkSQL enables the efficient pre-processing of large datasets.

•	 Automatically handles categorical data encodings and selects appropriate
model blueprints.

•	 Automatically handles geospatial features, text features, and image features.

30 What Is DataRobot and Why You Need It?

Shortage of experienced data scientists
This is a key challenge for most organizations and data science teams, and DataRobot is
well positioned to address this challenge:

•	 Provides capabilities that cover most of the data science process steps.

•	 Significant automation of several routine tasks by providing pre-built blueprints
encoded with best practices.

•	 Experienced data scientists can build and deploy models much faster.

•	 Data analysts or data scientists who are not very comfortable coding can utilize
DataRobot capabilities without having to write a lot of code.

•	 Experienced data scientists who are comfortable with coding can utilize the APIs to
automatically build and deploy an order of magnitude more models than otherwise
feasible without the support of other data engineering or IT staff.

•	 Even experienced data scientists do not know all the possible algorithms and
typically do not have the time to try out many of the combinations and build
analysis visualizations and explanations for all models. DataRobot takes care of
many of these tasks for them, enabling them to focus more time on understanding
the problem and analyzing results.

Immature tools and environments
This is a key barrier to the productivity and effectiveness of any data science organization.
DataRobot clearly addresses this key challenge by offering the following:

•	 Ease of deployment of any model as a REST API.

•	 Ease of use in developing multiple competing models and selecting the best ones
without worrying about the underlying infrastructure, installation of compatible
versions, and without coding and debugging. These tasks can take up a lot of time
that would be better spent on understanding and solving the business problem.

•	 DataRobot encodes many of the best practices into their development process so
as to prevent mistakes. DataRobot automatically takes care of many small details
that can be overlooked even by experienced data scientists, leading to flawed models
or rework.

•	 DataRobot provides automated documentation of models and modeling steps that
could otherwise be glossed over or forgotten. This becomes valuable at a later time
when a data scientist has to revisit an old model built by them or someone else.

Addressing data science challenges with DataRobot 31

Black box models
This is a key challenge that DataRobot has done extensive work on to provide methods to
help make models more explainable, such as the following:

•	 Automated generation of feature importance (using Shapley values and other
methods) and partial dependence plots for models

•	 Automated generation of explanations for specific predictions

•	 Automated generation of simpler models that could be used to explain the
complex models

•	 Ability to create models that inherently more explainable such as Generalized
Additive Models (GAMs)

Bias and fairness
Recently, DataRobot has added capabilities to help detect bias and fairness issues in
models. This is no guarantee of a complete lack of bias, but it's a good starting point to
ensure positive movement in this direction. Some of the capabilities added are listed here:

•	 Specify protected features that need to be checked for bias.

•	 Specify bias metrics that you want to use to check for fairness.

•	 Evaluate your models using metrics for protected features.

•	 Use of model explanations to investigate whether there is potential for unfairness.

While many people believe that with these automated tools, you no longer need data
scientists, nothing could be further from the truth. It is, however, obvious that such tools
will make data science teams a lot more valuable to their organizations by unlocking more
value faster and by making these organizations more competitive. It is therefore likely that
tools such as DataRobot will become increasingly commonplace and see widespread use.

32 What Is DataRobot and Why You Need It?

Summary
Most data scientists today are bogged down in the implementation details or are
implementing suboptimal algorithms. This leaves them with less time to understand the
problem and to search for optimal algorithms or their hyperparameters. This book will show
you how to take your game to the next level and let the software do the repetitive work.

In this chapter, we covered what a typical data science process is and how DataRobot
supports this process. We discussed steps in the process where DataRobot offers a lot of
capability and we also highlighted areas where a data scientist's expertise and domain
understanding is critical (areas such as problem understanding and analyzing the impacts
of deploying a model on the overall system). This highlights an important point in that
success comes from the combination of skilled data scientists and analysts and appropriate
tools (such as DataRobot). By themselves, they cannot be as effective as the combination.
DataRobot enables relatively new data scientists to quickly develop and deploy robust
models. At the same time, experienced data scientists can use DataRobot to rapidly explore
and build a broader range of models than they would be able to build on their own.

We covered some of the key data science challenges and how DataRobot helps you
overcome some of the specific challenges. This should help guide leaders on how to craft
the right combination of data scientists and the tools and infrastructure they need. We
also covered the DataRobot architecture, its components, and what DataRobot looks like.
You got a taste of what you will see when you start using it and where to go to find specific
functions and help.

Hopefully, this chapter has shown you why DataRobot could be an important tool in your
toolbox regardless of your experience or how comfortable you are with coding. In the
following chapters, we will use hands-on examples to show how to use DataRobot in detail
and how to move your projects into a higher gear. But before we do that, we need to cover
some ML basics in the next chapter.

2
Machine Learning

Basics
This chapter covers some basic concepts of machine learning that will be used and
referenced in this book. This is the bare minimum you need to know in order to use
DataRobot effectively. Experienced data scientists can safely skip this chapter. It is not
the intention of this chapter to give you a comprehensive understanding of statistics
or machine learning, but just a refresher of some key ideas and concepts. Also, the
focus is on practical aspects of what you need to know in order to understand the
core ideas without going into too much detail. It might be tempting to jump in and let
DataRobot automatically build the models, but doing that without a basic understanding
could backfire. If you are leading a data science team, please make sure that you have
experienced data scientists in your teams who are mentoring others and that there are
other governance processes in place.

Some of these concepts will come up again during the hands-on examples, but we are
covering many concepts here that might not come up during a specific example, but might
come up in relation to your project at some point. The topics listed here can be used as a
guide to determine some of the basic knowledge that you require in order to start using
powerful tools such as DataRobot.

34 Machine Learning Basics

By the end of this chapter, you will have learned some of the core concepts you need
to know to use DataRobot effectively. In this chapter, we're going to cover the following
main topics:

•	 Data preparation

•	 Data visualization

•	 Machine learning algorithms

•	 Performance metrics

•	 Understanding the results

Data preparation
Before an algorithm can be applied to a dataset, the dataset needs to fit a certain pattern.
The dataset also needs to be free of errors. Certain methods and techniques are used to
ensure that the dataset is ready for the algorithms, and this will be the focus of this section.

Supervised learning dataset
Since DataRobot mostly works with supervised learning problems, we will only focus on
datasets for supervised machine learning (other types will be covered in a later section). In
a supervised machine learning problem, we provide all the answers as part of the dataset.
Imagine a table of data where each row represents a set of clues with their corresponding
answers (Figure 2.1):

Figure 2.1 – Supervised learning dataset

Data preparation 35

This dataset is made up of columns that contain clues (these are called features), and
there is a column with the answers (this is called target). Given a dataset that looks like
this, the algorithm learns how to produce the right answer given a set of clues. No matter
what form your data is in, your task is to first transform it to make it look like the table in
Figure 2.1. Note that the clues that you have might be spread across multiple databases or
Excel files. You will have to compile all of that information into one table. If the datasets
you have are complex, you will need to use languages such as SQL, tools such as Python
Pandas, or Excel, or tools such as Paxata.

Time series datasets
Time series or forecasting problems have time as a key component of their datasets.
They are similar to the supervised learning datasets, with slight differences, as shown in
Figure 2.2:

Figure 2.2 – Time series dataset

You need to make sure that your time series datasets appear as shown in the preceding
diagram. It should have a date or time-based column, and a column with the series values
you are trying to forecast, and a set of clues as needed. You can also add columns that help
to categorize different series, if there are multiple time series that you need to forecast. For
example, you might be interested in forecasting units sold for dates 5 and 6. If your data is
in some other form, it needs to be transformed to look like the preceding diagram.

36 Machine Learning Basics

Data cleansing
The data that comes to you will typically have errors in it. For example, you might have
text in a field that is supposed to contain numbers. You might see a price column where
the values may contain a $ sign on occasion, but no sign at other times. DataRobot can
catch some of these, but there are times when an automated tool will not catch these, so
you need to look and analyze the dataset carefully. It is useful to sometimes upload your
data to DataRobot to see what it finds, and then use its analysis to determine the next
steps. Some of this cleansing will need to be performed outside DataRobot, so be prepared
to iterate a few times to get the data set up correctly. Common issues to watch out for
include the following:

•	 Wrong data type in a column

•	 Mixed data types in a column

•	 Spaces or other characters in numeric columns that make them look like text

•	 Synonyms or misspelled words

•	 Dates encoded as strings

•	 Dates with differing formats

Data normalization and standardization
When different data features have varying scales and ranges, it becomes harder to compare
their impacts on the target values. Also, many algorithms have difficulty in dealing with
different scales of values, sometimes leading to stability issues. One method for avoiding
these problems is to normalize (not to be confused with database normal forms) or
standardize the values.

In normalization (also known as scaling), you scale the values such that they range
from 0 to 1:

Xnormalized = (X – Xmin) / (Xmax – Xmin)

Standardization, on the other hand, centers the data such that the mean becomes zero and
scales it such that the standard deviation becomes 1. This is also known as z-scoring
the data:

Xstandardized = (X – Xmean) / XSD

Here, Xmean is the mean of all X values, and XSD is the standard deviation of X values.

In general, you will not need to worry about this because DataRobot automatically does
this for the datasets as required.

Data preparation 37

Outliers
Outliers are values that seem to be out of place compared to the rest of the dataset. These
values can be very large or very small. In general, values that are more than three standard
deviations from the mean are considered outliers, but this only applies to features
where values are expected to be normally distributed. Outliers typically come from
data quality issues or some unusual situations that are not considered relevant enough
to be trained on. The data points deemed to be outliers are typically removed from the
dataset to prevent them from overpowering your models. The rules of thumb are only for
highlighting the candidates. You will have to use your judgment to determine whether
any values are outliers and whether they need to be removed. Once again, DataRobot will
highlight potential outliers, but you will have to review those data points and determine
whether to remove them or leave them in.

Missing values
This is a very common problem in datasets. Your dataset may contain many missing
values, marked as NULL or NaN. In some cases, you will see a ?, or you might see an
unusual value, such as -999, that an organization might be using to represent a missing
or unknown value. How you choose to handle such values depends a lot on the problem
you are trying to solve and what the dataset represents. Many times, you might choose
to remove the row of data that contains a missing value. Sometimes, that is not possible
because you might not have enough data, and removing such rows might lead to the
removal of a significant portion of your dataset. Sometimes, you will see a large number of
values in a feature (or column) that might be missing. In those situations, you might want
to remove that feature from the dataset.

Another possible way of dealing with this situation is to fill the missing values with a
reasonable guess. This could take the form of a zero value, or the mean value for that
feature, or a median value of that feature. For categorical data, missing values are typically
treated as their own separate category.

More sophisticated methods use the k-nearest neighbor algorithm to compute missing
values based on other similar data points. No one answer will be appropriate every time,
so you will need to use your judgment and understanding of the problem to make a
decision. One final option is to leave it as it is and let DataRobot figure out how to deal
with the situation. DataRobot has many imputation strategies as well as algorithms to
handle missing values. But you have to be careful, as that might not always lead to the best
solution. Talk to an experienced data scientist and use your understanding of the business
problem to plot a course of action.

38 Machine Learning Basics

Category encoding
In many problems, you have to transform your features into numeric values. This is
because many algorithms cannot handle categorical data. There are many ways to encode
categorical values and DataRobot has many of these methods built in. Some of these
techniques are one-hot encoding, leave one out encoding, and target encoding. We will
not get into the details, as normally you would let DataRobot handle this for you, but
there might be cases where you will want to encode it yourself in a specific way due to
your understanding of the business problem. This feature of DataRobot is a great time
saver and typically works very well for most problems.

Consolidate categories
Sometimes, you have categorical data that contains a large number of categories. Although
there are methods for dealing with large category counts (as discussed in the preceding
section), many times, it is advisable to consolidate the categories. For example, you
might have many categories that contain very few data points, but are very similar to one
another. In this case, you can combine them into a single category. In other cases, it might
just be that someone used a different spelling, a synonym, or an abbreviation. In such
cases, it is better to combine them into a single category as well. Sometimes, you might
want to split up a numerical feature into bins that have a business meaning for your users
or stakeholders. This is an example of data preparation that you will need to do on your
own based on your understanding of the problem. You should do this prior to uploading
the data into DataRobot.

Target leakage
Sometimes, the dataset contains features that are derived from the target itself. These are
not known in advance or are not known at the time of prediction. Inadvertently using
these features to build a model causes problems downstream. This issue is called target
leakage. The dataset should be inspected carefully and such features should be removed
from the training features. DataRobot will also analyze the features automatically and try
to flag any features that might lead to target leakage.

Data preparation 39

Term-document matrix
Your dataset may contain features that contain text or notes. These notes frequently
contain important information that is useful for making decisions. Many of the
algorithms, however, cannot make use of this text directly. This text has to be parsed into
numeric values for it to become useful to modeling algorithms. There are several methods
for doing that, with the most common one being the term-document matrices. Document
here refers to a single text or notes entry. Each of these documents can be parsed to split
it up into terms. Now you can count how many times a term showed up in a document.
This result can be stored in a matrix called a Term Frequency (TF) matrix. Some of
this information can also be visualized in word clouds. DataRobot will automatically
build these word clouds for you. While TF is useful, it can be limiting because some
terms might be very common in all the documents, hence they are not very useful in
distinguishing between them. This leads to another idea, whereby perhaps we should look
for terms that are somewhat unique to a document. This concept of giving more weight
to a term that is present in some documents only is called Inverse Document Frequency
(IDF). The combination of a term showing up multiple times in a document (TF) and
it being somewhat rare (IDF) is called TFIDF. TFIDF is something that DataRobot will
compute automatically for you and gets applied to features that contain text.

Data transformations
While DataRobot will do many data transformations for you (and it keeps adding more
all the time), there are many transformations that will impact your model but that
DataRobot will not be able to catch. You will have to do these on your own. Examples of
these are mathematical transformations such as log, square, square root, absolute values,
and differences. Some of the simple ones can be set up inside DataRobot, but for more
complex ones, you will have to perform the operations outside of DataRobot or in tools
such as Paxata. Sometimes, you will do a transformation to linearize your problem or to
deal with features that have long-tailed data. Some of the transformations that DataRobot
does automatically are as follows:

•	 Computing aggregates such as counts, min, max, average, median, most frequent,
and entropy

•	 An extensive list of time-based features, such as change over time, max over time,
and averages over time

•	 Some text extraction features, such as word counts, extracted tokens, and term-
document matrices

•	 Geospatial features from geospatial data

We will discuss this topic again in more detail in Chapter 4, Preparing Data for DataRobot.

40 Machine Learning Basics

Collinearity checks
In any given dataset, there will be features that are highly correlated to other features. In
essence, they carry the same information as some other features. It is generally desirable
to remove such features that are highly duplicative of some other features in the dataset.
DataRobot performs these checks automatically for you and will flag these collinear
features. This is especially critical for linear models, but some of the newer methods
can deal with this issue better. What thresholds to use varies based on the modeling
algorithms and your business problem. It is fairly easy in DataRobot to remove these
features from your feature sets to be used for modeling.

DataRobot also produces a correlation matrix that shows how the different features are
correlated to one another. This helps identify collinear features as well as key candidate
features to be used in the model. You can gain a lot of insight into your data and the
problem by analyzing the correlation matrix. In Chapter 5, Exploratory Data Analysis with
DataRobot, we will discuss examples of how this is done.

Data partitioning
Before you start building the models, you need to partition your dataset into three parts.
These parts are called training, validation, and holdout. These three parts are used for
different purposes during the model building process. It is common to split 10-20% of the
dataset into the holdout set. The remaining portion is split up further, with 70-80% going
to training and 20-30% going to the validation set. This splitting is done to make sure that
the models are not overfitted and that the expected results in deployment are in line with
results seen during model building.

Only the training dataset is used to train the model. The validation set is designed to tune
the algorithms in order to optimize the results by performing multiple cross-validation
tests. Finally, the holdout set is used after the models are built to test the model on data
that it has never seen before. If the results on the holdout set are acceptable, then the
model can be considered for deployment.

DataRobot automates most of this process, but it does allow the user to customize the split
percentages, as well as how the partitioning should be done. It also performs a similar
function for time series or forecasting problems by automatically splitting the data for
time-based backtests.

Data visualization 41

Data visualization
One of the most important tasks a data analyst or data scientist needs to do is to
understand the dataset. Data visualization is key to this understanding. DataRobot
provides various ways to visualize the datasets to help you understand the dataset. These
visualizations are built automatically for you so that you can spend your time analyzing
them instead of preparing them. Let's look at what these are and how to use them.

When you go to the data page (Figure 1.20) for your project, you will see high-level profile
information for your dataset. Inspect this information carefully to understand your
dataset in totality. If you click on the Feature Association menu (top left), you will see
how the features are related to one another (Figure 2.3):

Figure 2.3 – Feature associations using mutual information

42 Machine Learning Basics

This diagram shows the interrelationships using the mutual information metric. Mutual
Information (MI) uses information theory to determine the amount of information you
obtain about one feature from the other feature. The benefit of using MI compared to the
Pearson correlation coefficient is that it can be used for any type of feature. The value goes
from 0 (the two features are independent) to 1 (they carry the same information). This
is useful in determining which features will be good candidates for the model and which
features will not provide any useful information or are redundant. This view is extremely
important to understand and use before model building starts, even though DataRobot
automatically uses this information to make modeling decisions.

There is another metric that is also used in a similar capacity. If you click on the metric
dropdown at the bottom of the preceding screenshot, you can select the other metric
called Cramer's V. Once you select Cramer's V, you will see a similar graphical view
(Figure 2.4):

Figure 2.4 – Feature associations using Cramer's V

Data visualization 43

Cramer's V is an alternative metric to MI, and it is used similarly. Its value also ranges
from 0 (no relationship) to 1 (the features are highly correlated). Cramer's V is often used
with categorical variables as an alternative to the Pearson correlation coefficient.

Notice that DataRobot automatically found clusters of interrelated features. Each cluster
is color-coded in a different color, and the features are sorted by clusters in Figure 2.4. You
can zoom into specific clusters to inspect them further. This is an important feature of the
DataRobot environment as very few data scientists know about this idea or make use of
it. The clusters are important because they highlight groups of interrelated features. These
complex interdependencies are typically very important for understanding the business
problem. Normally, the only people who know about these complex interdependencies
are people with a lot of domain experience. Most others will not even be aware of these
complexities. If you are new to a domain, then understanding these will give you an
equivalent of multiple years of experience. Study these carefully, discuss them with your
business experts to fully understand what they are trying to highlight, and then use these
insights to improve your models as well as your business processes.

Also, note that DataRobot provides a list of the top 10 strongest associations. It is
important to note these associations and spend some time thinking about what they mean
for your problem. Are these consistent with what you know about your domain, or are
there some surprises? It is the surprises that often result in key insights that could prove
to be valuable insights for your business. In the following list, you see a View Feature
Association Pairs button. If you click on that button, you will see Figure 2.5:

Figure 2.5 – Feature association details

44 Machine Learning Basics

This graphic shows the relationship between two selected features in detail. In this
example, one feature is categorical while the other is numeric. The diagram shows how
the two are related and could provide additional insights into the problem. Be sure to
investigate the relationships, especially the ones that might be counterintuitive.

Now you can click on the specific features to see how they are distributed (Figure 2.6):

Figure 2.6 – Feature details

This view shows a histogram of how the values are distributed and how they are related to
the target values. Key things to focus on are ranges where you do not have enough data and
where you have non-linearities. These could give you ideas about feature engineering. These
are also areas where you ask the question why does the system exhibit this behavior?

With this background work done, you are now ready to dive into modeling algorithms.

Machine learning algorithms 45

Machine learning algorithms
There are now hundreds of machine learning algorithms available to be used for a
machine learning project, and more are being invented every day. DataRobot supports a
wide array of open source machine learning algorithms, including several deep learning
algorithms – Prophet, SparkML-based algorithms, and H2O algorithms. Let's now take a
look at what types of algorithms exist and what they are used for (Figure 2.7):

Figure 2.7 – Machine learning algorithms

Our focus will mostly be on the algorithm types that DataRobot supports. These
algorithm types are described in the following sub-sections.

46 Machine Learning Basics

Supervised learning
Supervised learning algorithms are used when you can provide an answer (also called a
label) as part of the training dataset. For supervised learning, you have to assign a feature
of your dataset to be the answer, and the algorithm tries to learn to predict the answer
by seeing multiple examples and learning from these examples. See Figure 2.8 for the
different types of answers:

Figure 2.8 – Targets for supervised learning algorithms

DataRobot functionality is primarily focused on supervised learning algorithms. Included
in the set are deep learning algorithms as well as big data algorithms from SparkML and
H2O. DataRobot has built-in best practices to select the best-suited algorithms for your
problem and dataset. There are four major types of supervised learning problems:

Regression
Regression problems are the ones where the answer (target) takes a numeric form (see
Figure 2.8). Regression models try to fit a curve such that the error between the prediction
and the actual value is minimized for the entire training dataset. Sometimes, even a
classification problem can be set up as a numeric regression problem. In such cases,
the answer is a number that can then be turned into a bin by using thresholds. Logistic
regression is one such method that produces a value between zero and one. You can mark
all answers below a certain threshold to be zero, and all above as ones. There are linear as
well as non-linear regression algorithms that are used based on the problem. The models
are assessed based on how well the regression line matches the data. Typical metrics
used are RMSE, MAPE, LogLoss, and Rsquared. Typical algorithms used are XGBoost,
Elastic Net, Random Forest, and GA2M.

Machine learning algorithms 47

Binary classification
Binary classification problems have answers that can only take two distinct values (called
classes). These could be in the form of 0 or 1, Yes or No, and so on. Please refer to Figure
2.8 for an example of the target feature for binary classification. A typical issue that
you commonly face is the problem of class imbalance. This happens when most of the
dataset is biased toward one class. These are typically addressed by downsampling the
overrepresented class when sufficient training data is present. When this is not possible,
you can try oversampling the underrepresented class or use other methods. None of
these methods is perfect, and sometimes you have to try different approaches to see what
works best. DataRobot provides mechanisms to specify downsampling if needed. Some of
the algorithms that are commonly used for binary classification are logistic regression,
k-nearest neighbors, tree-based algorithms, SVM, and Naïve Bayes. In the case of
classification problems, it is best to avoid using accuracy as a metric to assess results. The
results are often shown in the form of a confusion matrix (described later in this chapter).
DataRobot will automatically select an appropriate metric to use in such cases.

Multiclass classification
Multiclass classification problems are the ones where you are trying to predict more than
two classes or categories. For a simple example of what the target might look like, see
Figure 2.8. Multiclass capability was added recently and many of the DataRobot features
might not work with such problems. Since downsampling is not available, you might
want to adjust your sampling prior to uploading your dataset into DataRobot. Also, note
that you can frequently collapse your problem into a binary classification problem by
collapsing the classes into two classes. That may or may not work for your use case, but it
is an option if required. Also, not all algorithms are appropriate for multiclass problems.
DataRobot will automatically select the appropriate algorithms to build the models for
multiclass problems. Typical metrics to use are AUC, LogLoss, or Balanced Accuracy. The
results are often shown in the form of a confusion matrix (described later in this chapter).
Typical algorithms used are XGBoost, Random Forest, and TensorFlow.

48 Machine Learning Basics

Time series/forecasting
Time series or forecasting models are also referred to as time-aware models in DataRobot.
In these problems, you have data that is changing over time and you are interested in
predicting/forecasting a target value in the future (Figure 2.2). DataRobot not only
supports the usual algorithms for time series such as ARIMA, but can also adapt these
problems to machine learning regression problems and then apply algorithms such as
XGBoost to solve them. These problems require that the series should be transformed into
stationary series and require extensive feature engineering to create time-based features.
The problems also require that you take into account important events in the past that
may repeat (such as holidays or major shopping days). Time series models also require
special ways of handling validation and testing via a method called backtests:

Figure 2.9 – Backtesting for time series problems

Machine learning algorithms 49

In backtesting, models are built using past data, and then tested using holdout data that
is newer and has never been seen by the model. This time-based slicing of holdout data is
also referred to as out-of-time validation. DataRobot automates many of these tasks for
you, as we will see in more detail later.

Algorithms
Let's review some of the main algorithms used in DataRobot. Here, we only provide
a high-level overview of these algorithms These algorithms can be tuned for a given
problem by changing their hyperparameters. For a more detailed understanding of
any specific algorithm, you can refer to a machine learning book or the DataRobot
documentation. Some of the important algorithms are as follows:

•	 Random Forest. A random forest model is built by creating multiple decision
tree models and then uses the mean of the output. This is done by creating
bootstrap samples of the training data and building decision trees (Figure 2.10)
on these samples:

Figure 2.10 – Random forest

Random forest models handle missing data and non-linearities and have proven to work
great in many situations. A random forest model can be used for regression as well as
classification problems:

•	 XGBoost: Also known as eXtreme gradient boosted trees, are decision tree-based
algorithms that have become very popular because they tend to produce very
effective predictions and can handle missing values. They can handle non-linear
problems and interactions between features. XGBoost builds upon random forest
models by creating a random forest and then creating trees on the residuals of the
previous trees. This way, every new set of trees is able to produce a better result.
XGBoost can be used for regression as well as classification problems.

50 Machine Learning Basics

•	 Rulefit: Rulefit models are ensembles of simple rules. You can think of these rules
as being chained together like a decision tree. Rulefit models are much easier to
understand as most people can relate to a combination of rules being applied to
solve a problem. DataRobot typically builds this model to help you understand a
problem and provide insights. You can go to the insights section of your Models tab
and see the insights generated from a Rulefit model and how effective a given rule is
for the problem. They can be used for classification as well as regression problems.

•	 ElasticNet, Ridge regressor, Lasso regressor: These models use regularization to
make sure that the models are not overfitting and are not unnecessarily complex.
Regularization is done by adding a penalty for adding more features, which in turn
forces the models to either drop some features or reduce their relative impact. Lasso
regressor (also known as L1 regressor) uses penalty weights that are the absolute
values of the coefficients. The effect of using Lasso is that it tries to reduce the
coefficients to zero, thereby selecting important features and removing the ones that
do not contribute much. Ridge regressor (also known as L2 regressor) uses penalty
weights that are squared coefficients. The impact of this is to reduce the magnitude
of coefficients. ElasticNet is used to refer to linear models that use both Lasso and
Ridge regularization to produce models that are simpler as well as regularized. This
comes in handy when you have a lot of features that are correlated with each other.

•	 Logistic Regression: Logistic regression is a non-linear regression model that is
used for binary classification. The output is in the form of a probability with a value
ranging from 0 to 1. This is then typically used with a threshold to assign the value
to be a 0 or a 1.

•	 SVM (Support Vector Machine): This is a classification algorithm that tries to
find a vector that best separates classes. It is easy to see what this looks like in a
two-dimensional space (Figure 2.11), but the algorithm is known to work well in
high dimension spaces. Another benefit of SVM is its ability to handle non-linearity
by using non-linear kernel functions, which can be used to linearize the problem:

Figure 2.11 – Targets for supervised learning algorithms

Machine learning algorithms 51

•	 GA2M (Generalized Additive Model): This is one of those rare algorithms that
offers understandability, while also offering high accuracy even in a non-linear
problem. The number "2" in the name represents its ability to model interactions
between features. GAM model output is a summation of outputs of the effects
of individual features that have been binned. Since GAM allows these effects to
be non-linear, it can capture the non-linear nature of the problem. The results of
the model can be represented as a simple table that shows you the contribution
of each feature to the overall answer. This type of table representation is easily
understandable by most people. For industries or use cases where understandability
and explainability are very important, this is perhaps one of the best options you
can choose.

•	 K-Nearest Neighbors: This is a very straightforward algorithm that finds the k
closest data points (based on a specific way of computing distance). Now it finds
the classification answers for these k points. It then determines the answer with the
most votes and then assigns that as the answer. The default distance metric used
is Euclidian distance, but DataRobot chooses the appropriate metric based on the
dataset. A user can also specify a specific distance metric to be used.

•	 TensorFlow. TensorFlow is a deep learning model that is based on deep neural
networks. A deep neural network is one that has hidden deep layers made up of
ensembles of artificial neurons. The neurons carry highly non-linear activation
functions that allow them to fit highly non-linear problems. These models are very
good at producing high accuracy without the need for feature engineering, but they
do require a lot more training data as compared to other algorithms. These models
are generally considered very opaque and are prone to overfitting and are therefore
not suitable for some applications. They are especially successful for applications
where the features and feature engineering are hard to extract, for example, image
processing. These models can be used for regression as well as classification problems.

•	 Keras Neural Network: Keras is a high-level deep learning library built on top of
TensorFlow that allows many types of deep learning models to be incorporated
into DataRobot. Being a higher-level library, it makes building a TensorFlow model
a lot easier. Everything described in the preceding section applies to Keras. The
particular implementation in DataRobot is well suited for sparse datasets and is
particularly useful for text processing and classification problems.

52 Machine Learning Basics

Unsupervised learning
Unsupervised learning problems are those where you are not provided with an answer
or a label. Examples of such problems are clustering or anomaly detection. DataRobot
does not offer much for these problems, but it does have some capability for anomaly
or outlier detection. These are problems where you have data points that are unusual in
a way that happens very rarely. Examples include fraud detection, cybersecurity breach
detection, failure detection, and data outlier detection. DataRobot allows you to set up a
project without a target and it will then attempt to identify anomalous data points. For any
clustering problems, you should try to use Python or R to create clustering models.

Reinforcement learning
Reinforcement learning problems are where you want to learn a series of decisions to
be taken by an agent such that you achieve a certain goal. This goal is associated with
a reward that is given to the agent for achieving the goal either completely or partially.
There is no dataset available for this training, so the agent must try multiple times (with
different strategies) and learn something on each attempt. Over many attempts, the agent
will learn the strategy or rules that produce the best reward. As you can now guess, these
algorithms work best when you do not have data, but you can experiment repeatedly in
the real world (or a synthetic world). As we discussed before, DataRobot is not a suitable
tool for such problems.

Ensemble/blended models
Ensembling is a technique for creating a model that aggregates or blends predictions
of other models. Different algorithms are sometimes able to exploit different aspects of
the problem or dataset better. This means that many times, you can increase prediction
accuracy by combining several good models. This, of course, comes with increasing
complexity and cost. DataRobot offers many blending approaches and, in most
circumstances, builds the blended model automatically for your project. You can then
evaluate whether the increase in accuracy is enough to justify the additional complexity.

Machine learning algorithms 53

Blueprints
In DataRobot, every model is associated with a blueprint. A blueprint is a step-by-step
recipe used by DataRobot to train a specific model. See Figure 2.12 for an example:

Figure 2.12 – Model blueprint

The blueprint shows all the steps taken by DataRobot to build that specific model,
including any data preparation and feature engineering done by DataRobot. Clicking
on any specific box will show more details on the actions taken, parameters used, and
documentation of the particular algorithm used. This also serves as great documentation
for your modeling project that is automatically created for you.

Now, let's look at how to determine how well an algorithm did. For this, we will require
some performance metrics.

54 Machine Learning Basics

Performance metrics
DataRobot offers a wide range of performance metrics for the models. You have to specify
the metric you want to use to optimize the models for your project. Typically, the best
metric to use is the one recommended by DataRobot. DataRobot does compute the other
metrics as well once the model is built, so you can review the results of your model across
multiple metrics. Please keep in mind that no metric is perfect for every situation, and you
should be careful in selecting the metric for evaluating your results. Listed here are some
details regarding commonly used metrics:

•	 RMSE (Root Mean Squared Error): RMSE is a metric that first computes the square
of errors (the difference between actual and predicted). These are then averaged over
the entire dataset and then we compute a square root of that average. Given that this
metric is dependent on the scale of the values, its interpretation is dependent on
the problem. You cannot compare RMSE for two different datasets. This metric is
frequently used for regression problems when the data is not highly skewed.

•	 MAPE (Mean Absolute Percentage Error): MAPE is somewhat similar to RMSE
in the sense that it first computes the absolute value of the percentage error. Then,
these values are averaged over the dataset. Given that this metric is scaled in terms
of percentage, it is easier to compare MAPE for different datasets. However, you
have to be mindful of the fact that the percentage error for very small values (or
zero values) tends to look very big.

•	 SMAPE (Symmetric MAPE): SMAPE is similar to MAPE, but addresses some of
the shortcomings discussed above. SMAPE bounds the upper percentage value so
that errors from small values do not overpower the metric. This makes SMAPE a
good metric that you can easily compare across different problems.

•	 Accuracy: Accuracy is one of the metrics used for classification problems. It can be
represented as follows:

Accuracy = number of correct predictions/number of total predictions

It is essentially the ratio of the number of correct predictions and all predictions.
For unbalanced problems, this metric can be misleading, hence it is never used by
itself to determine how well a model did. It is typically used in combination with
other metrics.

•	 Balanced Accuracy: Balanced accuracy overcomes the issues with accuracy by
normalizing the accuracy across the two classes being predicted. Let's say that the
two classes are A and B:

(a) Accuracy rate for A = number of correct A predictions/total number of As

(b) Accuracy rate for B = number of correct B predictions/total number of Bs

Understanding the results 55

(c) Balanced accuracy = accuracy rate for A + accuracy rate for B/2

Balanced accuracy is essentially the average of the accuracy rate for A and the
accuracy rate for B.

•	 AUC (Area Under the ROC Curve): AUC is the area under the ROC (Received
Operator Characteristic) curve. This metric is frequently used for classification
problems as this also overcomes the deficiencies associated with the accuracy
metric. The ROC curve represents the relationship between the true positive rate
and the false positive rate. The AUC goes from 0 to 1 and it shows how well the
model discriminates between the two classes. A value of 0.5 represents a random
model, so you would want the AUC for your model to be greater than 0.5.

•	 Gamma Deviance: Gamma deviance is used for regression problems when the
target values are gamma-distributed. For such targets, gamma deviance measures
twice the average deviance (using the log-likelihood function) of the predictions
from the actuals. A model that fits perfectly will have a deviance of zero.

•	 Poisson Deviance: Poisson deviance is used for regression problems when the aim is
to count data that is skewed. It works in a way that is very similar to gamma deviance.

•	 LogLoss: LogLoss (also known as cross-entropy loss) is a measure of the inaccuracy
of predicted probabilities for a classification problem. A value of 0 indicates a
perfect model, and as the model becomes worse, the logloss value increases.

•	 Rsquared: Rsquared is a metric used for regression problems that tells how well
the fitted line represents the dataset. Its value ranges between 0 and 1. 0 indicates
a poor model that explains none of the variation, while a value of 1 indicates a
perfect model that explains 100% of the variation. It is one of the most commonly
used metrics, but it can suffer from the problem that you can increase it by adding
more variables without necessarily improving the model. It is also not suitable for
non-linear problems.

Now that we have discussed some of the commonly used metrics, let's look at how to look
at other results to assess the quality of your model, and the effects of different features on
your model.

Understanding the results
In this section, we will discuss various visualizations of metrics and other information to
understand the results of the modeling exercise. These are important visualizations that
need to be inspected carefully in addition to looking at the model metrics discussed in the
previous section. These visualizations are generated automatically by DataRobot for any
model that it trains.

56 Machine Learning Basics

Lift chart
The lift chart shows how effective the model is at predicting the target values. As the
number of data points is typically very large to show in one graphic, the lift chart sorts
the output and aggregates the data into multiple bins. It then compares the averages of
predictions and actuals in each bin (Figure 2.13):

Figure 2.13 – Lift chart

The preceding lift chart shows how the predictions have been sorted from low to high and
then binned (60 bins in this case). You can now see the average prediction and average
actual value in each bin. This gives you a sense of how well the model is doing across the
entire spectrum. You can see whether there are ranges where the model is doing worse.
If the model is not doing well in a range that is important to your business, you can then
investigate further to see how you can improve the model in that range. You can also
inspect different models to see whether there is a model that does better in the region that
is more important. Lift charts are more meaningful for regression problems.

