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Preface
DataRobot enables data science teams to become more efficient and productive. This 
book helps you address machine learning (ML) challenges with DataRobot's enterprise 
platform, enabling you to extract business value from data and rapidly generate 
commercial impact for your organization.

You'll begin by learning how to use DataRobot's features to perform data prep and 
cleansing tasks automatically. The book covers best practices for building and deploying 
ML models, along with challenges faced while scaling them to handle complex business 
problems. Moving on, you'll perform exploratory data analysis (EDA) tasks to prepare 
your data to build ML models and ways to interpret results. You'll also discover how to 
analyze the model's predictions and turn them into actionable insights for business users. 
After that, you'll create model documentation for internal as well as compliance purposes 
and learn how the model gets deployed as an API. In addition, you'll find out how to 
operationalize and monitor the model's performance. Finally, you'll work with examples 
of time series forecasting, NLP, image processing, MLOps, and more using advanced 
DataRobot capabilities.

By the end of this book, you'll have learned how to use some of the AutoML and MLOps 
features DataRobot offers to scale ML model building by avoiding repetitive tasks and 
common errors.

Who this book is for
This book is for data scientists, data analysts, and data enthusiasts looking for a practical 
guide to building and deploying robust ML models using DataRobot. Experienced data 
scientists will also find this book helpful for rapidly exploring and building and deploying 
a broader range of models. The book assumes a basic understanding of ML.
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What this book covers
Chapter 1, What Is DataRobot and Why You Need It, describes the current practices and 
process of building and deploying ML models, and some of the challenges in scaling 
that approach. This chapter will then describe what DataRobot is and how DataRobot 
addresses many of these challenges, thus allowing analysts and data scientists to quickly 
add value to their organization. This also helps executives understand how they can use 
DataRobot to efficiently scale their data science practice without a need to hire a large staff 
with hard-to-find skills. This chapter also describes various components of DataRobot, 
how it is architected, how it integrates with other tools, and different options to set it 
up on-premises or in the cloud. It also describes, at a high level, various user interface 
components and what they signify.

Chapter 2, Machine Learning Basics, covers some basic concepts of ML that will be 
used and referenced in this book. This is the bare minimum you need to know to use 
DataRobot effectively. It is not the intent of this chapter to give you a comprehensive 
understanding of ML, but just a refresher of some key ideas.

Chapter 3, Understanding and Defining Business Problems, will show you examples of how 
to get to the root of a problem and then set it up as an ML project. A business problem 
needs to be carefully defined and turned into an ML problem for it to be solved with 
DataRobot. This is a critical step that is often ignored, resulting in problems and failures 
downstream. Please review this chapter carefully to prevent the wastage of a lot of hard 
work. This chapter is tool- and ML method-agnostic.

Chapter 4, Preparing Data for DataRobot, covers how to stitch data together from multiple 
disparate sources at a high level. Depending on the data, DataRobot might perform data 
prep and cleansing tasks automatically, or you might have to do some of these on your 
own. This chapter covers concepts and examples to show how to cleanse and prepare your 
data and the features that DataRobot provides to help with these tasks.

Chapter 5, Exploratory Data Analysis with DataRobot, will show you how to use 
DataRobot to perform various data analyses and get data ready to start building models. 
We provide detailed examples of the kinds of analysis that should be done and what to 
be aware of to prevent issues downstream. Done right, this analysis can help catch data 
problems and also generate useful business insights.

Chapter 6, Model Building with DataRobot, shows step-by-step examples of building different 
types of models with DataRobot. We cover details such as what settings to use under 
different circumstances, how to select specific model types, setting up cross validation, 
building ensemble models, and tracking the top-performing models on the leaderboard.
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Chapter 7, Model Understanding and Explainability, will show you examples of various 
functions and outputs that DataRobot provides to help you understand the models and 
select the one that best solves the business problem. In this chapter, we will cover, via 
examples, what aspects you need to watch out for, and the trade-offs you have to make in 
model selection.

Chapter 8, Model Scoring and Deployment, covers how to use models to score input 
datasets, create predictions to be used in the intended applications, deploy models in 
production, and monitor models. 

Chapter 9, Forecasting and Time Series Modeling, describes how you go about building 
time series models. These types of models are typically used for forecasting applications. 
The chapter shows examples of how different time series problems are handled with 
DataRobot. We cover single- as well as multi-series problems.

Chapter 10, Recommender Systems, covers examples of how you go about building 
recommender systems with DataRobot. These types of models are typically used for 
recommending products or services to users. The chapter covers the strategies and 
functionality differences in how a recommendation problem is handled with DataRobot. 
We cover trade-offs associated with building different recommender models.

Chapter 11, Working with Geospatial Data, NLP, and Image Processing, covers various 
DataRobot functions relating to visualization and analysis of geospatial, text, and image 
features, as well as building ML models that incorporate such features. This chapter 
describes DataRobot capabilities to automatically incorporate text and image data into ML 
models, thereby improving the performance of these models.

Chapter 12, DataRobot Python API, describes when and how to use the DataRobot 
Python API. While DataRobot automates many aspects of model building, there are many 
scenarios where you need to use programming languages such as Python to efficiently and 
scalably perform ML tasks. DataRobot provides a convenient API that allows experienced 
data scientists to execute DataRobot functions programmatically.

Chapter 13, Model Governance and MLOps, covers some recent topics that are beginning 
to get a lot of attention. Once a model has been developed and deployed, it needs to 
be governed and maintained over time. While this is similar to an IT system in many 
ways, there are some critical differences that need to be understood and operationalized. 
This chapter covers several features and functions that DataRobot provides to assist in 
governing and maintaining ML models.

Chapter 14, Conclusion, covers where to go for additional information and other topics 
that might be outside the scope of this book. We also describe where we see automated 
ML and DataRobot heading in the future.
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To get the most out of this book
To get the most out of this book, you will need access to the DataRobot software. The 
commercial version has all the functionality. If you do not have access to a commercial 
version, you can get an evaluation version that works for a limited time and does not 
have all the capabilities discussed. For some of the advanced capabilities and the API to 
work, you will need to know some Python and have access to an open source Python 
environment (for instance, Anaconda or Jupyter Notebooks).

Even though most of what we describe in this book can be done without knowing Python, 
we highly encourage you to learn Python as a next step. Knowing programming languages 
such as Python will open up a lot more possibilities for you and enable you to take better 
advantage of tools such as DataRobot.

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3cj2qp1.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801076807_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "For our purposes, we simply created a copy of our imports-85-
data.xlsx dataset file and named it imports-85-data-score.xlsx."

https://bit.ly/3cj2qp1
https://static.packt-cdn.com/downloads/9781801076807_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801076807_ColorImages.pdf
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A block of code is set as follows:

deployment = dr.Deployment.create_from_learning_model(

    MODEL_ID, label='DEPLOYMENT_LABEL',

    description='DEPLOYMENT_DESCRIPTION',

    default_prediction_server_id=PREDICTION_SERVER_ID)

deployment

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "After 
selecting the options, we can click on the Compute and download predictions button."

Tips or Important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us  
at customercare@packtpub.com and mention the book title in the subject of  
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you have found a mistake in this book, we would be grateful if you would report 
this to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
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Share Your Thoughts
Once you've read Agile Machine Learning with DataRobot, we'd love to hear your 
thoughts! Please click here to go straight to the Amazon review page for this book and 
share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

https://packt.link/r/1801076804


Section 1:  
Foundations

This section will cover some basic but critical items for the success of an ML project. 
Whether you are just starting or are an experienced data scientist, you will find some 
topics that you might not be familiar with or have skipped in the past.

This section comprises the following chapters:

•	 Chapter 1, What Is DataRobot and Why You Need It

•	 Chapter 2, Machine Learning Basics

•	 Chapter 3, Understanding and Defining Business Problems





1
What Is DataRobot 

and Why You  
Need It?

Machine learning (ML) and AI are all the rage these days, and it is clear that these 
technologies will play a critical role in the success and competitiveness of most 
organizations. This will create considerable demand for people with data science skills.

This chapter describes the current practices and processes of building and deploying 
ML models and some of the challenges in scaling these approaches to meet the expected 
demand. The chapter then describes what DataRobot is and how DataRobot addresses 
many of these challenges, thus allowing analysts and data scientists to quickly add value 
to their organizations. This chapter also helps executives understand how they can use 
DataRobot to efficiently scale their data science practice without the need to hire a 
large staff with hard-to-find skills, and how DataRobot can be leveraged to increase the 
effectiveness of your existing data science team. This chapter covers various components 
of DataRobot, how it is architected, how it integrates with other tools, and different 
options to set it up on-premises or in the cloud. It also describes, at a high level, various 
user interface components and what they signify.
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By the end of this chapter, you will have learned about the core functions and architecture 
of DataRobot and why it is a great enabler for data analysts as well as experienced data 
scientists for solving the most critical challenges facing organizations as they try to extract 
value from data.

In this chapter, we're going to cover the following topics:

•	 Data science practices and processes

•	 Challenges associated with data science

•	 DataRobot architecture

•	 DataRobot features and how to use them

•	 How DataRobot addresses data science challenges

Technical requirements
This book requires that you have access to DataRobot. DataRobot is a commercial piece of 
software, and you will need to purchase a license for it. Most likely your organization has 
already purchased DataRobot licenses, and your administrator can set up your account on 
a DataRobot instance and provide you with the appropriate URL to access DataRobot.

A trial version is available, at the time of the writing of this book, that you can access from 
DataRobot's website: https://www.datarobot.com/trial/. Please be aware that 
the trial version does not provide all of the functionality of the commercial version, and 
what it provides may change over time.

Data science processes for generating 
business value
Data science is an emerging practice that has seen a lot of hype. Much of what it means 
is under debate and the practice is evolving rapidly. Regardless of these debates, there 
is no doubt that data science methods can provide business benefits if used properly. 
While following a process is no guarantee of success, it can certainly improve the odds of 
success and allow for improvement. Data science processes are inherently iterative, and it 
is important to not get stuck in a specific step for too long. People looking for predictable 
and predetermined timelines and results are bound to be disappointed. By all means, 
create a plan, but be ready to be nimble and agile as you proceed. A data science project 
is also a discovery project: you are never sure of what you will find. Your expectations or 
your hypotheses might turn out to be false and you might uncover interesting insights 
from unexpected sources.

https://www.datarobot.com/trial/
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There are many known applications of data science and new ones are being discovered 
every day. Some example applications are listed here:

•	 Predicting which customer is most likely to buy a product

•	 Predicting which customer will come back

•	 Predicting what a customer will want next

•	 Predicting which customer might default on a loan

•	 Predicting which customer is likely to have an accident

•	 Predicting which component of a machine might fail

•	 Forecasting how many items will be sold in a store

•	 Forecasting how many calls the call center will receive tomorrow

•	 Forecasting how much energy will be consumed next month

Figure 1.1 shows a high-level process that describes how a data science project might go 
from concept to value generation:

Figure 1.1 – Typical process steps with details about what happens during each step
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Following these steps is critical for a successful machine learning project. Sometimes these 
steps get skipped due to deadlines or issues that inevitably surface during development 
and debugging. We will show how using DataRobot helps you avoid some of the problems 
and ensure that your teams are following best practices. These steps will be covered in 
great detail, with examples, in other chapters of this book, but let's get familiar with them 
at a high level.

Problem understanding
This is perhaps the most important step and also the step that is given the least attention. 
Most data science projects fail because this step is rushed. This is also the task where you 
have the least methods and tools available from the data science disciplines. This step 
involves the following:

•	 Understanding the business problem from a systemic perspective

•	 Understanding what it is that the end users or consumers of the model's  
results expect

•	 Understanding what the stakeholders will do with the results

•	 Understanding what the potential sources of data are and how the data is captured 
and modified before it reaches you

•	 Assessing whether there are any legal concerns regarding the use of data and  
data sources

•	 Developing a detailed understanding of what various features of the datasets mean

Data preparation
This step is well known in the data science community as data science teams typically 
spend most of their time in this step. This is a task where DataRobot's capabilities start 
coming into play, but not completely. There is still a lot of work that the data science or data 
engineering teams have to do using SQL, Python, or R. There are also many tasks in this 
step that require a data scientist's skill and experience (for example, feature engineering), 
even though DataRobot is beginning to provide capabilities in this area. For example, 
DataRobot provides a lot of useful data visualizations and notifications about data quality, 
but it is up to the analyst to make sense out of them and take appropriate actions.

This step also involves defining the expected result (such as predicting how many items 
will be sold next week or determining the probability of default on a loan) of the model 
and how the quality of results will be measured during model development, validation, 
and testing stages.
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Model development
This step involves the development of several models using different algorithms and 
optimizing or tuning hyperparameters of the algorithms. Results produced by the models 
are then evaluated to narrow down the model list, potentially drop some of the features, 
and fine-tune the hyperparameters.

It is also common to look at feature effects, feature importance, and partial dependence 
plots to engineer additional features. Once you are satisfied with the results, you  
start thinking about how to turn the predictions and explanations into useable and 
actionable information.

Model deployment
Upon completion of model development, the model results are reviewed with users and 
stakeholders. This is the point at which you should carefully assess how the results will 
be turned into actions. What will the consequences of those actions be, and are there any 
unintended consequences that could emerge? This is also the time to assess any fairness 
or bias issues resulting from the models. Make sure to discuss any concerns with the users 
and business leaders.

DataRobot provides several mechanisms to rapidly deploy the models as REST APIs or 
executable Java objects that can be deployed anywhere in the organization's infrastructure 
or in the cloud. Once the model is operational as an API, the hard part of change 
management starts. Here you have to make sure that the organization is ready for the 
change associated with the new way of doing business. This is typically hard on people 
who are used to doing things a certain way. Communicating why this is necessary, why it is 
better, and how to perform new functions are important aspects that frequently get missed.

Model maintenance
Once the model is successfully deployed and operating, the focus shifts to managing 
the model operations and maintenance. This includes identifying data gaps and other 
recommendations to improve the model over time as well as refining and retraining 
the models as needed. Monitoring involves evaluating incoming data to see whether 
the data has drifted and whether the drift requires action, monitoring the health of the 
prediction services, and monitoring the results and accuracy of the model outputs. It 
is also important to periodically meet with users to understand what the model does 
well and where it can be improved. It is also common to sometimes employ champion 
and challenger models to see whether a different model is able to perform better in the 
production setting.



8     What Is DataRobot and Why You Need It? 

As we outlined before, although these steps are presented in a linear fashion, in practice 
these steps do not occur in this exact sequence and there is typically plenty of iteration 
before you get to the final result. ML model development is a challenging process, and we 
will now discuss what some of the challenges are and how to address them.

Challenges associated with data science
It is no secret that getting value from data science projects is hard, and many projects end 
in failure. While some of the reasons are common to any type of project, there are some 
unique challenges associated with data science projects. Data science is still a relatively 
young and immature discipline and therefore suffers from problems that any emerging 
discipline encounters. Data science practitioners can learn from other mature disciplines 
to avoid some of the mistakes that others have learned to avoid. Let's review some of the 
key issues that make data science projects challenging:

•	 Lack of good-quality data: This is a common refrain, but this is a problem that is 
not likely to go away anytime soon. The key reason is that most organizations are 
used to collecting data for reporting. This tends to be aggregate, success-oriented 
information. Data needed for building models, on the other hand, needs to be 
detailed and should capture all outcomes. Many organizations invest heavily in 
data and data warehouses in response to the need for data; the mistake they make 
is collecting it from the perspective of reporting rather than modeling. Hence, even 
after all the time and costs spent, they end up in a place where enough useable data 
is not available. This leads to frustration in senior leadership as to why their teams 
cannot make use of these large data warehouses built at enormous expense. Taking 
some time in developing a systemic understanding of the business can help mitigate 
this problem, as discussed in the following chapters.