Understanding the results 57

Confusion matrix (binary and multiclass)
For classification problems, one of the best ways to assess model results is by looking
at the confusion matrix and its associated metrics (Figure 2.14). This tab is available for
multiclass problems:

Figure 2.14 – Confusion matrix

The confusion matrix maps predicted versus actual counts (frequency) for each class. Let's
look at the sedan column. The big green circle indicates how many times we correctly
classified a sedan as a sedan. In that column, you will also see red dots where the model
predicted it to be a sedan, but it is a different type. You can see these for all classes. The relative
scales should give you an idea of how well your model did and where it is having difficulty.

If you select a specific class, you can look at the class-specific confusion matrix on the
right. You can see two columns (+ for predicting a sedan, - for predicting something that
isn't a sedan). Similarly, you see two rows (+ where it is a sedan, and - for when it is not a
sedan). You also see some critical definitions and metrics:

•	 True Positives (TP) = Where it is a sedan and is predicted as a sedan
•	 False Positives (FP) = Where it is not a sedan but is predicted as a sedan
•	 True Negatives (TN) = Where it is not a sedan and is predicted as not being a sedan
•	 False Negatives (FN) = Where it is a sedan but is predicted as not being a sedan

58 Machine Learning Basics

Using these, we can now compute some specific metrics for this class:

•	 Precision = correct fraction of predictions = TP/All Positive Predictions = TP/(TP+FP)

•	 Recall = correct fraction of actuals = TP/All Positive Actuals = TP/(TP+FN)

•	 F1 Score = harmonic mean of precision and recall. So, 1/F1 = 1/Precision + 1/Recall

ROC
This tab is available for binary classification problems. The ROC (Receiver Operator
Characteristic) curve is the relationship between the true positive rate and the false
positive rate. The area under this curve is known as AUC. It goes from 0 to 1 and it shows
how well the model discriminates between the two classes (Figure 2.15):

Figure 2.15 – ROC curve and confusion matrix

Understanding the results 59

You can also see the confusion matrix (described earlier) and the associated metrics
for the two classes. You can move the thresholds and assess the resulting trade-offs and
cumulative gains. Since most problems are not symmetric in the sense that true positives
have different business values compared to true negatives, you should select the threshold
that makes sense for your business problem.

Accuracy over time
This tab is available for time series problems (Figure 2.16) and compares the actual versus
predicted values over time for a series:

Figure 2.16 – Model accuracy over time

You can view these values for the backtests or the holdout datasets. The diagram will
clearly show where the model is not performing well and what you might want to focus on
to improve your model.

60 Machine Learning Basics

Feature impacts
Besides model performance, one of the first things you want to understand is how
impactful the features are in terms of your model's performance. The Feature Impacts tab
(Figure 2.17) is perhaps the most critical for understanding your model:

Figure 2.17 – Feature impacts

The graphic shows a sorted list of the most important features. For each feature, you
can see the relative impact that a feature has on this model. You can see which features
contribute very little; this can be used to create new feature lists by removing some of the
features that have very little impact.

Understanding the results 61

Feature Fit
The Feature Fit tab (Figure 2.18) shows an alternative view of the contribution of a
feature. The graphic shows the features ranked by their importance:

Figure 2.18 – Feature Fit

For the selected feature, it shows how the predictions compare to actuals for the range of
values of a feature. Reviewing these graphs for the key features can provide a lot of insight
about how a feature impacts the results and range of values that perform better and ranges
where it performs the worst. This could sometimes highlight the regions where you might
need to collect more data to improve your model.

62 Machine Learning Basics

Feature Effects
Feature Effects show information that is very similar to Feature Fit (Figure 2.19). In this
graphic, the features are sorted by Feature Impacts. Also, Feature Effects are focused on
partial dependence:

Figure 2.19 – Feature Effects and Partial Dependence

Partial dependence plots are one of the most important plots that you want to study
carefully. These plots tell you how a change in the value of a feature impacts the change in
the average value of the target over a range of values for the other features. This insight is
critical to understanding the business problem, understanding what the model is doing,
and, more importantly, what aspects of the model are actionable and what range of values
will produce the maximum impact.

Understanding the results 63

Prediction Explanations
Prediction Explanations describe the reasons for a specific prediction in terms of
feature values for the specific instance or row that is being scored (Figure 2.20). Note
that this is different from Feature Impacts, which tell you the importance of a feature
at a global level:

Figure 2.20 – Prediction Explanations

Prediction Explanations can be generated for an entire dataset or a subset of data, as
shown in the preceding screenshot. For example, it will provide the top three reasons
why the model predicted a specific value. These explanations are sometimes required for
regulatory reasons in certain use cases, but it is a good idea to produce these explanations
as they do help in understanding why a model predicts a certain way and can be very
useful in validating or catching errors in a model. DataRobot uses two algorithms for
computing the explanations: XEMP (exemplar-based explanations) or Shapley values.
XEMP is supported for a broader range of models and is selected by default. Shapley
values are described in the next section.

64 Machine Learning Basics

Shapley values
Shapley values (SHAP) are an alternative mechanism for producing prediction
explanations (Figure 2.21). If you want to use SHAP for explanations, you have to specify
this in the advanced options during the project setup before you press the Start button.
Once DataRobot starts building the models, you cannot switch to SHAP. SHAP values are
only available for linear or tree-based models and are not available for ensemble models:

Figure 2.21 – SHAP-based explanations

SHAP values are based on cooperative game theory, which tries to assign values to
contributions of a team member in a collaborative project. In the context of machine
learning, it tries to assign the value contribution of a specific feature when there is a team
of features collaborating to make a prediction. SHAP values are additive and you can
easily see how much of the final answer is due to a specific feature value.

Summary
In this chapter, we covered some of the basic machine learning concepts that will come
in handy as we go through the remaining chapters, and they will also be useful in your
data science journey. Please note that we have only covered concepts at a high level, and
depending on your job role, you might want to explore some areas in more detail. We have
also related this material to how DataRobot performs certain functions and where you
need to pay closer attention.

Summary 65

Hopefully, this has given you some insights into what DataRobot will be displaying
and where to focus your attention in different stages of your project. Since DataRobot
automates a good chunk of model building and prediction tasks, it might be tempting
to ignore many of the outputs that DataRobot is automatically producing for you. Please
resist that temptation. DataRobot software is taking considerable pains and resources to
produce those outputs for a very good reason. It is also doing much of the grunt work
for you, so please take advantage of those capabilities. Specifically, we have covered the
following: What are the things to watch out for during data preparation? What data
visualizations are important for gaining an understanding of your dataset? What are the
key machine learning algorithms, and when do you use them? How do you measure the
goodness of your model results? How do you assess model performance and understand
what the model is telling you about your problem?

Now that we know the basics, we will start our data science journey in the next chapter by
learning how to understand the business problem and how to turn it into a specification
that can be solved by using machine learning.

3
Understanding and

Defining Business
Problems

This chapter covers topics that are the most critical for success and yet are not discussed
in detail in data science programs or books. Although the topic of understanding and
defining business problems is mentioned very briefly as something that should be done, it
is very rare that the discussion will go into how to actually do it properly. In this chapter,
we will go into specific tools and methods that can be used to gain an understanding of
the system under consideration and determine the problem that needs to be solved.

This section is independent of DataRobot, as DataRobot cannot help you with this part of
the process. This is something that a data analyst, a business analyst, or a data scientist has
to do. Correctly defining a business problem is hard to do—it is not automatable, and it is
also not done properly most of the time. If you gain this skill, you will become invaluable.
This is a key area where there will always be a need for experienced data scientists (or
whatever they are called in the future).

By the end of this chapter, you will have learned about some of the core concepts and
methods you need to know in order to ensure that you are solving the right problems. The
rest of the book will explain how to solve those problems in the right way.

68 Understanding and Defining Business Problems

In the chapter, we're going to cover the following main topics:

•	 Understanding the system context

•	 Understanding the why and the how

•	 Getting to the root of the business problem

•	 Defining the machine learning (ML) problem

•	 Determining predictions, actions, and consequences for Responsible artificial
intelligence (AI)

•	 Operationalizing and generating value

Understanding the system context
All problems arise within the context of a system. A system could be a single cell of an
organism, a global population, or the entire economy. In the same way, all solutions need
to fit into a system. A technological solution (for example, an AI solution) will typically
require changes to processes, people, skills, other IT systems, or even the business model
for it to be effective. For an organization, the system could be its entire supply chain,
competitors, and customers. Given that a system's definition can be very broad, it is
generally advisable that you imagine a system to be broader than the problems you are
considering. You want all the components or agents that your problem touches to be part of
the system context. Defining the system boundary is part art and part science, and it is an
iterative process. Given that you will be looking at the system from a broader perspective,
this also means that the same system context will be valid for multiple ML projects or use
cases. The understanding you gain here will pay dividends across many projects.

Data scientists or analysts who might have worked in an organization or industry would
have intuitively learned many of the systemic aspects of the problem. They might feel that
they do not need to look into this further as they already understand key issues. While
that might be true, it is also true that people develop blind spots and start to overlook
key missing pieces or carry implicit assumptions that are mostly correct but sometimes
wrong. Using structured methods to capture systemic understanding helps overcome
these problems and also ensures that everyone is working from a common understanding.
These issues are typically ones leading to problems or delays in projects downstream. Let's
look at how we build this understanding by creating a context diagram.

Understanding the system context 69

A context diagram is a high-level view of your system, showing key players and their
interactions, as illustrated here:

Figure 3.1 – Context diagram

The specific diagramming convention is not that important; what is more important is
that you understand and document the components and understand how they interact.
There are many diagramming conventions out there, so feel free to use the one you like.
Make sure to capture three to five important instances of each topic in the diagram. The
arrows need not be one-way.

As you look at this simple diagram, you will agree that we should know all of these things.
As you try to build this diagram, you might be shocked to learn that finding and capturing
this information is not that straightforward. Most people in an organization will have
some notion of these things but might not be able to precisely specify the most important
customers or key performance indicators (KPIs), and so on. In most organizations, it
might take some time and discussion to put this together. Most of the components in the
diagram are easy to understand but some are a bit confusing, so it's worth discussing them
a little bit, as follows:

•	 Key objectives: Key objectives are measurable metrics that let you determine
whether you are achieving your goals in a timely fashion. These typically take the
form of financial performance, market share, customer satisfaction, reputation,
quality levels, and compliance. It is important to have precise and measurable
definitions and alignment with the goals of the organization. These represent true
value to an organization, and it is important to understand how your projects and
models impact these.

70 Understanding and Defining Business Problems

•	 External drivers/risks: These are external factors or drivers that impact the key
objectives but are not under your control. Notice that we are not discussing specific
events, but changes in value of factors that might be considered events—for
example, the factor might be gross domestic product (GDP) change. It is not in our
control, and a value of -20% might indicate a financial crash. So, our driver in this
case is GDP change as opposed to financial crash.

•	 Key decision levers: These are also drivers that impact key objectives, but they
are in our control. For example, the number of employees is a factor that is in
our control (as we can decide how many to hire) and it will have an impact on
outcomes. Other examples could be how much to invest in new technology or in
marketing, and so on. These could be strategic decisions or choices, such as creating
a new distribution channel, bundling products, and so on. Regardless of type, the
important thing to remember is to make sure that the idea is captured in a precise
way—for example, if a new distribution channel is a driver, you should know what
the five actual choices are.

Note of caution
Please do not get trapped in philosophical debates. Quickly create the first
iteration of your diagram and refine it in the future, as needed. It is OK to
move forward with the first draft, as your analysis might inform and change the
current thinking.

As you may have guessed by now, the reason for highlighting these three items is that
historic data about them will be critical for any data science project. You will also agree
that data about these factors is critical for operational as well as strategic decisions, yet
you might find that this data might not be easily available or might have quality issues. In
addition, pay special attention to key knowledge stores. These will be the databases, data
warehouses, data lakes, or filesystems that contain data for your organization. We will
revisit these items again in the following sections.

Now that we understand the context, we want to understand how our system operates
and why it behaves a certain way. Both of these aspects are critical to understanding the
system. In the next section, we will describe how to create that understanding.

Understanding the why and the how 71

Understanding the why and the how
The key to understanding a system's function and its behavior lies in the following aspects:

•	 Process: How do objects and information flow through the system's processes?

•	 Interaction: How do different entities or components of the system interact with
each other?

•	 State: How does the state of an entity evolve over time?

•	 Causal: What are the causal relationships?

Each of these aspects is represented via diagrams. There are many diagramming
conventions for process modeling, causal modeling, and interaction diagrams. These
conventions are used differently in different domains. You can follow any of the
conventions that you like or are already familiar with. In this book, we will follow certain
conventions that are amenable to computational modeling. What that means is that these
diagrams can be combined with data and turned into models that can be used for analysis.
This will become important in the later stages of our project. In-depth details of how to
create these diagrams and turn them into computational models are beyond the scope
of this book, but if you are interested you can seek out other sources to learn about these
techniques. Even if you do not create computational models, these diagrams will provide
useful insights that you will be able to use in your ML projects. It is possible that you have
people in your organization that build—or have built—such diagrams. You should seek
those people out and elicit their help in building these diagrams. Let's look at each of these
aspects in more detail.

72 Understanding and Defining Business Problems

Process diagrams
In an organization's operation, there are several functions that have well-defined
processes. Objects, people, or information flow through these processes, as illustrated in
the following diagram:

Figure 3.2 – Process diagram

Based on the system context, you already know the most important processes in an
organization. You can start building diagrams for these key processes—or at the very
least, the one that is relevant to your project. It is important to build end-to-end process
flows—for example, the entire customer journey, or the entire development process for a
product. It is also important to understand the process from a customer's viewpoint (gray
boxes) and not just internal processes (white boxes). Make sure to capture failure points
or rework paths, or where a process might end abruptly instead of normal completion. As
entities flow through these processes, decisions or computations are made that could be
candidate ML problems. Regardless of the project you are starting from, it is a good idea
to identify other potential opportunities along the way. It may turn out that looking at the
process differently or building a different ML model could provide larger benefit or might
preempt a need for the current project. Whether or not that turns out to be the case, it is
important to capture this information. By the way, did you notice in the preceding process
diagram that the customer is not receiving a reject message? As you can imagine, this is an
important part of the customer experience that is being left out. I am sure that error will
be caught at some point, but making the process explicit increases the odds of catching it
sooner and taking it into account as you are building your models.

Understanding the why and the how 73

Besides building the diagram, it is important to capture data about the process. You
will frequently run into situations where someone has already built a process diagram
but did not capture any data. If you are reading this book, then I do not need to tell you
how important collecting that data is for accurately understanding the process. Typical
information to be captured is counts and types of objects flowing through each step,
time taken at each step, labor hours and resources required at each step, probability of
taking a specific path, quality metrics, and so on. If such information is not being captured
for key processes, then it is important to start collecting this information as soon as
possible. This information could be critical for building a business case for your project,
serving as useful features in the model, and helping identify problems that might be
otherwise hidden.

It is important to note again that you do not want to get stuck in terminology debates,
and instead quickly create a diagram that is sufficient to help you understand what
happens in the process, as opposed to a very detailed view with every little nuance in it.
It is OK to revisit this if a need arises to get into more details on some specific aspect of
the process.

Actual processes are typically a little more complex than what we show in Figure 3.2 but
not by much, and it is not uncommon to uncover things that are not known to many
people outside the specific department where these tasks are done. In my experience, it
is also not uncommon to find that no single person understands the entire process. The
exercise can be valuable in itself by highlighting key problems but it is especially valuable
to the data science team building models to automate some part of this process, yet I am
surprised to see how many times data science teams build models without understanding
the process.

74 Understanding and Defining Business Problems

Interaction diagrams
There are many interactions happening in a system that do not follow a fixed process.
These interactions can happen in different orders and need to be kept flexible, and are
best understood via interaction diagrams. Those of you with software development
backgrounds are likely familiar with such diagrams that show interactions among software
components or objects. In our case, we are interested in understanding interactions
between key players in a system, as illustrated in the following diagram:

Figure 3.3 – Interaction diagram

The diagram shows a marketplace where several competitors are selling their products.
Customers come to this marketplace to purchase the products. The competitors spend
money to advertise their products on various media channels, and set their prices. The
consumers are influenced by the advertising, pricing, and word of mouth from other
consumers. At any given time, many of these interactions are taking place, creating a
complex and dynamic environment. If you are building a pricing model you have to take
all of this into account, or your model will show great statistical fit to data but will prove
ineffective during operation.

Understanding the why and the how 75

Note that key players can be people, organizations, bots, marketplaces, fraudsters, and so
on. The idea behind building this and other diagrams is to codify and make explicit what
you know. This enables everyone to share a common view of the system and question
assumptions or point out missing information. It is also important to make sure that
you treat these diagrams as hypotheses that need to be tested with data. You have to
continually ask whether the data supports what we are saying in these diagrams. If not,
then maybe your assumptions need to be refined, or perhaps you have missing data or
other data-quality problems. Perhaps the data collection is biased. I am sure you have
heard stories about how biased data was used to make predictions that turned out to be
totally wrong. Building a diagram is not a guarantee that you will catch biased data, but it
does improve your odds of catching it.

State diagrams
A state diagram captures the evolution of state of some important entity or actor in a
system. Typical candidates are customers and products. As with other diagrams, you build
these diagrams for only the important or critical actors in a system.

An example state diagram can be seen here:

Figure 3.4 – State diagram

State diagrams are very similar in concept to Markov chains (this concept represents
the probability of transitioning a system from one state to another state in such a way
that the probability is fixed and not dependent on any previous history), except in a state
diagram you do not have to assume that history does not matter. A state diagram is built
for a specific agent. Figure 3.4 shows a state diagram of a person progressing through
various states over time. The arrows represent transitions from one state to another, and
the person stays in a given state until they transition to the next state. The transition is
typically assumed to be instantaneous. You can also think of the transitions in terms of
transition probabilities (in which case, it starts resembling a Markov chain). The diagrams
can be hierarchical in the sense that a state can be decomposed into sub-states, and those
sub-states can be interconnected via transitions.

76 Understanding and Defining Business Problems

In addition to building a diagram, you want to understand what causes a transition to
take place. Is it deterministic or is it random? You also want to collect data about how
often and when these transitions take place as this data is very useful for further analysis,
as well as for building ML models. Transitions of one actor might cause a transition in
another actor's state, thus state diagrams are also connected to interaction diagrams. Each
of the transitions is a potential candidate for an ML model, where you can use data to
predict when a transition (and which one) might fire. As you can imagine, building these
diagrams will lead to the identification of opportunities that might otherwise be missed.

Using these diagrams, you now have an understanding of how a system functions. We are
now ready to look at what determines a system's behavior.

Causal diagrams
Causal diagrams intend to capture our understanding of cause-and-effect relationships
present in a system. This understanding may or may not be correct. In fact, you might
never be able to prove causation. Philosophical debates aside, you can greatly improve
your understanding by using the methods outlined in this section, combined with data.

An example causal diagram can be seen here:

Figure 3.5 – Causal diagram

Understanding the why and the how 77

The preceding diagram shows the relationships in a housing market (this is just an
example—it doesn't show all the causal influences). It says that as interest rates go up,
home sales decline. Home sales are also influenced by demand and prices. As prices go
up, the rising prices can increase demand as more people want to buy homes to make
money, but the price itself is a deterrent. You can see that there are opposing effects and
feedback loops present in this simple diagram. No wonder the dynamics confound us, and
this frequently leads to the system going haywire. Everyone thinks they understand how
the housing market works, but real understanding is difficult to achieve in the presence
of complex dynamics. Similar dynamics are at play in many business situations. It is easy
to build an ML model to predict home prices, but it is much harder to understand the
overall dynamics. This lack of understanding can lead to a situation where you are using
excellent ML models to make bad decisions, hence building such models is critical for
understanding the true nature of the problem you are trying to solve. Such diagrams are
also useful for understanding and treating confounding variables and counterfactual
analysis [Pearl].

There is one more representation of causal models that comes from the discipline of
system dynamics. This representation combines some ideas from the other diagrams
with causal diagrams to create a view that can be very insightful and can be easily turned
into a dynamic simulation model. System dynamics is a vast discipline in itself, and there
are many good books and papers on the topic [Sterman]. Here, I will only introduce
the notion and what it looks like, and how it can be useful. Here is an example system
dynamics (also known as stock and flow) diagram:

Figure 3.6 – System dynamics (stock and flow) diagram

78 Understanding and Defining Business Problems

This diagram captures ideas from a state diagram, a process diagram, and a causal
diagram into a composite view that can be very instructive. Imagine the journey of a
product as it changes state, going from a raw product to a shipped product. Each box in this
case represents the quantity of a product in a specific state—for example, the Assembled
Product box represents all products that have been assembled and are now waiting to
become finished products. This happens at a rate called the finish rate. The finish rate is
dependent on how many assemblers are available to perform the work. You will also
notice that some assembled products turn out to be defective. These products flow into
the Defective Product box at a rate called the defect rate. These then have to be repaired
by repairers. Because of defects, the shipping target is not met and there is a shortfall.
This shortfall increases pressure on the employees, which increases burnout. The burnout
in turn reduces the number of assemblers (they quit or get sick). Since the number of
assemblers is reduced, this slows down the finish rate. This in turn increases the pressure
and more people are shifted to become repairers, as repairs can be done faster. This leaves
no one working as preventers and causes the vicious cycle to continue, with the process
becoming more and more backlogged.

This dynamic plays out in many organizations and they wonder why they are always
under pressure. Once the diagram is laid out, you can see the problem is that they are
fixing symptoms as opposed to the root problem of defects. In this simple diagram it is
easy to see, but in more complex situations you can run simulations of these diagrams
to find the problem points. The diagram also helps to clarify the relationship between
the processes, decisions, and business objectives. These diagrams can be simulated to
understand the business impacts of decisions, as well as the impacts of deploying ML
models. This is a great way to show the value of your efforts in a way that most people can
easily understand.

Now, let's come back to ML. If this analysis is not done, then it is most likely that defect
repair will get flagged as a problem, and it is likely you will be building a model to predict
how many defects will be created or predict how many items will be shipped. You will
build a great model, but that will not solve the problem. The key problem is to find which
factors are causing the defects and how the defects can be reduced. This will require the
manufacturing team to work closely with the data science team to find a solution. Again,
the key point is that unless someone does this analysis, the data science team is likely to be
solving the wrong problem. You might think that this doesn't happen often, but I contend
that this happens a lot more than you might think because the true problem often stays
hidden for a long time.

Getting to the root of the business problem 79

In general, it is best to treat each causal relationship you have drawn in these diagrams as
a hypothesis. The diagram then represents a collection of hypotheses. There are statistical
and simulation methods that can be used to validate these hypotheses. For this, you will
need to start collecting data or start discovering where that data is stored. Now that we
have learned about these diagrams, let's look at how we get to the root of the problem.

Getting to the root of the business problem
Some problems are easy to solve, while others prove to be much harder. One of the
reasons this happens is that when a problem's symptoms appear somewhere else and after
some delay, then it is very difficult to know where the problem really is. By definition, the
symptoms are clearly visible—they are explicit and you can easily collect data about them.
The underlying problem, on the other hand, is happening in some other department or
building and is not visible because it is not causing immediate pain. Most likely, no data is
being collected about the root problem, or it might be too hard to collect that data. Given
the nature of ML, it is almost a given that all the data you are getting is about symptoms. If
you are lucky, you might get some data about the root problem as well (although you will
not know it).

One of the ways to get started is by using an old method called five whys, which basically
involves asking the question Why? five times to get to the root cause. Many times, there
might be multiple causes at each level. So, in practical terms, many people use another
diagram that is called a fishbone diagram to capture this information, as illustrated here:

Figure 3.7 – Fishbone diagram

80 Understanding and Defining Business Problems

In the preceding fishbone example diagram, we are trying to understand why we have a
software defect problem. As you ask why questions and capture the causes, you begin to
add potential causes. You continue this process until you feel that you have captured the
essence of the problem. As you can tell, this is partly a causal diagram and can be used as
a starting point for building a causal model for your system while maintaining focus on a
specific problem. Data can then be collected to confirm or reject the hypotheses. As you
can see, this fishbone diagram will inform the system dynamics diagram we saw in Figure
3.6. The key point of the exercise is to understand the root cause and work on fixing this.
I hope you are beginning to see that accurately predicting something is not always the
same as fixing the real problem, and you have to be a bit careful about setting up your ML
problem for your project to be successful. Also, notice that there might be multiple causes
leading up to a problem and you might have to address multiple issues in order to see
significant mitigation of the problem. On the other hand, addressing only one aspect (say,
employee burnout) without understanding the full picture could lead you to conclude that
burnout is not a problem. It is not uncommon in organizations to have reached wrong
conclusions that then get incorporated into the myths of the organization—"we already
tried that, and it does not work."

Now that we have identified the business problem that needs to be tackled, let's look at
how we turn it into an ML problem.

Defining the ML problem
Before we get into the details of ML, it is important to note that not all problems are
appropriate to be solved with ML. For a problem to be a good candidate, it should have
the following characteristics (we will focus only on supervised learning (SL) problems
for now):

•	 There is a clear target or label value that would be useful if an algorithm can predict
it. In the absence of an algorithm this value remains unknown, requires a person's
judgment, or requires substantial effort for it to be determined. Sometimes, the
target will not be the actual variable of interest but a critical component of that
calculation. This part is not always obvious, but the problem analysis you did in
previous sections of this chapter will certainly help in clarifying which variable
makes the best target.

•	 You have access to a large enough historical dataset that contains the values of the
target or label you wish to predict. You will need to create a list of data sources that
contain relevant data and start understanding the data that they contain.

Defining the ML problem 81

•	 Determine which type of SL problem is best suited to your problem (regression,
classification, or time series). Sometimes, you can cast one type of problem into
another type.

•	 There is typically a trade-off between accuracy, explainability, and understandability.
It is important for you to consider what is more important for your business
problem. In many situations, we are willing to sacrifice accuracy to improve
understandability. This, in turn, determines which algorithms and which
explanatory method you should select.

You will have to review your datasets and the business problem definition to see whether
you can craft a specification such that the conditions listed previously are satisfied. In
doing so, there are several transformations that might have to be performed, such as these:

•	 Transform the target such that it is more valuable as an output or better suited to
solve the business problem. Take the following examples:

(a) If numeric target values are over a very large range of values or are distributed
with a high skew, then you can try to log the target as a new target.

(b) If the actual value is less important than a range, then you can create bins and
use the binned values as targets.

(c) Sometimes, a change in value or the rate of change makes for a better target.
•	 Create interaction features based on the causal diagrams. Take the following

examples:

(a) Intermediate variables in the causal model that are not directly observed but can
be computed by combining various other features.

(b) If your target is in log form, then it might make sense to create logs of
various features.

(c) Similarly, you might want to bin certain features if the bins have a special
significance in the business problem.

(d) Explore whether creating rate-of-change features would be important for
your model.

•	 Identify missing data that showed up in the causal diagram but is not present in
your dataset. Depending on the importance and how easy it is to get this, you
might want to collect it before building the model. Another choice is to get the data
collection process started in parallel with building the model with the data you
already have. In the latter case, you can always revisit the model in the next iteration
when you have collected the data.

82 Understanding and Defining Business Problems

In addition, you also have to think about how you will define and assess errors. Which
metric will be best for the problem? We covered metrics in Chapter 2, Machine Learning
Basics, and DataRobot automatically picks an appropriate metric for the problem. I have
found the selections to be very good most of the time, so it is a good idea to go with the
recommendation unless you have a good reason not to. In addition to metrics, you need
to think about whether you care more about errors in a specific range versus some other
range—for example, maybe you want to be more accurate in the high-value range of a
feature versus the low-value range. In such cases, you can consider using this numeric
feature (this has to be a non-target feature) as a weight for computing the error metrics.
You can find this setting under Advanced Options in the Additional tab, as illustrated in
the following screenshot:

Figure 3.8 – Additional options

Determining predictions, actions, and consequences for Responsible AI 83

The preceding screenshot shows the options for selecting a feature to be used as a
weighting for the predictions. Note that this has to be set at the start of a project. Once the
model building starts, you cannot change this setting.

Once you have the ML problem defined, DataRobot comes into action to build the
models. We will cover this in later chapters. For now, we want to discuss what happens
when the models are built and are now able to generate predictions.

Determining predictions, actions, and
consequences for Responsible AI
After the model is built and deployed in DataRobot, it might seem that our job is
done—but not so fast. You should start analyzing what the predictions profile looks like
and start discussing with users and stakeholders the details of actions to be taken. The
models you have helped build are likely to introduce many changes in your system and
will impact other people. It is therefore important to try to make sure that these impacts
are not negative. Making sure that your models will not cause harm is called Responsible
AI. This will build upon the work you did during the understanding phase through
various diagrams.

Just as in previous sections we saw how a causal diagram helps you to relate features to
a target, we can also see how the target affects other parts of the system. The diagram
should reveal how the target impacts key objectives or outcomes; it should also reveal key
feedback loops that will change the behavior of the rest of the system, as well as giving
a hint of other consequences. This makes it relatively straightforward to understand
and compute the return on investment (ROI) from your model. A common challenge
expressed by data science teams is that they find it hard to express the impacts of a
model. As you can now see, the work we put into understanding our system from a causal
perspective also helps to determine the business impact of the model.

It is very common to see that most systems don't provide a free lunch—there are always
trade-offs. Your actions might improve one objective but might hurt another. It is very
important to understand these trade-offs and to ensure that your stakeholders understand
them as well. It is very possible that even though the model will provide a positive ROI,
it might cause performance to degrade in other areas, such that you might not want to go
forward with it. Some of these consequences could be in the areas of regulatory or ethical
issues. These areas are often overlooked, only to be discovered (painfully) at a later point
in time. One of the key benefits of doing this analysis is to make sure you are catching any
problems earlier.

84 Understanding and Defining Business Problems

Another mechanism that is often used is to simulate the system dynamics diagrams.
This allows you to understand the dynamic behavior of your system and can serve as a
virtual experiment. Virtual experiments or simulations let you test out different strategies
in a safe environment before launching your models. Not only does this help you avoid
costly mistakes—it can often also suggest improvements or strategies to further optimize
the benefits. The reasons many data science projects do not succeed are that data
science teams rarely do this, typically do not have the skills to do this analysis, and have
historically not taken this part very seriously. Let's look here at a simple example of an ML
model in a system:

Figure 3.9 – Impact analysis

In this example, you have a price promotion model that uses some features to generate
a promotion price. This model monitors the sales and updates the price accordingly.
For some reason (database updates, approvals, and so on), there is a delay involved in
updating these prices on the e-commerce site. This creates a lag in the sales data that is not
known to the modeling team because the modeling team did not understand the entire
flow and how much time it takes to update prices on the site. If you were to do an analysis
of this simple diagram, you would discover that such feedback loops with delays produce
oscillating behavior. This means that the pricing will always be off—sometimes higher and
sometimes lower. This behavior is somewhat similar to what you see in most model results
anyway, so it is entirely possible that this effect will be missed. The system will perform
poorly even though the model itself was fine. I have kept this example very simple to make
a point. You can imagine that if the situation were more complex, most people would not
be able to see the problem on their own till it is too late.

Operationalizing and generating value 85

On the flip side, you can also evaluate how much sales impact your model will make
compared to the status quo. This is a great way to show ROI and the business value of
your work. Since simulations based on these diagrams are a visual representation of
your business, most people find it a lot easier to understand as compared to narratives or
spreadsheets. This also helps in gaining acceptance of your ML models.

While DataRobot does not help with many of these aspects, it does offer mechanisms to
determine whether your model is biased along with any protected features and measure
the amount of bias that exists in the model. This, combined with the preceding analysis,
can go a long way to ensure that your models are not biased and that the results are not
being used in a way that goes against your organization's values. Now that we are happy
with the model's expected results, we can start the process of deployment.

Operationalizing and generating value
Operationalizing a model in your infrastructure can be a complicated undertaking. There
are some aspects of deployment that are made simple by DataRobot, but there are other
parts of deployment that are outside the scope of DataRobot and can be quite challenging.
Let's discuss the tasks that are part of this process, as follows:

•	 Deploying a model as an application programming interface (API): One of the
very first tasks is to deploy your model as an API so that it can serve predictions
as needed. You will have to decide whether this needs to be a batch or real-time
operation. DataRobot automates much of the task of setting this up, and you can
have an API serving predictions in minutes.

•	 Integration and testing with business systems: Having an API is only part of
the story—you will now need to integrate this API into your business systems.
Sometimes, you can serve up predictions to users via standalone Excel files or
web pages, but for many use cases integration is required. This can sometimes
take time and effort and can slow things down. Another potential path that
many organizations are beginning to use is robotic process automation (RPA).
DataRobot offers integrations with several RPA tools that can speed up the
integration process if your use case is amenable to an RPA implementation.

•	 Building an end use interface: This is not needed if your use case calls for complete
automation, but most use cases will have some level of user involvement. With
integration out of the way, you will still require some way for the user to interact
with the prediction and make appropriate decisions. You will need to consider how
users will adjust to a new way of doing business and how to make this experience as
frictionless as possible. In fact, in many use cases, the predictions are specifically set
up to reduce friction in an existing process.

86 Understanding and Defining Business Problems

•	 User training: Make sure you are planning for and ready to offer training to users
whose workflow is being impacted by the new models. Creating training and
offering this training is a great way to increase adoption and acceptance of the
model. Many times, this is thought of after the fact and can cause delays or
reduce acceptance.

•	 User acceptance and change management: This is typically an ongoing process.
It is generally a good idea to involve users and stakeholders from the start. If users
feel that their voice is heard, this will improve the chances of acceptance. Users can
also help avoid potential problems that the data science team will not catch on their
own. Frequent communication about why you are doing this project, how it impacts
the users, and how their work will change (hopefully for the better) are all good
strategies to improve your odds of success. Building the diagrams listed previously
in conjunction with users is a great way to start this dialog and is ultimately what
adds value to the business. As you can see, many things have to happen before and
after a model is built to realize value. It is no wonder that projects often do not
succeed in adding value.

•	 Model monitoring and maintenance: Once the model is operational, you will
need to set up mechanisms to monitor the prediction service and the performance.
Over time, the performance tends to degrade, or you might want to improve the
performance of the model. This requires the models to be updated or retrained with
new data. Luckily, DataRobot makes these tasks very easy as it provides mechanisms
to set up the monitoring and retraining of the models.

Summary
In this chapter, we covered some tools and methods to help you gain an understanding
of your system and the business problem you are trying to solve. Some of these methods
will be new or unfamiliar to even experienced data scientists, but it is important to take
the time to internalize them and practice them on your projects. Some of this will feel
unnecessary given the time pressures. This is one of the reasons tools such as DataRobot
are beneficial, as they reduce the time you need to spend on repetitive tasks and allow you
to focus on things that tools cannot do.

Further reading 87

Hopefully, I have convinced you that the combination of data science teams focusing
more on understanding the problem and using automation tools for some of the model
building and tuning tasks provides the best value to an organization. A lot of the work
done here will also come in handy toward the end of the project when we are getting ready
to operationalize the models into the organization. Specifically, in this chapter, we have
learned how to understand the broader system context, how the system operates, and why
it behaves a certain way. We also saw how to get to the root problem that a business needs
to solve and turn the business problem into a form that can be solved with ML. We then
learned how to make sure that the solution solves the right problem and does not create
unintended side effects.

Finally, we learned how to make sure that the solution is accepted by the stakeholders and
gets operationalized, leading to the realization of business value.

We are now ready to start working with some example datasets and begin using DataRobot
to help solve the business problem we have uncovered and the ML problem we have defined.

Further reading
•	 Causality: Models, Reasoning and Inference, Second Edition, Judea Pearl, Cambridge

University Press.

•	 Business Dynamics: Systems Thinking and Modeling for a Complex World, John D.
Sterman, Irwin/McGraw-Hill.

Section 2:
Full ML Life Cycle
with DataRobot:

Concept to Value

This section will cover the entire life cycle of building and deploying an ML model with
DataRobot. Upon completion, you will know how to take a project from start to finish.
Although the tasks are listed linearly, these tasks will happen iteratively during any real
project, and at many points in this process, you will jump back to a previous step to
perform some tasks all over again.