•	 Explosion of data: Data is being generated and collected on an exponential scale. 
As more data is collected, the scale of the data makes it harder to be analyzed  
and understood through traditional reporting methods. New data also spawns  
new use cases that were previously not possible. The scaling of data also increases 
noise. This makes it increasingly difficult to extract meaningful insights with 
traditional methods.
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•	 Shortage of experienced data scientists: This is another topic that gets a lot of 
press. The reason for the shortage is that it is a relatively new field where techniques 
and methods are still rapidly evolving. Another factor is that data science is a 
multi-disciplinary field that requires expertise in multiple areas, such as statistics, 
computer science, and business, as well as knowledge of the domain where it is to 
be applied. Most of the talent pool today is relatively inexperienced and therefore 
most data scientists have not had a chance to work on a variety of use cases with a 
broad range of methods and data types. Best practices are still evolving and are not 
in widespread use. As more and more jobs become data-driven, it will also become 
important for a broad range of employees to become data-savvy.

•	 Immature tools and environments: Most of the tools and environments being 
used are relatively immature, and that makes it difficult to efficiently build and 
deploy models. Most of a data scientist's time is spent wrestling with data and 
infrastructure issues, which limits the time spent understanding the business 
problem and evaluating the business and ethical implications of models. This in 
turn increases the odds of failure to produce lasting business value.

•	 Black box models: As the complexity of models rises, our ability to understand 
what they are doing goes down. This lack of transparency creates many problems 
and can lead to models producing nonsensical results or, at worst, dangerous results. 
To make matters worse, these models tend to have better accuracy on training and 
validation datasets. Black box models tend to be difficult to explain to stakeholders 
and are therefore less likely to be adopted by users.

•	 Bias and fairness: The issue of ML models being biased and unfair has been raised 
recently and it is a key concern for anyone looking to develop and deploy ML 
models. The biases can creep into the models via biased data, biased processes, or 
even biased decision-making using model results. The use of black box models 
makes this problem much harder to track and manage. Bias and fairness are hard to 
detect but will be increasingly important not only for an organization's reputation 
but also with regard to the regulatory or legal problems that they can create.

Before we discuss how to address these challenges, we need to introduce you to 
DataRobot because, as you might have guessed, DataRobot helps in addressing many of 
these challenges.
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DataRobot architecture
DataRobot is one of the most well-known commercial tools for automated ML 
(AutoML). It only seems appropriate that the technology meant to automate everything 
should itself benefit from automation. As you go through the data science process, you 
will realize that there are many tasks that are repetitive in nature and standardized enough 
to warrant automation. DataRobot has done an excellent job of capturing such tasks to 
increase the speed, scale, and efficiency of building and deploying ML models. We will 
cover these aspects in great detail in this book. Having said that, there are still many tasks 
and aspects of this process that still require decisions, actions, and tradeoffs to be done 
by data scientists and data analysts. We will highlight these as well. The following figure 
shows a high-level view of the DataRobot architecture:

Figure 1.2 – Key components of the DataRobot architecture

The figure shows five key layers of the architecture and the corresponding components. In 
the following sections, we will describe each layer and how it enables a data science project.

Hosting platform
The DataRobot environment is accessed via a web browser. The environment itself can 
be hosted on an organization's servers, or within an organization's server instances on 
a cloud platform, such as AWS or DataRobot's cloud. There are pros and cons to each 
hosting option and which option you should choose depends on your organization's 
needs. Some of these are discussed at a high level in Table 1.1:
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Figure 1.3 – Pros and cons of various hosting options

As you can gather from this table, DataRobot offers you a lot of choices, and you can pick 
the option that suits your environment the best. It is important to get your IT, information 
security, and legal teams involved in this conversation. Let's now look at how data comes 
into DataRobot.

Data sources
Datasets can be brought into DataRobot via local files (csv, xlsx, and more), by 
connecting to a relational database, from a URL, or from Hadoop Distributed File 
System (HDFS) (if it is set up for your environment). The datasets can be brought directly 
into a project or can be placed into an AI catalog. The datasets in the catalog can be shared 
across multiple projects. DataRobot has integrations and technology alliances with several 
data management system providers.

Core functions
DataRobot provides a fairly comprehensive set of capabilities to support the entire ML 
process, either through the core product or through add-on components such as Paxata, 
which provides easy-to-use data preparation and Exploratory Data Analysis (EDA) 
capabilities. Discussion of Paxata is beyond the scope of this book, so we will provide 
details of the capabilities of the core product. DataRobot automatically performs several 
EDA analyses that are presented to the user for gaining insights into the datasets and 
catching any data quality issues that may need to be fixed.
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The automated modeling functions are the most critical capability offered by DataRobot. 
This includes determining the algorithms to be tried on the selected problem, performing 
basic feature engineering, automatically building models, tuning hyperparameters, 
building ensemble models, and presenting results. It must be noted that DataRobot 
mostly supports supervised ML algorithms and time series algorithms. Although there are 
capabilities to perform Natural Language Processing (NLP) and image processing, these 
functions are not comprehensive. DataRobot has also been adding to MLOps capabilities 
recently by providing functions for rapidly deploying models as REST APIs, monitoring 
data drift and service health, and tracking model performance. DataRobot continues to 
add capabilities such as support for geospatial data and bias detection.

These tasks are normally done by using programming languages such as R and Python 
and can be fairly time-consuming. The time spent coding up data analysis, model 
building, output analysis, and deployment can be significant. Typically, a lot of time is also 
spent debugging and fixing errors and making the code robust. Depending on the size 
and complexity of the model, this can take anywhere from weeks to months. DataRobot 
can reduce this time to days. This time can in turn be used to deliver projects faster, build 
more robust models, and better understand the problem being solved.

External interactions
DataRobot functions can be accessed via a comprehensive user interface (which we will 
describe in the next section), a client library that can be used in a Python or R framework 
to programmatically access DataRobot capabilities via an API, and a REST API for use by 
external applications. DataRobot also provides the ability to create applications that can be 
used by business users to enable them to make data-driven decisions.

Users
While most people believe that DataRobot is for data analysts and data scientists who  
do not like to code, it offers significant capabilities for data scientists who can code and 
can significantly increase the productivity of any data science team. There is also some 
support for business users for some specific use cases. Other systems can integrate with 
DataRobot models via the API, and this can be used to add intelligence to external 
systems or to store predictions in external databases. Several tool integrations exist 
through their partners program.
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Navigating and using DataRobot features
Now that you have some familiarity with the core functions, let's take a quick tour of 
what DataRobot looks like and how you navigate the various functions. This section will 
introduce DataRobot at a high level, but don't worry: we will get into details in subsequent 
chapters. This section is only meant to familiarize you with DataRobot functionality.

Your DataRobot administrator will provide you with the appropriate URL and a username 
and password to access your DataRobot instance. In my experience, Google Chrome 
seems to work best with DataRobot, but you can certainly try other browsers as you see fit. 

Note
Please note that the screens and options you see depend on the products you 
have the license for and the privileges granted to you by your admin. For most 
part, it will not affect the flow of this book. Since we will be focusing on the ML 
development core of DataRobot, you should be able to follow along.