This section comprises the following chapters:

•	 Chapter 4, Preparing Data for DataRobot

•	 Chapter 5, Exploratory Data Analysis with DataRobot

•	 Chapter 6, Model Building with DataRobot

•	 Chapter 7, Model Understanding and Explainability

•	 Chapter 8, Model Scoring and Deployment

4
Preparing Data
for DataRobot

This chapter covers tasks relating to preparing data for modeling. While the tasks
themselves are relatively straightforward, they can take up a lot of time and can sometimes
cause frustration. Just know that if you feel this way, you are not alone. This is pretty
normal. This is also where you will begin to notice that things are a bit different from your
experience in an academic setting. Data will almost never arrive in a form that's suitable
for modeling, and it is a mistake to assume that the data you have received is in good
condition and of good quality.

Most real-world problems do not come with a ready-made dataset that you can start
processing and use to build models. Most likely you will need to stitch data together
from multiple disparate sources. Depending on the data, DataRobot might perform data
preparation and cleansing tasks automatically, or you might have to do some of these on
your own. This chapter covers concepts and examples to show how to cleanse and prepare
your data and the features that DataRobot provides to help with these tasks.

92 Preparing Data for DataRobot

By the end of this chapter, you will know how to set up data to hand it off
to DataRobot and begin modeling. In the chapter, we're going to cover the following
main topics:

•	 Connecting to data sources

•	 Aggregating data for modeling

•	 Cleansing the dataset

•	 Working with different types of data

•	 Engineering features for modeling

Technical requirements
Some parts of this chapter require access to the DataRobot software, and some tools for
data manipulation. Most of the examples deal with small datasets and therefore can be
handled via Excel. The datasets that we will be using in the rest of this book are described
in the following sections.

Automobile Dataset
The Automobile Dataset (source: Dua, D. and Graff, C. (2019). UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science) can be accessed at the UCI
Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/
Automobile). Each row in this dataset represents a specific automobile. The features
(columns) describe its characteristics, risk rating, and associated normalized losses. Even
though it is a small dataset, it has many features that are numerical as well as categorical.
Features are described on the web page, and the data is provided in .csv format.

http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/Automobile
https://archive.ics.uci.edu/ml/datasets/Automobile

Connecting to data sources 93

Appliances Energy Prediction Dataset
This dataset (source: Luis M. Candanedo, Veronique Feldheim, Dominique Deramaix,
Data driven prediction models of energy use of appliances in a low-energy house, Energy
and Buildings, Volume 140, 1 April 2017, Pages 81-97, ISSN 0378-7788) can be accessed
at the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/
datasets/Appliances+energy+prediction#). This dataset captures temperature
and humidity data in various rooms in a house and in the outside environment, along with
energy consumption by various devices over time. The data is captured every 10 minutes.
This is a typical example of a time series dataset. Data is provided in .csv format, and the
site also provides descriptions of the various features. All features in this dataset are numeric
features. The dataset also includes two random variables to make the problem interesting.

SQL
For some parts of this chapter, it will be helpful to know SQL, although you do
not need to know SQL to go through the example problems.

Connecting to data sources
By this point, you should have a list of data sources and an idea of what data is stored
there. Depending on your use case, these sources could be real-time data streaming
sources you need to tap into. Here are some typical sources of data:

•	 Filesystems

•	 Excel files

•	 SQL databases

•	 Amazon S3 buckets

•	 Hadoop Distributed File System (HDFS)

•	 NoSQL databases

•	 Data warehouses

•	 Data lakes

•	 Graph databases

•	 Data streams

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction#
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction#

94 Preparing Data for DataRobot

Depending on the type of data source, you will use different mechanisms to access this
data. These could be on-premises or in the cloud. Depending on the condition of the
data, you can bring it directly into DataRobot, or you might have to do some preparation
before you bring it into DataRobot. DataRobot has recently added capabilities in the form
of Paxata to help with this process, but you might not have access to that add-on. Most of
the processing work is done via SQL, Python, pandas, and Excel. For the purpose of this
book, we will only focus on Excel.

If you are not already familiar with SQL and pandas, then it will be helpful for you to start
learning about them as soon as you get an opportunity:

1.	 You can connect to a data source by going to the Create New Project menu, as
shown in the following figure:

Figure 4.1 – Connecting to a data source

Connecting to data sources 95

2.	 You can search for an existing data source that has been defined, or you can add a
new data connection. If you select the add new data connection option (shown in
the preceding figure), you will see the following connection choices:

Figure 4.2 – Types of data connection

96 Preparing Data for DataRobot

3.	 You will see the connection choices available for your organization. What you see
here could be different from the preceding figure. Most databases with JDBC drivers
are supported, but you might have to check with your administrator. As an example,
let's select the MySQL option, as shown in the following figure:

Figure 4.3 – Configuring a data connection

In the preceding figure, you will see the configuration parameters for configuring a
MySQL data source. Other data sources are similar in nature. Here, you will enter the
configuration settings that can be obtained from your database administrator. You will
need to create a similar connection if you are connecting to a database to get data into
Python or Excel.

Note
You will need to have some working knowledge of SQL or work with someone
who knows SQL to make use of these options.

Aggregating data for modeling 97

Aggregating data for modeling
From the previous chapters, you might remember that machine learning algorithms
expect the dataset to be in a specific form and it needs to be in one table. The data needed
for this table, however, could reside in multiple sources. Hence, one of the first things
you need to do is to aggregate data from multiple sources. This is often done using SQL
or Python. Recently, DataRobot has added the capability to add multiple datasets into
a project and then aggregate this data within DataRobot. Please note that there are still
some data cleansing operations that you might have to do outside of DataRobot, so if you
want to use the aggregation capabilities of DataRobot, you need to do cleansing operations
prior to bringing this data into DataRobot. We cover data cleansing in the following
section. If you choose to do data aggregation inside DataRobot, you have to make sure to
do this at the very start of the project (Figure 4.4):

Figure 4.4 – Add secondary datasets

98 Preparing Data for DataRobot

In the preceding figure, just below the Start button, you can click on Add datasets. Once
you click on it, you will see a window that lets you specify the additional dataset, as shown
in Figure 4.5:

Figure 4.5 – Secondary datasets

Here, you can add a new dataset and define the relationships between your main dataset
and the secondary datasets. For time series problems, you can also use this capability to
aggregate your data to the right timescale and join it with the main dataset.

Please note that this does require some understanding of how relational tables work and
some SQL concepts. If you are not familiar with these ideas and you are not sure what
indexes to use, work with someone who understands databases to help you set this up.

Cleansing the dataset
This step can come before or after the data aggregation we talked about in the previous
section. We introduced some concepts around data cleansing in Chapter 2, Machine
Learning Basics, so let's look at how to actually do it on a dataset. For this, let's start with
the Automobile Dataset. Please refer to the Technical requirements section to access the
UCI repository for this dataset:

1.	 Let's download two files: imports-85.data and imports-85.names. The data
file is in .csv format, so let's rename the file with the .csv extension and open it
using Excel (you can use any text editor). You will now see the data (Figure 4.6):

Cleansing the dataset 99

Figure 4.6 – Automobile data

2.	 You will notice in the preceding screenshot that it is missing the header
information. To retrieve the header information, open the .names file in any
text editor. You will see the names of attributes as well as their definitions. Create
an empty row at the top of your .csv file and you will have to manually type the
names of these attributes as the first row of your file. Now let's save this file as
autodata.csv. It should now look as shown in Figure 4.7:

Figure 4.7 – Automobile data with headers

Please review all the cells in this data file. You will have already noticed that many cells in
the preceding figure have a ? instead of a value. While there are several features where the
values are missing, for most of them it is negligible, except for normalized-losses
where 20% of the total values are missing. Given that our dataset is very small, we do not
want to drop the rows with missing data. Also, DataRobot has mechanisms to account
for missing values, so we are going to leave most of them as is. The only one that we want
to consider is normalized-losses. If normalized-losses is our target variable,
then we have no choice but to drop those rows. If not, we can first try to go as is and let
DataRobot build a model. We can then try an alternative strategy of using the average
value of normalized-losses per Symboling value to see if that makes any difference.
I will use Excel's pivot table functionality to compute these averages (Figure 4.8):

Figure 4.8 – Pivot table

100 Preparing Data for DataRobot

The reason for using Symboling is that it is an indicator of risk. Depending on the
problem and what you are trying to accomplish, you can choose some other feature
for this purpose. For now, we will use Symboling to illustrate how to do it. There are
more sophisticated imputation methods available, such as a K-Nearest Neighbor-based
imputation method, that you can explore if desired (https://scikit-learn.org/
stable/modules/generated/sklearn.impute.KNNImputer.html).

In reviewing the Appliances Energy Prediction Dataset, we see that the data looks very clean
and no further cleansing is required. In real-world projects, you will almost never find a
dataset that is free of problems. Typical problems in time series datasets to watch out for are
as follows:

•	 Very little data: You need at least 35 or so datapoints for regression and 100
datapoints for classification problems to allow DataRobot to do something useful
with your data.

•	 Data gaps: Sometimes data might be missing for certain timesteps. In these cases,
you can use values from the timesteps before or after to assign values for the missing
time step. You can also let DataRobot do this for you.

•	 Interrelated series: Often you will have multiple timeseries that you are trying to
forecast. If the series are similar and are interrelated, then you can combine them
into a single model. This can often improve the forecast accuracy. In these cases,
you have to create a feature that tells DataRobot that these series are part of the
same cluster.

We will revisit the data quality based on what DataRobot finds. Now that the dataset looks
reasonably clean (which is very unusual by the way), let's investigate this data further.

Working with different types of data
You will have noticed that some of the features have numeric values while others have
categorical values. For example, the aspiration feature can have two values: std or turbo.
Such categorical features require some preprocessing to convert them into numeric
values. Luckily DataRobot takes care of that processing for us. You might want to check
for misspellings, though, to make sure that the possible values match the expectations.
For example, you might find standard as well as std in your datasets. In this case,
DataRobot will treat them as different values, even though they are the same.

https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html

Working with different types of data 101

There are some features that can be treated as categorical or as numerical. For example,
Symboling can be treated as numerical or as categorical. In general, if the numerical value
has meaning, it is better to treat it as numerical. Another example is num-of-cylinders;
here, the values are expressed as text. Given that there is a numerical order here, it might be
beneficial to turn this into a numeric variable, as shown in Figure 4.9:

Figure 4.9 – Categorical to numerical feature conversion

Here, we have created (in Excel) a new feature, cylinder-count, that carries the
numerical values for the number of cylinders. In this example, we are using Excel for
the data manipulation, but this can be achieved via many methods, such as SQL,
Python, and Paxata. You can do similar data manipulation and create a new column for
num-of-doors as well.

Let's take a look at the make feature in the following figure. This seems to have 22 possible
values, but we have very limited data available. If we count the number of rows for each
make, we can see how much data is available for each make:

Figure 4.10 – Data for each make

102 Preparing Data for DataRobot

We notice that some car types have very little data available, so it might be useful to
combine some of them. For example, we can combine (using Excel) the highlighted rows
into a make called other. Where you draw the line depends upon your understanding
of the business problem or discussions with domain experts. Even with that knowledge,
you might have to try out a few different options to see what works best. This is what
makes machine learning an iterative and exploratory process. Also keep in mind that
you have limited time available, so don't over-explore either. There is certainly a point of
diminishing returns where additional tinkering will not produce many benefits.

DataRobot also allows special processing for images and geo-spatial data. We will cover
them in Chapter 11, Working with GeoSpatial Data, NLP, and Image Processing. Now let's
look at other transformations that can be done on data.

Engineering features for modeling
As part of the system's understanding you would have gained some insights into your
problem and dataset that can be used to create new features in your dataset by combining
the existing features in various ways. For example, we can create a new feature called
volume by multiplying length, width, and height. Similarly, we can create a feature called
mpg-ratio by dividing highway-mpg by city-mpg. Let's also create a feature called
cylinder-size by dividing engine-size by cylinder-count. The equations for
these features are as follows:

•	 volume = length * width * height

•	 mpg-ratio = highway-mpg / city-mpg

•	 cylinder-size = engine-size / cylinder-count

Figure 4.11 shows an example of what these feature values look like:

Figure 4.11 – Engineered features for the Automobile Dataset

As you can now see, many possibilities exist to create new features that could prove helpful
in solving your problem. Many of these new features may not be useful, and it is OK to drop
them later. Sometimes, such features will have meaning for the customers or stakeholders,
and you might want to keep them instead of some other features that are redundant.

Engineering features for modeling 103

Let's take a look at the Appliances Energy Prediction Dataset file. With this dataset, we
can create the following features:

•	 total-energy = Appliances + lights

•	 avg-temp-inside = (T1 + T2 + T3 + T4 + T5 + T7 + T8 + T9)
/ 8

•	 avg-rh-inside = (RH_1 + RH_2 + RH_3 + RH_4 + RH_5 + RH_7 +
RH_8 + RH_9) / 8

•	 temp-inout-diff = T6 – avg-temp-inside

•	 rh-inout-diff = RH_6 – avg-rh-inside

•	 windchill-factor (I am creating an approximate windchill factor based on
https://www.weather.gov/media/epz/wxcalc/windChill.pdf)
= T_out * (Windspeed0.16)

The new data features will appear as shown in Figure 4.12:

Figure 4.12 – Engineered features for the Appliances Energy Prediction Dataset

As you can see, these features use our knowledge about the domain that we can find by
talking to domain experts or doing some research on the internet. You might be able to
find even more such features by doing some research about dew points, pressure, and
visibility. It will be hard for the automation to catch all of these on its own, but on the
other hand, the automation might be able to find some additional interesting features
based on them. Recently, DataRobot has also been adding capabilities to automatically
do some feature engineering, but these capabilities are somewhat limited. One area where
these capabilities are very useful is time series problems. In this particular area, these
capabilities are extremely helpful in trying out a wide range of features that will be hard to
match on your own. Having said that, it is still your responsibility to inject your domain
knowledge into the model via engineered features.

https://www.weather.gov/media/epz/wxcalc/windChill.pdf

104 Preparing Data for DataRobot

Summary
In this chapter, we covered methods to help you prepare the dataset for building the
models. Many of these methods have to be applied outside of DataRobot, although
DataRobot is beginning to provide support for many of the data preparation tasks. As we
discussed, many of these tasks cannot be automated at this point in time, and they require
domain understanding to make appropriate decisions.

Specifically, in this chapter we have learned how to connect to various data sources and
how to aggregate data from these sources. We looked at examples to address missing
data issues and other data manipulation that should be done prior to modeling. We
also covered several methods for creating new features that can be very important for
improving the model's performance.

We are now at a stage where we will be working almost completely inside the DataRobot
environment to analyze the data and build models. In the next chapter, we will use
DataRobot to analyze the datasets.

5
Exploratory Data

Analysis with
DataRobot

In this chapter, we will cover tasks related to exploring and analyzing your dataset with
DataRobot. DataRobot performs many functions that you will need to perform this
analysis, but it is still up to you to make sense of it.

By the end of this chapter, you will have learned how to utilize DataRobot to perform
exploratory data analysis (EDA). In this chapter, we're going to cover the following
main topics:

•	 Data ingestion and data cataloging

•	 Data quality assessment

•	 EDA

•	 Setting the target feature and correlation analysis

•	 Feature selection

106 Exploratory Data Analysis with DataRobot

Data ingestion and data cataloging
Now that we have our datasets ready, we have two choices to bring them into DataRobot.
We can go to either the Create New Project / Drag Dataset page (Figure 1.5) or the AI
Catalog page (Figure 1.17). If the dataset is relatively small, we may prefer to start with the
Create New Project method. After a few iterations, when the dataset has stabilized, you
can move it into the AI Catalog page so that it can be reused in other projects.

Let's start by uploading our automobile dataset as a local file that we created in Chapter 4,
Preparing Data for DataRobot. You can name the project Automobile Example 1, as
shown in the following screenshot:

Figure 5.1 – Uploading dataset for a new project

You will notice that DataRobot automatically starts analyzing the data and performs a
quick exploratory analysis. You can see that it found 30 features and 205 rows of data.

Note
If you are using an Excel file that has multiple sheets, make sure that the data
you want is in the first sheet.

Data quality assessment 107

Data quality assessment
DataRobot will also perform a data quality assessment and notify you if it finds any data
issues, as shown in the following screenshot:

Figure 5.2 – Data quality issues

In this case, it has found outliers in eight features. You can look into the details to see if
these look acceptable or if you need to drop or otherwise fix these outliers. We will do this
as we explore and analyze each of these features in the following section.

Notice that it also looked for any disguised missing values or excess zeros in any feature.
These can be hard to detect manually and can be problematic for your models, so it is
important to fix these issues if they come up. For example, you saw in Chapter 4, Preparing
Data for DataRobot, that we already fixed the issue of excess zeros in the normalized-
losses feature. If we had not done that previously, DataRobot would alert us to fix this
or filter out those rows before proceeding. It will also perform additional analysis once a
target feature is selected.

You will carry out the same process with the Appliances Energy dataset.

108 Exploratory Data Analysis with DataRobot

EDA
As you saw in the previous section, DataRobot automatically performed an initial analysis
of the dataset. Let's see how we will review this data and gain insights from it. If you scroll
down the page, you will see a table of features and an overview of their characteristics, as
shown in the following screenshot:

Figure 5.3 – Data analysis overview

You can see that in this table, DataRobot has computed and listed any data quality concerns
regarding a feature, what type of variable it is, how many unique values are in the dataset,
and how many values are missing. These are all very important characteristics, and you
need to review all of them to make sure that you understand what they are telling you.

EDA 109

For example, is the variable type selected by DataRobot what you expected? If you look
at num_of_doors, you will notice that this is categorical. Even though this is correct
because the data contained is in the form of text, you know that this is really numbers. You
might want to fix this (just as we did for num_of_cylinders in Chapter 4, Preparing
Data for DataRobot). Doing this ahead of time will reduce rework and wasted effort
downstream. Similarly, you will notice that num_of_doors has two missing values. If
this number were higher, we would have tried to address the missing values, as discussed
in Chapter 4, Preparing Data for DataRobot. Also, pay attention to unique values. For
some features, we expect many unique values, while for others, we do not. Check if what
DataRobot found is consistent with your expectations. If not, try to determine the reason
for this. Pay special attention when a categorical variable has a large number of unique
values. We will soon discuss how to address this issue.

For numeric features, you will also see summary statistics such as Mean, Median, Std
Dev (for standard deviation), Min, and Max. Review these for each feature to see if they
all look reasonable. If you click on any feature row, it will expand and show more detail, as
shown in the following screenshot:

Figure 5.4 – Feature details for "symboling"

110 Exploratory Data Analysis with DataRobot

Here, you can see a histogram of all the values. You can now see how this data is
distributed. One aspect to pay special attention to is the area where you don't have much
data. For example, you can see that the amount of training data available for the value -2
is very limited, so we should expect there to be problems trying to predict these values.
Now, let's look at the details of normalized_losses in the following screenshot:

Figure 5.5 – Feature details for "normalized_losses"

In this view, we can see that there seem to be very few losses around 140 and 180. If this
were a large dataset, this would be a cause for concern. Since our dataset is very small, it
is not surprising to see such gaps. Also, note that these are average losses per year and not
losses experienced by an individual car. Next, in the following screenshot, we will look at
the make feature to see how it is distributed:

EDA 111

Figure 5.6 – Feature details for "make"

Since make is a categorical feature, you can see how frequently each value shows up.
Remember that we had already consolidated some car types that had very little data into
other. If we hadn't done that, we would notice here that some types have very few data
points and need to be addressed or they will not do well during training. Let's look at
fuel_type to see what we can glean from this data, as shown in the following screenshot:

Figure 5.7 – Feature details for "fuel_type"

112 Exploratory Data Analysis with DataRobot

Here, we notice that diesel cars are not well represented, and this might be normal for
cars. Anytime we see such imbalances, we should try to see if they can be addressed. Now,
when we look at the engine_location feature, as shown in the following screenshot,
we see that we have a problem:

Figure 5.8 – Feature details for engine_location

EDA 113

As you can see in the preceding screenshot, the rear feature is barely registering on the
dataset. From a practical standpoint, what this means is that the algorithms will ignore
this feature. If you did not look carefully, you might assume that engine_location
has no impact on your target, but as you can tell from this screenshot, our dataset is not
large enough to make that determination. Let's now look in the following screenshot at
engine_type to see what we find here:

Figure 5.9 – Feature details for "engine_type"

In this case, we find that one type dominates and some of the types are barely represented.
Looking at this distribution, you might want to create another feature where you
transform this into a binary value, 0 for ohc and 1 for every other type. This will also
create some balance in the dataset.

114 Exploratory Data Analysis with DataRobot

Please bear in mind that this might or might not prove to be useful. You have to try it out
in your models and see what works. Let's now look in the following screenshot at num_of_
cylinders and cylinder_count, a feature that we created during data preparation:

Figure 5.10 – Feature details for "num_of_cylinders" and "cylinder_count"

Setting the target feature and correlation analysis 115

As you can see, even though it is the same data, transforming the values provides a
different impression compared to what you get when you first look at the histograms. The
numeric values are a more accurate representation of the data and should result in a better
model compared to the categorical values.

Hopefully, we have highlighted what DataRobot provides automatically and what kinds
of insights can be gained by looking at the graphs generated by DataRobot. We are now
ready to set our target feature and do additional analysis.

Setting the target feature and correlation
analysis
By the time you reach this stage, you should already have a pretty good idea of the
problem you are trying to solve and what should be the target feature. It is not unusual
to use different features as targets for different use cases. Also, sometimes you will set a
transformed feature as a target (for example, log of a feature). For the Automobile dataset,
we want to predict the price of cars. Once you select the target feature, as shown in the
following screenshot, it will analyze that feature and provide some recommendations:

Figure 5.11 – Setting target feature

116 Exploratory Data Analysis with DataRobot

You can see from the preceding screenshot that it is showing how the price is distributed.
DataRobot also cautions that some of the target values are missing. Ideally, we would filter
out the rows with missing target values before uploading the dataset. You will also notice
that DataRobot has characterized this as a regression problem. Another thing to note is
that it has picked the optimization metric to be Gamma Deviance. You can read more
about this metric in Chapter 2, Machine Learning Basics, or you can explore it in more
detail in DataRobot's help sections. For now, it looks like a good choice, given the wide
variance of price values.

Before we click on the Start button, we should explore the advanced options. The
reason for this is that once you click the Start button, you cannot make changes to the
options. Having said that, it is often hard to make all the right choices without completely
understanding the data. One way to overcome this issue is to ignore the advanced options
for now and go ahead with the exploration.

Once we know what we want, we can create a new project and select the appropriate
options. You can see that this is an iterative process, and we will often try something and
come back and redo some of it. Also, notice that Modeling Mode in Figure 5.11 is set to
Quick. This is normally a good choice to get started. With that in mind, we can actually
skip the options and go ahead and click the Start button. You will notice that DataRobot
will get started on performing additional analysis, as shown in the following screenshot:

Figure 5.12 – Feature analysis

Setting the target feature and correlation analysis 117

You will notice that in addition to performing additional analysis, DataRobot will actually
start building the models. This might be surprising since we are still doing analysis, but fear
not—these are not the final models. Let DataRobot build these models, as some of these
will provide useful insights into our data. We will most likely discard these models later on,
but they will prove useful in our journey. Once DataRobot has finished doing all the tasks,
you will see an Autopilot has finished message, as shown in the following screenshot:

Figure 5.13 – Initial analysis complete

118 Exploratory Data Analysis with DataRobot

You will now notice that DataRobot has populated an Importance column for all the
features. This is the relative importance of a feature in reference to the target feature. We
can also check to see if there are additional data quality issues that have been found. For
that, let's click on the View info dropdown in the Data Quality Assessment box. You will
then see the options, as shown in the following screenshot:

Figure 5.14 – Data Quality Assessment

We saw some of the issues previously, but we now see that there are features that
potentially have target leakage. If target leakage exists, we will filter those features out. By
looking at the warning signs associated with each feature, we discover that these features
are horsepower and engine_size. Since these are important features and have
an obvious impact on price, we will retain these features. We also see another warning
symbol in the header row, as shown in the following screenshot:

Setting the target feature and correlation analysis 119

Figure 5.15 – Missing target values

Clicking on the symbol, we see that DataRobot has already filtered out rows where the
price is missing. This is good, as it means we don't have to recreate our dataset and upload
it again into DataRobot. You will also notice in the following screenshot that a new tab
called Feature Associations is now present at the top left of the screen. This is a critical
tab for our data analysis task. Let's click on this tab to look at what DataRobot has found:

Figure 5.16 – Feature Association

120 Exploratory Data Analysis with DataRobot

DataRobot calls these associations instead of correlations, and the reason is that DataRobot
uses mutual information (MI) instead of correlation coefficients. The benefits of using MI
are that it is able to better reflect non-linear relationships and can also handle categorical
features. If you perform correlation analysis, you will find that the results are very similar
in the case of linear relationships. In addition to finding the relationships, DataRobot also
tries to find any clusters of interrelated features. You will notice that different clusters are
color-coded differently. These offer additional insights into your problem. For example,
you will see that there is a cluster of features related to the engine that includes a group of
tightly correlated features such as engine_size, bore, cylinder_size, and stroke.
Understanding these relationships as a collective can be very important to solving a business
problem. In this particular case, it tells you that you cannot modify one of these in isolation.

Changing the bore will affect many other features, even if your model does not end
up with those features. Ignoring these aspects is what typically leads to downstream
problems, so please pay special attention to these relationships.

You can gain additional insights by sorting the associations by their importance, as shown
in the following screenshot:

Figure 5.17 – Feature associations sorted by importance

Setting the target feature and correlation analysis 121

The preceding screenshot shows the features sorted by their impact on the target feature.
This tells you which features are most likely to be prominent in your model. One thing
to look for is how this lines up with the causal model that you built during the problem
understanding stage. Is it consistent? If not, where are the differences and surprises? These
typically lead to new insights into your problem. It is also useful to look at the MI values in
totality. For this, you can click on the Export button to export all MI values as a .csv file.
You can then analyze them in tools such as Excel, as shown in the following screenshot:

Figure 5.18 – MI values

122 Exploratory Data Analysis with DataRobot

This gives you a better feel for the relative scale of these values. In this view, we can see that
aspiration has very little impact on price. This seems a little counterintuitive and merits
some additional investigation. For this, we can look at this association in more detail by
clicking on the View Feature Association Pairs button. You can now select price and
aspiration to see the association details, as shown in the following screenshot:

Figure 5.19 – Association pair details

Here, we can see that for the same value of aspiration, the price can vary quite a bit.
Still, we can see that on average, turbo has a higher price. Based on this, we will keep it
in the mix for modeling. We should also discuss with the domain experts to see why it is
not correlating in a stronger fashion with price. These discussions can lead to creating
other features that might clarify this relationship. On the other hand, the relationship
between price and num_of_doors doesn't look very interesting.

It is a good idea to review the association pairs to see what insights can be gained. At
a minimum, review the ones with very high or very low values. Specifically, look for
non-linear relationships. For example, let's look at the association between curb_weight
and highway_mpg, as shown in the following screenshot:

Setting the target feature and correlation analysis 123

Figure 5.20 – Association between curb_weight and highway_mpg

Here, you will notice that as curb_weight increases, the miles per gallon (MPG) value
decreases, which makes intuitive sense. We also see that the curve starts flattening at higher
weights. This could be due to many reasons, as other factors affecting MPG do not increase
with weight.

Note that while this may or may not affect the predictive accuracy of the model,
understanding these relationships is key to determining actions to be taken based on the
model. For example, weight reduction might not provide much MPG benefit for weights
larger than 3500. We can also investigate the association between curb_weight and
drive _wheels, as shown in the following screenshot:

Figure 5.21 – Association between curb_weight and drive_wheels

124 Exploratory Data Analysis with DataRobot

In the preceding screenshot, we can see that curb_weight is impacted by the choice of
drive_wheels. It is possible that if we use both these features in our model, the model
will give a much higher preference to curb_weight and might find not much value in
using drive_wheels. Business users might therefore interpret drive_wheels as not
very important.

As you can see, this is not true since curb_weight is itself influenced by drive_wheels.
It has been observed that an accurate model can sometimes give a false impression if you are
not careful. DataRobot can do this analysis and produce these graphs, but it is up to you to
understand and interpret these correctly.

Let's look again at some of the individual feature graphs we looked at before. For this, let's
look at the feature details shown in Figure 5.13 and click on curb_weight. This will
show us details about the feature, as shown in the following screenshot:

Figure 5.22 – Feature details for curb_weight

Setting the target feature and correlation analysis 125

You will notice that we now have some more information in this graph. Specifically, we
can now see how price varies with curb_weight as well as how the curb_weight
value is distributed. Looking at these relationships can give you additional insights into
your problem, especially when the relationship is non-linear. For example, let's look at the
details for highway_mpg in the following screenshot:

Figure 5.23 – Feature details for highway_mpg

As you can see, the price drops exponentially as the MPG value increases. Given this
non-linearity, which also seems to be present in other features, it might be useful to try
creating a new target feature by taking a log of the price. Similarly, by looking at the other
features, you can get ideas on feature transformations that might prove beneficial. Some
of you might be wondering why we should do this since the new algorithms can handle
non-linearity. While that is true, it is still better to transform your non-linear problems if
it makes sense from a business-understanding perspective. Also, it allows the algorithm to
focus its computational energy in other areas that might otherwise be overlooked.

Now that we have understood the features and have transformed them as needed, we can
focus on selecting a feature set to start the modeling process.

126 Exploratory Data Analysis with DataRobot

Feature selection
The basic idea behind feature selection is to select features that show high importance for
the target. In addition, we want to remove any features that are highly cross-correlated
(or have high MI values) to other features. The selected set of features are represented as
feature lists in DataRobot. If you click on the Feature Lists menu on the top left of the
page, as shown in the following screenshot, you will see the feature lists that DataRobot
has created for the dataset:

Figure 5.24 – Feature Lists

Here, you will see a list that contains all the raw features, ones that have selections based
on univariate analysis (that is, analysis of features one at a time), and also ones that
have the most important features. The DR Reduced Features M8 list or the Univariate
Selections list look like good starting points. Click on the Project Data menu to go back
to the data view. Now, let's inspect the univariate list by selecting Univariate Selections
from the Feature List dropdown, as illustrated in the following screenshot:

Figure 5.25 – Selecting a feature list

Summary 127

You can now inspect the list of features that have been selected. You can modify this list
and create new feature lists by dropping any features that you do not want to include in
this list. As you can see, DataRobot has done much of the feature selection for you to
get things started. You can remove some more now, or you can remove them in the next
iteration after you have built an initial set of models.

Interestingly, DataRobot has already built some models with some of these lists, which we
will explore in the next chapter.

Summary
In this chapter, we learned how to bring data into DataRobot. We learned how to assess
data quality and to perform EDA by using DataRobot's features. We saw how DataRobot
makes it very easy to explore data, set up target features, and perform correlation (or,
more accurately, association analysis).

We learned how to leverage DataRobot's output to gain a better understanding of our
problem and dataset, and then how to create feature lists to be used in model building.
You could do these tasks in Python or R and they are not very difficult, but they do
consume some time. This time is better served in focusing on understanding the problem
and the dataset.

In the next chapter, we will jump into something that most of you must be waiting for:
building models.

6
Model Building with

DataRobot
In this chapter, we will see how DataRobot is used to build models. Much of the model-
building process has been automated, and DataRobot offers many capabilities to explore
a wide range of algorithms automatically, as well as allowing data scientists to fine-tune
what they want to build. This results in significant time savings for data science teams and
leads to the exploration of many more models than would otherwise be possible. It also
leads to better adherence to best practices and hence fewer chances of making mistakes.

By the end of this chapter, you will have learned how to utilize DataRobot to build a wide
range of models. In this chapter, we're going to cover the following main topics:

•	 Configuring a modeling project

•	 Building models and the model leaderboard

•	 Understanding model blueprints

•	 Building ensemble models

130 Model Building with DataRobot

Configuring a modeling project
In the previous chapter, we created a project and performed data analysis. We also saw
that DataRobot automatically built several models for us. To build these models, we used
default project settings.

In this section, we will cover what DataRobot did for us by default and look at how we can
fine-tune that behavior. If you remember, once we click the Start button on the project
page (see Figure 5.1 in Chapter 5, Exploratory Data Analysis with DataRobot), we cannot
make any changes to the project options. We will therefore create a new project to review
and select the options we want.

For this, let's go into DataRobot and select the Create New Project menu option. Just
as before, we will now upload the same automobile dataset file that we used before.
This time, you can name the project Automobile Example 2, as illustrated in the
following screenshot:

Figure 6.1 – Uploading the dataset for a new project

You can select the same target feature (price) as we did previously. Now, instead of clicking
the Start button, please click on Show advanced options at the bottom of the screen. You
will now see the Advanced Options screen, as illustrated in the following screenshot:

Configuring a modeling project 131

Figure 6.2 – Advanced Options

Here, you can see the partitioning options. You can see the default settings and can change
them as needed. Since the amount of data we have is very limited, I have reduced the
number of cross-validation folds to 3 and the holdout percentage to 15%. You can easily
change these values and run with a different setup as needed. Next, we click on the Smart
Downsampling tab, as illustrated in the following screenshot:

Figure 6.3 – Smart Downsampling

132 Model Building with DataRobot

Given that this is not a classification problem, we need not worry about downsampling
here. If you have an imbalanced dataset for a classification problem, you can use this
option to downsample. Let's now look at the Feature Constraints tab, as illustrated in the
following screenshot:

Figure 6.4 – Feature Constraints

Configuring a modeling project 133

Here, you can set up constraints on features such as monotonicity—that is, whether
the target values move in the same direction as the value of a feature increases. At this
point, we do not foresee a need to set such constraints. Such constraints could be part
of regulatory requirements in certain use cases. If they are, they can be specified here.
Most use cases do not require such a constraint. Let's now click on the Additional tab, as
illustrated in the following screenshot:

Figure 6.5 – Additional options

134 Model Building with DataRobot

Here, we see an option to change the optimization metric to be used for modeling. I have
found DataRobot's recommendations to be very good and you should use this option
unless you have a compelling business reason to select a different metric. Given that we
are in the early stages of modeling and we are interested in understanding our data, we
will select the Search for interactions option, unselect the Create blenders from top
models option, and select the Include only models with SHAP value support option. As
discussed in Chapter 2, Machine Learning Basics, SHapley Additive exPlanations (SHAP)
values are helpful for understanding the models and will provide additional insights into
our problem. This might come at the cost of model accuracy, but we will worry about
improving accuracy later. If you scroll down further on this page, you will see even more
options, as illustrated in the following screenshot:

Figure 6.6 – More options

Building models and the model leaderboard 135

Here, you can set options to place an upper bound on running time, cap the value of
target variable predictions, set a random seed, or add a weighting for a specific feature. For
now, we do not see a need to change any of these defaults.

This completes the configuration process, and we are now ready to build the models.