So, let's go ahead and launch the browser and go to your DataRobot URL. You will see a 
login screen as shown in the following figure:

Figure 1.4 – DataRobot login screen
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Go ahead and log in using your credentials. Once you have logged in, you will be 
presented with a welcome screen (Figure 1.4) that prompts you to select what you want to 
do next. It is also possible that (depending on your setup) you will be directly taken to the 
data input screen (Figure 1.5):

Figure 1.5 – Welcome screen

At this point, we will select the ML Development option and click the Continue button. 
This prompts you to provide the dataset that you wish to build models with (Figure 1.5):
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Figure 1.6 – New project/drag dataset screen

At this point, you can drag a dataset file from your local machine onto the screen (or select 
one of the other choices) and DataRobot will start the process of analyzing your data. You can 
click on the View dataset requirements link to see the file format options available (Figure 
1.6). The file size requirements for your instance might be different from what you see here:

Figure 1.7 – Dataset requirements
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At this point, you can upload any test dataset from your local drive. DataRobot will 
immediately start evaluating your data (Figure 1.7):

Figure 1.8 – EDA

We will cover the process of building the project and associated models in later chapters; 
for now, let's cover what other options we have. If you click on the ? icon in the top right, 
you will see the DOCUMENTATION drop-down menu (Figure 1.8):

Figure 1.9 – DOCUMENTATION drop-down menu
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Here you see various options to learn more about different functions, contact customer 
support, or interact with the DataRobot community. I highly recommend joining the 
community to interact with and learn from other community members. You can reach 
the community via https://community.datarobot.com. If you select Platform 
Documentation from the dropdown, you will see extensive documentation on DataRobot 
functions (Figure 1.9):

Figure 1.10 – DataRobot platform documentation

https://community.datarobot.com


18     What Is DataRobot and Why You Need It? 

You can review the various topics at your leisure or come back to a specific topic as 
needed according to the task you are working on. Let's click on the ? icon in the top right 
again and this time select API Documentation from the dropdown. You will now see the 
documentation for the DataRobot API (Figure 1.10):

Figure 1.11 – DataRobot API Documentation

We will cover the API in the advanced topics in later chapters. If you are not familiar 
with programming or are relatively new to programming, you can ignore this part for 
now. If you are an experienced data scientist with expertise in Python or R, you can start 
reviewing the various functions available to you to automate your model-building tasks 
even further.



Navigating and using DataRobot features     19

Let's go back to the main DataRobot page and this time select the folder icon in the top 
right of the page (Figure 1.11):

Figure 1.12 – Project drop-down menu

If you do not see the folder icon, it simply means that you do not have any projects 
defined. We will describe creating projects in more detail later. For now, just familiarize 
yourself with different options and what they look like. Here you will see options to create 
a new project or manage existing projects. In here, you will also see some details about the 
currently active project as well as a list of recent projects.
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The Create New Project option takes you back to the new project page that we saw before 
in Figure 1.5. If you select the Manage Projects menu, it will show all of your projects 
listed by create date (Figure 1.12). Here you are able to select a project to see more details, 
clone a project, share the project with other users, or delete a project as needed, as shown 
in the following figure:

Figure 1.13 – Manage projects page

If you click on the very last menu item in the top right of the page that looks like a person, 
you will see a dropdown (Figure 1.13):

Figure 1.14 – User account management dropdown
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From here you can manage your profile and adjust your account settings. If you have 
admin privileges, you can view and manage other users and groups. You can also sign out 
of DataRobot if needed.

If you select the Profile menu, you will see details of your account (Figure 1.14):

Figure 1.15 – User profile page
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Here you can update some of your information. You will also see some new menu choices on 
the second menu row at the top. This allows you to change settings or access some developer 
options, and so on. If you select the Settings menu, you will see the following (Figure 1.15):

Figure 1.16 – User Settings

On this page, you can change your password, set up two-factor authentication, change the 
theme, and set up notifications (you will see different options available to you based on 
how your account was set up by your administrator).
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If you select Developer Tools, you will see the following (Figure 1.16):

Figure 1.17 – Developer Tools screen

Here you can create an API key associated with your account. This key is useful for 
authentication if you will be using the DataRobot API. You can also download the API 
package to set up a portable prediction server to deploy models within your organization's 
infrastructure.
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If you click on the AI Catalog menu at the top, you will see a catalog of shareable datasets 
available within DataRobot (Figure 1.17):

Figure 1.18 – AI Catalog

This page shows you a list of datasets available. If you do not see any datasets, you can 
upload a test dataset here by clicking on the Add new data button (Figure 1.18). You can 
also click on a dataset to explore the data available. You can search and sort by sources, 
user-defined tags, or owner/creator:

Figure 1.19 – Dataset information page
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Normally a dataset is only available within a project. If you want to share datasets across 
projects or iterations of projects, you can create the dataset within this catalog. This allows 
you to share these datasets across projects and users. The datasets can be static, or they 
can be dynamically created using a SQL query as needed. Datasets can also be modified or 
blended via Spark SQL if you need data from multiple tables or sources for a project.

If you click on the Profile button, you will see profile-level information about the dataset 
(Figure 1.19). This information is automatically compiled for you. We will describe these 
capabilities and how to use them in more detail later:

Figure 1.20 – Dataset information page

This page shows details of the dataset that is part of the project that is active at that time. 
This page is one of the key components of the DataRobot capability. The page shows 
summary information as well as any data quality issues that DataRobot has detected. 
Below that, it shows summaries of data features as well as a feature's importance relative to 
the target feature. We will cover these capabilities in more detail in subsequent chapters.
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Let's now click on the Data menu at the top left of the page. This page (Figure 1.20) shows 
a detailed analysis of the dataset for your currently active project:

Figure 1.21 – Project data page

This page shows the results of the analysis of your datasets, provides any warnings, relative 
importance of the features, and the feature lists for use in your project. We will review the 
functionality of this page in great detail in later chapters.
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Let's now click on the Models menu item at the top. This shows the model leaderboard for 
the active project (Figure 1.21):

Figure 1.22 – Model leaderboard

This is another critical page where you will spend a lot of your time during the modeling 
process. Here you can see the top-performing models that DataRobot has built and their 
performance metrics for validation, cross-validation, and holdout samples. You can 
drill down into the details of any selected model. It is important to note that DataRobot 
mostly works with supervised learning problems; currently, it does not have support for 
unsupervised learning (except for some anomaly detection) or reinforcement learning. 
Also, support for NLP and image processing problems is limited. Similarly, there are 
situations where either due to data limitations or extreme scales, you will find that the 
automation adds a level of overhead that makes it impractical to use DataRobot. If your 
project requires advanced capabilities in these areas, you will need to work in Python or R 
directly. More on this in subsequent chapters.
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Let's now move to the next menu item, MLOps. When you click on MLOps, you will see 
the screen shown in Figure 1.22:

Figure 1.23 – MLOps page

The MLOps page shows you your active deployments and their health. You can set up 
alerts relating to data drift or model accuracy as needed for your use cases.

The next menu item is Model Registry. Now, Model registry is the mechanism by which 
you can bring externally developed models into DataRobot. This capability is an add-on 
that your organization may or may not have purchased. This aspect is an advanced topic 
that is beyond the scope of this book.

Let's click on the next menu item, Applications. You will now see what's shown in  
Figure 1.23:

Figure 1.24 – Applications page
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Applications is a relatively new functionality in DataRobot that is meant to allow business 
users to easily access model results without needing to get DataRobot user licenses.

This concludes our quick tour of what DataRobot is and what it looks like. We will revisit 
many of these components in great detail and see examples of how these are used to take a 
data science project from start to finish.

Addressing data science challenges with 
DataRobot
Now that you know what DataRobot offers, let's revisit the data science process and 
challenges to see how DataRobot helps in addressing these challenges and why this is a 
valuable tool in your toolkit.

Lack of good-quality data
While DataRobot cannot do much to address this challenge, it does offer some capabilities 
to handle data with quality problems:

•	 Automatically highlights data quality problems.

•	 Automated EDA and data visualization expose issues that could be missed.

•	 Handles and imputes missing values.

•	 Detection of data drift.

Explosion of data
While it is unlikely that the increase in the volume and variety will slow down any time 
soon, DataRobot offers several capabilities to address these challenges:

•	 Support for SparkSQL enables the efficient pre-processing of large datasets.

•	 Automatically handles categorical data encodings and selects appropriate  
model blueprints.

•	 Automatically handles geospatial features, text features, and image features.
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Shortage of experienced data scientists
This is a key challenge for most organizations and data science teams, and DataRobot is 
well positioned to address this challenge:

•	 Provides capabilities that cover most of the data science process steps.

•	 Significant automation of several routine tasks by providing pre-built blueprints 
encoded with best practices.

•	 Experienced data scientists can build and deploy models much faster.

•	 Data analysts or data scientists who are not very comfortable coding can utilize 
DataRobot capabilities without having to write a lot of code.

•	 Experienced data scientists who are comfortable with coding can utilize the APIs to 
automatically build and deploy an order of magnitude more models than otherwise 
feasible without the support of other data engineering or IT staff.

•	 Even experienced data scientists do not know all the possible algorithms and 
typically do not have the time to try out many of the combinations and build 
analysis visualizations and explanations for all models. DataRobot takes care of 
many of these tasks for them, enabling them to focus more time on understanding 
the problem and analyzing results.

Immature tools and environments
This is a key barrier to the productivity and effectiveness of any data science organization. 
DataRobot clearly addresses this key challenge by offering the following: 

•	 Ease of deployment of any model as a REST API.

•	 Ease of use in developing multiple competing models and selecting the best ones 
without worrying about the underlying infrastructure, installation of compatible 
versions, and without coding and debugging. These tasks can take up a lot of time 
that would be better spent on understanding and solving the business problem.

•	 DataRobot encodes many of the best practices into their development process so  
as to prevent mistakes. DataRobot automatically takes care of many small details 
that can be overlooked even by experienced data scientists, leading to flawed models 
or rework.

•	 DataRobot provides automated documentation of models and modeling steps that 
could otherwise be glossed over or forgotten. This becomes valuable at a later time 
when a data scientist has to revisit an old model built by them or someone else.
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Black box models
This is a key challenge that DataRobot has done extensive work on to provide methods to 
help make models more explainable, such as the following:

•	 Automated generation of feature importance (using Shapley values and other 
methods) and partial dependence plots for models

•	 Automated generation of explanations for specific predictions

•	 Automated generation of simpler models that could be used to explain the  
complex models

•	 Ability to create models that inherently more explainable such as Generalized 
Additive Models (GAMs)

Bias and fairness
Recently, DataRobot has added capabilities to help detect bias and fairness issues in 
models. This is no guarantee of a complete lack of bias, but it's a good starting point to 
ensure positive movement in this direction. Some of the capabilities added are listed here:

•	 Specify protected features that need to be checked for bias.

•	 Specify bias metrics that you want to use to check for fairness.

•	 Evaluate your models using metrics for protected features.

•	 Use of model explanations to investigate whether there is potential for unfairness.

While many people believe that with these automated tools, you no longer need data 
scientists, nothing could be further from the truth. It is, however, obvious that such tools 
will make data science teams a lot more valuable to their organizations by unlocking more 
value faster and by making these organizations more competitive. It is therefore likely that 
tools such as DataRobot will become increasingly commonplace and see widespread use.
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Summary
Most data scientists today are bogged down in the implementation details or are 
implementing suboptimal algorithms. This leaves them with less time to understand the 
problem and to search for optimal algorithms or their hyperparameters. This book will show 
you how to take your game to the next level and let the software do the repetitive work.

In this chapter, we covered what a typical data science process is and how DataRobot 
supports this process. We discussed steps in the process where DataRobot offers a lot of 
capability and we also highlighted areas where a data scientist's expertise and domain 
understanding is critical (areas such as problem understanding and analyzing the impacts 
of deploying a model on the overall system). This highlights an important point in that 
success comes from the combination of skilled data scientists and analysts and appropriate 
tools (such as DataRobot). By themselves, they cannot be as effective as the combination. 
DataRobot enables relatively new data scientists to quickly develop and deploy robust 
models. At the same time, experienced data scientists can use DataRobot to rapidly explore 
and build a broader range of models than they would be able to build on their own.

We covered some of the key data science challenges and how DataRobot helps you 
overcome some of the specific challenges. This should help guide leaders on how to craft 
the right combination of data scientists and the tools and infrastructure they need. We 
also covered the DataRobot architecture, its components, and what DataRobot looks like. 
You got a taste of what you will see when you start using it and where to go to find specific 
functions and help.

Hopefully, this chapter has shown you why DataRobot could be an important tool in your 
toolbox regardless of your experience or how comfortable you are with coding. In the 
following chapters, we will use hands-on examples to show how to use DataRobot in detail 
and how to move your projects into a higher gear. But before we do that, we need to cover 
some ML basics in the next chapter.
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Machine Learning 

Basics
This chapter covers some basic concepts of machine learning that will be used and 
referenced in this book. This is the bare minimum you need to know in order to use 
DataRobot effectively. Experienced data scientists can safely skip this chapter. It is not 
the intention of this chapter to give you a comprehensive understanding of statistics 
or machine learning, but just a refresher of some key ideas and concepts. Also, the 
focus is on practical aspects of what you need to know in order to understand the 
core ideas without going into too much detail. It might be tempting to jump in and let 
DataRobot automatically build the models, but doing that without a basic understanding 
could backfire. If you are leading a data science team, please make sure that you have 
experienced data scientists in your teams who are mentoring others and that there are 
other governance processes in place.

Some of these concepts will come up again during the hands-on examples, but we are 
covering many concepts here that might not come up during a specific example, but might 
come up in relation to your project at some point. The topics listed here can be used as a 
guide to determine some of the basic knowledge that you require in order to start using 
powerful tools such as DataRobot.
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By the end of this chapter, you will have learned some of the core concepts you need  
to know to use DataRobot effectively. In this chapter, we're going to cover the following 
main topics:

•	 Data preparation

•	 Data visualization

•	 Machine learning algorithms

•	 Performance metrics

•	 Understanding the results

Data preparation
Before an algorithm can be applied to a dataset, the dataset needs to fit a certain pattern. 
The dataset also needs to be free of errors. Certain methods and techniques are used to 
ensure that the dataset is ready for the algorithms, and this will be the focus of this section.

Supervised learning dataset
Since DataRobot mostly works with supervised learning problems, we will only focus on 
datasets for supervised machine learning (other types will be covered in a later section). In 
a supervised machine learning problem, we provide all the answers as part of the dataset. 
Imagine a table of data where each row represents a set of clues with their corresponding 
answers (Figure 2.1):

Figure 2.1 – Supervised learning dataset
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This dataset is made up of columns that contain clues (these are called features), and 
there is a column with the answers (this is called target). Given a dataset that looks like 
this, the algorithm learns how to produce the right answer given a set of clues. No matter 
what form your data is in, your task is to first transform it to make it look like the table in 
Figure 2.1. Note that the clues that you have might be spread across multiple databases or 
Excel files. You will have to compile all of that information into one table. If the datasets 
you have are complex, you will need to use languages such as SQL, tools such as Python 
Pandas, or Excel, or tools such as Paxata.

Time series datasets
Time series or forecasting problems have time as a key component of their datasets.  
They are similar to the supervised learning datasets, with slight differences, as shown in 
Figure 2.2:

Figure 2.2 – Time series dataset

You need to make sure that your time series datasets appear as shown in the preceding 
diagram. It should have a date or time-based column, and a column with the series values 
you are trying to forecast, and a set of clues as needed. You can also add columns that help 
to categorize different series, if there are multiple time series that you need to forecast. For 
example, you might be interested in forecasting units sold for dates 5 and 6. If your data is 
in some other form, it needs to be transformed to look like the preceding diagram.
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Data cleansing
The data that comes to you will typically have errors in it. For example, you might have 
text in a field that is supposed to contain numbers. You might see a price column where 
the values may contain a $ sign on occasion, but no sign at other times. DataRobot can 
catch some of these, but there are times when an automated tool will not catch these, so 
you need to look and analyze the dataset carefully. It is useful to sometimes upload your 
data to DataRobot to see what it finds, and then use its analysis to determine the next 
steps. Some of this cleansing will need to be performed outside DataRobot, so be prepared 
to iterate a few times to get the data set up correctly. Common issues to watch out for 
include the following:

•	 Wrong data type in a column

•	 Mixed data types in a column

•	 Spaces or other characters in numeric columns that make them look like text

•	 Synonyms or misspelled words

•	 Dates encoded as strings

•	 Dates with differing formats

Data normalization and standardization
When different data features have varying scales and ranges, it becomes harder to compare 
their impacts on the target values. Also, many algorithms have difficulty in dealing with 
different scales of values, sometimes leading to stability issues. One method for avoiding 
these problems is to normalize (not to be confused with database normal forms) or 
standardize the values.