Building models and the model leaderboard
Once we are done making any changes to the configuration settings, we can scroll up and
click the Start button. DataRobot will now start automatically building the models, as
illustrated in the following screenshot:

Figure 6.7 – Automated building of models

136 Model Building with DataRobot

You can see which models DataRobot is building and how much training data is being
used. You will notice that DataRobot will first build quick models with smaller datasets,
learn which one performs better, and then selectively build models with more data. In the
present case, you might not see this because there is very little data to begin with. Once
DataRobot is done building the models, it will show the model leaderboard, as illustrated
in the following screenshot:

Figure 6.8 – Model leaderboard

In the preceding screenshot, you will see which models rise to the top based on the metric
you have selected for cross-validations. You can also choose different metrics from the
dropdown to see how the models compare for different metrics. You can clearly see which
models rose to the top. It is not uncommon to see gradient boosted models in the top tier.
You will also notice that the model rankings change a bit based on the metric selected.
You will see that once DataRobot has selected a model for deployment, it has unlocked the
holdout results and trained the model with 100% data to prepare for deployment. For now,
we will ignore that as we are not yet ready to discuss deployment. Another thing to notice
is the feature list used for the top models. You will see that a new Informative Features
+ feature list has been used. This is a feature list that DataRobot created for these models.
Let's take a look at what this list contains, as follows:

Building models and the model leaderboard 137

Figure 6.9 – New feature list

138 Model Building with DataRobot

As you can see, this list contains a subset of the features, and it also contains a new feature
that DataRobot created automatically: (bore) DIVIDED BY (length). This ratio
might have significance for an engine, and you should discuss its role with subject-matter
experts (SMEs). If not previously known, this could represent a new insight for your business
team. It turns out that this is called stroke ratio and is considered an important parameter
for engines. The next step in the modeling process is to see if there is a need to further refine
this feature list. Let's go back to the model leaderboard, select the top-performing model
eXtreme Gradient Boosted Trees Regressor (Gamma Loss), go to the Understand tab and
select the Feature Impact sub-tab, as illustrated in the following screenshot:

Figure 6.10 – Understand and Feature Impact tabs

Building models and the model leaderboard 139

You will see that feature impacts are not computed for every model, so go ahead and
click on the Enable Feature Impact button to let DataRobot compute it. Once clicked,
DataRobot will start computing the impacts and show you the results, as illustrated in the
following screenshot:

Figure 6.11 – Feature impacts

140 Model Building with DataRobot

You will notice that the feature impacts are computed using SHAP values, which we
discussed previously. By default, it shows the top 25 features. We will discuss the details of
the features and the model later on. For now, we want to look at the entire feature set. For
this, we will click on the Export button in the bottom-right corner. We will now see the
Export option, as illustrated in the following screenshot:

Figure 6.12 – Exporting feature impacts

Building models and the model leaderboard 141

You can download this information as a .csv file to explore it in more detail. Let's
use Excel to open the .csv file to review the feature impacts, as illustrated in the
following screenshot:

Figure 6.13 – Feature impacts of the entire set

142 Model Building with DataRobot

As you can see, the last seven features don't add much, and we can try removing them
and see the impact. One of the benefits of a tool such as DataRobot is that running these
experiments is very quick and easy. Now that we know what we want to do, let's go back
to the Feature Impact screen. Notice the + Create feature list button on the bottom left.
Clicking on that button brings up a dialog box for creating a new feature list, as illustrated
in the following screenshot:

Figure 6.14 – Creating a new feature list

Building models and the model leaderboard 143

Here, we can give the feature list a new name, FL1 top23, and specify that we want
the 23 best features. Now, we can click the Create feature list button to save this new
feature list. Now that a new feature list has been created, we can now click on Configure
Modeling Settings in the column on the right side of the page. This will bring up the
configuration dialog box, as illustrated in the following screenshot:

Figure 6.15 – Configure Modeling Settings

144 Model Building with DataRobot

We can now select the new feature list, FL1 top23, from the dropdown. We can modify
the other settings if we need and click the Run button. DataRobot will now start building
models with the new feature list and when the process completes, you can see the new
models in the leaderboard, as illustrated in the following screenshot:

Figure 6.16 – Leaderboard with new models

Understanding model blueprints 145

As you can see, the model built with the new feature list did better and is now at the top of
the leaderboard (ignore the deployment-ready model, as it uses the entire dataset). As we
can see, removing features that did not contribute much actually helped the model (even
if just a little). Given that this model uses a smaller set of features, it is a more desirable
model. We can continue this process as needed. At this point, we also start looking more
deeply at the model's details and the results it is producing. We will come back to that
topic in the next chapter. For now, we want to look at the model blueprints or the steps
DataRobot takes to build a model.

Understanding model blueprints
DataRobot performs a lot of data transformations and hyperparameter tuning while
building a model. It leverages a lot of best practices to build a specific type of model, and
these best practices are codified in the form of blueprints. You can inspect these blueprints to
gain insights into these best practices and also to better understand which steps were taken
to build a model. To inspect the blueprint for a model, you can click on a model, go to the
Describe tab, and then select the Blueprint tab, as illustrated in the following screenshot:

Figure 6.17 – Model blueprint

146 Model Building with DataRobot

Here, you can see the workflow steps. As you can see, this blueprint is fairly simple. This is
because gradient boost methods are very flexible and do not require a lot of preprocessing.
Let's look at another model that did pretty well, the Generalized Additive2 Model
(Gamma Loss) blueprint, as illustrated in the following screenshot:

Figure 6.18 – Model blueprint for Generalized Additive2 Model (Gamma Loss)

Here, you can see that preprocessing was required for categorical variables and also for
missing values. Let's now look at another blueprint for a deep learning (DL) model. Select
the Keras Slim Residual Neural Network Regressor using Training Schedule model and
select the Blueprint tab, as illustrated in the following screenshot:

Understanding model blueprints 147

Figure 6.19 – Model blueprint for Keras

You can see that for Keras, we need to perform data cleansing, scaling, and one-hot
encoding for categorical variables. You can inspect the details of each of these steps by
clicking on the model box, as illustrated in the following screenshot:

Figure 6.20 – Process step details

148 Model Building with DataRobot

You can now see an explanation of which tasks were performed and which
hyperparameter settings were used for building the model. There is also a link to
additional details about the method used. After inspecting the blueprints, you might see
that one of your favorite algorithms was not used by DataRobot, and you might wonder
what the performance of that algorithm or model might look like. To do this, you can click
on the Repository tab at the top left of the page, as illustrated in the following screenshot:

Figure 6.21 – Repository of blueprints

Understanding model blueprints 149

Here, you will see all the blueprints DataRobot has to offer that are relevant to this project.
As you can see, this is a pretty comprehensive list. Please note that this list will vary for
projects of different types (for example, a time-series project). You can select any one of
these blueprints and build a model. The new model will be shown on the leaderboard,
where you can assess its relative performance. For now, we are not interested in doing that
for this particular project.

We are interested at this point in comparing some of the models to see how well they
compare at a more detailed level. For this, let's click on the rightmost tab at the top, called
Model Comparison. This brings up a page where you can select any two models to see
how they match up, as illustrated in the following screenshot:

Figure 6.22 – Model Comparison

150 Model Building with DataRobot

Here, we have selected the XGBoost model and the generalized additive model (GAM)
model for comparison across multiple metrics. We can see that the two models are not
too far apart, and you can select either one depending on other factors. As we discussed
previously, GAMs have the advantage of being easy to explain to business users and can
be presented as a factor lookup table (LUT), sometimes called a rating table. There might
also be regulatory reasons to select a GAM model. Let's explore a bit further by clicking
on the Compute dual lift data button, to take us to the following screen:

Figure 6.23 – Dual lift chart

Dual lift charts are used to compare the results of two models. For a dual lift chart, the
results are sorted by the difference between the two models as opposed to the target value.
The values are then binned to display the results for each bin. The shaded area depicts
the difference between the two models. Here, again, we see that the two models are very
similar in their performance.

If two models have overall good scores but show large deviations in values in this chart,
then these models will be good candidates for creating an ensemble model.

Building ensemble models 151

Building ensemble models
It is well known that ensembles of models tend to perform better and also tend to be
more robust. DataRobot provides the capability to automatically build ensemble models;
however, this does require some trade-offs. For example, ensemble models take more time
and computational resources to build and deploy, and they also tend to be more opaque.
This is the reason we did not start off by building ensemble models. Once you have built
several models and you are interested in ways of improving your model accuracy, you can
decide to build ensembles. As we saw in the previous sections, we have to explicitly select
the option to build ensembles, and that also means that we cannot compute SHAP values.
Let's look at how this is done. Let's first go to the project list page, which shows all of your
current projects, as illustrated in the following screenshot:

Figure 6.24 – Project list

Here, we will select the Actions icon for the project that we have been working on, which
is Automobile Example 2. From the menu, we will select the Duplicate option. You
will now see the Duplicate dialog box, as illustrated in the following screenshot:

Figure 6.25 – Duplicating a project

152 Model Building with DataRobot

We can give it a new name, Automobile Example 3, and we will select Copy dataset
only. This way, we can apply new project settings. Let's click Confirm. This will create a
new project. We can select the target as price, and now we click on the Advanced Options
tab, as illustrated in the following screenshot:

Figure 6.26 – Advanced options for ensembles (blenders)

Building ensemble models 153

This time, we will select the Create blenders from top models option and uncheck the
Include only models with SHAP value support option. Now, we can click the Start
button to let DataRobot build the models. Once DataRobot has finished building the
models, we can inspect the leaderboard, as illustrated in the following screenshot:

Figure 6.27 – Leaderboard with ensemble models

154 Model Building with DataRobot

You will notice the DataRobot has built an AVG Blender model that seems to be the
top model, but not by much. Blended models can sometimes produce substantial lift
over individual models, so it is worthwhile exploring this option. We can select this
model and click on the Describe tab and then the Blueprint tab, as illustrated in the
following screenshot:

Figure 6.28 – Blueprint for AVG Blender

We can now see that the blender has selected two XGBoost models, and hence it is not
surprising that the lift is not much better. In this case, we will not select the blended
model, and we go back to the previous project.

Summary
In this chapter, we learned how to build and compare models by leveraging DataRobot's
capabilities. As you saw, DataRobot makes it very easy to build many models quickly
and helps us compare those models. As you experienced, we tried many things and built
dozens of models. This rapid model exploration is DataRobot's key capability, and its
importance to a data science team cannot be overstated. If you were to build these models
on your own in Python, it would have taken a lot more time and effort. Instead, we used
that time and thinking to experiment with different ideas and put more energy toward
understanding the problem. We also learned about blueprints that encode best practices.
These blueprints can be useful learning tools for new and experienced data scientists alike.
We also learned how DataRobot can build ensemble or blended models for us.

Summary 155

It might be tempting to jump ahead and start deploying one of these models, but it is
important to not directly jump into that without doing some analysis. We are now ready
to dig deeper into the models, understand them, and see if we can gain more insights
from them.

7
Model

Understanding
and Explainability

In the last chapter, we learned how to build models, and we will now learn how to use
output generated by DataRobot to understand the models and also use this information
to explain why a model provides a particular prediction. As we have discussed before, this
aspect is critically important to ensure that we are using the results correctly. DataRobot
automates much of the task of creating charts and plots to help someone understand
a model, but you still need to know how to interpret what it is showing in the context
of the problem you are trying to solve. This is another reason why we will need people
involved in the process, even if much of a task has been automated. As you can imagine,
the task of interpreting the results will therefore become more and more valuable as the
degree of automation increases.

In this chapter, we're going to cover the following main topics:

•	 Reviewing and understanding model details

•	 Assessing model performance and metrics

•	 Generating model explanations

•	 Understanding model learning curves and trade-offs

158 Model Understanding and Explainability

Reviewing and understanding model details
In the last chapter, we created several models for different projects. DataRobot creates 10
to 20 models in a project, and it would be very onerous to look at and analyze the details
of all of these models. You do not have to review each of these models, and it is common
to review only the top few models before making a final selection. We will now look at
the leaderboard for models in the Automobile Example 2 project and select the top
model, as illustrated in the following screenshot:

Figure 7.1 – Model information

In the preceding screenshot, we selected the Model Info tab within the Describe tab to
get a view of how large the model is and the expected time it takes to create predictions.
This information is useful in real-time applications that are time-sensitive and need to
score thousands of transactions quickly. Let's now go to the Feature Impact tab within the
Understand tab, as shown in the following screenshot:

Reviewing and understanding model details 159

Figure 7.2 – Feature impacts

This is one of the most important charts for the model as it shows how much a feature
contributes to this XGBoost model. We can see that the top contributors are curb_weight,
engine_size, horsepower, highway_mpg, and cylinder_count. On the other
hand, cylinder_size and engine_type contribute very little. While it is true that
cylinder_size is not very predictive, we must not forget that prediction is not always
the end objective. We know that cylinder_size has an effect on engine_size, an
important feature. The objective might be to use this information to figure out ways to
reduce costs. For that, we might want to reduce engine_size, but you cannot reduce
engine_size directly. For that, you need to reduce the size or count of cylinders, which
will lead to a reduction in engine_size. Having a causal diagram of this problem to guide
you becomes very helpful in determining the best actions to take to achieve our objectives.

160 Model Understanding and Explainability

Before we take action, let's inspect what the results look like for a Generalized Additive
Model (GAM), as shown in the following screenshot:

Figure 7.3 – Feature impacts for a GAM

Figure 7.3 shows the important features of the GAM. While many of the features look
similar, we notice that engine_type is fairly high in importance for this model, whereas
engine_type was very low in importance for the previous model. This is not an error—
it points to the fact that many of the features are interrelated and different models can
pick up signals from different features, and that predictive power is not necessarily the
same as the root cause. To take action, we need to understand the root feature that leads
to a change in the target feature. To put this another way, the feature that best predicts
something is not always the feature that can be changed to create the desired change
in the target.

Reviewing and understanding model details 161

To further understand how a feature affects the target, let's select the Feature Effects tab
within the Understand tab of the model, as shown in the following screenshot:

Figure 7.4 – Feature effects

The preceding screenshot shows partial dependence plots for various features. The
selected plot is for curb_weight. The plot shows a fairly linear relationship between
curb_weight and price. We do see some unusual dips in price in a few spots—for
example, around a curb_weight value of 2700. Before we take that too seriously,
we notice that the amount of data around that is very limited. This tells us that this
particular observation is likely due to a lack of data. This does raise the issue that
our model is likely to predict a lower price in that small region, which in turn could
result in lower revenue.

162 Model Understanding and Explainability

Let's look at another feature in the following screenshot:

Figure 7.5 – Partial dependence for engine_size

The preceding screenshot shows a highly non-linear relationship between engine_size
and price. We see a very dramatic rise in price around the engine_size value of 180.
It is hard to know how real this effect is without discussing it with domain experts.
We can notice that the amount of data available for sizes greater than 130 is very small,
hence the effects we see could be simply due to a lack of data. Taken as is, it indicates
that prices stagnate beyond a size of 200, and this could be an important insight for
the business.

Let's take a look at another partial dependence plot for highway_mpg in the
following screenshot:

Reviewing and understanding model details 163

Figure 7.6 – Partial dependence plot for highway_mpg

Figure 7.6 shows another highly non-linear relationship, with a key transition point
happening around a highway_mpg value of 28. This clearly shows a big price drop
around 28, hence this is a critical point. This could be due to regulations, where going
below 28 places you in a different type of vehicle or engine. We also notice that once
you get above that threshold, any further change is not very meaningful from a price
impact (however, it could still be very impactful from other perspectives). If you do
not know why this is, it is important for you to discuss this with your subject-matter
experts (SMEs).

My main objective for showing and discussing these plots is to show you how important
it is to spend your time analyzing and reviewing these plots rather than spending all of
your time coding up these plots. Since DataRobot automatically creates these for you,
you can now spend your time doing the more value-added work of analyzing these results
to help improve your business.

164 Model Understanding and Explainability

Let's revisit the engine_size plot, but this time for the GAM, as shown in the
following screenshot:

Figure 7.7 – Partial dependence plot for the GAM

Figure 7.7 shows the partial dependence for the GAM. Comparing this with Figure 7.5,
we see that Figure 7.7 shows clearer thresholds around values 95 and 180. Discussing this
with domain experts could help you determine which model is a better representation of
reality and which model helps you to better set pricing. One of the benefits of GAMs is
that you can easily smooth out these curves and shape them for deployment. Remember—
accurate prediction is not always the same as better intervention or action.

GAMs are a lot easier to understand and explain. Let's look at another chart here that
helps in that understanding:

Reviewing and understanding model details 165

 Figure 7.8 – Feature coefficients

Figure 7.8 shows the coefficients for different features in the GAM. You will notice that
DataRobot has created some derived features. You can click on them to see more details.
This provides a high-level view of the coefficients, but there is another view that provides
a better view for understanding the model. For that, let's click on the Rating Table tab
within the Describe tab for the GAM, as shown in the following screenshot:

Figure 7.9 – Rating table for a GAM

166 Model Understanding and Explainability

This view lets you download the rating table built by DataRobot; you can also modify
this table and upload it back to use the modified table. This mechanism thus allows
you to manually fine-tune your model based on your understanding of the problem. This
feature is therefore very powerful as it allows you a lot of flexibility, but at the same time,
you must use this carefully. Let's click on the Download table button and download the
comma-separated values (CSV) file. Once downloaded, we can open the file using Excel,
as shown in the following screenshot:

Figure 7.10 – Rating table for a GAM

Reviewing and understanding model details 167

You can now see what the rating table looks like. Here, you see that DataRobot has created
bins for various features. For each bin, it has assigned the coefficient and relativity as to
how changes in a feature impact the target variable. To understand this a bit better, we can
create plots for individual features in Excel, as shown in the following screenshot:

Figure 7.11 – Feature relativities

In Figure 7.11, you can see how a given feature such as body_style contributes to the
price. The GAM model is essentially a sum of all the contributions from the selected
features. Given the rating table, anyone can easily calculate the price, and this can also
be implemented in a very simple manner. Given that the individual feature effects are
non-linear (and still very understandable), this allows these models to perform very
well while still being very easy to understand. It is no wonder that GAMs are becoming
very popular.

168 Model Understanding and Explainability

There is one more chart that we want to look at that is frequently helpful in understanding
the contributions of features. For this, we will click on the Insights menu item at the top
of the page, which brings up the chart shown here:

Figure 7.12 – Model insights

Figure 7.12 shows the variable effects using a DataRobot selected model that is built
using constant splines (in this case, the Ridge Regressor model). This shows the effects
of the key feature values in one view, and you can get a sense of relative impact as well as
the positive versus the negative contribution of features. A constant spline is a feature
transformation where a numeric feature is converted into pieces made up of constant
splines. The value of the feature is one if the value falls within a specific interval;
otherwise, it is zero. You can review this chart with reference to the feature effects for
the models you have selected to see if there are any inconsistencies between these charts.

Assessing model performance and metrics 169

Now that we understand the model from the perspective of which features are important
and how they contribute toward the target value, we can focus on how well the model
is doing.

Assessing model performance and metrics
In this section, we will focus on how well a model is doing in trying to predict the target
values. Let's start by looking at the overall performance comparison across different
models, as shown in the following screenshot:

Figure 7.13 – Performance across models

170 Model Understanding and Explainability

The preceding screenshot shows the overall leaderboard, which we have seen before. Here,
we can see the overall performance of different models based on the Gamma Deviance
metric. We can also review the performance based on other metrics by clicking on the
drop-down arrow near the metric, which shows us a list of metrics we can choose from,
as illustrated in the following screenshot:

Figure 7.14 – Performance metrics

Assessing model performance and metrics 171

Figure 7.14 shows the various metrics we can select from. You will typically see a similar
trend across different metrics in terms of which models surface to the top spots. In
general, the metric that DataRobot selects is a very good choice, if not the best choice.
Let's now inspect the performance details of specific models by clicking on the model and
selecting the Lift Chart tab within the Evaluate tab, as shown in the following screenshot:

Figure 7.15 – Lift chart

172 Model Understanding and Explainability

The lift chart illustrated in the preceding screenshot shows how the predictions stack up
against the actual values. You can select the number of bins to aggregate the results. The
maximum value is 60, and that is normally a good starting point. This means that the
predictions are first sorted in ascending order and then grouped into 60 bins. The results
you see are the average values within that bin. The reason for binning is that if you look
at the entire dataset, there will be so much data that you will not be able to make any
sense out of it. You can see that the model does very well over the entire range of values,
with some small pockets where the differences seem higher than the rest. We typically
want to see lift charts for multiple models, to see if there are areas where one model does
better than another model. Let's now look at the lift chart for the GAM, as shown in the
following screenshot:

Figure 7.16 – Lift chart for the GAM

Assessing model performance and metrics 173

The results in Figure 7.16 look very similar to the results from Figure 7.15, but we can
see that the GAM did not do as well for higher values. We now know where specifically
the GAM is weaker as compared to the XGBoost model. Let's look further by clicking on
the Residuals tab within the Evaluate tab, as shown in the following screenshot:

Figure 7.17 – Model residuals

174 Model Understanding and Explainability

The residuals seem to be well distributed around the mean but with a small skew toward
-ve values. Let's also check how the residuals are distributed for the GAM. We can see the
output in the following screenshot:

Figure 7.18 – Residuals for the GAM

The residuals for the GAM are also well distributed but with a slightly larger skew
compared to the XGBoost model. Overall, the performance of the models looks very
good. We can now look into understanding individual predictions and their explanations.

Generating model explanations 175

Generating model explanations
Another key capability of DataRobot is that it automatically generates instance-level
explanations for each prediction. This is important in understanding why a particular
prediction turned out the way it did. This is not only important for understanding the
model; many times, this is needed for compliance purposes as well. I am sure you have
seen explanations generated or offered if you are denied credit. The ability to generate these
explanations is not straightforward and can be very time-consuming. Let's first look at the
explanations generated for the XGBoost model, as shown in the following screenshot:

Figure 7.19 – Model explanations

176 Model Understanding and Explainability

Since we selected the SHAP option for this project, the model explanations are based
on SHapley Additive exPlanations (SHAP) algorithms. Here, you can see the overall
distribution of predictions on the left, and you can see that most of the dataset lies in
the range of 0 to 10000. You can select some specific points and see the components
that make up that prediction. In Figure 7.19, we have selected the prediction point of
27788.86. We can see the top contributing elements on the right, where engine_size
is contributing the most, and in this case, the value of engine_size is 183. Notice that
the relative contribution of features can vary on a case-by-case basis, and the ordering of
features here will not exactly match the feature-impacts order we saw in the preceding
section. Let's compare this with explanations generated by the GAM, as shown in the
following screenshot:

Figure 7.20 – Model explanations for GAM

Understanding model learning curves and trade-offs 177

In the preceding screenshot, the point selected is for a prediction of 31465.18. For this
point, we can see the features that are the main contributors toward that price, and we also
note that there was a reduction or -ve contribution due to the make of the vehicle being
Mercedes-Benz. We can also see that in this case, the contribution of engine_size of
183 is much larger for the GAM.

The explanations for the entire dataset can be downloaded and analyzed for additional
insights. You can also upload an entirely new dataset to score it and generate these
explanations very easily, by clicking on the Upload new dataset button.

As you have seen in this chapter, different models have different performance, use the
features a little bit differently, and have different levels of understandability. There are a few
other dimensions that should be looked at before making a final selection of the model
you want to use. Let's now look at model learning curves and some of the model trade-offs.

Understanding model learning curves and
trade-offs
In machine learning (ML) problems, we are always trying to find more data to improve
our models, but as you can imagine, there comes a time when we reach a point of
diminishing returns. It is very hard to know when you have reached that point, but
you can get indications by looking at the learning curves. Fortunately, DataRobot makes
that task easy by automatically building these learning curves. When DataRobot starts
building models, it first tries a broad range of algorithms on small samples of data.
Promising models are then built with bigger sample sizes, and so on.

178 Model Understanding and Explainability

In this process, we discover how much performance improvement happens as more data is
added. To look at the learning curves, you can click on the Learning Curves menu item at
the top of the screen, as seen in the following screenshot:

Figure 7.21 – Model learning curves

Understanding model learning curves and trade-offs 179

You can see the different model types on the right-hand side of the page. Here, you can
click on the models you want to inspect and compare. After selecting the models, you
click on the + Compute Learning Curves button. This brings up a dialog box showing the
selected models and corresponding sample sizes, as shown in the following screenshot:

Figure 7.22 – Models selected for comparison

180 Model Understanding and Explainability

If the selections in Figure 7.22 look correct, you can click the Compute button. You will
now see the learning curves for the selected models, as shown in the following screenshot:

Figure 7.23 – Comparison of learning curves

You can now see the improvement in performance as the sample size increases. We can
see that the GAM learns very rapidly, but as the sample size increases, the XGBoost model
takes over. We can see that both models will benefit from additional data. We can also see
that if we only had half of the data we currently have, then the GAM would have been the
clear winner.

Understanding model learning curves and trade-offs 181

We can now look at another trade-off for models—namely, the trade-off between speed
and accuracy. If you click on the Speed vs Accuracy menu item at the top of the page,
you will see a chart, as shown in the following screenshot:

Figure 7.24 – Speed versus accuracy trade-off

You will notice the DataRobot has built an AVG Blender model that seems to be the top
model, but not by much. Blended models can sometimes produce substantial lift over
individual models, so it is worthwhile exploring this option. We can select this model and
click on the Blueprint tab within the Describe menu item.

182 Model Understanding and Explainability

Summary
In this chapter, we covered how to build and compare models by leveraging DataRobot's
capabilities. As you saw, DataRobot makes it very easy to build many models quickly
and helps us compare them. As you experienced, we tried many things and built dozens
of models. This is DataRobot's key capability, and its importance to a data science team
cannot be overstated. If you were to build these models on your own in Python, it
would have taken a lot more time and effort. Instead, we used that time and thinking to
experiment with different ideas and put more energy toward understanding the problem.
We also learned about blueprints that encode best practices. These blueprints can be
useful learning tools for new and experienced data scientists alike. We also learned how
DataRobot can build ensemble or blended models for us.

It might be tempting to jump ahead and start deploying one of these models, but it is
important to not directly jump to that without doing some analysis. In the next chapter,
we will dig deeper into the models to understand them and see if we can gain more
insights from them.

8
Model Scoring

and Deployment
In the previous chapter, we learned how to use outputs generated by DataRobot to
understand models and why a model provides a particular prediction. We will now
learn how to use models to score input datasets and create predictions to be used in the
intended applications. DataRobot automates many tasks that are required for scoring and
generating row-level explanations.

Creating predictions, however, is not where these tasks end. In most cases, these
predictions need to be transformed into actions for consumption by people or
applications. This mapping of predictions to actions requires an understanding of business
and therefore needs a person to interpret the results (in most use cases). In this chapter,
we will discuss how this is done. We're going to cover the following main topics:

•	 Scoring and prediction methods

•	 Generating prediction explanations

•	 Analyzing predictions and postprocessing

•	 Deploying DataRobot models

•	 Monitoring deployed models

184 Model Scoring and Deployment

Scoring and prediction methods
DataRobot provides multiple methods to score datasets using models that have been
created. One of the easiest methods is batch scoring via the DataRobot user interface
(UI). For this, we need to follow these steps:

1.	 Create a file with the dataset to be scored. Given that we are using a public dataset,
we will simply use the same dataset to score. In a real project, you will have access
to a new dataset for which you want to create predictions. For our purposes, we
simply created a copy of our imports-85-data.xlsx dataset file and named it
imports-85-data-score.xlsx.

2.	 Now, let's select the Predict tab and then the Test Predictions tab for the XGBoost
(XGB) models, as shown in the following screenshot:

Figure 8.1 – Batch scoring
In the preceding screenshot, you will see that you have an option to drag and drop
a new dataset to add the scoring file to the model.

3.	 Let's select our imports-85-data-score.xlsx scoring file and drop it into
the Drag and drop a new dataset box. Once you drop the file, it will get uploaded
and you can see it in the interface, as shown in the following screenshot:

Scoring and prediction methods 185

Figure 8.2 – Computing predictions

4.	 You can now click on the Compute predictions button to start the scoring process.
Once this process is complete, you can click on the Download predictions button
to download the predictions generated by the model. The download is in the form
of a .csv file that you can view in Excel, as shown in the following screenshot:

Figure 8.3 – Downloaded predictions

186 Model Scoring and Deployment

The downloaded predictions file can now be joined with the original dataset for
further analysis.

The second method for scoring a dataset is via the DataRobot batch prediction
application programming interface (API), which will be discussed in the
following section.

Generating prediction explanations
In this section, we will focus on how to generate explanations along with predictions
for the scoring dataset. After uploading the scoring dataset (as we discussed in the
preceding section), you can now go to the Understand tab and then select the Prediction
Explanations tab, as shown in the following screenshot:

Figure 8.4 – Prediction explanations

Generating prediction explanations 187

In the preceding screenshot, you can see that it now shows the scoring dataset that was
uploaded. You can now click on the icon next to the dataset filename to compute the
explanations. Once the computation is complete, you will see the download icon. You can
use the download icon to download the generated explanations for the predictions made
by the model. The explanations come in the form of a .csv file that can be opened using
Excel, as shown in the following screenshot:

Figure 8.5 – Prediction explanations file

In the preceding screenshot, we see that the file contains the predictions, as well as an
explanation for each prediction. For example, if we look at row 69 that is highlighted in
Figure 8.5, we see that the value of make explains 5.17% of the value difference from the
base for this automobile. Similarly, you can see the relative contribution of each feature
value. Notice that the features in the file are not sorted by the most important feature and
also that the most important feature for a given row is not the same as some other row.
The feature importance will change from row to row.

Now that we have the predictions and their explanations, let's look at how to analyze these
and determine how to use them to take actions or make decisions.

188 Model Scoring and Deployment

Analyzing predictions and postprocessing
Before we charge off to deploy the model, it would be advisable to analyze the predictions
and see if they make sense, whether there are some patterns in the errors, and also how
to turn the predictions into something actionable. These are aspects where traditional
data science tools and methods are not of much help, and you need to rely on judgment
and methods from other disciplines to help formulate the next steps. For this, let's start
by combining the scoring dataset file with the explanations file. This can be done in
Structured Query Language (SQL), Python, or Excel. The combined file looks something
like this:

Figure 8.6 – Combined scoring data and predictions

We also created a new ERROR column that simply subtracts prediction from price.
We can now use Excel to create a pivot table and look at the results from multiple
perspectives. For example, let's create a pivot table and look at the Average of ERROR
value by symboling, as shown in the following screenshot:

Figure 8.7 – Average of ERROR value by symboling

Analyzing predictions and postprocessing 189

The preceding screenshot shows that errors are much higher for the value -2. Looking
at the dataset, we find that we have only three data points for -2, thus it is not a surprise
that the model performs poorly. This tells us that we cannot trust the results when the
symboling value is -2 and that we should try to get more data for this value. Analysis such
as this can point to areas of improvement and where to focus your efforts. We also realize
that since this is an average error, we should use the average of the absolute percentage
value of the error to prevent incorrect conclusions, as shown in the following screenshot:

Figure 8.8 – Average of abs perc ERROR value by symboling

Now, we see that the absolute percent error decreases as the symboling value increases.
At this point, there is no hard and fast way to find insights except exploring the output
data and looking at it from different perspectives to see what you can find. Typically, it is a
good idea to sort the errors and look at rows that have unusually large errors, and then see
if you can determine why this is so.

Now, on to one of the most important aspects of building a data science model—
understanding which actions to take. Now that we have a reasonable model to predict
price, a question arises: What should we do with this information? Hopefully, the answer
was determined at the start of the project as to what was the goal of this exercise. Let's
assume that the objective is to set the price of a new vehicle by looking at the prediction of
the model and providing all the parameters such as engine_size, and so on. We could
also imagine that a model such as this could be useful even during the design stage when
designers are trying to determine trade-offs between different parameters such as bore or
width. This goes on to say that a predictive model can many times be applied to use cases
that were not considered while building the model.

This, however, requires us to understand the broader context of the business problem.
This is the primary reason we took time to discuss and understand the business context in
Chapter 3, Understanding and Defining Business Problems. It might be useful to revisit that
chapter to refresh the concepts discussed there as we will use some of the techniques that
were introduced there, such as causal modeling.

190 Model Scoring and Deployment

To determine how we use price prediction, let's review what we know about how price
relates to other parameters. In Chapter 5, Exploratory Data Analysis with DataRobot,
we looked at association analysis information. Association strengths using mutual
information were generated by DataRobot. We can use that information to draw a
network graph between different features, as shown in the following screenshot. You can
do this by drawing a circle for each feature, and then creating lines between features that
have high association strengths:

Figure 8.9 – Network graph of associations between features

In Chapter 7, Model Understanding and Explainability, we saw the feature importance for
price in terms of SHapley Additive exPlanations (SHAP) values is specific to the model
we selected. The following might represent a causal diagram for this problem:

Analyzing predictions and postprocessing 191

Figure 8.10 – Causal diagram for the XGB model

The left side of the diagram represents the most important features from the SHAP
values. Let's imagine that the actual price charged is a bit different from the prediction.
The Price Delta feature reflects a decision someone might make to charge a price different
from the prediction. The Price feature impacts Units Sold, which ultimately affects the
profitability. Note that this reflects just one possible way of using this model to help make
pricing decisions.

If, on the other hand, we imagine that we are trying to help the car design team come up
with the best car configuration that will also be the most profitable one, then we might
look at the diagram a bit differently. This is because different choices of car or engine
design will also impact the cost of the car. Also, we know from Figure 8.9 that the features
are not independent. Changing the bore feature will change the Engine Size and the
Horsepower features. Hence, when we are looking into making decisions, we have to
think about the causal impacts as well. This is a very simplified view, and you can imagine
that for a real problem, these diagrams will be a lot more complex. Imagine business
leaders making those decisions by taking into account all of these relationships in their
heads. This is one of the reasons that many times, models are not used by business users.

In our example problem, the causal diagram shown in Figure 8.10 is fairly simple. You
can imagine real-world problems where this diagram will be a lot more complex. In such
cases, it is very difficult to assess the impact the deployment of a model will have on the
ecosystem. This includes users and other stakeholders. Complex problems tend to have
many unanticipated consequences, especially when the affected parties are people.

192 Model Scoring and Deployment

In such situations, if the potential impact may be large, it is advisable to test the new
model in a synthetic or simulated environment. With the testing and impact analyses
complete, we are now ready to deploy our model.

Deploying DataRobot models
DataRobot makes it pretty easy to deploy the models you have developed. To prepare a
model for deployment, here are the steps:

1.	 Let's unlock the project so that we can see the metrics for the holdout datasets, as
shown in the following screenshot:

Figure 8.11 – Unlocking DataRobot models
In the preceding screenshot, you can see the Unlock project Holdout for all
models option on the right side of the interface.

2.	 You should unlock the project only after you have selected the model that you are
choosing for deployment. In our case, we have selected the XGB model that uses the
FL1 top23 feature list. Clicking on this option brings up a dialog box, as shown in
the following screenshot:

Deploying DataRobot models 193

Figure 8.12 – Unlocking project holdout

3.	 Unlocking the project is an irreversible process. Let's unlock the project and see the
holdout metrics, as shown in the following screenshot:

Figure 8.13 – Unlocked project view
Figure 8.13 shows that the holdout values are higher than the cross-validation
values, as expected. The holdout values are a better representation of the kind of
performance you should expect from a model after deployment.

194 Model Scoring and Deployment

4.	 Now that the project is unlocked, let's retrain the selected model with 100% of the
data to improve this model's performance. For that, click on the orange + sign for
the model, as shown in Figure 8.13. This will bring up a dialog box for changing the
sample size, as shown in the following screenshot:

Figure 8.14 – Defining new sample size
In the preceding screenshot, you see options to change the sample size.

5.	 Drag the slider bar all the way to 100% to indicate that you want to train the model
with 100% of the data, as shown in the following screenshot:

Deploying DataRobot models 195

Figure 8.15 – Setting new sample size

6.	 You can now click the Run with new sample size button. DataRobot will now retrain
the XGB model with 100% of the data. For the XGB model, you can now click on the
Predict tab and then the Deploy tab, as shown in the following screenshot:

Figure 8.16 – Deploying a model

196 Model Scoring and Deployment

7.	 Next, click on the Deploy model button. This will bring up a new page, as shown in
the following screenshot:

Figure 8.17 – Creating a deployment for the model

8.	 You can now give a name to your deployed model. You can also select your
prediction environment where the deployed model is hosted, as set up by your
administrator. Under the Data Drift section, you can specify if you want to track
data drift or enable challenger models. You can also enable the storage of prediction
rows, which allows DataRobot to analyze performance over time. Similarly, you can
enable the tracking of attributes for segment-based analysis of model performance.

9.	 You can now click the Create deployment button. DataRobot will now deploy
your model and create a baseline for model drift. Once completed, you will see
information about your deployed model, as shown in the following screenshot:

Deploying DataRobot models 197

Figure 8.18 – Deployed model overview
You can now see the endpoint for the REpresentational State Transfer (REST)
API for your prediction model. For example, for the price Predictions model, the
prediction environment is https://app2.datarobot.com.

10.	 You can now invoke this API to generate predictions. You can also see other
information about your deployment by clicking on different tabs. If you click on the
Service Health tab, you will see a page like this:

Figure 8.19 – Service health of deployments

198 Model Scoring and Deployment

The preceding screenshot shows the status of the price prediction model. It shows how
many predictions have been done, the response time for a prediction, and the error rates.
The screenshot does not show any values because we just deployed this model.

We are now ready to start monitoring this deployed model.

Monitoring deployed models
As you will have guessed by now, the job of the data science team does not end once
a model is deployed. We now have to monitor this model to see how it is performing,
whether it is working as intended, and if we need to intervene and make any changes.
We'll proceed as follows:

1.	 To see how that works, let's click on the Predictions tab, as shown in the
following screenshot:

Figure 8.20 – Making predictions using the deployed model

2.	 We can now upload a dataset to be scored, by dragging and dropping a file (here,
we will use the same file that we used before during model training) into the
Prediction source box. We can now see other options becoming available, as shown
in the following screenshot:

Monitoring deployed models 199

Figure 8.21 – Computing predictions for a dataset

3.	 After selecting the options, we can click on the Compute and download
predictions button. After DataRobot finishes the computations, we will see the
output file becoming available, as shown in the following screenshot:

Figure 8.22 – Downloading predictions

200 Model Scoring and Deployment

The output file can now be downloaded and analyzed. Since we are interested
in monitoring the model, let's click on the Service Health tab, as shown in the
following screenshot:

Figure 8.23 – Service health of the model
We can now see that the model has serviced 15 requests with a median response
time of 325 milliseconds (ms) and an error rate of 0%. The overall service health
looks good.

4.	 We can now look at the data drift for the model by clicking on the Data Drift tab, as
shown in the following screenshot:

Monitoring deployed models 201

Figure 8.24 – Data drift for the model

In the preceding screenshot, at the top of the Data Drift page, we see the data drift
between the scoring data and training data. The left graph shows drift by feature
importance, and we can see that the amount of drift is very low. This is not surprising
since we used the same dataset. For real datasets, the drift will be a bit higher. Similarly,
the graph on the right shows the distribution of records grouped by price. Here again, we
see that the distributions are very similar for the target feature, price. If you scroll down
the page, you will see additional graphs, as shown in the following screenshot:

Figure 8.25 – Data drift for the model: additional information

202 Model Scoring and Deployment

The preceding screenshot shows the average prediction values over time. This will indicate
whether the predictions have been stable or if they have changed over time. You will have
to rely on your understanding of the business problem to determine whether the amount
of drift is acceptable or not. DataRobot will also give you an indication by showing a
red, yellow, or green status. A red status would indicate that there is an issue that needs
to be resolved; similarly, yellow means that you should be aware of potential issues, and
green indicates that everything looks fine. In general, the issue could be errors in the data
pipeline or a change in the business environment. A change in the business environment
would be an indication that the model needs to be retrained.

If the model needs to be retrained or if you need to rebuild the model, you can follow the
steps that we have outlined in the preceding chapters. This completes a basic view of how
you use DataRobot to build and deploy a model.

Summary
In this chapter, we learned how to use models after training. We discussed the methods
that are used to score a dataset and also methods that are used for analyzing the
resulting outputs. We also covered methods and considerations for turning predictions
into actions or decisions. This is a critical step whereby you have to engage with
your business stakeholders to make sure that introducing this model will not cause
unforeseen problems. This is also the time to work on change management tasks such as
communicating changes to people who are impacted by the change and ensure that users
are trained in the new process and know how to use the new capabilities.

We then discussed how to use DataRobot capabilities to rapidly deploy a model and
then monitor the model performance. It is easy to underestimate the importance of this
capability. Model deployment and monitoring are not easy, and many organizations spend
a lot of time and effort trying to deploy a model. Hopefully, we have shown how easily this
can be accomplished with DataRobot.

We have now completed the basic steps needed to build and deploy a model and can now
go over some advanced concepts and capabilities of DataRobot. You are now ready to
dive into advanced topics based on your interest or based on the type of project you will
be working on. For example, if you are working on a time series problem, then you can
review Chapter 9, Forecasting and Time Series Modeling.

Section 3:
Advanced Topics

This section covers many of the advanced topics and capabilities that you can leverage
once you have mastered the previous sections. This section provides examples of advanced
capabilities that experienced data scientists will use to make them more productive. Some
chapters in this section require a familiarity with Python programming.

This section comprises the following topics:

•	 Chapter 9, Forecasting and Time Series Modeling

•	 Chapter 10, Recommender Systems

•	 Chapter 11, Working with Geospatial Data, NLP, and Image Processing

•	 Chapter 12, DataRobot Python API

•	 Chapter 13, Model Governance and MLOps

•	 Chapter 14, Conclusion

9
Forecasting

and Time Series
Modeling

In this chapter, we will understand what time series are and will see how DataRobot
can be used to model them. Time series modeling is becoming increasingly useful in
businesses. However, the challenges associated with forecasting make it quite challenging
for many skilled data scientists to successfully carry out time series modeling, and this
form of modeling could also be extremely time-consuming. DataRobot provides an
automated process that enables data scientists to carry out time series projects in an
effective and efficient fashion. In this chapter, we will introduce the concept of forecasting,
stressing its commercial importance and inherent challenges, and illustrate how
DataRobot can be used to build its models.

206 Forecasting and Time Series Modeling

By the end of this chapter, you will have learned how to utilize DataRobot in building
time series forecasting models. In addition, we will look at making predictions with
these models. We go further by building models for multi-series time series as part of the
advanced topics. Here are the main topics to be covered in this chapter:

•	 Conceptual introduction to time series forecasting and modeling

•	 Defining and setting up time series projects

•	 Building time series forecasting models and understanding their model outcomes

•	 Making predictions with time series models

•	 Advanced topics in time series modeling

Technical requirements
Some parts of this chapter require access to the DataRobot software and some tools for
data manipulation. Most of the examples deal with small datasets and therefore can be
handled via Excel. The dataset that we will be using in this chapter is described next.

Appliances energy prediction dataset
This dataset can be accessed at the University of California Irvine (UCI) Machine
Learning Repository (https://archive.ics.uci.edu/ml/datasets/
Appliances+energy+prediction#).

Dataset citation
Luis M. Candanedo, Véronique Feldheim, Dominique Deramaix, Data driven
prediction models of energy use of appliances in a low-energy house, Energy and
Buildings, Volume 140, 1 April 2017, Pages 81-97, ISSN 0378-7788.

This dataset captures temperature and humidity in various rooms in a house and in the
outside environment, along with energy consumption by various devices over time. The
data is captured every 10 minutes. This is a typical example of a time series dataset. Data
is provided in .csv format and the site also provides descriptions of the various features.
All features in this dataset are numeric features. The dataset also includes two random
variables to make the problem interesting.

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction#
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction#

Conceptual introduction to time series forecasting modeling 207

Conceptual introduction to time series
forecasting modeling
The dynamic nature of the commercial environment makes time a pivot resource for
business success. As a result, businesses need to account for the time factor in their
decision-making. Changes occur within commercial settings at a high pace, which makes
it pertinent for organizations to take rapid yet considered actions. Analytic technology
provides organizations with tools that enable forecasting of the future so that decision-
makers have crucial time in hand to ensure their decision aligns with their organizational
objectives. Organizations use time-specific data to predict the volume of sales in a future
period. Other writers have differentiated time series modeling from forecasting models. In
this chapter, we have used the term interchangeably and consider time series forecasting
to involve the use of advanced analytics to gain insights that guide business decisions
leveraging time-based data.

Time series forecasting supports numerous aspects of business planning. With forecasting,
human and other forms of resource planning can be optimized to ensure that expected
outcomes are realized. Through forecasting, cash flow, profit, and budgeting projections
are more rigorously established, thereby mitigating human bias. Forecasting sales could be
influenced by several factors that are controllable and non-controllable. Certain consumer
factors that change with time tend to affect the volume of sales. These factors include
changes in population, customer taste, and interests. In addition, demand is sensitive to
broader economic variables, such as inflation, that also change with time. As a result, it
becomes pertinent to use some features that could act as proxies for these consumer and
economic variables in addition to lagged or historic sales. Because some of these variables
are challenging to acquire, analysts tend to be limited to a few historic values and volumes
in modeling future outcomes.

208 Forecasting and Time Series Modeling

Although a detailed discussion on time series is out of the scope of this book, it is,
however, pertinent to appreciate that the properties of modeling time series make them
more challenging to work with. In addition to difficulties with other forms of predictive
modeling discussed in previous chapters of this book, time series modeling comes with
additional challenges. One of the assumptions of linear regression modeling is that of
independence of observations, that is, that observations or data rows are independent.
However, this assumption is inevitably broken with time series modeling. Within time
series, autocorrelation occurs naturally, as observations are similar across different time
periods. It is also possible that highly corrected observations don't occur successively, in
which case seasonality occurs. Series are considered seasonal when observations across a
fixed time frame have higher levels of correlation. Indeed, these are periodic fluctuations
in observations. A similar volume of sales of flight tickets during holiday periods brings
this to life. Seasonality could indeed occur yet fails to follow a fixed time frame, described
as cyclicity. Qualifying cycles generally require considerably larger datasets than other
properties of series as cyclicity is mostly related to external factors such as macroeconomic
or political changes within the business environment.

Autocorrelation also gives rise to linearity, a concept that describes an overarching
trend where consecutive observations are similar, albeit changing in such a way that they
follow a linear trend. Due to this linear trend, albeit sometimes with some integrated
fluctuations, the mean of specific time frames will follow a pattern but is unlikely to be
the same, hence the use of moving average (MA) and autoregression approaches to
represent time series. However, series can still be characterized by the extent to which
their statistical properties change over time. They are considered stationary when they
have a constant mean and variance that are independent of time. What is most interesting,
albeit problematic statistically, is that some time series data has a combination of these
properties. A good example is the volume of flights. Though gradually increasing over
time, being seasonal, during an economic downturn this falls generally. In this example,
we can see elements of seasonality, cyclicity, and linearity.

Another concept that sometimes gets lost in the details is that of actionability.
Actionability being the ability of stakeholders to act because of an analysis or a model's
outcome, it is very common for data scientists to focus on the accuracy of predictions.
While accuracy is important, what is more important is to provide actionable guidance to
decision-makers. A forecast that enables you to take action today is more valuable than a
forecast that is more accurate but not actionable. Care must be taken while defining the
forecasting problem to ensure the actionability of the model being developed.

Defining and setting up time series projects 209

The foregone conversation in this section highlights the properties that make time series
modeling more challenging for typical data scientists. DataRobot has developed unique
processes that enable data scientists, including those with limited statistical exposure, to
create complex yet robust time series models. In the subsequent section, we will look at
how to define and set up time series problems in DataRobot.

Defining and setting up time series projects
In Chapter 4, Preparing Data for DataRobot, through to Chapter 8, Model Scoring and
Deployment, we explored the creation, understanding, scoring, and deployment of basic
models in DataRobot. We saw that DataRobot automatically built several models for us
and we could then score a dataset using these built models. Further, after we have chosen
a model that best aligns with our needs, DataRobot provides us a process to deploy our
selected model. Due to the difference between time series modeling and other forms
of predictive modeling, we will explore in this section how to mitigate problems by
effectively defining and setting up time series projects in DataRobot.

The dataset we will use to explore the use of time series modeling with DataRobot is the
Appliances energy prediction dataset that we explored in Chapter 4, Preparing Data for
DataRobot. The goal of the project is to predict energy usage. This energy usage time series
dataset has 4 and a half months' worth of 10-minute readings from differing data sources.
First, the data involved room temperature and humidity in a house. These were monitored
using a wireless sensor network and the data was stored every 10 minutes. Each of the
nine rooms in the house had their readings for temperature and humidity stored for
the time frame. Second, there was external data that provided a nearby airport (public
source) detailed information pertaining to weather information outside the house, again
with a 10-minute interval. This included wind speed, visibility, dew point, pressure, and
humidity. This information was merged with the data using date and time. In addition,
appliances and light usage aligned to date and time were attached to the dataset.

210 Forecasting and Time Series Modeling

Within this dataset, it is easy to see that the goal of this time series prediction is predicting
energy usage. The immediate influencing variables are the temperature and atmospheric
pressure within the house; however, the external data from the weather outside the house
is important. We created features calculating the average conditions across the nine rooms
in the house. In addition, we engineered features that captured the difference between
the mean room and the external temperature, as well as the difference between the mean
room and external pressure. Since we have two time series (appliance usage and light
usage), we will approach this problem in two ways. First, as a single time series, we will
look at the sum of both appliance and light usage. Subsequently, within the advanced
section, we will examine the multiple time series approach, with which we will be making
predictions for each usage type. As with other prediction projects on DataRobot, we ingest
the data as a .csv file, as seen in the following screenshot:

Figure 9.1 – Choosing a target variable for time series

Defining and setting up time series projects 211

The project is named Energy_Prediction and the target variable selected is
total_energy (the sum of light and appliance usage). We proceed as follows:

1.	 After selecting a target variable, we select a time variable and the nature of the time-
based modeling. Clicking the Set up time-aware modeling button, as shown in Figure
9.1, highlights the importance of time as a dimension and provides an opportunity to
choose a time variable. In this case, we choose the date feature, which specifies the
date and times of all readings, as illustrated in the following screenshot:

Figure 9.2 – Choosing a time-aware function and time variable

2.	 Once the Set up time-aware modeling button is clicked and the time feature
is selected, the platform requests the type of time-awareness model to be built.
There are two options—Automated time series forecasting with backtesting and
Automated machine learning with backtesting, as described next:

•	 Automated time series forecasting with backtesting—This option considers
previous data in predicting future data. With time series, there is a need to forecast
multiple future points. A case in point for this type of time-aware project could be
estimating departmental stores' daily sales for the next month using data from their
last year's sales.

212 Forecasting and Time Series Modeling

Automated machine learning with backtesting—The automated machine learning
option, sometimes referred to as out-of-time validation, basically creates time-
based features in a row and then uses a typical predictive model that predicts a
target variable for that row. Here, we do not use the typical cross-validation scheme;
instead, this approach employs older data for training and holds back newer data for
backtesting. Our project's context problem falls within the forecasting category type,
so this option is selected, as seen in the following screenshot:

Figure 9.3 – Time-aware modeling options

Once we have selected the Automated time series forecasting with backtesting option,
we are presented with a Time-Aware Modeling options tab (see Figure 9.3). Here, a few
options are to be carefully selected. We express how far back the model draws data to
make predictions and also how far forward the model makes predictions for. Let's first
consider the Feature Derivation Window option. This rolling window highlights a lag
upon which features and statistics for time series models are derived in relation to the
time from which a forecast is made (forecast point). The rolling window is expressed in
relation to the forecast point and automatically moves forward with the passage of time.
In an ideal situation, this window should cover a seasonal period in your data. Essentially,
this window typically answers the question: How far back does the data our model uses
to make predictions stretch? Also, there should be enough time between the end of the
window and your forecasting time to cater for any data ingest delays still limiting this time
gap, ensuring the data is recent enough. This period is known as the blind history. In our
case, we have assumed that an hour would be enough time to allow any blind history, so
set the gap before the forecasting point to 60 minutes. Considering our data is limited to 4
and a half months, seasonality within the context of our problem would be day and night
usage. Accordingly, we have set our rolling window to 2 days (2,880 minutes), which,
when accounting for the initial 60-minute forecast point gap, amounts to 2,940 minute

Building time series forecasting models and understanding their model outcomes 213

The second consideration is for the Forecast Window option. This defines, in relation to
the forecast point, how far in the future we are predicting. This has two elements; first,
when the prediction starts. The predictions should provide enough time for actions to
be taken yet not be too far in the future to ensure these predictions are accurate enough.
Secondly, we select our prediction end. This is dependent on the start point as well as
the nature of our problem. So, this aspect answers the question: How far forward should
predictions be made? For the problem at hand, we have selected an operationalization
gap, a gap between the forecast point and the start of the prediction window of 1 day
(1,440 minutes). Also, the rolling window is set at 1 day, which in consideration of our
operationalization gap becomes 2,880 minutes.

Having set up the time series forecasting project in this section, we will now explore
the processes around building the models, from understanding feature lists and their
distributions to looking at their impacts on evaluating models.

Building time series forecasting models and
understanding their model outcomes
Similar to projects we looked at in Chapter 4, Preparing Data for DataRobot, through
to Chapter 8, Model Scoring and Deployment, once we have finished with the initial
configurations, we scroll up and click on the Start button. By doing this, DataRobot
automatically builds time series models for this project. Before we evaluate the models, it
would be useful to understand the nature of the features the platform extracts. DataRobot
extracts features from the data that differ considerably from those of other prediction
models, as is evident in the following screenshot:

214 Forecasting and Time Series Modeling

Figure 9.4 – Feature lists

The lists shown under the Feature Lists tab are constructed as part of exploratory data
analysis (EDA) and itemize differing lists of features that DataRobot employs in creating
models. Many of the feature lists involve derived features, which are created automatically
based on properties of time series. A further discussion on derived features will be carried
out later in this section. It is easy to see that some of the lists involve features that are
extracted from the original data (for example, Time Series Extracted Features). Others
involve features created solely from dates, while some are assessed as informative. Most
lists appear to be combinations of differing types (for example, Time Series Informative
Features). Importantly, the feature lists provide the descriptions as well as the number of
features for each feature list name. Feature lists that could be pivotal are presented as part
of the Leaderboard feature, as illustrated in the following screenshot, which guides our
final model choice:

Building time series forecasting models and understanding their model outcomes 215

Figure 9.5 – Model leaderboard

The Leaderboard feature offers insights into models that have been built for a DataRobot
project. It provides information regarding model names and identifiers (IDs), their
accuracy metrics, and their types, versions, and sample sizes for the model development.
With time series modeling, however, there are some differences, as noted next. Firstly, the
sample size is present in data ranges. This is due to the time-based nature of time series
datasets. Unlike other modeling forms, the time order of the data does affect outcomes;
as a result, data is selected in time ranges. In this case, as can be seen in Figure 9.5, our
models were built using 3 months', 21 hours', and 51 minutes' worth of data. Secondly,
instead of the Validation and Cross-Validation columns, we have the Backtest 1 and
All Backtests columns. The backtests follow logically from the discussion regarding the
sample size (see Chapter 6, Model Building with DataRobot). The backtests provide an
evaluation of the model performance on a subset of the data. However, unlike a typical
validation, the data is time-ordered, and the size and number of backtests can be altered as
needed. We have used the default backtest setting for this example project so that the data
was partitioned in such a way that only one backtest partition was available for modeling.
Finally, with time series modeling projects, there appear to be more feature lists. As with
other predictive project types, the models could be ordered or selected using any of the
columns on the Leaderboard feature.

216 Forecasting and Time Series Modeling

There are a number of metrics against which time series forecasting models could be
assessed. This, of course, depends on the model. For regression-type outcomes, some
advocate the use of Root Mean Square Error (RMSE). The nature of the problem remains
critical in determining the metrics for assessment. That said, the role of the baseline
model on the leaderboard is crucial to evaluating other models. The baseline model
employs the most recent value in making its predictions. As such, comparing models
with the baseline prediction blueprint plays a pivotal role in the model evaluation as
it somewhat answers the question: To what extent are our models better than a naïve
prediction from the most recent data? DataRobot provides the Mean Absolute Scaled
Error (MASE), which compares the Mean Absolute Error (MAE) of models of interest
with those of the baseline model. For instance, the Eureqa Generalized Additive Model
(250 Generations) model, as presented in the following screenshot, has a comparative
ratio of about 0.76 for Backtest 1. This suggests that the Eureqa model is about 24%
better than the baseline. Since the Holdout metric could highlight considerable changes
within the data, it should be included in model evaluation but not used in isolation.
Other indications when evaluating models are covered within the Advanced topics in time
series modeling section of this chapter. Model names could be clicked to provide elaborate
insights about the data and its processes. We now turn to those we consider unique to
time series forecasting, using the Eureqa Generalized Additive Model (250 Generations)
example here:

Figure 9.6 – Impact of original features

Building time series forecasting models and understanding their model outcomes 217

The Understand tab presents us with Feature Impact, Feature Effects, Prediction
Explanations, and Word Cloud capabilities, which we have already encountered in
Chapter 7, Model Understanding and Explainability. Feature Impact shows the relative
extent to which features contribute to a model's overall accuracy. A click on the Feature
Impact tab opens the Original features page (see Figure 9.6). The original features are
features as they were in the dataset.

The other tab within Feature Impact depicts the effect of derived features on the accuracy
of the model. As alluded to earlier, derived features are those constructed based on the
characteristics of time series. For instance, the stationary nature of some time series
suggests that their statistical properties do not change over time. In the case of our model,
the most impactful derived feature (total_energy (1440 minute average
baseline)) is seen to be a feature constructed based on the stationary nature of the
time series, as illustrated in the following screenshot. This is because it highlights the
importance of the average 1,440-minute baseline energy on the accuracy of the model:

Figure 9.7 – Impact of derived features

218 Forecasting and Time Series Modeling

It is reasonable, as is evident in Figure 9.7, that a considerable number of derived features
appear to be created from the stationary property of time series, which on its own could
be indicative of this time series being quite stationary. That said, caution needs to be
exercised on reaching this conclusion because our dataset only entails 4 and a half months'
worth of data; for instance, our dataset only covers January 2016 to May 2016, so does
not account for the late Summer, Autumn, and early Winter months. As such, seasonality
could occur if we were using a dataset covering a longer time frame.

DataRobot creates features that capitalize on the properties of time series to improve the
accuracy of its models. Although not evident in this project, with seasonality or cyclicity,
DataRobot establishes when periodic variations occur and creates features accordingly.
Based on this information, it next detects patterns of seasonality—for instance, a
seasonality that occurs during a time frame could be defined either by counting up from
the beginning of the time frame or counting down from the end of the time frame. As
such, the platform could detect and build features that, for instance, use energy usage
on the last Saturday of March to predict energy usage on the last Saturday of April.
In a similar fashion, DataRobot uses features built on differencing to improve model
performance. It could utilize the average usage during the first week in March as a feature
to predict usage during the first week of April.

Moving on to the Describe tab, upon opening the Blueprint tab, we are exposed to
the stages involved in the modeling process of time series projects. As detailed in the
following screenshot, we can quickly appreciate that this is not very different from those of
other predictive projects encountered in preceding chapters:

Making predictions with time series models 219

Figure 9.8 – Model blueprint

We have now spent time building and understanding time series forecasting models. The
next logical step is to use our selected model to make predictions.

Making predictions with time series models
DataRobot provides us with tools to make predictions pain-free. There are two approaches
to making predictions for time series. For small datasets under 1 gigabyte (GB),
predictions could be made using the Make Predictions tab on the Leaderboard feature.
This involves setting up and uploading a prediction dataset, then scoring it within the
Drag and drop a new dataset user interface (UI) functionality. For significantly larger
datasets, models need to be deployed and predictions are made using an application
programming interface (API). In this chapter, we will cover the first approach to making
predictions. With DataRobot, general model deployments and working with APIs are
extensively discussed in Chapter 12, DataRobot Python API.

220 Forecasting and Time Series Modeling

The leaderboard's drag-and-drop approach to scoring models for time series models
somewhat differs from those of traditional models, as seen in Chapter 8, Model Scoring
and Deployment. When the Make Predictions tab is opened, DataRobot briefly outlines
the recency and quantity of the data needed to make predictions. This outline is mostly
consistent with the forecasting windows established as part of the configuration during
the model development, as well as features derived. As the prediction process shows in the
following screenshot, the prediction dataset requires a minimum of 4,320 minutes of historic
data outside of the 60 minutes prior to the forecasting point. In addition, when models
include derived features that involve features in earlier time periods, the earlier time period
is also included in the dataset requirement. Because the model in question has 24-hours'-
difference derived features, this increases the requirement to 5,820 minutes. This 5,820-
minute requirement includes an initial 60-minute forecast point gap window, 4,320-minute
base prediction requirement data, and 1,440 minutes added on for the derived differencing
features. This enables the model to predict 2,880 minutes in advance of the forecasting point
after the 1,440-minute operationalization gap. Some of these features are presented here:

Figure 9.9 – Make Predictions window

Making predictions with time series models 221

To make predictions, if the data format is consistent with the training data, proceed
as follows:

1.	 Click on Import data, which allows the data to be ingested from a local source,
a Uniform Resource Locator (URL), оnе оf уоur еxіѕtіng dаtа ѕоurсеѕ, оr AI
Catalog. If no row is found after the default forecast point, DataRobot generates
a template. For this to be done, there must be no empty row within the forecast
window and the template file must meet the upload size limit conditions. After the
file has been uploaded, DataRobot sets the forecast points and includes the rows
required to meet the forecast window expectations.

2.	 Click on the Compute predictions button after uploading the data, as illustrated
in the following screenshot, since the uploaded prediction file is the most recent,
without gaps and the fill number of rows expected:

Figure 9.10 – Computing time series predictions
The Forecast settings button in Figure 9.10 provides options for predictions where
either the forecasting point is not expected to be the most recent or changes the
range for which predictions are to be made.

222 Forecasting and Time Series Modeling

3.	 To make changes of this nature, click on the Forecast settings button, which
opens the Forecast Point Predictions tab by default, as illustrated in the following
screenshot. This window offers a forecast point slide tab selector, which can be
configured by either a slide or entering the actual time value. Invalid dates are,
however, disabled:

Figure 9.11 – Forecast Point Predictions settings

As alluded to earlier, there is a limit to times that can be selected as a forecast point.
The forecast point must be less than or equal to the most recent one. In the case of this
project, this is 2016-05-27 19:00:00:00, which is the most recent data row time, with an
operationalization gap of 1440 minutes. A similar operation could be carried out to alter
the prediction date ranges. The Forecast Range Predictions feature would ideally be used
to validate models as opposed to making future predictions.

In this section, we highlighted the importance of ensuring our prediction dataset for
time series models is like that for training models. We went on to make predictions and
interpreted other outcomes from the model. Next, we will explore more advanced topics
involving time series modeling with DataRobot.

Advanced topics in time series modeling 223

Advanced topics in time series modeling
In this chapter, we have learned how to configure, build and make predictions with basic
time series forecasting models in DataRobot. In the preceding section, our attention was
focused on building models that have one-time series. However, you could have a situation
where you might have to make multi-time series predictions. Within the context of our
energy utilization problem, we might want to forecast the usage of lights and appliances.
Elsewhere, an energy company might want to forecast energy usage for differing cities or
households within the same model. We will now take a deep dive into solving problems of
this nature. Also, we will explore future ways other advanced approaches may be used in
assessing our time series models. Finally, we will acknowledge the role of scheduled events
on time series and highlight the provisions made by DataRobot to handle this possibility.

The dataset used for this project highlights the energy usage of lights and other appliances.
For the earlier project, we totaled up all usage as our target variable, but in this project
(named Energy_Prediction_2), models will be built to predict usage for each device
type. This dataset now has two series, implying timestamps could recur, yet timestamps
within each series must be unique. The differentiating column, Device_type, is the
ID for the device type that the usage is attributed to. After qualifying the project as being
time-aware and choosing its type as Automated time series forecasting with backtesting
(see Figure 9.2 for more information on the setup of a time series project), due to the data
having multiple rows with the same timestamp, the multiple time series is automatically
selected. The next step, as shown in the following screenshot, is to select the series ID,
which in this case is Device_type:

Figure 9.12 – Multi-series time series forecasting setup

224 Forecasting and Time Series Modeling

For this project, we are interested in further evaluating our models. So, the sequel to
customizing our forecasting window, within the Partitioning tab of the Advanced
Options window, is to configure our backtests to help us manage validation folds (for
more on validation folds, see Chapter 6, Model Building with DataRobot). Here, we
simplistically set the number of backtests to 5 + Holdout. The following screenshot
details the setup for this configuration, and we can see how the training, validation, and
holdout data is partitioned from the initial data. It is important to highlight that to set
up the backtests, we must consider any form of seasonality, periodicity, and/or cyclicity
within the data and ensure that every fold has at least one instance of these. This is because
every backtest should be a complete dataset on its own, so seasonality, periodicity, and
cyclicity need to be accounted for within each backtest. The validation and gap lengths can
also be altered. The default length for this project is set to over 13 hours and 9 minutes.
You can see the configuration here:

Figure 9.13 – Backtest configuration

Advanced topics in time series modeling 225

Having configured backtesting, we then click on Start to train the models. When models
are created, the process of evaluation is like that for single time series models. As evident
in the following screenshot, we can see the All Backtests metric, which measures the
average performance of a model across all backtests. As such, it provides an interesting
way to quickly assess not only the model performance but also the consistency of the data
pattern over time:

Figure 9.14 – Accuracy over time

226 Forecasting and Time Series Modeling

The Accuracy Over Time feature within the model Evaluate tab enables users to have
a visual yet in-depth assessment of their models over time (see Figure 9.14). Here, the
predicted and actual are visually presented. Within this window, you can choose a Series
to plot setting and alter the Backtest and the Forecast distance settings. This view, within
the context of a business, helps understand if there are periods of poor performance that
could imply an aspect of a business not represented in the data. The Forecasting Accuracy
window, as shown in the following screenshot, is another important representation that
suggests how model performance changes as the forecast distance changes:

Figure 9.15 – Forecasting Accuracy window

The Forecasting Accuracy window highlights alterations in models' performance
as forecasts are made into the future. This view allows us to assess where models'
performance is similar across time, which is indicative of when models could be
used within the business. Furthermore, it highlights when the models' performance
considerably exceeds those of the baseline model when the MASE performance metric is
used. As illustrated in Figure 9.15, the model's performance on Backtest 1 seems to begin
to be considerably better than the baseline model around the +1,960-minute mark. The
stability view presents users with the measure of scores across time ranges.

With the quest for better-performing models comes a need to adopt some changes to
modeling paradigms. The default models available for time series modeling might just
not provide the required performance. In that case, the model repository, as explained in
Chapter 6, Model Building with DataRobot, presents us with options to select traditional
time series models such as AutoRegressive Integrated Moving Average (ARIMA) and
more recent models such as Keras Long Short-Term Memory (LSTM) and XGBoost
(XGB). Depending on the nature of the time series under investigation, these modeling
approaches sometimes present better performance.

Summary 227

Summary
In this chapter, we have extensively examined how DataRobot could be used to build
time series models. We briefly discussed the unique opportunities time series modeling
presents businesses, as well as the challenges it presents for analysts and data scientists. We
used DataRobot to create both single and multiple time series models. We also described
how predictions could be made using models built by DataRobot. This was followed by a
discussion on advanced aspects of DataRobot's time series capabilities.

Forecasting is extremely important to business because of its ability to foretell what is
likely to occur in the future considering time-dependent variables. Another commercially
valuable area is the ability to suggest the interest that differing clients would have for a
wide array of products. This is where recommender systems come in.

In the next chapter, Chapter 10, Recommender Systems, we look at how DataRobot could
be used to build recommender engines.

10
Recommender

Systems
In this chapter, we will learn about what recommender systems are, discuss their various
types, and work through a DataRobot implementation of a content-based recommender
system. Within this chapter, recommender system, recommendation system,
recommender engines, and recommendation engines are used interchangeably.

In their simplest form, recommender systems suggest potentially relevant items to
users or buyers. In today's commercial environment, businesses tend to have numerous
items, products, or services for sale, making it more challenging for users or buyers to
connect with their desired products or services. This chapter explains the ubiquity of
recommendation engines in the current business space.

Although this book is not the place to cover every aspect of recommendation systems,
we will discuss how to utilize DataRobot to build and (make predictions from)
recommendation engines and present a conceptual overview of these systems, as well as
a brief discussion of their types. Thus, by the end of this chapter, you will learn how to
utilize DataRobot to build a content-based recommendation engine. The main topics in
this chapter include the following:

•	 A conceptual introduction to recommender systems

•	 Approaches to building recommender systems

230 Recommender Systems

•	 Defining and setting up recommender systems in DataRobot

•	 Building recommender systems in DataRobot

•	 Making recommender system predictions with DataRobot

Technical requirements
Most parts of this chapter require access to the DataRobot software. The code example
is based on a relatively small dataset, Book-Crossing, consisting of three tables, whose
manipulation was carried out with Jupyter Notebook.

Check out the following video to see the Code in Action at https://bit.ly/3HxcNUL.

Book-Crossing dataset
The example used to illustrate the use of DataRobot in building recommendation systems is
based on the Book-Crossing dataset by Cai-Nicolas Ziegler and colleagues. This dataset was
accessed at http://www2.informatik.uni-freiburg.de/~cziegler/BX/.

Note
Before using this dataset, the authors of this book have informed the owner of
the dataset about its use in this book.

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, Georg Lausen (2005).
Improving Recommendation Lists Through Topic Diversification. Proceedings of
the 14th International World Wide Web Conference (WWW '05). May 10 – 14,
2005, Chiba, Japan.

The data was collected during a four-week collection of the Book-Crossing community
between August and September 2004. The subsequent three tables, provided in CSV
format, make up this dataset.

•	 Users: This table presents the profile of the users, with an anonymized User-ID
presented as integers. Also provided are the users' Location and Age values.

•	 Books: This table contains the characteristics of the books. Its features include
ISBM, Book-Title, Book-Author, Year-Of-Publication, Publisher.

•	 Ratings: This table shows the book ratings. Each row provides a user's rating for a
book. The Book-Rating value is either implicit as 0 or explicit between 1 and 10
(the higher the number, the better the rating). However, within the context of this
project, we will focus solely on ratings that are explicit for the model development.
The table also includes the User-ID and ISBN values.

https://bit.ly/3HxcNUL
http://www2.informatik.uni-freiburg.de/~cziegler/BX/

A conceptual introduction to recommender systems 231

A conceptual introduction to recommender
systems
Businesses have a long-standing history of recommending their products or services to
customers. For instance, walk into a bookshop and you are likely to see a list of popular
books bought by other customers. This is a simple kind of recommendation system, as it
gives buyers a snapshot of potential products to purchase.

In a bid to win in the digital economy, businesses are becoming increasingly customer-
centric. Customer centricity implies that companies aim to put the needs of the customer
first. Still, with the needs of customers being as diverse as the customers themselves,
businesses need to take a unique approach in putting forward their products. This
explains, in part, the failings of popularity-based recommendation systems, as they fail
to consider the unique profiles of buyers. As such, with growing digitalization, increased
business offerings, and a growing diversity of customers' needs, this approach is unlikely
to win.

Interestingly, data science tools can offer a number of approaches to make recommender
systems more intelligent by considering the needs of the buyers in a variety of ways.

In presenting the different types of recommender systems, we will continue to use the
bookshop example.

First, the item-based collaborative filtering approach to recommendation systems
makes product suggestions to book buyers based on the buyer's product purchase history
and how those products relate to others. As such, if an individual bought Book A, and
Book A is linked to Book B, then Book B is suggested. The second approach, user-based
collaborative filtering, considers similarities between buyers when making suggestions.
As such, if Buyer A is similar to Buyer B, and Buyer A buys Book C, then Book C would be
recommended to Buyer B. The third approach, content-based recommendation, takes
into account both the book and user characteristics in making suggestions. Finally, the
hybrid system approach uses a combination of collaborative-based and content-based
methods in making recommendations. It is easy to see that both of these methods come
with strengths and weaknesses. We will now take a deeper look at these approaches and
how DataRobot can be used to build a content-based recommendation system.

232 Recommender Systems

Approaches to building recommender systems
Recommender systems aim to suggest relevant products to buyers. Because of their
ability to consider the uniqueness of buyers, intelligent recommender engines have
generated billions of dollars for businesses and helped buyers find relevant products. They
represent a win-win for both consumers and businesses. Various data-driven approaches
to creating intelligent recommendation systems have been introduced. There are three
major approaches to recommendation systems: collaborative filtering systems, content-
based systems, and hybrid systems. Let's discuss each of these approaches in the following
sub-sections.