In normalization (also known as scaling), you scale the values such that they range  
from 0 to 1:

Xnormalized = (X – Xmin) / (Xmax – Xmin)

Standardization, on the other hand, centers the data such that the mean becomes zero and 
scales it such that the standard deviation becomes 1. This is also known as z-scoring 
the data:

Xstandardized = (X – Xmean) / XSD

Here, Xmean is the mean of all X values, and XSD is the standard deviation of X values.

In general, you will not need to worry about this because DataRobot automatically does 
this for the datasets as required.
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Outliers
Outliers are values that seem to be out of place compared to the rest of the dataset. These 
values can be very large or very small. In general, values that are more than three standard 
deviations from the mean are considered outliers, but this only applies to features 
where values are expected to be normally distributed. Outliers typically come from 
data quality issues or some unusual situations that are not considered relevant enough 
to be trained on. The data points deemed to be outliers are typically removed from the 
dataset to prevent them from overpowering your models. The rules of thumb are only for 
highlighting the candidates. You will have to use your judgment to determine whether 
any values are outliers and whether they need to be removed. Once again, DataRobot will 
highlight potential outliers, but you will have to review those data points and determine 
whether to remove them or leave them in.

Missing values
This is a very common problem in datasets. Your dataset may contain many missing 
values, marked as NULL or NaN. In some cases, you will see a ?, or you might see an 
unusual value, such as -999, that an organization might be using to represent a missing 
or unknown value. How you choose to handle such values depends a lot on the problem 
you are trying to solve and what the dataset represents. Many times, you might choose 
to remove the row of data that contains a missing value. Sometimes, that is not possible 
because you might not have enough data, and removing such rows might lead to the 
removal of a significant portion of your dataset. Sometimes, you will see a large number of 
values in a feature (or column) that might be missing. In those situations, you might want 
to remove that feature from the dataset.

Another possible way of dealing with this situation is to fill the missing values with a 
reasonable guess. This could take the form of a zero value, or the mean value for that 
feature, or a median value of that feature. For categorical data, missing values are typically 
treated as their own separate category.

More sophisticated methods use the k-nearest neighbor algorithm to compute missing 
values based on other similar data points. No one answer will be appropriate every time, 
so you will need to use your judgment and understanding of the problem to make a 
decision. One final option is to leave it as it is and let DataRobot figure out how to deal 
with the situation. DataRobot has many imputation strategies as well as algorithms to 
handle missing values. But you have to be careful, as that might not always lead to the best 
solution. Talk to an experienced data scientist and use your understanding of the business 
problem to plot a course of action.
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Category encoding
In many problems, you have to transform your features into numeric values. This is 
because many algorithms cannot handle categorical data. There are many ways to encode 
categorical values and DataRobot has many of these methods built in. Some of these 
techniques are one-hot encoding, leave one out encoding, and target encoding. We will 
not get into the details, as normally you would let DataRobot handle this for you, but 
there might be cases where you will want to encode it yourself in a specific way due to 
your understanding of the business problem. This feature of DataRobot is a great time 
saver and typically works very well for most problems.

Consolidate categories
Sometimes, you have categorical data that contains a large number of categories. Although 
there are methods for dealing with large category counts (as discussed in the preceding 
section), many times, it is advisable to consolidate the categories. For example, you 
might have many categories that contain very few data points, but are very similar to one 
another. In this case, you can combine them into a single category. In other cases, it might 
just be that someone used a different spelling, a synonym, or an abbreviation. In such 
cases, it is better to combine them into a single category as well. Sometimes, you might 
want to split up a numerical feature into bins that have a business meaning for your users 
or stakeholders. This is an example of data preparation that you will need to do on your 
own based on your understanding of the problem. You should do this prior to uploading 
the data into DataRobot.

Target leakage
Sometimes, the dataset contains features that are derived from the target itself. These are 
not known in advance or are not known at the time of prediction. Inadvertently using 
these features to build a model causes problems downstream. This issue is called target 
leakage. The dataset should be inspected carefully and such features should be removed 
from the training features. DataRobot will also analyze the features automatically and try 
to flag any features that might lead to target leakage.
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Term-document matrix
Your dataset may contain features that contain text or notes. These notes frequently 
contain important information that is useful for making decisions. Many of the 
algorithms, however, cannot make use of this text directly. This text has to be parsed into 
numeric values for it to become useful to modeling algorithms. There are several methods 
for doing that, with the most common one being the term-document matrices. Document 
here refers to a single text or notes entry. Each of these documents can be parsed to split 
it up into terms. Now you can count how many times a term showed up in a document. 
This result can be stored in a matrix called a Term Frequency (TF) matrix. Some of 
this information can also be visualized in word clouds. DataRobot will automatically 
build these word clouds for you. While TF is useful, it can be limiting because some 
terms might be very common in all the documents, hence they are not very useful in 
distinguishing between them. This leads to another idea, whereby perhaps we should look 
for terms that are somewhat unique to a document. This concept of giving more weight 
to a term that is present in some documents only is called Inverse Document Frequency 
(IDF). The combination of a term showing up multiple times in a document (TF) and 
it being somewhat rare (IDF) is called TFIDF. TFIDF is something that DataRobot will 
compute automatically for you and gets applied to features that contain text.

Data transformations
While DataRobot will do many data transformations for you (and it keeps adding more 
all the time), there are many transformations that will impact your model but that 
DataRobot will not be able to catch. You will have to do these on your own. Examples of 
these are mathematical transformations such as log, square, square root, absolute values, 
and differences. Some of the simple ones can be set up inside DataRobot, but for more 
complex ones, you will have to perform the operations outside of DataRobot or in tools 
such as Paxata. Sometimes, you will do a transformation to linearize your problem or to 
deal with features that have long-tailed data. Some of the transformations that DataRobot 
does automatically are as follows:

•	 Computing aggregates such as counts, min, max, average, median, most frequent, 
and entropy

•	 An extensive list of time-based features, such as change over time, max over time, 
and averages over time

•	 Some text extraction features, such as word counts, extracted tokens, and term-
document matrices

•	 Geospatial features from geospatial data

We will discuss this topic again in more detail in Chapter 4, Preparing Data for DataRobot.
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Collinearity checks
In any given dataset, there will be features that are highly correlated to other features. In 
essence, they carry the same information as some other features. It is generally desirable 
to remove such features that are highly duplicative of some other features in the dataset. 
DataRobot performs these checks automatically for you and will flag these collinear 
features. This is especially critical for linear models, but some of the newer methods 
can deal with this issue better. What thresholds to use varies based on the modeling 
algorithms and your business problem. It is fairly easy in DataRobot to remove these 
features from your feature sets to be used for modeling.

DataRobot also produces a correlation matrix that shows how the different features are 
correlated to one another. This helps identify collinear features as well as key candidate 
features to be used in the model. You can gain a lot of insight into your data and the 
problem by analyzing the correlation matrix. In Chapter 5, Exploratory Data Analysis with 
DataRobot, we will discuss examples of how this is done.

Data partitioning
Before you start building the models, you need to partition your dataset into three parts. 
These parts are called training, validation, and holdout. These three parts are used for 
different purposes during the model building process. It is common to split 10-20% of the 
dataset into the holdout set. The remaining portion is split up further, with 70-80% going 
to training and 20-30% going to the validation set. This splitting is done to make sure that 
the models are not overfitted and that the expected results in deployment are in line with 
results seen during model building.

Only the training dataset is used to train the model. The validation set is designed to tune 
the algorithms in order to optimize the results by performing multiple cross-validation 
tests. Finally, the holdout set is used after the models are built to test the model on data 
that it has never seen before. If the results on the holdout set are acceptable, then the 
model can be considered for deployment.

DataRobot automates most of this process, but it does allow the user to customize the split 
percentages, as well as how the partitioning should be done. It also performs a similar 
function for time series or forecasting problems by automatically splitting the data for 
time-based backtests.
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Data visualization
One of the most important tasks a data analyst or data scientist needs to do is to 
understand the dataset. Data visualization is key to this understanding. DataRobot 
provides various ways to visualize the datasets to help you understand the dataset. These 
visualizations are built automatically for you so that you can spend your time analyzing 
them instead of preparing them. Let's look at what these are and how to use them.

When you go to the data page (Figure 1.20) for your project, you will see high-level profile 
information for your dataset. Inspect this information carefully to understand your 
dataset in totality. If you click on the Feature Association menu (top left), you will see 
how the features are related to one another (Figure 2.3):

Figure 2.3 – Feature associations using mutual information
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This diagram shows the interrelationships using the mutual information metric. Mutual 
Information (MI) uses information theory to determine the amount of information you 
obtain about one feature from the other feature. The benefit of using MI compared to the 
Pearson correlation coefficient is that it can be used for any type of feature. The value goes 
from 0 (the two features are independent) to 1 (they carry the same information). This 
is useful in determining which features will be good candidates for the model and which 
features will not provide any useful information or are redundant. This view is extremely 
important to understand and use before model building starts, even though DataRobot 
automatically uses this information to make modeling decisions.

There is another metric that is also used in a similar capacity. If you click on the metric 
dropdown at the bottom of the preceding screenshot, you can select the other metric 
called Cramer's V. Once you select Cramer's V, you will see a similar graphical view 
(Figure 2.4):

Figure 2.4 – Feature associations using Cramer's V
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Cramer's V is an alternative metric to MI, and it is used similarly. Its value also ranges 
from 0 (no relationship) to 1 (the features are highly correlated). Cramer's V is often used 
with categorical variables as an alternative to the Pearson correlation coefficient.

Notice that DataRobot automatically found clusters of interrelated features. Each cluster 
is color-coded in a different color, and the features are sorted by clusters in Figure 2.4. You 
can zoom into specific clusters to inspect them further. This is an important feature of the 
DataRobot environment as very few data scientists know about this idea or make use of 
it. The clusters are important because they highlight groups of interrelated features. These 
complex interdependencies are typically very important for understanding the business 
problem. Normally, the only people who know about these complex interdependencies 
are people with a lot of domain experience. Most others will not even be aware of these 
complexities. If you are new to a domain, then understanding these will give you an 
equivalent of multiple years of experience. Study these carefully, discuss them with your 
business experts to fully understand what they are trying to highlight, and then use these 
insights to improve your models as well as your business processes.

Also, note that DataRobot provides a list of the top 10 strongest associations. It is 
important to note these associations and spend some time thinking about what they mean 
for your problem. Are these consistent with what you know about your domain, or are 
there some surprises? It is the surprises that often result in key insights that could prove 
to be valuable insights for your business. In the following list, you see a View Feature 
Association Pairs button. If you click on that button, you will see Figure 2.5:

Figure 2.5 – Feature association details
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This graphic shows the relationship between two selected features in detail. In this 
example, one feature is categorical while the other is numeric. The diagram shows how 
the two are related and could provide additional insights into the problem. Be sure to 
investigate the relationships, especially the ones that might be counterintuitive. 

Now you can click on the specific features to see how they are distributed (Figure 2.6):

Figure 2.6 – Feature details

This view shows a histogram of how the values are distributed and how they are related to 
the target values. Key things to focus on are ranges where you do not have enough data and 
where you have non-linearities. These could give you ideas about feature engineering. These 
are also areas where you ask the question why does the system exhibit this behavior?

With this background work done, you are now ready to dive into modeling algorithms.



Machine learning algorithms     45

Machine learning algorithms
There are now hundreds of machine learning algorithms available to be used for a 
machine learning project, and more are being invented every day. DataRobot supports a 
wide array of open source machine learning algorithms, including several deep learning 
algorithms – Prophet, SparkML-based algorithms, and H2O algorithms. Let's now take a 
look at what types of algorithms exist and what they are used for (Figure 2.7):

Figure 2.7 – Machine learning algorithms

Our focus will mostly be on the algorithm types that DataRobot supports. These 
algorithm types are described in the following sub-sections.
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Supervised learning
Supervised learning algorithms are used when you can provide an answer (also called a 
label) as part of the training dataset. For supervised learning, you have to assign a feature 
of your dataset to be the answer, and the algorithm tries to learn to predict the answer 
by seeing multiple examples and learning from these examples. See Figure 2.8 for the 
different types of answers:

Figure 2.8 – Targets for supervised learning algorithms

DataRobot functionality is primarily focused on supervised learning algorithms. Included 
in the set are deep learning algorithms as well as big data algorithms from SparkML and 
H2O. DataRobot has built-in best practices to select the best-suited algorithms for your 
problem and dataset. There are four major types of supervised learning problems:

Regression
Regression problems are the ones where the answer (target) takes a numeric form (see 
Figure 2.8). Regression models try to fit a curve such that the error between the prediction 
and the actual value is minimized for the entire training dataset. Sometimes, even a 
classification problem can be set up as a numeric regression problem. In such cases, 
the answer is a number that can then be turned into a bin by using thresholds. Logistic 
regression is one such method that produces a value between zero and one. You can mark 
all answers below a certain threshold to be zero, and all above as ones. There are linear as 
well as non-linear regression algorithms that are used based on the problem. The models 
are assessed based on how well the regression line matches the data. Typical metrics 
used are RMSE, MAPE, LogLoss, and Rsquared. Typical algorithms used are XGBoost, 
Elastic Net, Random Forest, and GA2M.
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Binary classification
Binary classification problems have answers that can only take two distinct values (called 
classes). These could be in the form of 0 or 1, Yes or No, and so on. Please refer to Figure 
2.8 for an example of the target feature for binary classification. A typical issue that 
you commonly face is the problem of class imbalance. This happens when most of the 
dataset is biased toward one class. These are typically addressed by downsampling the 
overrepresented class when sufficient training data is present. When this is not possible, 
you can try oversampling the underrepresented class or use other methods. None of 
these methods is perfect, and sometimes you have to try different approaches to see what 
works best. DataRobot provides mechanisms to specify downsampling if needed. Some of 
the algorithms that are commonly used for binary classification are logistic regression, 
k-nearest neighbors, tree-based algorithms, SVM, and Naïve Bayes. In the case of 
classification problems, it is best to avoid using accuracy as a metric to assess results. The 
results are often shown in the form of a confusion matrix (described later in this chapter). 
DataRobot will automatically select an appropriate metric to use in such cases.

Multiclass classification
Multiclass classification problems are the ones where you are trying to predict more than 
two classes or categories. For a simple example of what the target might look like, see 
Figure 2.8. Multiclass capability was added recently and many of the DataRobot features 
might not work with such problems. Since downsampling is not available, you might 
want to adjust your sampling prior to uploading your dataset into DataRobot. Also, note 
that you can frequently collapse your problem into a binary classification problem by 
collapsing the classes into two classes. That may or may not work for your use case, but it 
is an option if required. Also, not all algorithms are appropriate for multiclass problems. 
DataRobot will automatically select the appropriate algorithms to build the models for 
multiclass problems. Typical metrics to use are AUC, LogLoss, or Balanced Accuracy. The 
results are often shown in the form of a confusion matrix (described later in this chapter). 
Typical algorithms used are XGBoost, Random Forest, and TensorFlow.
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Time series/forecasting
Time series or forecasting models are also referred to as time-aware models in DataRobot. 
In these problems, you have data that is changing over time and you are interested in 
predicting/forecasting a target value in the future (Figure 2.2). DataRobot not only 
supports the usual algorithms for time series such as ARIMA, but can also adapt these 
problems to machine learning regression problems and then apply algorithms such as 
XGBoost to solve them. These problems require that the series should be transformed into 
stationary series and require extensive feature engineering to create time-based features. 
The problems also require that you take into account important events in the past that 
may repeat (such as holidays or major shopping days). Time series models also require 
special ways of handling validation and testing via a method called backtests:

Figure 2.9 – Backtesting for time series problems
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In backtesting, models are built using past data, and then tested using holdout data that 
is newer and has never been seen by the model. This time-based slicing of holdout data is 
also referred to as out-of-time validation. DataRobot automates many of these tasks for 
you, as we will see in more detail later.