Collaborative filtering recommender systems
The core idea behind collaborative filtering recommender systems is leveraging past
actions by others to infer what an individual might be interested in. Collaborative filtering
approaches draw on data stores of the historic interaction between products and users.
Table 10.1 presents an interaction matrix of users rating books. Each user rated a book
with a number between 1 and 5, with 5 representing the highest level of enjoyment.
Where there are no ratings, the individual is assumed not to have read the book. There
are two broad types of collaborative filtering: item-based collaborative and user-based
collaborative filtering.

Table 10.1 – User/product interaction matrix

Approaches to building recommender systems 233

Item-based collaborative filtering systems (or item-to-item collaborative algorithms) find
similarities between items and base their recommendations on these similarities. This
approach is grounded in suggesting items to individuals based on how similar items are to
the ones these individuals previously enjoyed or bought. Drawing on Table 10.1, an item-
based filtering approach would easily see that Book C and Book E are rated in a similar
way by previous readers. Based on this item relationship, if an individual rates Book C
highly, a recommendation of Book E is made and vice versa. So, since User 5 highly rated
Book E and has not seen Book C, a recommendation of Book C is put forward, as there is a
high likelihood of them liking Book C.

With user-based collaborative filtering systems, similarities are found between users, and
recommendations are based on these. User-to-user collaborative algorithms aim to
find users with similar behavior or who are in the same behavioral neighborhood, as
established by their historic actions. The algorithm then considers what their preferences
are and makes recommendations. The core idea of these recommendation systems is the
assumption that if individuals are alike, what they like will be similar. From Table 10.1,
it could be inferred that User 2 and User 4 have similar book interests. Because User 4
has rated Book D highly, the likelihood of User 2 liking Book D is considered high and
therefore recommended. As we can see, both collaborative filtering approaches are based
on the idea of similarities.

Similarity metrics offer a basis for recommendations to be made. There are several
similarity metrics, with the Pearson correlation coefficient and Cosine similarity being
among the most popular. Others have approached this measurement of similarity drawing
on neighborhoods. The K-nearest neighbors algorithm is utilized to find the nearest items
or users to the one being recommended or recommended to, respectively.

Because the interaction dataset is easily acquired, building collaborative filtering is
considerably easier than content-based systems, as will be discussed in the next sections.
However, the collaborative approach to recommendation systems has a few shortcomings.
Within the context of Table 10.1, a new user, User 6, is introduced with no history. It is
easy to see that the collaborative filtering system will struggle to make recommendations
to this user. The problem is similar for an item without historic data. This problem,
otherwise known as the cold start problem, is well documented. Data sparsity is another
problem commonly associated with collaborative filtering. Most platforms and large
businesses have buyers and products. Still, the most active users would only buy a fraction
of the available products. As such, there is a gap in the data needed to meaningfully
compute the similarities when powering these engines.

234 Recommender Systems

Content-based recommender systems
Content-based recommender systems make suggestions based on the item characteristics
and user profiles. This approach has a different type of data structure underpinning it.
Content-based systems are machine learning (ML) models, built by leveraging historic
datasets consisting of item descriptions, user profiles, and user preferences. Some writers
differentiate content-based recommender systems from demographic systems, but here, we
consider demographic information as part of the profile of the user. In the case of buying,
this classification model is used to predict the likelihood of users liking an item. Within
the context of a books recommendation system, every book needs to be associated with
its description, which could include its genre, cover, number of pages, size, and publisher,
while information regarding the user could include their location, profession, age, and
marital status. As illustrated in Table 10.2, the users' ratings come in addition to these.
In this case, because the rating is represented by a value between 1 and 5, the model is
regression-based, as it predicts an interval variable. This model becomes a content-based
recommendation engine.

From the preceding discussion, we can see that a content-based system can easily mitigate
the cold start problem, as books and users are likely to have some forms of descriptions.
In comparison to collaborative filtering systems, content-based systems are more scalable,
as in the production environment, predictions can easily be made when needed, rather
than having to make predictions for all users and products at the same time. Importantly,
even when users only rate or buy a few products, content-based systems will still perform
well, as they focus on the descriptions and not necessarily the users or products. That
said, most content-based systems struggle when the characteristics of the items are not
readily available. Within certain contexts, it could be challenging to generate attributes for
a product (for instance, if the product is or has images or sounds). In cases of this nature,
content-based systems will have no descriptions to analyze. Additionally, demographic
information of users might not be readily available due to growing online privacy
concerns. The limitations of both the collaborative filtering and content-based approaches
to recommendation gave rise to the use of hybrid systems.

Approaches to building recommender systems 235

Hybrid recommender systems
Hybrid recommender systems are an integrated approach to recommendation systems.
Hybrid systems generate recommendations to users by leveraging a combination of two or
more recommendation strategies. By doing so, they mitigate the limitations attributed to
either of the strategies, thereby benefiting from the wisdom of the many.

There are several approaches to hybrid systems. The most commonly used (and the
easiest to implement) is the weighted approach. Here, scores from independent
recommendation systems are aggregated to give an overall recommendation score.
Aggregation methods vary and can include basic averaging, applying rules, and using
linear functions. The staged approach could also be deployed. This typically involves
the recommendation systems' results being integrated as input features in another
recommendation system. As such, the output of the Stage 1 system becomes an additional
input for the Stage 2 system. The switching approach involves using a rule to switch
between different recommendation systems to capitalize on their advantages in a given
context. For instance, if collaborative filtering is seen to give better results, a switch regime
could use the collaborative filtering approach, but when there is a cold start, it could
change to the content-based approach. An advantage the hybrid system has over content-
based systems is the ability to develop recommendations when item features are difficult
to establish. As will be demonstrated in Chapter 11, Working with Geospatial Data, NLP,
and Image Processing, DataRobot has advanced feature extraction capabilities for images
and text data.

236 Recommender Systems

Defining and setting up recommender systems
in DataRobot
DataRobot, due to its ability to extract features from images, audio, and text data,
effectively manages the feature availability limitation of the content-based recommender
systems. This, in addition to DataRobot's automated ML models' processes, means
it is well positioned to leverage the advantages of the content-based approach while
compensating for the feature-unavailability limitation of this approach. As described
in the Technical requirements section, the dataset used for our example consists of three
tables. This includes the user table (presenting profiles of the users), the book table
(outlining characteristics of the books), and the rating table (containing user book
ratings). Since we have one table describing the books, and another, the users, integrating
these and the ratings sets the scene for the content-based recommender system. To do
this, we employed Jupyter Notebook. Figure 10.1 presents the script we ran to ingest the
dataset, manipulate it, merge the tables, and write it back as a CSV file:

Figure 10.1 – Data manipulations in Jupyter Notebook

Rows on the rating table where rating had a value of 0 were excluded, as the ratings
were implicit. These rows will be used to demonstrate how to make predictions
with recommendation engines in the Making recommender system predictions with
DataRobot section. Having manipulated the tables by changing their headings, as well
as consolidating the ratings, books, and users values into a table, each row has the
description of a user and a book, and also a rating. A snapshot of the data is shown in
Table 10.2. Although we could create the DataRobot project in Jupyter Notebook using
the Python API method (as will be illustrated in Chapter 12, DataRobot Python API) for
consistency, we downloaded the data as a file: rating.csv.

Defining and setting up recommender systems in DataRobot 237

Table 10.2 – Data snapshot

Following the process established in Chapter 6, Model Building with DataRobot, we created
a DataRobot project for the recommender system. When doing this, we drag the rating.
csv file into the initial project window. This opens up the window shown in Figure 10.2. For
each row, since the book rating is used as an indicator of the user's interest, it can be used
as the target variable. Due to the nature of the target variable, ratings, the ML models for
this recommender system will be of the regression models type.

Figure 10.2 – DataRobot project initiation window

238 Recommender Systems

As expected, ratings made are the range of 1 to 10. Ideally, we will drop the rows with
implicit ratings (of 0) and user_ID fields to create a robust dataset for modeling. The
next thing to do is build the recommender system's ML models.

Building recommender systems in DataRobot
One of the strengths of driverless artificial intelligence (AI) platforms such as DataRobot
lies in their simplification of the data science model-building process. Given the similarity
of the content-based recommendation model-building process to the typical ML one,
DataRobot's ML capabilities could be leveraged in building these systems. Having set up
the data (as detailed in the previous section), click on Start (Figure 10.2) to commence the
modeling process. To avoid over-optimistic model performance which fails to generalize
where users provide more than one ratings for items, it might be useful to partition the
rating according to the users. To do this, within the Advanced options window, open the
Group tab and enter user_id in the Group ID Feature field.

As detailed in Chapter 6, Model Building with DataRobot, DataRobot commences the
development of ML models when the Start button is clicked. However, with recommender
systems, the DataRobot's present strong prediction accuracy as the platform benefits from
cutting-edge technological advances in developing models. Recommendation datasets
pose difficulties for modeling because of their high data sparsity and dimensions. The
DataRobot's models exploit higher-order combinatorial features learned from the input
data. Though some of these models will not run automatically when the Start button is
clicked, they can be accessed in the Repository tab. Because these models are based on
the Keras neural network, they use a training schedule in their development. So, they
can easily be found by entering Training Schedule or simply Training in the
search field in the model Repository tab during model creation. This will bring up a list of
relevant models (see Figure 10.3):

Building recommender systems in DataRobot 239

Figure 10.3 – Selecting the advanced modeling approaches most suitable for recommender systems

In addition to selecting these modeling methods to be included in the list of models to
be created, the models' Sample Size, Cross Validation runs, and Feature List options
are to be set For the current project, we selected 16% of the sample size (which snaps to
Autopilot Stage 1) based on the Informative Features, and then carried
out all five Cross Validation runs. A final click on Run Tasks includes these in the
processing queue.

240 Recommender Systems

After the models have been created, the next step is to evaluate them in terms of their
accuracy. Prior to this, it is important to examine the Relative Importance chart to
check if our model aligns with common sense. As is apparent in Figure 10.4, opening the
Variable Importance window through the Insight window offers us the opportunity to
explore these models:

Figure 10.4 – Variable importance

The values next to Scores based on Text feature (location) and Scores based on Text
feature (title) suggest that the model performance is significantly informed by a person
field and an item field. Models that capitalize on the learned creation of higher-order
variables excel in these situations. This is because they generate higher-order variables
that are interactions between the person-specific and item-specific features, drawing on
learning from the data. As a result, in the preceding case, a feature that combines the
presence of an aspect of a location (for example, London) and an aspect of the title (for
example, Kingdom) could be interpreted as influential to the model. So, in this simplified
example, a higher-order feature that is an interaction between London and Kingdom
is created. The rating predictions consequently change considerably depending on the
presence of this newly created higher-order feature.

Building recommender systems in DataRobot 241

In model selection, using the definite root mean squared error (RMSE) evaluation
metrics, we see that Keras Slim Residual Neural Network Regressor
using Adaptive Training Schedule (1 Layer: 64 Units) is the
best-performing model (see Figure 10.5). It is important to highlight that measuring
the accuracy of models for recommendation systems in some contexts is not as
straightforward. Imagine that in this case, we could only have a rating of 1 when an
individual buys a book, and otherwise it would be 0. Naively measuring how accurate the
model is becomes limited, as a 0 rating does not necessarily imply that an individual is not
interested in an item. This is because it is possible that the individual has never read the
book. Because a good recommender system will recommend items whose characteristics
align with an individual's profile as a potential book to read that are unread, it is likely
to have a significant proportion of false positives. This is because, although their current
rating is 0, the user in question will most likely be interested in reading them. In cases
like these, the Recall type becomes a more important metric in evaluating the model
performance. Given that we are only certain of cases where individuals buy items, it is
reasonable to evaluate those cases in isolation. Therefore, the extent to which the model
accuracy predicts books that are read correctly, usually referred to as the Recall, becomes
a more suitable metric.

Figure 10.5 – Leaderboard tab for recommendation systems

242 Recommender Systems

For a recommendation system, accuracy and prediction speed is very important to
consider when deciding which model to use. To ground this discussion, it is important
to understand that there are two major approaches to making predictions with
recommendation systems. The first approach is a batch scoring of combinations of
users by items, where items are yet to be read by the user. This dataset becomes larger
exponentially as items and users increase. The second approach is a real-time prediction.
For instance, imagine an individual arrives at an e-commerce platform. That individual's
data with those of the products is rapidly scored and suggestions are scored nearly
instantly. In both cases, the speed of the prediction is pivotal for commercial success. The
DataRobot Speed vs Accuracy chart offers some support in analyzing speed and accuracy
for recommendation systems. As seen in Figure 10.6, the RMSE metric for that Keras
Slim Residual Neural Network Regressor using Adaptive Training
Schedule (1 Layer: 64 Units) is 1.6746, and its prediction speed is 35.57 ms
per every 1,000 predictions. The validation scores for some blender models appear better,
but these are much weaker in terms of the speed of prediction.

Figure 10.6 – DataRobots' Speed vs Accuracy chart

This suggests that though it is very accurate, this model is very slow in making
predictions. The Speed vs Accuracy chart presents a snapshot visualization of several
models' speed and accuracy. A more in-depth pairwise comparison can be carried out
using the Model Comparison tool. To continue the discussion of prediction, we will now
turn to making recommendation system predictions in DataRobot.

Making recommender system predictions with DataRobot 243

Making recommender system predictions with
DataRobot
Creating suggestions from recommendation engines on DataRobot is straightforward.
We use the drag and drop approach (as discussed in earlier chapters), as our prediction
dataset is only small. With larger datasets (over 1 GB), as is more typical for recommender
systems, using the DataRobot prediction API is advised. The API approach to creating
models and making predictions is covered in depth in Chapter 12, DataRobot Python API.

Our prediction dataset for our example is 64 MB in size, and so the drag and drop
approach is appropriate. For this prediction approach, we specify the columns we want to
use from the original dataset. Ideally, we at least need an identifier for the item and user.
As illustrated in Figure 10.7, we have chosen to include the ISBN, user_id, and title
fields in our predictions. We drag and drop the prediction dataset into the specified
region. As usual, this dataset is quickly evaluated, and we are presented with the Run
external test or Compute prediction options.

Figure 10.7 – A recommendation engine prediction setup

244 Recommender Systems

At this point, we click on Compute predictions to commence the prediction process.
Following the completion of the prediction process, the predictions are downloaded as
a .csv file (see Table 10.3). As noted previously, the prediction set is drawn from the
original dataset where the ratings were implicit (so the rating score was zero). Thus, the
prediction dataset has only a limited sample of the possible person-item interactions.
Some users (for instance, the user with 8 as user_id), have about 10 items scored,
while some have only 1 item scored. In an ideal situation, all items not seen by an
individual would be rated. That said, suggestions served to the user are then made in order
of predicted interests. For user 8, the book titled A Second Chicken Soup for
the Woman's Soul (Chicken Soup for the Soul Series) is served first.
In some cases, the top n recommendations is used. By top n in our book case, we mean,
for each user the top n books are selected based on their prediction values.

 Table 10.3 – A recommendation engine sample prediction

The selected model can be deployed as a REST API using DataRobot, as shown in Chapter
8, Model Scoring and Deployment, and then the data can be scored via the DataRobot
API call (which we will discuss in Chapter 12, DataRobot Python API). Some DataRobot
models can be downloaded as JAR files, which can be integrated with other applications
to make real-time predictions. Elsewhere, a batch prediction can be made using different
person-item interactions, before being stored in a big data storage table, such as Google
Cloud BigQuery.

Summary 245

Summary
In this chapter, we introduced and appraised different approaches to recommendation
systems. We examined the data structure requirements for content-based and
collaborative filtering recommendation systems, and we discussed their underlining
assumptions. We then point out the strengths of DataRobot in extracting features
from challenging data types (for instance, image data) that normally limit the use of
content-based systems. We then illustrated the use of DataRobot in building and making
predictions using a content-based recommender system based on a small dataset.

It is important to highlight that the dataset used for this project was made up of multiple
data types. DataRobot is capable of extracting features and integrating different data
types to create ML models. In the next chapter, we will explore how to use datasets with a
combination of image, text, and location data when creating ML models.

11
Working with

Geospatial Data,
NLP, and Image

Processing
In this book thus far, we have focused mainly on numeric and categorical features. This
is not always the case in big data, as with big data comes an increasing data variety.
Image, text, and geospatial data is becoming increasingly valuable in gaining insight and
providing solutions to the most complex problems. Recently, for instance, location-based
data has been used to improve the effectiveness of advertising campaigns. For example,
different ads can be shown to users according to their location; if they are coffee lovers
and close to coffee shops, push notifications could be sent to their mobile devices. In other
cases, chatbots, based on advanced text analytics or natural language processing, provide
businesses with an efficient and effective avenue to solve customer problems. What is
most interesting and an emerging approach to solving commercial problems is the use of
multimodal datasets, which combine different variable types in the same project.

248 Working with Geospatial Data, NLP, and Image Processing

Understandably, the topic of analyzing different variable types is enough to be covered
in a book in its own right. Yet providing an overview of the analysis of different variable
types is key in grounding the use of DataRobot in building multimodal models that
involve text, image, and location data. With that foremost in mind, in this chapter, we
will delve into the definitions and approaches to analytics with text, image, and geospatial
data. Thereafter, we will use DataRobot to build and make predictions with a model that
capitalizes on the uniqueness of a multimodal dataset in predicting house prices. As such,
the topics that will be covered are as follows:

•	 A conceptual introduction to geospatial, text, and image data

•	 Defining and setting up multimodal data in DataRobot

•	 Building models using a multimodal dataset in DataRobot

•	 Making predictions using multimodal datasets in DataRobot

Technical requirements
Most of the analysis and modeling carried out in this chapter requires access to the
DataRobot software. Some manipulations were carried out using other tools, including
MS Excel. The dataset utilized in this chapter is the House Dataset.

House Dataset
The House Dataset can be accessed at Eman Hamed Ahmed's GitHub account
(https://github.com/emanhamed). Each row in this dataset represents a specific
house. The initial feature set describes its characteristics, price, zip code, images of the
bedroom, bathroom, kitchen, and frontal view. There was no missing data. We went on to
develop text descriptions for each house, based on the number of bedrooms, bathrooms,
city, country, state, and actual size of the property. Elsewhere, the ZIP codes were
converted into latitude and longitude, which were added to the dataset as columns. More
information on the base features is provided at the GitHub link and the data is provided
in .csv format.

Dataset Citation
House Price Estimation from Visual and Textual Features. In Proceedings of the
8th International Joint Conference on Computational Intelligence, H. Ahmed E.
and Moustafa M. (2016). (IJCCI 2016) ISBN 978-989-758-201-1, pages 62–68.
DOI: 10.5220/0006040700620068

https://github.com/emanhamed

A conceptual introduction to geospatial, text, and image data 249

A conceptual introduction to geospatial, text,
and image data
Just like we use different senses to holistically understand objects around us, a machine
learning (ML) model also benefits from data coming from different types of sensors and
sources. Having only one type of data (for instance, numeric or categorical) limits the level
of understanding, predictability, and robustness of a model. In this section, we will present
a more in-depth discussion of the business importance of different data types in building
models, the associated challenges, and the preprocessing steps necessary to mitigate these
challenges.

Geospatial AI
Geospatial understanding has had long-standing implications for decision-making
in certain industries, including mineral exploitation, insurance, retail, and real estate.
While the commercial importance of data science is well established, location-based AI
is just beginning to gain recognition. The use of ML in improving business performance
has brought to the fore the importance of augmenting datasets with location-based
information and features in building predictive models.

Typical ML models built mainly from categorical and numeric data have contributed
immensely to realizing business goals, but decisions are governed by more than numeric
and categorical information. Indeed, the events take place at certain locations. ML models
need location-based information in order for the location context to effectively present
commercial insight and predictions. What works in one geography may not work in another.

The potential commercial impact of using ML and location-based information comes with
several challenges:

•	 A lack of datasets, tools, and people skills.

•	 Connecting ML pipelines to native location-based analysis techniques is not
straightforward.

•	 Only a few R and Python packages have geospatial capabilities.

•	 Understanding these capabilities requires further education and training for analysts.

DataRobot's location AI capability helps alleviate some of these challenges. The location
AI capability complements the existing AutoML experience by adding in a repertoire
of geospatial analytic and modeling tools. With DataRobot, location features could
be selected from the dataset, but the location AI capability enables the platform to
automatically recognize geospatial data and create geospatial features. A variety of
geospatial data file formats can be uploaded. These include GeoJSON, Esri shapefiles, and
geodatabases, PostGIS tables, as well as traditional latitude and longitude data.

250 Working with Geospatial Data, NLP, and Image Processing

Natural language processing
As humans, we communicate effectively via a vast range of words with or without
limitations on the volume of words to use. More than words, body language, tonality, and
words' context are crucial to effective communication. For example, using the same set of
words, the cat is bigger than the dog has a different meaning to the dog is bigger than the
cat. Naturally, humans understand, draw conclusions, and make predictions of the future
based on free text. The use of free text comes with valuable information and rich insights
can be harvested from it. Yet, since free text fails to follow a consistent structure, they pose
challenges to being processed by machines.

Conversations and other forms of free text are messy and unstructured as they do not
fit neatly into traditional tables with rows and columns. Natural Language Processing
(NLP) sits at the intersection of data science and linguistics and involves the systematic
use of advanced processes for analysis, understanding, and the extraction of data from free
text. Through NLP, scientists can leverage free text to generate valuable insight, which is
then integrated as features in building better-performing models. Text mining allows the
identification of unique words or groups of words that are associated with certain outcomes.
For example, in the house price prediction case, the description of the house improves the
predictability of the models in estimating the house price. Thinking about it, the description
also contributes to an individuals' decision of buying a house. Individuals' propensity to
buy houses influences property pricing. NLP algorithms can identify the effect of word
sequencing and influence words or phrases, and a word's context within sentences.

NLP is key to machines being able to extract important information from text.
Consequently, NLP allows machines to decide feelings described in free text by giving
a number score to a text, indicating its sentiment to a topic or event. Similarly, it aids in
the identification of classes that certain words most likely belong to. This capability has
given birth to several applications, including text classification, named entity recognition,
sentiment analysis, and summarization of text.

To get free text to provide useful insight or be integrated into models is not an easy task.
As earlier alluded to, raw text has no structure, so structure needs to be introduced.
Also, numerous words have the same meaning and you could have the same word mean
different things in different contexts. In a typical analytics process, there are numerous
steps taken to normalize free text. At least four steps are required:

1.	 The first step in most text processing is splitting text corpus into separate words.
This step, also called tokenization, enables the identification of keywords and
phrases. The separated words are referred to as tokens. N-grams are the basic units
for text analytics.

A conceptual introduction to geospatial, text, and image data 251

2.	 Next, there are certain words that contribute little or nothing to the meaning of a
text. These are generally common words; for instance, in the English language, we
have words such as the, that, is, and these. Within the context of text mining, these
words are referred to as noise or are sometimes called stop words. So, this step is
called noise removal.

3.	 After that, words are converted to their root meanings. There are a few approaches
to this. As an illustration, stemming typically converts to the root word stem by
eliminating certain letters. So, words like happy, happiness, happily, and happiest
will all be returned to the root word happ. Because the same words could have
multiple meanings, disambiguation of words becomes crucial in text processing.
Whereas stemming returns words to their roots by cutting off their prefix or suffix,
lemmatization examines the context of words to ensure stemmed words are
converted to logical bases called lemma. For example, the word anticipate when
stemmed might be returned to ant. Within the context, however, ant would not
make sense; as such, lemming will ensure that the word anticipate is retained.

4.	 A final, yet important, step is the process of featurization where lemma or root
words are converted into features. Again, there are several ways this can be done.
The most straightforward method involves developing features for each unique
token and counting the number of that token in each text corpus (Table 11.1
presents a demonstration of this process):

Table 11.1 – A demonstration of featurization

Following featurization, developed text variables are either used as predictors alone or
integrated with other variables in building models. While the importance of analytics with
free text within the commercial setting is well established, ancient wisdom suggests that "a
picture is worth a thousand words." This raises the importance of using image analytics in
driving business value. As we have established in this section, the core purpose of NLP is
the extraction of text features from raw text. Image processing performs a similar function
for images, as described in the next section.

252 Working with Geospatial Data, NLP, and Image Processing

Image processing
Images provide valuable information to customers about products and services. Images
are fast becoming crucial to business success as they influence the propensity to buy. As
the data landscape continues to grow, image data is also becoming readily available and
important. This offers analysts the opportunity to include image features when creating
insights for businesses.

Image data, like text data, lacks structure. In fact, with image data, there is an uncertainty
of features. To bring this to life, let's imagine the case of identifying individuals from their
pictures. The image of an individual could be colored or grayscale, the position of an
individual's face or body could change, and their background and outfits are unlikely to be
the same across images. These and other variations make the data generated from differing
images of the same person appear very different. As such, features from an image are
unlikely to be consistent with those of another image, despite the individual being the same
person; therefore, the image data would have challenges with feature uncertainty. Yet, the
human eye can see the individual in those images as the same and easily recognize them.

The smallest indivisible units within images are known as pixels. For grayscale images,
pixels are interpreted as 2D arrays. Each has a strength represented by a value between
0 and 255, referred to as pixel intensity. For grayscale images, 0 is shown as completely
black, while completely white gives 255. On the other hand, color images have 3D arrays
with blue, green, and red layers. Like black on the grayscale images, each of those layers
has its own values from 0 to 255, where the final color is a combination of corresponding
values on each of the three layers.

Image processing typically follows predefined steps in extracting useful and consistent
features from images that align with the purpose of extraction. Activation maps are then
applied to the extracted images to reduce the computational load required to process
the volume of data from each image. As such, the activation maps essentially reduce the
feature space. The reduced feature space is then flatted into a tabular structure, enabling
it to be used as variables in the typical ML modeling process. Though this is a simplified
illustration of image processing, there are other approaches to it. This ensures we have
some understanding of how the challenge of image inconsistency and limited structure
can be managed.

Defining and setting up multimodal data in DataRobot 253

We have so far established the added value of geospatial, text, and image data. We have
discussed the challenges in using these data types and also highlighted the key steps in
using them to build models. Sometimes, different data types such as images and text are
integrated into the same dataset in training models. This type of dataset is referred to as
a multimodal dataset. While a multimodal dataset presents unparalleled opportunities,
it comes with huge challenges. The difficulties and steps highlighted for each of the
data types are expected to be addressed. DataRobot has capabilities that make use of
multimodal data more accessible. The platform enables preprocessing steps and integrates
these datasets in making predictions. For the rest of the chapter, we will demonstrate how
to use the price listing dataset to train a model and make predictions.

Defining and setting up multimodal data in
DataRobot
DataRobot's location AI, text mining, and visual AI automated ML capabilities make
working with text, location, and image data relatively straightforward. With these
capabilities, DataRobot can help analysts in building models and making predictions
against text, image, and location-based datasets. Data set up for an image model differs
considerably from other types of models. Using our House Dataset, our first task is to set
up the data.

The house dataset has zip codes for the houses. We created and integrated latitude and
longitude coordinates from the zip codes as new columns. Other features created from the
zip codes not evident in Table 11.2 are the city, county, and state where each of the houses
was located. Further text description columns were built from the number of rooms, the
size of the house, and its location:

Table 11.2 – The developed price list dataset

254 Working with Geospatial Data, NLP, and Image Processing

The original data comes with 2,140 images, each of the 535 houses having a bedroom,
bathroom, frontal view, and kitchen. For the image data to be included in the analysis,
the data can be set up as a ZIP file with a structured .csv file sitting next to the image
folder. Four new image columns were created for the bedroom, bathroom, frontal view,
and kitchen. As such, each data row on the .csv file had paths to their images, as shown
in Table 11.2. The paths point to locations on the corresponding image file in the ZIP
file. Within the ZIP file, the .csv file with the tabular features sits needs to the folder,
containing all the images. Each image has a unique name that is consistent with the image
path columns on the .csv file. The setup for the ZIP file and HousePrice folder is
shown in Figure 11.1. That said, the dataset could still be ingested using the AI Catalog.
This also gives DataRobot the ability to connect to other data sources for the images.
Furthermore, the Paxata tool can be deployed in the data preprocessing if you have access
to that tool:

Figure 11.3 – Data setup for the ZIP file (left) and image folder (right)

The image on the left of Figure 11.1 shows how the ZIP file is set up. The folder containing
the image files, Houses Dataset, is next to the HousePrice.csv file. The image on the
right presents image files within the Houses Dataset folder. Here, the images are labeled,
with the locations, consistent with cells on data, HousePrice.csv (as shown in Table
11.2). With the data completely set up, the next step is to commence model development.

Building models using multimodal datasets in DataRobot 255

Building models using multimodal datasets in
DataRobot
Having fully set up our ZIP file with the multimodal dataset, we proceed into initiating the
project within DataRobot. The data ingestion using the drag and drop method is like the
earlier project, except in this case we upload the ZIP file. Following the upload of the ZIP
file, the price is selected as the target variable. DataRobot automatically detects the text,
image, and geospatial fields (see Figure 11.2). The geometry feature is a location-based
feature made up of the latitude and longitude variables in the original dataset. Apart from
latitude and longitude coordinates, location features can be formed from other native
geospatial formats, such as Esri shapefiles, GeoJSON, and PostGIS databases. These can be
uploaded using drag and drop, AI Catalog, or URL methods:

Figure 11.4 – Feature Name list

256 Working with Geospatial Data, NLP, and Image Processing

5.	 The location-based visual representation of the listing price can be viewed by
selecting the Price option in the Feature Name list. This Exploratory Spatial Data
Analysis (ESDA) is conducted by opening the Geospatial Map tab and clicking on
the Compute feature over map button. As seen in Figure 11.3, the Geospatial Maps
window offers a location-based analytics visualization of the dataset. It shows the
distribution of properties over space – the number of houses in each area and their
average prices:

Figure 11.5 – Geospatial Map
The map legend offers vital information about the map. It highlights that the color
of the hexagon shows the average house prices within the location. Elsewhere, it
presents the frequency of cases by the height of the hexagons. This ESDA feature
shows not only the visual distribution of house prices across the map but also an
illustration of house counts in differing areas. Similar geospatial analysis can be
conducted for other features, such as house area variables and bedrooms.

This preliminary examination of image features can be conducted by selecting any
of the image variables. This shows a sample of images within the Feature Name list.
Here, differing image features can be seen and organized by house price ranges.

Building models using multimodal datasets in DataRobot 257

6.	 To further explore the image features at a property level, we click on View Raw
Data. This opens the dataset in its final format on DataRobot. Unlike the initial
.csv file with image paths, the images are integrated into the dataset (see Figure
11.4). For each of the rows, the images are clearly displayed. A further scroll will
show the free text description of the listed properties. This multimodal dataset of
text, location, and image features can now be used to build a more robust model
and make predictions of house prices:

Figure 11.6 – The DataRobot view of the multimodal data

7.	 As with earlier projects, we click on Start to commence the model-building
process. On completion of the modeling process, the models are evaluated using the
RMSE metric. The leaderboard shows DataRobot has built 36 models in total. The
top-performing is the Nystroem Kernel SVM Regressor model.

258 Working with Geospatial Data, NLP, and Image Processing

As can be seen in Figure 11.5, opening the model presents its blueprint, outlining
all the steps necessary to make the data ready for this model. Because of the
multimodal nature of the data, the preprocessing steps are quite complex.
DataRobot conducted geospatial processing, which was integrated with some
numeric variables and high-level image and text processing (the latter not visible
in Figure 11.5). For more information on each step, a click on the step box provides
some insight on the modeling step and a link to comprehensive documentation on
the step:

Figure 11.7 – The model blueprint for multimodal data modeling

Building models using multimodal datasets in DataRobot 259

8.	 Within the Understand tab, the Feature Impact view highlights the extent to
which features contribute to the overall performance of the model (see Figure 11.6).
The Feature Impact view for this project shows that Area is the most impactful
feature of the house; next is the FullDescription text feature. Thereafter, the
Bedrooms and Image_kitchen features follow suit. What is rather interesting
is the fact that Image_bathroom seems to have a negative impact on the model
accuracy. This suggests that insights from these images lead the model away from
actual house prices:

Figure 11.8 – Feature Impact for multimodal models

260 Working with Geospatial Data, NLP, and Image Processing

For this reason, leading the model away from improved performance, we use the image
embedding and activation maps to understand how the model uses bathroom images
to make predictions. By doing so, we will use the bathroom feature to demonstrate
the image feature exploration capabilities available in DataRobot. DataRobot conducts
unsupervised learning to cluster images according to their similarity. Still within the
Understand tab, this is presented within the Image Embeddings sub-tab for each image
feature. Figure 11.7 presents the image embedding for the bathroom views. We can see
DataRobot clusters similar images together. It seems that images that are dominantly
white goods are presented in the right-hand and upper parts of the visualization. We can
filter the visualization in accordance with house prices:

Figure 11.9 – Image embedding

Activation Maps adds to this information by offering insight into what aspect of images
the model is leveraging in making predictions. This is critical to confirm that the model is
using the key aspects of images. Figure 11.8 presents the activation map for the image_
bathroom variable. It appears the model makes its predictions mainly from white
fixtures in the bathroom. This might offer insight into why image_bathroom is seen
as having a negative impact on the model performance. It is possible that this extraction
from white fixtures misleads the model:

Building models using multimodal datasets in DataRobot 261

Figure 11.10 – Activation map

Location-based information comes with significant information complementing other
data types. However, some models struggle in certain geographical areas. Inspecting the
performance of models and considering locations empowers the analyst in taking actions
on model performance improvement. DataRobot's Accuracy Over Space capability
presents a spatial representation of a models' residual at differing locations (see Figure 11.9
for an example). This chart could lead the analyst into considering the rationale behind
higher residuals in certain areas:

Figure 11.11 – Accuracy Over Space

262 Working with Geospatial Data, NLP, and Image Processing

For instance, as evident in Figure 11.9, the Phoenix area has a higher average residual price
of over $380k than most places. This area might for instance be considered an area of low
income. This visualization could point the data scientist toward including features around
localized economic indices. This might provide an explanation for the high residual.
Including such features could therefore improve the overall performance of the model.
The data partition for measuring accuracy could be set by altering between the validation,
cross-validation, or holdout partitions. Also, the accuracy metric type and aggregation can
be adjusted in accordance with the user's requirements.

Complementing its location-based features engineering, DataRobot's location-based
analytics capabilities can exploit its location awareness to create spatially autocorrelation
features, sometimes known as spatially lagged features, which are extremely insightful. The
eXtreme Gradient Boosted Trees Regressor (Gamma Loss) model's fourth
most important feature, GEO_KNL_K10_LAG1_Price, is one such feature (see Figure
11.10). This feature describes the spatial dependence structure for price using a kernel size
augmented by distance. The k-nearest neighbor approach can also be deployed:

Figure 11.12 – Spatial lag features

Building models using multimodal datasets in DataRobot 263

Text analytics information such as the Word Cloud is not available within the
Understand tab for this model. We turn to the Insights view to learn more about the
FullDescription text feature, which is indeed one of the most impactful features of
this model. Though not visible on the model blueprint (Figure 11.10), the text variable was
scored using another model, Auto-Tuned Word N-Gram Text Modeler using
token occurrences – FullDescription, which essentially develops scores using
N-Gram and their token occurrence. During this modeled step, the FullDescription
feature was converted into tokens for a differing number of words (as N in N-grams) and
scored. Thereafter, this feature was transformed on the link scale and standardized. For
text-related insights, we turn to the Insights view, offering two important text insight
capabilities, Word Cloud and text mining.

The Word Cloud provides a diagrammed representation of the effect of certain words or
groups of words (otherwise referred to as tokens) within the FullDescription feature
in influencing the house price. The size of the words, as shown in Figure 11.11, highlights
the frequency of the tokens, while the color suggests its effect coefficient. This coefficient is
standardized typically between -1.5 and 1.5. The closer the color of the words is to red, the
greater the coefficient and, consequently, the greater the house price is:

Figure 11.13 – Word Cloud for a multimodal dataset

We can assume that when the FullDescription variable contains words in orange,
alameda county, and big, the prices are likely to be high. Similarly, with small-sized
words, and city riverside, a lower price is expected. The text mining capability displays
similar information to the Word Cloud using a bar graph.

264 Working with Geospatial Data, NLP, and Image Processing

Now that we have been able to build models using multimodal datasets, conduct analysis
on their features, and evaluate the performance of those models, we will next focus on
making predictions with models.

Making predictions using a multimodal
dataset on DataRobot
After building a model, there are many ways to make predictions on a DataRobot. For
this use case, we will illustrate the prediction capability using the Make Prediction
method, which is available within the Predict tab. We initially create a prediction ZIP file
dataset using the step outline in the Defining and setting up multimodal data in DataRobot
section of this chapter. The developed prediction dataset is either dragged and dropped
into the highlighted area or locally imported. As seen in Figure 11.12, we select the
features we are interested in, including the prediction dataset:

Figure 11.14 – Making a prediction from multimodal datasets

Making predictions using a multimodal dataset on DataRobot 265

In this illustration, we selected House_id, FullDescription, Bedrooms, City,
and State. We can also see that the prediction dataset has 400 houses. Finally, Compute
predictions is selected to make predictions. When predictions have been completed, they
are downloaded. This straightforwardly creates a downloadable .csv file, which has all
the requested columns (see Table 11.3):

Table 11.15 – A prediction table from a multimodal dataset

The Prediction column presents the predicted price for each row. This finalizes the
process of making predictions with multimodal datasets. As expected, after models made
from multimodal datasets have been deployed, predictions can be made against them.

266 Working with Geospatial Data, NLP, and Image Processing

Summary
In this chapter, we have explored how insights can be generated from an image, location,
and free text. In so doing, we highlighted the benefits that these data types present, as well
as the challenges that come with each of them. We also pointed out how these are typically
addressed in the mainstream. We proceeded to build models with a multimodal dataset
using DataRobot and make predictions from the model. We also looked at a variety of
ways to derive insights from the location, free text, and image aspects of the models. By
demonstrating the process of model building using a multimodal dataset, we showed how
DataRobot simplifies the handling of the challenges different data types pose.

Having said that, it is important to draw attention to the fact that DataRobot appears to
have some limitations in terms of free text processing. Whilst the platform significantly
simplifies the process of text processes, at the time of this publication, we are unsure of the
extent to which domain-specific stop words can be included in the DataRobot process.
It appears generic stop words are dropped, but sometimes there are domain-specific
stop words that need to be accounted for. Elsewhere, within the context of multimodal
modeling, we are unsure whether the text aspects of models could be tuned to include
and alter the methods of stemming and lemming. It is therefore recommended that
you perform your own text processing and feature engineering before feeding text into
DataRobot to achieve better results.

In this chapter, as well as the previous ones, we have interfaced with DataRobot using
the platform. Although the platform comes with numerous capabilities, these capabilities
come with some limitations. These limitations, together with how they can be alleviated
using programmatic access to the platform, are extensively covered in Chapter 12,
DataRobot Python API.

12
DataRobot
Python API

Users can access DataRobot's capabilities using DataRobot's Python client package. This
lets us ingest data, create machine learning projects, make predictions from models,
and manage models programmatically. It is easy to see the advantages that Application
Programming Interfaces (APIs) offer users. The integrated use of Python and DataRobot
lets us leverage the AutoML capabilities DataRobot presents, all while exploiting the
programmatic flexibility and potential that Python possesses.

In this chapter, we will use the DataRobot Python API to ingest data, create a project with
models, evaluate the models, and make predictions against them. At a high level, we will
cover the following topics:

•	 Accessing the DataRobot API

•	 Understanding the DataRobot Python client

•	 Building models programmatically

•	 Making predictions programmatically

268 DataRobot Python API

Technical requirements
For the analysis and modeling that will be carried out in this chapter, you will need access
to the DataRobot software. Jupyter Notebook is crucial for this chapter as most of the
interactions with DataRobot will be carried out from the console. Your Python version
should be 2.7 or 3.4+. Now, let's look at the dataset that will be utilized in this chapter.

Check out the following video to see the Code in Action at https://bit.ly/3wV4qx5.

Automobile Dataset
The automobile dataset can be accessed at the UCI Machine Learning Repository (
https://archive.ics.uci.edu/ml/datasets/Automobile). Each row
in this dataset represents a specific automobile. The features (columns) describe its
characteristics, risk rating, and associated normalized losses. Even though it is a small
dataset, it has many features that are numerical as well as categorical. Its features are
described on its web page and the data is provided in.csv format.

Dataset Citation
Dua, D. and Graff, C. (2019). UCI Machine Learning Repository (http://
archive.ics.uci.edu/ml). Irvine, CA: University of California,
School of Information and Computer Science.

Accessing the DataRobot API
The programmatic use of DataRobot enables data experts to leverage the platform's
efficacies while having the flexibility associated with typical programming. With the
API access of DataRobot, data from numerous sources can be integrated for analytic or
modeling purposes. This capability is not only limited to the data that's ingested, but also
the output of the outcome. For instance, API access makes it possible for a customer risk
profiling model to get data from differing sources, such as Google BigQuery, local files,
as well as AWS S3 buckets. And in a few lines of codes, the outcomes can update records
on Salesforce, as well as those surfaced on PowerBI via a BigQuery table. The strength of
this multiple data source integration capability is furthered as this enables the automated,
scheduled, end-to-end periodic refresh of model outcomes.

In this preceding case, it becomes possible for the client base to be rescored periodically.
Regarding scoring data, the DataRobot platform can only score datasets that are less than
1 GB in size. When problems require huge datasets, the Batch Prediction API normally
chunks up the data and scores them concurrently. For a dataset with hundreds of millions
of rows, it is possible to set up an iterative job to chunk up the data and score it iteratively
using the Batch Prediction API.

https://bit.ly/3wV4qx5
https://archive.ics.uci.edu/ml/datasets/Automobile
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Accessing the DataRobot API 269

In addition, the API access to DataRobot allows users to develop user-defined features
that make commercial sense before analysis and those based on scored model outcomes.
This makes the modeling process more robust as it allows human intelligence to be
applied to outcomes. In the preceding client risk profiling case, it becomes possible to
classify customers into risk categories for easier business decision making. Also, based on
the explanations given, the next best actions could be developed.

Furthermore, programmatic use of DataRobot allows users to configure differing
visualizations as they deem fit. This also offers analysts a broader range of visual outcome
types. The Seaborn and Matplotlib Python libraries offer a huge range of visualization
types with differing configurations. This also allows certain data subgroups or splits to be
visualized. Among other benefits, it becomes possible to even select certain aspects of the
data to be visualized.

One of the big advantages of accessing DataRobot using its API is the ability to create
multiple projects iteratively. Two easy examples come to mind here. One approach to
improving the outcomes of multi-class modeling is to use the one versus all modeling
paradigm. This involves creating models for each of the classes. When scoring, all the
models are used to score the data and for each row, the class with the highest score is
attributed to the row. To bring this to life, let's assume we are building models to predict
wheel drive types based on other characteristics. First, models are created for the three main
types of wheel drives; that is, front-wheel drive (FWD), four-wheel drive (4WD), and
rear-wheel drive (RWD). Data is then scored against all three models, and the model that
presents each row with the highest prediction is assumed as the class the row belongs to.

The model factory is another example where multiple model projects are integrated into
a system so that each project builds models for a subgroup in the data. In some problems,
data tends to be nested in that certain variables tend to govern the way models behave
generally. A point in case is modeling the performance of students nested in class. These
features, such as the class teacher for schools, tend to control the effect other exogenous
variables have on the dependent variable.

In the case of cars, their brands typically drive their prices. For instance, irrespective of
how similar a Skoda is to an Audi, the Audi will most likely be more expensive. As such,
when developing models for such a case, it is ideal to create models for each of the car
brands. In the context of programmatically accessing DataRobot, the idea would be to run
an iteration of the project for each of the car brands.

In addition to creating and scoring DataRobot models programmatically, we will use Jupyter
Notebook's Integrated Development Environment (IDE) to build projects for a case of one
versus all and a model factory. However, before we can create projects with DataRobot using
an API, certain identification processes must be covered. Let's have a look.

270 DataRobot Python API

To programmatically access DataRobot, users need to create an API key. This key is then
used to access the platform from a client. To create an API key, open the Account menu
at the top right-hand corner of the home page (see Figure 12.1). From there, access the
Developer Tools window (see Figure 12.1):

Figure 12.1 – Accessing Developer Tools

After opening the Developer Tools window, click on Create New Key and enter the
name of the new key. On saving the new key's name, the API key will be generated (see
Figure 12.2). After this, the generated key is copied and secured. The API key, along with
the endpoint, is necessary to establish a connection between the local machine and the
DataRobot instance:

Figure 12.2 – Creating an API key

Using the DataRobot Python client 271

The endpoint parameter is the URL of the DataRobot endpoint. https://app.
datarobot.com/api/v2 is the default endpoint for the US cloud-based endpoint
for its US and Japanese users. The EU-managed cloud endpoint is https://app.
eu.datarobot.com/api/v2. VPC, on-premises, hybrid, or private users usually
have their deployment endpoint as their DataRobot GUI root. To enhance security, these
credentials are sometimes stored and accessed as .yaml files. These two credentials
enable a connection between a computer and a DataRobot instance to use the DataRobot
Python client.

Using the DataRobot Python client
The Python programming language is one of the most popular programming languages
used by data scientists. It is flexible yet powerful. Being able to integrate the AutoML
capabilities of DataRobot and utilize the flexibility of Python offers data scientists various
benefits, as we mentioned earlier.

Programming in Python using the Jupyter IDE.
Now, let's explore the DataRobot Python client.

To use the DataRobot Python client, Python must be version 2.7 or 3.4+. The most up-to-
date version of DataRobot must be installed. For the cloud version, the pip command will
install the most recent version of the DataRobot package. On Python, running !pip
install datarobot should install the DataRobot package.

Having installed the DataRobot package, the package has been imported. The Client
method of the DataRobot package provides the much-needed connection to the
DataRobot instance. As shown in Figure 12.3, the basic format for the Client method is
as follows:

Import DataRobot as dr

dr.Client(endpoint= 'ENTER_THE_ENDPOINT_LINK', token = 'ENTER_
YOUR_API TOKEN')

In terms of data ingestion, data can be imported from different sources. This process
is identical to normal data imports with Python. The local file installation is quite
straightforward. Here, all you need is the API key and the file path. Figure 12.3 presents
the code for ingesting the automobile dataset. For the JDBC connection, to get data from
platforms such as BigQuery and Snowflake, in addition to the API key, the identity of the
data source object is required, as well as the user database's credentials – their usernames
and passwords. The user database's credentials are provided by their organization's
database administrators.

https://app.datarobot.com/api/v2
https://app.datarobot.com/api/v2
https://app.eu.datarobot.com/api/v2
https://app.eu.datarobot.com/api/v2

272 DataRobot Python API

In this section, we established how to access the credentials necessary to programmatically
use DataRobot. We have also imported data programmatically. Naturally, conducting
some analysis and modeling comes after ingesting data. In the next section, we will create
machine learning models using the Python API.

Building models programmatically
Now that we have imported the data, we will start building models programmatically.
We will look at building the most basic models, then explore how to extract and visualize
feature impact, before evaluating the performance of our models. Then, we will create
more complex projects. Specifically, we will build one versus all multiclass classification
models and model factories.

To create a DataRobot project, we must use the DataRobot Project.start method.
The basic format for this is importing the necessary libraries (DataRobot, in the following
case). Thereafter, the access credentials are presented, as described in the previous section.
It is at the point that the Project method is called. project_name, sourcedata,
and target are the minimal parameters that are required by the Project method for
projects to be created. The project_name parameter tells DataRobot the name to give
the created project. sourcedata provides information regarding the location of the
data that's required to create models. This could be a location or a Python object. Finally,
target specifies the target variable for the models to be built, as shown here:

import datarobot as dr

dr.Client(endpoint= 'ENTER_THE_ENDPOINT_LINK', token = 'ENTER_
YOUR_API TOKEN')

project = dr.Project.start(project_name = 'ENTER_PROJECT_NAME',

sourcedata='ENTER_DATA_LOCATION',

target='ENTER_YOUR_TARGET_VARIABLE')

The basic format for creating projects was shown in the preceding section and illustrated
in Figure 12.3. Once the models have been created, we can use the project.get_
models method to get a list of them. This list of models is presented in order by their
validation scores by default. For this example, we will be using the automobile dataset,
which we used to build models in Chapter 6, Model Building with DataRobot. The project's
name is autoproject_1. Here, the file's location is specifically stored in a pandas object
called data. The target variable is price. Note that these parameters are case-sensitive:

Building models programmatically 273

Figure 12.3 – Programmatically creating DataRobot models and extracting their lists

Once you've created the model, the get_models method is called to list the models.
We can see that the best performing model is Gradient Boosted Greedy Trees
Regressor (Least-Square Loss). To evaluate this model, we need to extract its
ID. To do so, we must create an object, best_model_01, to store the best-performing
model. This metrics method is then called for this model. As shown in the following
screenshot, the cross-validation RMSE for this model is 2107.40:

Figure 12.4 – Programmatically evaluating DataRobot models

274 DataRobot Python API

To provide some insight into the price drivers, we need the feature impacts. These can be
retrieved through the DataRobot API using the get_or_feature_impact method.
To visualize the feature impacts for projects, we must define a function called plot_FI
that takes in the model's name and chart title as parameters, gets the feature impacts,
and then normalizes and plots them using Seaborn's bar plot method. Regarding the
autoproject_1 project, the following screenshot shows how to retrieve and present the
feature impacts using the plot_FI function:

Figure 12.5 – Defining a function and extracting the feature impacts

Programmatic access to DataRobot furthers the benefits the platform offers. With
programmatic access, you can take advantage of the iterative process within Python, and
users can create multiple projects for the same dataset. Now, let's look at two ways to create
multiple projects from the same dataset: multi-class classification and model factory.

Building models programmatically 275

Multi-class classification involves classifying instances into more than two classes.
It is possible to create a single project that classifies rows into either of these classes.
Essentially, this is a model that classes rows into one of all the available classes. Another
way to approach this problem involves building different models for the different classes.
Within this approach, a model is built for each of the classes as a target. You can see how
this can be executed using Python's iterative process; that is, by looping through all the
target levels. The one versus all method is better for performing classification problems
with more than two classes.

Now, let's demonstrate how to use the one versus all method on the auto pricing project.
Here, we will create price classes using the pandas quantile-base discretization function,
qcut. qcut helps divide data into similarly sized bins. Using this function, we can
divide our data into price classes – low to high. The following screenshot shows this price
discretizing process and checking the distribution of cases across the classes:

Figure 12.6 – Price discretization

Having created the classes, to allow for data leakages, we will drop the initial price
variable. We will write a loop that builds models for each of the price classes. Perform the
following steps:

1.	 Turn the price_class variable into dummy variables.
2.	 For each iteration, create a DataRobot project after a dummified price class name.
3.	 For each iteration, we drop the price_class dummy level being modeled. This

ensures that there are no leakages.
4.	 For each iteration, we must build the models for a target variable dummy.

276 DataRobot Python API

5.	 After creating the projects, the top-performing model for each project is selected
and stored in a dictionary:

Figure 12.7 – Creating a one versus all classification suite of projects

This process involves creating projects with a suite of models with targets iterating through
all the price classes. After creating the projects, the best model for each target class is
selected using an iteration of all the projects with names starting with Auto, and then the
top-performing model for each project. These best models are placed in a dictionary.

Building models programmatically 277

It is sometimes recommended, if not ideal, to create different projects with a subset of the
data. After selecting all the cases for the target variable, you must create a random subset
of the data for each project creation iteration. In the auto pricing case, however, we were
unable to explore this as the out-sample size was limiting.

A model factory is a multi-level modeling system where a model is developed for a
subgroup of cases. For instance, the price of a car might be heavily determined by its fuel
type in that it becomes beneficial to build different models for each fuel type within the
same system. Programmatically building model factories is somewhat like the one versus
all approach to classification. Instead of projects being iteratively created for each of the
unique target variable levels, as with the one versus all process, the model factory involves
building models for each level of a predictor variable. The key steps in building the model
factory process, which involves iterating through each of the unique variable levels, are as
follows (fuel-type):

1.	 First, create and store a project.
2.	 Select cases for the target variable (the influencer of interest). In this case, the

variable is fuel-type. Here, this variable is selected, and differing levels of this
variable are used to create DataRobot projects. In simple terms, this step involves,
for instance, selecting all the rows with fuel-type set to gas as a subgroup.

3.	 If necessary, define the evaluation metric. Here, we can alter aspects of the advanced
options we encountered in Chapter 6, Model Building with DataRobot. Other
advance options can be selected and altered.

4.	 If necessary, set a data limit that a class will be deselected for (for instance, if the
number of rows is less than 20 for that class). The importance of this step lies in
the fact that some variable levels could have very low occurrences, so the sample
size within the subgroup is small. Therefore, creating models out of these becomes
a challenge. This step becomes the best place to drop such variable levels using the
count of cases within the subgroup.

5.	 All the models from all the projects are selected and stored in a dictionary.

278 DataRobot Python API

Some of these steps are evident in creating a model factor for the auto pricing problem
(see Figure 12.8). Here, fuel-type is selected as the feature that projects are created on.
In this case, only two projects are created: one for gas automobiles and another for diesel
ones. Now that we've created the models, the next step is to collect the best-performing
models for each fuel-type:

Figure 12.8 – Creating model factories

The efficacy of using one versus all multiclass classification models and model factories
lies in their ability to fit models to each level of the target variable. This happens in an
automated fashion and considers the sample validation, all the preprocessing steps, and
the model training process. When data cardinality and volume are high, these approaches
would mostly outperform typical modeling.

Building models programmatically 279

For the model factory, multiple projects are created for the different levels of the feature of
interest. To evaluate this, the best-performing model for each project is selected from the
dictionary for all projects. This set of best models from all the projects is stored in another
dictionary object. A for loop is then run across all the models of the dictionary to extract
the performance of the model, as shown in the following screenshot:

Figure 12.9 – Evaluating the performance of models with a model factory

280 DataRobot Python API

Improved model performance is only one of the reasons you should use the one versus all
multiclass classification models, as well as model factors. Sometimes, understanding the
drivers is equally as important. Visualizing the feature importance for the different fuel
types could present an interesting contrast in drivers. This means that different factors
affect the prices of different fuel types. This could have a bearing on strategic decisions. As
shown in the following screenshot, the Python API can be used to plot the feature impacts
by leveraging chart functions from Seaborn and Matplotlib:

Figure 12.10 – Feature impacts for the differing diesel and gas automobiles

Making predictions programmatically 281

As we can see, there are some differences in the feature impacts for the automobile fuel
types. While curb-weight seems to be an important driver, its effect is relatively more
important for diesel vehicles. Similarly, for gas cars, the power that's generated by these
automobiles, as typified by the engine_size and horsepower features, carries more
importance in determining price than those of diesel cars. You can already see the effect
such preliminary findings could have on decisions and how this could be applied to other
commercial cases. Using feature importance to examine multiple models can also be
applied in the case of one versus all classification problems.

In this section, we created basic DataRobot projects using the Python API. After, we
solved more complex problems by using multiple projects within a system. There, we
created one versus all projects to solve multiclass classification problems and model
factories to solve multi-level problems involving subgroups. We also explored feature
impact and model evaluation. Having programmatically created models, we will now
learn how to make predictions using these models. Specifically, we will learn how to
deploy models, make predictions, extract explanations from models, and score large
datasets through parallelization.

Making predictions programmatically
The possibilities that programmatically using DataRobot presents are enormous. By
using its API, models can be deployed and predictions can be made against them. Before
making programmatical predictions within the production environment, models need to
be deployed. DataRobot models are deployed using Portable Prediction Servers. These are
Docker containers that can host machine learning models, which serve predictions and
prediction explanations through a REST API.

To deploy models, we can use the DataRobot package's deployment method. Here, we
must provide a description, the DataRobot model's ID, as well as its label to create the
deployments. A typical Python deployment script follows this format:

deployment = dr.Deployment.create_from_learning_model(

MODEL_ID, label='DEPLOYMENT_LABEL', description='DEPLOYMENT_
DESCRIPTION',

 default_prediction_server_id=PREDICTION_SERVER_ID)

deployment

282 DataRobot Python API

As per this approach, the following screenshot shows how autoproject_1, which we
created in the Building models programmatically section, can be deployed. Here, the model
ID is best_model_1. We will label AutoBase Deployment with a description of
Base Automobile Price Deployment:

Figure 12.11 – Deploying a model programmatically

The deployment process can be iterated to enable those of more complex projects. For
instance, with model factories, irrespective of the number of levels the differentiating
variable has, with a single for loop, all the best models can be deployed to DataRobot.
For each of the best models, a deployment is created, which is then used to score new data.
The script for deploying the model factory for the automobile project, along with the fuel
type as its differentiating variable, is shown in the following screenshot:

Figure 12.12 – Deploying models from a model factory

Having deployed the models, predictions can be made against them. To make simple
predictions within the development environment, we can use the DataRobot
BatchPredictionJob.score_to_file method. To make predictions, this method
requires the model ID, prediction data, and the location where the scored data will be
stored. Here, we will use best_model_1 to score the same model we used to develop the
model, the df data object, and the location path, which specifies the prediction file path
as ./pred.csv. The passthrough_columns_set parameter specifies the columns
from the original dataset that will be included in the predictions. Since this is set to
'all', all the columns are returned, as shown here:

Summary 283

Figure 12.13 – Simple programmatic prediction

These predictions comprise all the columns from the initial dataset, in addition to the
predicted prices. There are cases where it is ideal to include rationales behind predictions.
In such cases, the max_explanations parameter should be included in the job's
configuration. This parameter sets the highest number of explanations to be provided for
every data row.

Summary
DataRobot provides us with a unique capability to rapidly develop models. With this
platform, data scientists can combine the benefits of DataRobot and the flexibilities of
open programming. In this chapter, we explored ways to access the credentials needed
to programmatically use DataRobot. Using the Python client, we demonstrated ways in
which data can be ingested and how basic projects can be created. We started building
models for more complex problems. We created model factories as well as one versus all
models. Finally, we demonstrated how models can be deployed and used to score data.

One of the key advantages of programmatically using DataRobot is the ability to ingest
data from numerous sources, score them, and store them in the relevant sources. This
makes it possible to carry out end-to-end dataset scoring. It becomes possible for a system
to be set up to score models periodically. With this comes numerous data quality and
model monitoring concerns. The next chapter will focus on how to control the quality of
the models and data on the DataRobot platform, as well as using the Python API.

13
Model Governance

and MLOps
In the previous chapters, we learned how to build, understand, and deploy models.
We will now learn how to govern these models and how to responsibly use these
models in operations. In earlier chapters, we discussed the methods for understanding
the business problem, the system in which the model will operate, and the potential
consequences of using a model's predictions. MLOps is a word made up of machine
learning and DevOps. It is made of processes and practices to efficiently, reliably, and
effectively operationalize the production of machine learning (ML) models within an
enterprise. MLOps aims to ensure commercial value and regulatory requirements are
met continuously by ensuring production models' outcomes are of good quality and
automation is in place. It provides a centralized system to manage the entire life cycle of
all ML models in production.

286 Model Governance and MLOps

Activities within MLOps cover all aspects of model deployment, provide real-time
tracking accuracy of models in production, offer a champion challenger process that
continuously learns and evaluates models using real-time data, track model bias and
fairness, and provide a model governance framework to ensure that models continue to
deliver business impact while meeting the regulatory requirements. In Chapter 8, Model
Scoring and Deployment, we covered model deployment on the DataRobot platform.

Furthermore, in Chapter 8, Model Scoring and Deployment, we extensively covered
aspects of monitoring models in production. Given the crucial role model governance
plays within the MLOps process, in this chapter, we will introduce the model governance
framework. One key aspect of model monitoring is to ensure that models are not biased
and are fair towards all people impacted by the model, which we will explore in this
chapter. After that, we will take a deeper look at how to enable other aspects of MLOps,
including how to maintain and monitor models. Thus, we're going to cover the following
main topics:

•	 Governing models

•	 Addressing model bias and fairness

•	 Implementing MLOps

•	 Notifications and changing models in production

Technical requirements
Most parts of this chapter require access to the DataRobot software. The example utilizes
a relatively small dataset, Book-Crossing, consisting of three tables, whose manipulation
was described earlier in Chapter 10, Recommender Systems. As will be covered in the
data description, we will create new fields in addition to those used in Chapter 10,
Recommender Systems.

Book-Crossing dataset
The example used to illustrate the aspects of model governance is the same as the one
used for building recommendation systems in Chapter 10, Recommender Systems. The
dataset is based on the Book-Crossing dataset by Cai-Nicolas Ziegler and colleagues
(http://www2.informatik.uni-freiburg.de/~cziegler/BX/). The data
was collected during a 4-week crawl from the Book-Crossing community between August
and September 2004.

http://www2.informatik.uni-freiburg.de/~cziegler/BX/

Governing models 287

Important Note
Before using this dataset, the authors of this book have informed the owner of
the dataset about its usage in this book:

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, Georg Lausen (2005).
Improving Recommendation Lists Through Topic Diversification. Proceedings
of the 14th International World Wide Web Conference (WWW 2005). May
2010–2014, 2005, Chiba, Japan

The subsequent three tables, provided in .csv format, make up this dataset.

•	 Users: This table presents the profile of the users, with anonymized User-ID and
presented as integers. Also provided are the user Location and Age.

•	 Books: This table contains the characteristics of the books. Its features
include ISBM, Book-Title, Book-Author, Year-Of-Publication,
and Publisher.

•	 Ratings: This table shows the ratings. Each row provides a user's rating for a book.
The Book-Rating is either implicit as 0 or explicit between 1 and 10 (the higher,
the more appreciated). However, within the context of this project, we will focus
solely on ratings that are explicit for the model development. The table also includes
the User-ID and ISBN fields.

In addition, using Excel, we created two extra fields using age and a rating column. We
created the RatingClass field, which considers a rating over 7 as a High rating or
else it is Low. Similarly, we created the AgeGroup field; this classes ages over 40 as Over
Forty and those under 25 as Under 25, or else they are considered simply Between
25 and 40. Finally, we dropped out data rows with a missing age column.

Governing models
Organizations using ML governance define a framework of rules and controls for
managing the ML workflows pertaining to model development, production, and post-
production monitoring. The commercial importance of ML is well established. Still, only
a fraction of companies investing in ML are realizing the benefits. Some establishments
have struggled to ensure that the outcomes of ML projects are well aligned with their
strategic direction. Importantly, many organizations are subject to regulations, such as the
recently implemented General Data Protection Regulation within the European Union
and European Economic Area, which affect the use of these models and their outputs.
Businesses, in general, need to steer their ML use to ensure regulatory requirements are
satisfied and strategic goals and values are continually realized.

288 Model Governance and MLOps

Having an established governance framework in place ensures that data scientists
can focus on the innovative part of their role, which is solving new problems. With
governance, data scientists spend less time assessing the commercial value their models
are delivering to the business, evaluating models' performance of production, and
examining whether there has been data drift. Model governance simplifies the model
versioning and change tracking process for all production models. This is always a key
aspect of ML audit trailing. In addition, notifications could be set up to alert stakeholders
when a model in production encounters anomalies and changes in performance. When
there is a significant decline in performance, models in production could be swapped with
better-performing challenger models in a seamless fashion. Although this process might
require reviews and authorization from other stakeholders, it is much more simple and
straightforward than a typical data science workflow.

It is clear that governing models throughout the entire process is a complex and time-
consuming undertaking. Without tool support, it is easy for the data science teams to miss
key steps. Tools such as DataRobot make this task easier, ensuring that many required
tasks are performed automatically. This ease of use can also sometimes make the teams
use these tools without thinking. This can be dangerous too. Thus, a judicious mix of
using the tools such as DataRobot and setting up process controls and reviews is needed
to ensure proper governance.

DataRobot's MLOps provides organizations with an ML model governance framework
that helps in the management of risks. Using the model governance tool, a business
executive can track important business metrics and ensure that regulatory requirements
are met on a continuous basis. They can easily assess the model performance in
production to ensure that models are fit for purpose. Furthermore, with governance in
place, the commercial criticality of models is defined before deployment. This ensures that
when models are critical to the business, certain changes to the model need to be reviewed
and authorized by stakeholders before such changes are fully implemented. In line with
ethics, the use of ML models is expected to enable a fair process. So, models' outputs
should be purged of any form of biases. In subsequent sections in this chapter, in addition
to other aspects of MLOps, we will examine how bias could be mitigated in the ML model
in development as well as in production.

Addressing model bias and fairness 289

Addressing model bias and fairness
A key characteristic of ML lies in its learning from the past to predict the future. This
implies that future predictions would be influenced by the past. Some training datasets are
structured in ways that could introduce bias into ML models. These biases are based on
unspoken unfairness evident in human systems. Bias is known to maintain prejudice and
unfairness that preexisted the models and could lead to unintended consequences. An AI
system that is unable to understand human bias mirrors, if not exacerbates, the bias present
in the training dataset. It is easy to see why women are more likely to receive lower salary
predictions by ML models than their male counterparts. In a similar example, credit card
companies using historic data-driven ML models could be steered into offering higher rates
to individuals from minority backgrounds. Such unwarranted associated are caused by
human bias that is inherent in the training dataset. It is unfair to include bias-laden features
with unbiased ones in model development. A fair process considers an individual's payment
history in making predictions about their credit, but unfair outcomes are possible when
predictions are made based on the payment history of their family.

Supervised learning models can be particularly unfair, as certain data has circular
dependency. For instance, to obtain a credit card, people need a credit history, and to have
credit histories, credit cards are required. Since models are critical to credit assessment,
it becomes nearly impossible for some people to get a credit card. Also, limited data
about certain subgroups makes them more vulnerable to bias. This is because a minimal
outcome distribution change in training data for such groups could skew the prediction
outcomes for members of the group. These all point toward the extent to which ML
models should manage bias and support a fair process.

Many industries – for instance, health care, insurance, and banking – take specific measures
to guard against any form of bias and unfairness as a regulatory expectation. While it is
inherently challenging to address bias in humans, it is somewhat easier to address ML bias.
So, as part of ML governance, addressing ML bias could be pivotal in ensuring that their
products don't amplify the skepticism about the ethical aspects of ML systems.

290 Model Governance and MLOps

In addressing potential unwarranted outcomes, DataRobot has introduced a bias and
fairness monitoring and control capability. This capability is selected and configured
during model development. Let's step back and demonstrate how bias could be addressed
in DataRobot. As with the typical platform, we upload the data as described in the
preceding chapters. In the project configuration window (as within Figure 13.1), we open
Advanced Options and the Bias and Fairness tab:

1.	 It is within this tab that we define protected features, how fairness is established
and measured, as well as the target variable. We specify the fields in the prediction
dataset that need to be protected. These are entered in the Protected Features input
field. In this case, the AgeGroup field is selected as to be protected (see Figure
13.1). In some industry datasets, attributes such as sex, ethnicity, age, and religion
must be selected. In this way, DataRobot manages and presents metrics to measure
any potential model bias within each of the protected fields:

Figure 13.1 – Configuring bias and fairness during the model development

2.	 Next, the Favorable Target Outcome field is selected. This is the level of the target
variable that is desirable. In this case, the target variable is the RatingClass level
of High. This enables the measurement of bias on this level of the target variable.

Addressing model bias and fairness 291

3.	 The Primary Fairness Metric field outlines the metric against which fairness is
measured. It is important to highlight that fairness differs considerably across use
cases. The fairness for an insurance risk modeling tool would strive to ensure that
the risk all potential clients carry is representative, whereas fairness within that
employment tool would aim for members of a protected group to have similar
chances of being employed when compared to those from other groups. The
choice of Primary Fairness Metric helps DataRobot understand how to measure
bias. A few metrics are presented to be selected. These include Proportional
Parity, Equal Parity, Prediction Balance, True Favorable Rate
& True Unfavorable Rate Parity, and Favorable Predictive &
Unfavorable Predictive Value Parity.

4.	 If a user is unsure of the metric to choose, they can click on Help Me Choose,
which presents a further set of questions. Answering these questions presents a
recommendation of a Fairness Metric value, as shown in Figure 13.2:

Figure 13.2 – Fairness Metric recommendation

292 Model Governance and MLOps

In choosing our metric, because we are keenly interested in our model having
similar prediction accuracy across age group membership, the Equal Error option
is selected in response to how we want to measure model fairness. Since our
outcome distribution is somewhat balanced between high and low, we choose No
to the Does the favorable target outcome occur for a very small percentage of the
population? question. Following this, DataRobot suggests True Favorable Rate &
True Unfavorable Rate Parity. All throughout the process, the platform offers a
description of the options and presents an explanation of the recommended metric,
as well as those for other metrics.

5.	 A click on Select finalizes the process and the modeling process proceeds, as
suggested in earlier chapters.

Model bias could be further examined after models have been developed. Since
model bias and fairness were configured during model development, the Bias and
Fairness tab is presented as part of the model's details (see Figure 13.3). When
this tab is selected for any of the created models, the Per-Class Bias window is
presented. Within this window, the relative extent to which the model is biased
given the Fairness Score value is displayed. The AgeGroup Per-Class Bias value
for the Light Gradient Boosting on Elastic Predictions model
presented in Figure 13.3 is below the default threshold:

Figure 13.3 – Per-Class Bias exploration

Addressing model bias and fairness 293

According to this outcome, the accuracy of the model in predicting the true unfavorable
outcome (of a Low rating) for individuals within the Between 25 and 40 class is
lower than the other two classes. The score for this class falls below the default 80%
threshold. The default threshold of 80% was applied for Primary Fairness Metric, as
we didn't set a value for it during the model development, as seen in Figure 13.3. By
clicking the Show absolute values tab, the absolute measures are presented instead. While
the other chart (not visible in Figure 13.3) suggests that the accuracy for the favorable
outcome was consistent across classes, this model could still be unfair, as it will most likely
falsely predict unfavorable outcomes for individuals in the Between 25 and 40 class.
Figure 13.4 demonstrates how Cross-Class Accuracy, a set of more holistic accuracy
metrics, could be used to assess accuracy across the protected classes:

Figure 13.4 – Cross-Class Accuracy examination

294 Model Governance and MLOps

Cross-Class Accuracy presents a set of accuracy metrics, assessing the model across
differing levels of the AgeGroup class. As the outcome in Figure 13.4 suggests, the
accuracy of the model seems to be lower for the Between 25 and 40 class across all
accuracy measures. Because, as earlier alluded to, the performance of the model is similar
across classes when it is the favorable class, only the lower true rate for the unfavorable
outcome for the Between 25 and 40 class seems to affect the fairness of the model.
Because models learn from past data, exploring the features that might be responsible for
this bias might be crucial in taking further actions. Figure 13.5 shows the Cross-Class
Data Disparity capability, which presents deep dives into why bias exists in ML models:

Figure 13.5 – A Cross-Class Data Disparity comparison between two age classes

To explore the rationale behind the model bias, the Cross-Class Data Disparity
comparison compares the data distribution across two groups of a protected feature. In
doing so, it presents the importance of the features against their distributional disparity.
Of lowest importance, yet for obvious reasons with the largest disparity, the Age-Group
feature seems to affect the model's accuracy. This is because Age-Group, being the
predicted variable, will have the largest disparity in comparison to other variables, as it
is identical to the predicted variable. The year book had a lower data disparity but had
greater importance than the Age-Group feature. Further examination of the distribution
of the year in the right-hand chart (Figure 13.6) shows that older books and books with
a missing year seem to have been rated more by the Over Forty group in comparison
with the Between 25 and 40 group. On the contrary, the Between 25 and 40
cohorts seem to be rated more of the newer books than their older counterparts.

Addressing model bias and fairness 295

When model bias exceeds an enterprise-established threshold, steps need to be taken to
manage this unfairness. Options to address this unfairness include dropping features that
might be responsible for the bias and retraining the model, or changing the model for a
more ethical model. Most of the time, these changes ultimately affect the overall accuracy of
the model. However, in our example case, Light Gradient Boosting on Elastic
Predictions wasn't our best-performing model. DataRobot has within its bias and
fairness toolkit the Bias vs Accuracy leaderboard comparison capability (see Figure 13.6):

Figure 13.6 – Bias vs Accuracy leaderboard

The Bias vs Accuracy chart assesses multiple models on their bias and accuracy. Here, we
see that Keras Residual AutoInt Classifier using Training Schedule
was the most accurate model and met the ethic threshold. In this case, this model could
be deployed into production. It is important to note that neural network-based models are
generally not accepted by many regulators today, but this could change in the future.

296 Model Governance and MLOps

Processes concerning the assessment of ML model bias and fairness are expected to
be integrated into the data science workflow to ensure model outcomes support a fair
process. This becomes more important as conversations pertaining to ethical AI are
becoming more ubiquitous across industries. Having looked at ways to ensure models are
fair, we now progress into deploying the fair model, monitoring model performance in
production, and other aspects of implementing MLOps in the next section.

Implementing MLOps
DataRobot, through its MLOps suite, provides capabilities to enable users to not only
deploy models in production, but govern, monitor, and manage the models in production.
In previous chapters, we have looked at how models are deployed on the platform and
using the Python API client. MLOps provides an automated model monitoring capability,
which tracks the service health, accuracy, and data drift of models in production. The
automated real-time monitoring of production models ensures that models have high-
quality outputs. Also, when there is a performance degeneration, stakeholders are notified,
so action can be taken.

In this section, we will focus on aspects of model monitoring that we didn't cover in
Chapter 8, Model Scoring and Deployment, of this book. We looked at how to examine the
quality of deployment services, as well as changes in the underline feature distribution
between the training and prediction data across time through the service health and data
drift capabilities. As time passes, more recent data with target variables is introduced to the
deployment. DataRobot can then examine models' initial predictions and establish models'
actual accuracy in production. DataRobot also provides the capability to switch between
alternative models in production. This section focuses on the evaluation of production
model accuracy, setting up notifications, as well as switching models in production.

Implementing MLOps 297

As you can guess by now, the job of the data science team does not end once a model
is deployed. We now must monitor our models in production. After models have been
deployed, before engaging in conversations pertaining to the monitoring of models, we
need to control what individuals can do with those deployments. Stakeholder roles and
responsibilities are important aspects of MLOps governance. Successful implementation
of ML solutions depends on a clear definition of roles and what the actual duties of
stakeholders are throughout ML models' production life cycles. As Figure 13.7 highlights,
when deployments are shared with other stakeholders, each stakeholder is given a role
that defines their access level to that deployment:

Figure 13.7 – Sharing deployments

298 Model Governance and MLOps

To open the deployment sharing window (as shown in Figure 13.7), after the model was
deployed, the deployment action button (the triple dash icon) on the top right-hand side
was selected. Then, Share was chosen. Here, this RatingClass Predictions deployment
was shared with a stakeholder, ben@aaaa.com. Importantly, this individual was given
the role of User. With the User role, this stakeholder can write and read. In an actual
sense, they can view the deployment, consume predictions, view deployment inventory,
use the API to get data, and add other users to the deployment. The Owner level has
additional administration rights and can perform business-critical operations, such as
deleting the deployment, replacing the model, and editing the deployment metadata.
The lowest user role is Consumer, which only allows stakeholders the right to consume
predictions via the API route.

Production model monitoring ensures that models continue to deliver high-quality
business impact as expected during development. A decline in this quality is a result of an
alteration in the production data distribution or changes in the extent to which features
affect the endogenous variable. For instance, changes in usage affect customer attrition, a
variable of importance to a business. During a holiday period, the predictions for attrition
would be higher. Such fluctuations in attrition prediction cause worry to the business if
they are not expecting this change in distribution or data drift. In the same way, the extent
to which predictor variables could influence a business outcome could also change. A
point in case could be the effect of price on the propensity to buy. During the peak of a
pandemic, individuals are far more conservative in their purchase of non-essentials. Now,
imagine the chances of the accuracy of an in-production buying propensity model built
for a non-essential product built before the pandemic. It is easy to see that the accuracy
of the model will decay in production quite rapidly, thus having a significant impact on
the business performance. Such situations raise the need to monitor the performance of
models post-deployment.

mailto:ben@aaaa.com

Implementing MLOps 299

In Chapter 8, Model Scoring and Deployment, we covered data drift, which examines
changes in distribution between the training and production datasets, while accounting
for their feature importance. Here, our focus will shift to monitoring the effect of variables
on outcomes while in production. Changes in this effect could be established through the
monitoring of production models' accuracy, a capability DataRobot offers. As part of the
Deployments Settings window, as shown in Figure 13.8, there is an Accuracy tab:

Figure 13.8 – Deployment window for accuracy setup

300 Model Governance and MLOps

The Accuracy tab offers insight into the accuracy of production models. This capability
allows users the ability to examine the performance of their production models over time.
To compute the accuracy of a production model, actual outcomes need to be provided.
After actuals have been uploaded, to generate accuracies, a set of fields needs to be
completed. These include the Actual Response and Association ID fields, as well as those
that are optional, Was acted on and Timestamp (see Figure 13.9):

Figure 13.9 – Accuracy setup features

Implementing MLOps 301

The Actual Response field specifies where the true outcome is in the data. In this case,
the field is RatingClass. To link this to the earlier prediction dataset, Association
ID, presented as rowid in this example, is requested to enable this connection. It is
important to note that sometimes as a result of the models' predictions, action is taken by
the business that could ultimately influence the outcome. To account for this possibility in
calculating accuracy, the Was acted on and Timestamp variables are optionally requested
(see Figure 13.10 for the selection of these features):

Figure 13.10 – Production accuracy identification feature selection

302 Model Governance and MLOps

After the mandatory variables are selected, the Save button is clicked. This sets the
computation off, thereafter opening the Accuracy window, displaying the production
accuracy of the model. The performance of the production model is presented as tiles
and as a graphical time series. Figure 13.11 presents the Deployment Accuracy window.
The LogLoss, AUC, Accuracy, Kolmogorov-Smirmov, and Gini Norm metrics tiles are
selected. Start shows the model's performance against the holdout dataset during the
development process. It appears that this model is better in production than during the
training. Through the customize tiles, other metrics and their order could be chosen. The
Accuracy over Time graph shows how the accuracy of the model has changed over time.
The leftmost green spot on the graph indicates the model accuracy against the holdout
dataset during development:

Figure 13.11 – production model performance assessment over time

The Predicted & Actual chart tells a similar story. Here, the selected class is Low. There
is an option to change the class being explored. It is important to note that with these, the
accuracy of the model on the differing levels of the AgeClass protected variable could
be monitored. This could be done by selecting AgeClass in the Segment Attribute
option and then choosing either of the levels in the Segment Value field. While in the
present scenario production accuracy mirrors those of data drift, it is possible to configure
notifications so that stakeholders are notified when metrics depart in a manner that
adversely affects the business. In the next section, we will cover these notifications, as well
as how to change models in deployment.

Notifications and changing models in production 303

Notifications and changing models in
production
In this chapter, we have established why the commercial impact of models can decay
and ways to track this impact in the DataRobot platform. In cases where the end-to-end
prediction process is fully automated and human intervention is limited, it becomes
crucial that systems that notify stakeholders of any significant changes in the performance
of production models are available. DataRobot can send notifications for significant
changes in service health, data drift, and accuracy. These notifications can be set up and
configured within the Deployment window:

1.	 From the Settings tab, select Notifications. As shown in Figure 13.12, three options
are presented: notifications being sent for all events, notifications for critical events,
and no notifications being sent. Notifications for all events are sent by email; all
changes to the deployments are emailed to the owner:

Figure 13.12 – Deployment Notifications setup

304 Model Governance and MLOps

In Figure 13.12, notifications are set to notify me about only critical deployment
activities. This setting implies that the stakeholders are notified when there are
critical activities occurring on the deployment.

2.	 The Monitoring tab (in Figure 13.13) presents options for defining the notifications
that are to be sent. Here, Service Health notification is set to be sent daily at 1:00.
There are options to set notifications to occur anywhere between an hourly and
quarterly monitoring cadence. When the box is unchecked, the notification is disabled:

Figure 13.13 – Monitoring notification setup

3.	 Notification for Data Drift has a few thresholds and configurations to be completed.
As discussed in Chapter 8, Model Scoring and Deployment, data drift compares the
distribution of incoming data to that used for the model development. Essentially,
it looks at how recent production data differs from the training data across all
features. Setting up a Data Drift notification involves the following considerations:

•	 Range defines the period from which data is drawn to be compared with the
development data. For the example in Figure 13.13, the range is set to Last 7
days, meaning that the data distribution for the preceding seven days is compared
with that of the training data.

Notifications and changing models in production 305

•	 Being a feature drift metric, the Population Stability Index (PSI) threshold defines
the extent to which feature drift needs to occur for a notification to be triggered.
Here, the threshold is set to 0.2. Some features can be excluded from drift tracking
using the excluded features options.

•	 The Feature Importance threshold allows users to define the threshold that
differentiates the most important features from others is. In Figure 13.13, 0.45 is
entered as the Permutation Importance metric threshold to achieve this goal. By
so doing, features with permutation importance over 0.45 are deemed as Failing,
while those with lower importance are considered At Risk. Here, some features are
seen as important irrespective of the actual feature importance, and these can be
selected using the starred features options.

•	 The At Risk and Failing thresholds alternatively enable the configuration of the
minimum number of low- and high-importance features that are necessary for
sending At Risk or Failing notifications. The rule present in Figure 13.13 allows
the following:

a. At-risk notifications to be sent when two or more low-importance features
(with Permutation Importance of less than 0.45) drifts beyond a PSI of 0.2

b. Failing notifications to be sent when five or more low-importance features have
significant drift

c. Failing notifications to be sent when one or more high-importance features have a
drift whose PSI exceeds 0.45

4.	 Notifications pertaining to the Accuracy production model need to be set up within
the monitoring window (as shown in Figure 13.13). Here, the Metric accuracy,
Measurement threshold, and rules for At Risk and Failing notifications are defined:

a. Because the deployment is based on a classification problem, its Metric accuracy
is selected from classification options. These include AUC, Accuracy, Balance
Accuracy, LogLoss, and FVE Binomial, among others. In this case, Logloss
is chosen.

b. The Measurement option defines how changes in the accuracy metric between
production prediction and training data are compared. Here, the percent
change is selected.

c. Rules are then set for At Risk and Failing notifications to be sent. In this case, At
Risk notifications are sent when the accuracy of the model for prediction data is 5%
that of the training. Similarly, 10% is the threshold that triggers a Failing notification.

d. As with Data Drift, the Accuracy notifications are set to be sent Every day at
1:00. These could be configured to any cadence between daily and quarterly.

306 Model Governance and MLOps

5.	 After this setup, clicking the Save new setting button activates the notification routine.
However, it is noteworthy that any stakeholder who has access to the deployment
can configure the notifications they want to receive. When models' changes become
significant, it might become necessary to replace the model in the deployment.

The performance of production models tends to decay with time. This raises the
need for models to replace those in a deployment. Within the MLOps offerings,
DataRobot offers the model replacement functionality. To change the model in
a deployment, you navigate to the Deployment Overview window. The Replace
model option is selected from the Action button on the right-hand side of the
Deployment Overview window (see Figure 13.14):

6.	 Clicking the Replace model option presents a Paste DataRobot model URL
request. This URL is for the location at which the new model can be found when
opened from the leaderboard:

Figure 13.14 – Production model replacement

7.	 When Select is clicked, there is a prompt for the rationale for the model
replacement. For this, options for Replacement Reason include Accuracy, Data
Drift, Errors, Scheduled Refresh, and Scoring Speed. As shown in
Figure 13.15, Data Drift is selected in this case.

Notifications and changing models in production 307

8.	 Finally, Accept and replace is clicked:

Figure 13.15 – Selecting the rationale for model replacement

Having replaced the model in the deployment, future predictions from this deployment
will use the updated model. It is important to highlight that model replacement can only
be carried out by the deployment owner. There are situations when the commercial impact
of models is significant. In such situations, it is advisable to test the new or challenger
model in a synthetic or simulated environment before switching models. In the typical
data science workflow, the champion/challenger model scenario is well established. Here,
challenger models compute predictions and their performance is compared with the
one in production, the champion. With the testing and impact analyses complete, we
are now ready to deploy our model. DataRobot provides data scientists the ability to test
multiple challenger models while the champion is in production. This simplifies the model
selection process when a model is to be replaced.

MLOps also offers the capability for changes in the model to be reviewed by different
stakeholders. For this to happen, models are assigned importance levels as part of their
deployments. These importance levels depend on the strategic commercial impact
the model outcomes have on the business, the volume of predictions, and regulatory
expectations. The importance levels thereafter drive who needs to review changes of the
deployments before they are implemented.

308 Model Governance and MLOps

Summary
In this chapter, we highlighted the value of establishing a framework guiding the use of
ML models in businesses. ML governance capability supports users in ensuring that ML
models continue to deliver commercial value while meeting regulatory expectations. Also,
we set controls for what different levels of stakeholders can do with ML deployments. In
some industries, there is a need to seriously consider the impact of bias in any decision
process. Because ML models are based on data that might have been affected by human
bias, it is possible that these models will compound such bias. As such, we explored ways
to mitigate ML bias during and after model development.

We also examined the effects features have on the outcome variable. Such changes could
have a critical bearing on business outcomes, hence the need to monitor the performance
of model outcomes in production. During this chapter, we explored ways the performance
of models could be assessed over time. Importantly, we learned how to configure
notifications when there are significant changes in data drift or/and model accuracy.
Additionally, we examined how a model in production could be switched to a challenger
as needed.

We also highlighted some other MLOps features that were not covered in depth as
part of this chapter. In the next chapter, we are going to look at what we think the
future holds for DataRobot and automated ML in general. Also, given that this book
is not all-encompassing with regards to DataRobot and the platform keeps expanding
its capabilities, in the next chapter, we will point out some places where additional
information for further development could be accessed.

14
Conclusion

In the preceding chapters, we learned to build and deploy models with DataRobot. We
learned the basics, along with some advanced data science concepts. The disciplines of
ML and data science continue to evolve rapidly. In response, tools such as DataRobot are
also enhancing their capabilities. While these tools will continue to advance and make
data scientists more productive, it is also expected that the role of good data scientists
will become increasingly important and better understood. I hope we have convinced
you that data scientists are not about to become obsolete and also that these tools have
a lot to offer for data scientists, regardless of their level of expertise. It is also true that
the methods and tools that we have right now are still very limited when it comes to
intelligence. There is a lot of learning and uncovering to be done before the systems we
build can be called intelligent.

The information we have provided so far should help you get started in developing and
deploying models and start impacting your business. There is still a lot more to learn in
this journey. In this chapter, we will provide sources for finding additional information
regarding DataRobot and also discuss what the future of data science and DataRobot
might look like. We're going to cover the following main topics:

•	 Finding out additional information about DataRobot

•	 Future of automated machine learning

•	 Future of DataRobot

310 Conclusion

Finding out additional information about
DataRobot
There are many sources for additional information on ML, AI, and related methods. The
best sources for DataRobot-related information are the following:

•	 DataRobot Website: https://www.datarobot.com

The website contains information about the platform and several resources and case
studies. It also contains links to other useful sites, some of which are described next.

•	 DataRobot Community Site: https://community.datarobot.com

This is a site for the DataRobot user community. You can go to this site to connect
with other users, see what information they are discussing, and ask questions.

•	 DataRobot Community GitHub: https://github.com/datarobot-
community

This is a GitHub site with repositories of DataRobot-related projects. You can see
many code samples and examples for a wide range of DataRobot-related tasks.
Here, you will find Python scripts and notebooks as well as samples in many other
languages. This is a great place to go if you are ready to start using the DataRobot API.

•	 DataRobot Python Client: https://datarobot-public-api-client.
readthedocs-hosted.com/en/v2.25.0/

This link provides information about the publicly available Python package for
DataRobot. Here, you will find information on how to get this package, install it,
and use it. Note that you need a valid license to make use of this package.

•	 DataRobot Documentation

Once you are logged in to DataRobot, you can see links to extensive DataRobot
documentation for the tool itself as well as the DataRobot API, as we discussed in
Chapter 1, What Is DataRobot and Why You Need It.

•	 DataRobot Documentation Website: https://docs.datarobot.com

DataRobot recently decided to release all documentation on this site. This includes
the DataRobot platform, APIs, tutorials, and notebooks, as well as a glossary. This is
now the default site to look for all DataRobot-related documentation.

There are many publicly available information sources for ML methods, AutoML,
and AutoML tools that you can find and explore online. Let's now discuss where ML
seems to be headed.

https://www.datarobot.com
https://community.datarobot.com
https://github.com/datarobot-community
https://github.com/datarobot-community
https://datarobot-public-api-client.readthedocs-hosted.com/en/v2.25.0/
https://datarobot-public-api-client.readthedocs-hosted.com/en/v2.25.0/
https://docs.datarobot.com

Future of automated machine learning 311

Future of automated machine learning
It has been over 5 years since automated ML tools started appearing in the data science
community. There are now several open source tools (for example, TPOT and Auto-
WEKA) as well as proprietary tools (for example, Kortical and H2O) on the market. All
major cloud providers now have some AutoML offering. Interest in these tools has been
rising. It is safe to say that interest in these tools will keep rising and more offerings should
be expected to come onto the market. We expect the tools to keep expanding the scope
of tasks that will be automated to cover more aspects of the model development process.
We can already see tools such as DataRobot offering more functions through internal
development as well as through acquisitions such as Paxata. While it remains true that
these tools do not support all use cases or types of modeling, they do cover a large number
of use cases in a typical organization. More capabilities and algorithms are being added
every quarter. We also expect that some niche vendors will emerge that focus on specific
problems or methods such as reinforcement learning.

Many of the ideas and methods described in this book can be used with other AutoML
tools or even with just a notebook environment with open source Python libraries. The
AutoML tools essentially serve to automate many of the mundane and labor-intensive
tasks. Even with these developments, we expect that not all aspects of the model
development process can be automated. We covered many of these aspects in different
chapters of this book. Hence, it is our belief that trained and experienced data scientists
will always be needed. Adoption of these tools will enable the data scientists to cover more
use cases and the resulting models will be of higher quality. These tools will also expand
the reach of advanced algorithms to analysts in organizations who understand data
science concepts but are not as familiar or comfortable with programming. Like any tool
or technology, there is the possibility of misuse. Data-savvy organizations will put model
governance and training programs in place to prevent problems relating to the use of bad
or biased data, solving the wrong problem, or creating solutions that are not actionable.
Also, the organizations should look into their specific needs and then select the tools most
appropriate for their situation.

It is also expected that ML will need to move beyond pattern matching and we expect a
bigger focus on causal modeling in the coming years. This is because many industrial use
cases require specific decisions to be made or interventions that require decision makers
to understand causal impacts and the consequences of these decisions. We have discussed
some of these topics and methods. These methods defy automation in their current form
and require substantial human input. For these methods to become mainstream, aspects
of these methods need to be automated to enable organizations to start adopting them.

312 Conclusion

As the tools expand to include causal modeling, it will become imperative that capabilities
be added to build models at a systemic level or be able to compose models to create a
broader view of the systems under consideration. We will see the emergence of "digital
twin" models that will represent entire systems. It will also be necessary to manage and
control the configuration of many experiments that will need to be conducted. Given
that large datasets are involved in building single models, current methods for running
multiple experiments on multiple models are not scalable.

We also expect more data scientists to adopt the AutoML tools as they start realizing that
these tools will make them more productive, while still giving them all the flexibility they
need. This is done by combining programming languages, APIs, and automation support.

Another trend to watch is tool vendors' focus on solving customers' problems. It is very
common for some vendors to lose customer focus as they grow bigger, which ultimately
can lead to their downfall. This is not a new phenomenon; it has been happening to tool
vendors for a long time. We have seen many vendors lose this focus and fade into oblivion.
Some of this will also happen to AutoML vendors, so be on the lookout for vendors who
are not very responsive to your needs.

Future of DataRobot
DataRobot was the early pioneer in the AutoML space and seems to be the dominant
player, but there are many others (H20, Kortical, and Google Cloud AutoML, to name a
few) that are catching up rapidly. Many of the large cloud players are jumping into this
space and have offerings that are very attractively priced. DataRobot continues to offer
additional capabilities combined with good support from experienced data scientists. To
that end, we expect that the DataRobot API will continue to evolve and become more
robust to allow experienced data scientists to use DataRobot in a highly flexible and
automated way.

We have noticed new capabilities being released even as this book is being written, such
as the recent acquisition of the Zepl notebook platform. In addition to that, DataRobot
continues to acquire other companies to round out its offerings. Recently, a lot of focus
has been on MLOps and enabling the rapid deployment of models. As the features and
capabilities increase, the learning curve for understanding and using DataRobot also
increases. It is our experience that many data scientists who use DataRobot are not fully
aware of its capabilities and are not utilizing it to its fullest extent. We hope that books
such as this will help with this issue. This alone, however, will not be enough to maintain a
competitive position. Expanding into next-generation capabilities outlined in the previous
section will be necessary to maintain an edge.

Future of DataRobot 313

In conclusion, we hope that we have given you a good overview of how you can put
DataRobot to practical use in your organization right away and make your data science
journey more productive. Hopefully, we have convinced you that a data scientist's role is
not just to produce predictions, but to help enable good decisions. Just as a lot of what we
do automates the tasks of many roles in the organization, it is also imperative that we do
not fear the automation of data science tasks. We hope that this book provides useful ideas
to a broad range of data scientists across a broad range of industries.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

316 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Engineering MLOps
Emmanuel Raj
ISBN: 978-1-80056-288-2

•	 Formulate data governance strategies and pipelines for ML training and deployment

•	 Get to grips with implementing ML pipelines, CI/CD pipelines, and ML
monitoring pipelines

•	 Design a robust and scalable microservice and API for test and production
environments

•	 Curate your custom CD processes for related use cases and organizations

•	 Monitor ML models, including monitoring data drift, model drift, and
application performance

•	 Build and maintain automated ML systems

https://www.packtpub.com/product/engineering-mlops/9781800562882

Other Books You May Enjoy 317

Machine Learning with Amazon SageMaker Cookbook

Joshua Arvin Lat

ISBN: 978-1-80056-703-0

•	 Train and deploy NLP, time series forecasting, and computer vision models to solve
different business problems

•	 Push the limits of customization in SageMaker using custom container images

•	 Use AutoML capabilities with SageMaker Autopilot to create high-quality models

•	 Work with effective data analysis and preparation techniques

•	 Explore solutions for debugging and managing ML experiments and deployments

•	 Deal with bias detection and ML explainability requirements using
SageMaker Clarify

•	 Automate intermediate and complex deployments and workflows using a variety
of solutions

https://www.packtpub.com/product/machine-learning-with-amazon-sagemaker-cookbook/9781800567030

318

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Agile Machine Learning with DataRobot, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801076804

Index

A
activation maps 252
appliances energy prediction

dataset 93, 206
application programming

interface (API) 186
approaches, to building

recommender systems
about 232
collaborative filtering recommender

systems 232, 233
content-based recommender

systems 234
hybrid recommender systems 235

Area Under the ROC Curve (AUC) 55
automated machine learning (AutoML)

about 10
upcoming 311

automobile dataset
about 92, 268
cleaning 98-100
reference link 268

AutoRegressive Integrated Moving
Average (ARIMA) 226

B
baseline model 216
Batch Prediction API 268
blind history 212
blueprints 53
Book-Crossing dataset 230, 286, 287
Books table 230
business problem

root, identifying 79, 80

C
causal diagrams 76-78
cold start problem 233
collaborative filtering recommender

systems 232, 233
comma-separated values (CSV) file 166
constant spline 168
content-based recommendation 231
content-based recommender systems 234
context diagram 69
correlation analysis

setting 115-125
Cosine similarity 233
Cramer's V 42

320 Index

cross-entropy loss 55
customer centricity 231

D
data

aggregating, for modeling 97, 98
data cataloging 106
data ingestion 106
data leakages 275
data quality assessment 107
DataRobot

about 97, 183, 310
architecture 10
deployed models, monitoring 198-202
features, navigating 13-29
features, using 13-29
models, building with multimodal

datasets in 255-263
models, deploying 192-198
multimodal data, defining 253, 254
multimodal data, setting up 253, 254
performance metrics 54, 55
prediction methods 184-186
predictions, making with

multimodal dataset 264, 265
recommender system predictions,

making 243, 244
recommender systems, building 238-242
recommender systems, defining 236-238
recommender systems,

setting up 236-238
scoring methods 184
upcoming 312
URL 310
user interface (UI) 184

DataRobot API
accessing 268-271

DataRobot, architecture
core functions 11
data sources 11
external interactions 12
platform, hosting 10, 11
users 12

DataRobot Community GitHub
URL 310

DataRobot Community Site
URL 310

DataRobot Documentation Website
URL 310

DataRobot Python client
Python, programming with

Jupyter IDE 271
using 271

data science
challenges 8, 9

data science challenges, addressing
with DataRobot

about 29
bias and fairness 31
black box models 31
data, explosion 29
experienced data scientists, shortage 30
immature tools and environments 30
lack, of good-quality data 29

data science processes, for business value
data preparation 6
generating 4, 5
issues 6
model deployment 7
model development 7
model maintenance 7

data sources
connecting to 93-96

data sparsity 233

Index 321

data types
working with 100-102

deep learning (DL) 146
diagrams 71
dual lift charts 150

E
ensemble/blended models 52
ensemble models

building 151-154
euclidian 51
Excel 35
exemplar-based explanations (XEMP) 63
exploratory data analysis

(EDA) 11, 108-115, 214
external drivers/risks 70
eXtreme 49

F
False Negatives (FN) 57
False Positives (FP) 57
feature selection 126, 127
features

about 35
engineering, for modeling 102, 103

featurization 251
fishbone diagram 79, 80
FL1 top23 feature list 192
four-wheel drive (4WD) 269
front-wheel drive (FWD) 269

G
gamma deviance 55
Generalized Additive Models (GAMs)

about 31, 160

feature coefficients 165
feature relativities 167
partial dependence plot 164
rating table 166, 167
residuals 174

Generalized Additive Models
(GAMs), feature effects

about 161
curb weight 161
engine size 162, 164
highway mpg 163

geospatial AI
about 249
challenges 249

Google Cloud BigQuery 244
gross domestic product (GDP) 70

H
Hadoop Distributed File

System (HDFS) 11
House Dataset 248
hybrid recommender systems 235
hybrid system approach 231

I
image embedding 260
image processing 252
Integrated Development

Environment (IDE) 269
interaction diagrams 74
Inverse Document Frequency (IDF) 39
item-based collaborative

filtering approach 231
item-to-item collaborative algorithms 233

322 Index

J
JAR files 244

K
Keras neural network 238
key decision levers 70
key objectives 69
key performance indicators (KPIs) 69
k-nearest neighbor approach 262
k-nearest neighbors algorithm 47, 233

L
lemma 251
lemmatization 251
lift chart 172, 173
Logistic Regression 47
Long Short-Term Memory (LSTM) 226
lookup table (LUT) 150

M
machine learning algorithms

about 45
data visualization 41-44
types 45

machine learning algorithms,
data preparation

category, encoding 38
collinearity checks 40
consolidate categories 38
data partitioning 40
data transformations 39
missing values 37
outliers 37

target leakage 38
term-document matrix 39

machine learning algorithms, types
blueprints 53
ensemble/blended models 52
reinforcement learning 52
supervised learning algorithms 46
unsupervised learning 52

machine learning and DevOps (MLOps)
implementing 296-302

machine learning (ML) 177, 212, 249
machine learning (ML) model

bias, addressing 289-295
governance 287, 288
modifying 303-307
notification, deploying 303-307

Markov chains 75
Mean Absolute Error (MAE) 216
Mean Absolute Percentage

Error (MAPE) 54
Mean Absolute Scaled Error (MASE) 216
metrics performance

assessing 171
miles per gallon (MPG) 123
ML problem

defining 80-83
model blueprints 145-150
model explanations

generating, for GAM 177
generating, for XGBoost model 175

model factories
about 272-277
creating 278

modeling
data, aggregating for 97, 98
engineering features 102, 103

modeling project
configuring 130-135

Index 323

model leaderboard
building 135-145

model learning curves 177-180
model performance

assessing 169
models

building 135-145
building programmatically 272-281
building, with multimodal datasets

in DataRobot 255-263
reviewing 158

multiclass classification models 272, 275
multimodal dataset

defining, in DataRobot 253, 254
setting up, in DataRobot 253, 254
used, for building models in

DataRobot 255-263
used, for making predictions

on DataRobot 264, 265
multiple time series 210
mutual information (MI) 42, 120

N
Naïve Bayes 47
Natural Language Processing

(NLP) 12, 250, 251
N-Gram 263
noise removal 251

O
optimization metric 134
out-of-time validation 212

P
Pandas 35

Paxata 35
Pearson correlation coefficient 233
pixel intensity 252
pixels 252
popularity-based recommendation

systems 231
postprocessing

analyzing 188-191
prediction environment 197
prediction explanations

generating 186, 187
predictions

analyzing 188-192
making programmatically 281, 282
making, with multimodal dataset

on DataRobot 264, 265
process diagrams 72, 73
Python 35, 271

Q
quantile-base discretization function 275

R
Ratings table 230
rear-wheel drive (RWD) 269
Receiver Operator Characteristic

(ROC) 58, 59
recommender system predictions

making, with DataRobot 243, 244
recommender systems

about 231
building, approaches 232
building, in DataRobot 238-242
defining, in DataRobot 236-238
setting up, in DataRobot 236-238

reinforcement learning 52

324 Index

REpresentational State Transfer
(REST) 197

Responsible AI
actions, defining for 83-85
consequences, defining for 83-85
predictions, defining for 83-85

REST API 244
return on investment (ROI) 83
RMSE metric 257
robotic process automation (RPA) 85
rolling window 212
root mean squared error (RMSE) 54

S
SHapley Additive exPlanations (SHAP)

about 134, 176, 190
values 64

single time series 210
spatially autocorrelation features 262
spatially lagged features 262
speed

versus accuracy trade-offs 181
staged approach 235
state diagram 75, 76
stemming 251
stroke ratio 138
Structured Query Language (SQL) 188
subject-matter experts (SMEs) 138, 163
supervised learning algorithms 46
supervised learning algorithms, issues

algorithms 49-51
binary classification 47
multiclass classification 47
regression 46
time series or forecasting models 48, 49
types 46

supervised learning dataset 34
Support Vector Machines (SVM) 47, 50
switching approach 235
Symboling 101
Symmetric MAPE (SMAPE) 54
system

about 68
behavior 71
function 71

system context 68

T
target 35
target feature

setting 115-125
Term Frequency (TF) 39
text mining 263
TFIDF 39
time series datasets 35
time series forecasting

about 207, 208
model, building 213-218
model outcomes 213-218

time series modeling
about 207, 208
overview 223-226
prediction 219-222

time series project
defining 209-212
setting up 209-212

tokenization 250
trade-offs 181
tree-based algorithms 47
True Negatives (TN) 57
True Positives (TP) 57

Index 325

U
Uniform Resource Locator (URL) 221
unsupervised learning 52
user-based collaborative filtering 231
Users table 230
user-to-user collaborative algorithms 233

V
value

generating 85, 86
operationalizing 85, 86

visualizations results, for model
about 55
accuracy over time 59
confusion matrix 57, 58
Feature Effects 62
Feature Fit tab 61
feature impacts 60
lift chart 56
Prediction Explanations 63
Receiver Operator Characteristic

(ROC) 58, 59
shapley values (SHAP) 64

W
weighted approach 235
word cloud 263

X
XGBoost (XGB)

about 226
models 184

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Section 1:
 Foundations
	Chapter 1: What Is DataRobot and Why Do You Need It?
	Technical requirements
	Data science processes for generating business value
	Problem understanding
	Data preparation
	Model development
	Model deployment
	Model maintenance

	Challenges associated with data science
	DataRobot architecture
	Hosting platform
	Data sources
	Core functions
	External interactions
	Users

	Navigating and using DataRobot features
	Addressing data science challenges with DataRobot
	Lack of good-quality data
	Explosion of data
	Shortage of experienced data scientists
	Immature tools and environments
	Black box models
	Bias and fairness

	Summary

	Chapter 2: Machine Learning Basics
	Data preparation
	Supervised learning dataset
	Time series datasets
	Data cleansing
	Data normalization and standardization
	Outliers
	Missing values
	Category encoding
	Consolidate categories
	Target leakage
	Term-document matrix
	Data transformations
	Collinearity checks
	Data partitioning

	Data visualization
	Machine learning algorithms
	Unsupervised learning
	Reinforcement learning
	Ensemble/blended models
	Blueprints

	Performance metrics
	Understanding the results
	Lift chart
	Confusion matrix (binary and multiclass)
	ROC
	Accuracy over time
	Feature impacts
	Feature Fit
	Feature Effects
	Prediction Explanations
	Shapley values

	Summary

	Chapter 3: Understanding and Defining Business Problems
	Understanding the system context
	Understanding the why and the how
	Process diagrams
	Interaction diagrams
	State diagrams
	Causal diagrams

	Getting to the root of the business problem
	Defining the ML problem
	Determining predictions, actions, and consequences for Responsible AI
	Operationalizing and generating value
	Summary
	Further reading

	Section 2:
Full ML Life Cycle
with DataRobot:
Concept to Value
	Chapter 4: Preparing Data
for DataRobot
	Technical requirements
	Automobile Dataset
	Appliances Energy Prediction Dataset

	Connecting to data sources
	Aggregating data for modeling
	Cleansing the dataset
	Working with different types of data
	Engineering features for modeling
	Summary

	Chapter 5: Exploratory Data Analysis with DataRobot
	Data ingestion and data cataloging
	Data quality assessment
	EDA
	Setting the target feature and correlation analysis
	Feature selection
	Summary

	Chapter 6: Model Building with DataRobot
	Configuring a modeling project
	Building models and the model leaderboard
	Understanding model blueprints
	Building ensemble models
	Summary

	Chapter 7: Model Understanding
and Explainability
	Reviewing and understanding model details
	Assessing model performance and metrics
	Generating model explanations
	Understanding model learning curves and trade-offs
	Summary

	Chapter 8: Model Scoring
and Deployment
	Scoring and prediction methods
	Generating prediction explanations
	Analyzing predictions and postprocessing
	Deploying DataRobot models
	Monitoring deployed models
	Summary

	Section 3:
Advanced Topics
	Chapter 9: Understanding Forecasting and Time Series Modeling
	Technical requirements
	Appliances energy prediction dataset

	Conceptual introduction to time series forecasting modeling
	Defining and setting up time series projects
	Building time series forecasting models and understanding their model outcomes
	Making predictions with time series models
	Advanced topics in time series modeling
	Summary

	Chapter 10: Recommender Systems
	Technical requirements
	Book-Crossing dataset

	A conceptual introduction to recommender systems
	Approaches to building recommender systems
	Collaborative filtering recommender systems
	Content-based recommender systems
	Hybrid recommender systems

	Defining and setting up recommender systems in DataRobot
	Building recommender systems in DataRobot
	Making recommender system predictions with DataRobot
	Summary

	Chapter 11: Working with Geospatial Data, NLP, and Image Processing
	Technical requirements
	House Dataset

	A conceptual introduction to geospatial, text, and image data
	Geospatial AI
	Natural language processing
	Image processing

	Defining and setting up multimodal data in DataRobot
	Building models using multimodal datasets in DataRobot
	Making predictions using a multimodal dataset on DataRobot
	Summary

	Chapter 12: DataRobot
Python API
	Technical requirements
	Automobile Dataset

	Accessing the DataRobot API
	Using the DataRobot Python client
	Programming in Python using the Jupyter IDE.

	Building models programmatically
	Making predictions programmatically
	Summary

	Chapter 13: Model Governance and MLOps
	Technical requirements
	Book-Crossing dataset

	Governing models
	Addressing model bias and fairness
	Implementing MLOps
	Notifications and changing models in production
	Summary

	Chapter 14: Conclusion
	Finding out additional information about DataRobot
	Future of automated machine learning
	Future of DataRobot

	Other Books You May Enjoy
	Index