Algorithms
Let's review some of the main algorithms used in DataRobot. Here, we only provide 
a high-level overview of these algorithms These algorithms can be tuned for a given 
problem by changing their hyperparameters. For a more detailed understanding of 
any specific algorithm, you can refer to a machine learning book or the DataRobot 
documentation. Some of the important algorithms are as follows:

•	 Random Forest. A random forest model is built by creating multiple decision  
tree models and then uses the mean of the output. This is done by creating 
bootstrap samples of the training data and building decision trees (Figure 2.10)  
on these samples:

Figure 2.10 – Random forest

Random forest models handle missing data and non-linearities and have proven to work 
great in many situations. A random forest model can be used for regression as well as 
classification problems:

•	 XGBoost: Also known as eXtreme gradient boosted trees, are decision tree-based 
algorithms that have become very popular because they tend to produce very 
effective predictions and can handle missing values. They can handle non-linear 
problems and interactions between features. XGBoost builds upon random forest 
models by creating a random forest and then creating trees on the residuals of the 
previous trees. This way, every new set of trees is able to produce a better result. 
XGBoost can be used for regression as well as classification problems.
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•	 Rulefit: Rulefit models are ensembles of simple rules. You can think of these rules 
as being chained together like a decision tree. Rulefit models are much easier to 
understand as most people can relate to a combination of rules being applied to 
solve a problem. DataRobot typically builds this model to help you understand a 
problem and provide insights. You can go to the insights section of your Models tab 
and see the insights generated from a Rulefit model and how effective a given rule is 
for the problem. They can be used for classification as well as regression problems.

•	 ElasticNet, Ridge regressor, Lasso regressor: These models use regularization to 
make sure that the models are not overfitting and are not unnecessarily complex. 
Regularization is done by adding a penalty for adding more features, which in turn 
forces the models to either drop some features or reduce their relative impact. Lasso 
regressor (also known as L1 regressor) uses penalty weights that are the absolute 
values of the coefficients. The effect of using Lasso is that it tries to reduce the 
coefficients to zero, thereby selecting important features and removing the ones that 
do not contribute much. Ridge regressor (also known as L2 regressor) uses penalty 
weights that are squared coefficients. The impact of this is to reduce the magnitude 
of coefficients. ElasticNet is used to refer to linear models that use both Lasso and 
Ridge regularization to produce models that are simpler as well as regularized. This 
comes in handy when you have a lot of features that are correlated with each other.

•	 Logistic Regression: Logistic regression is a non-linear regression model that is 
used for binary classification. The output is in the form of a probability with a value 
ranging from 0 to 1. This is then typically used with a threshold to assign the value 
to be a 0 or a 1.

•	 SVM (Support Vector Machine): This is a classification algorithm that tries to 
find a vector that best separates classes. It is easy to see what this looks like in a 
two-dimensional space (Figure 2.11), but the algorithm is known to work well in 
high dimension spaces. Another benefit of SVM is its ability to handle non-linearity 
by using non-linear kernel functions, which can be used to linearize the problem:

Figure 2.11 – Targets for supervised learning algorithms
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•	 GA2M (Generalized Additive Model): This is one of those rare algorithms that 
offers understandability, while also offering high accuracy even in a non-linear 
problem. The number "2" in the name represents its ability to model interactions 
between features. GAM model output is a summation of outputs of the effects 
of individual features that have been binned. Since GAM allows these effects to 
be non-linear, it can capture the non-linear nature of the problem. The results of 
the model can be represented as a simple table that shows you the contribution 
of each feature to the overall answer. This type of table representation is easily 
understandable by most people. For industries or use cases where understandability 
and explainability are very important, this is perhaps one of the best options you 
can choose.

•	 K-Nearest Neighbors: This is a very straightforward algorithm that finds the k 
closest data points (based on a specific way of computing distance). Now it finds 
the classification answers for these k points. It then determines the answer with the 
most votes and then assigns that as the answer. The default distance metric used 
is Euclidian distance, but DataRobot chooses the appropriate metric based on the 
dataset. A user can also specify a specific distance metric to be used.

•	 TensorFlow. TensorFlow is a deep learning model that is based on deep neural 
networks. A deep neural network is one that has hidden deep layers made up of 
ensembles of artificial neurons. The neurons carry highly non-linear activation 
functions that allow them to fit highly non-linear problems. These models are very 
good at producing high accuracy without the need for feature engineering, but they 
do require a lot more training data as compared to other algorithms. These models 
are generally considered very opaque and are prone to overfitting and are therefore 
not suitable for some applications. They are especially successful for applications 
where the features and feature engineering are hard to extract, for example, image 
processing. These models can be used for regression as well as classification problems.

•	 Keras Neural Network: Keras is a high-level deep learning library built on top of 
TensorFlow that allows many types of deep learning models to be incorporated 
into DataRobot. Being a higher-level library, it makes building a TensorFlow model 
a lot easier. Everything described in the preceding section applies to Keras. The 
particular implementation in DataRobot is well suited for sparse datasets and is 
particularly useful for text processing and classification problems.
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Unsupervised learning
Unsupervised learning problems are those where you are not provided with an answer 
or a label. Examples of such problems are clustering or anomaly detection. DataRobot 
does not offer much for these problems, but it does have some capability for anomaly 
or outlier detection. These are problems where you have data points that are unusual in 
a way that happens very rarely. Examples include fraud detection, cybersecurity breach 
detection, failure detection, and data outlier detection. DataRobot allows you to set up a 
project without a target and it will then attempt to identify anomalous data points. For any 
clustering problems, you should try to use Python or R to create clustering models.

Reinforcement learning
Reinforcement learning problems are where you want to learn a series of decisions to  
be taken by an agent such that you achieve a certain goal. This goal is associated with  
a reward that is given to the agent for achieving the goal either completely or partially. 
There is no dataset available for this training, so the agent must try multiple times (with 
different strategies) and learn something on each attempt. Over many attempts, the agent 
will learn the strategy or rules that produce the best reward. As you can now guess, these 
algorithms work best when you do not have data, but you can experiment repeatedly in 
the real world (or a synthetic world). As we discussed before, DataRobot is not a suitable 
tool for such problems.

Ensemble/blended models
Ensembling is a technique for creating a model that aggregates or blends predictions 
of other models. Different algorithms are sometimes able to exploit different aspects of 
the problem or dataset better. This means that many times, you can increase prediction 
accuracy by combining several good models. This, of course, comes with increasing 
complexity and cost. DataRobot offers many blending approaches and, in most 
circumstances, builds the blended model automatically for your project. You can then 
evaluate whether the increase in accuracy is enough to justify the additional complexity.
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Blueprints
In DataRobot, every model is associated with a blueprint. A blueprint is a step-by-step 
recipe used by DataRobot to train a specific model. See Figure 2.12 for an example:

Figure 2.12 – Model blueprint

The blueprint shows all the steps taken by DataRobot to build that specific model, 
including any data preparation and feature engineering done by DataRobot. Clicking 
on any specific box will show more details on the actions taken, parameters used, and 
documentation of the particular algorithm used. This also serves as great documentation 
for your modeling project that is automatically created for you.

Now, let's look at how to determine how well an algorithm did. For this, we will require 
some performance metrics.
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Performance metrics
DataRobot offers a wide range of performance metrics for the models. You have to specify 
the metric you want to use to optimize the models for your project. Typically, the best 
metric to use is the one recommended by DataRobot. DataRobot does compute the other 
metrics as well once the model is built, so you can review the results of your model across 
multiple metrics. Please keep in mind that no metric is perfect for every situation, and you 
should be careful in selecting the metric for evaluating your results. Listed here are some 
details regarding commonly used metrics:

•	 RMSE (Root Mean Squared Error): RMSE is a metric that first computes the square 
of errors (the difference between actual and predicted). These are then averaged over 
the entire dataset and then we compute a square root of that average. Given that this 
metric is dependent on the scale of the values, its interpretation is dependent on 
the problem. You cannot compare RMSE for two different datasets. This metric is 
frequently used for regression problems when the data is not highly skewed.

•	 MAPE (Mean Absolute Percentage Error): MAPE is somewhat similar to RMSE 
in the sense that it first computes the absolute value of the percentage error. Then, 
these values are averaged over the dataset. Given that this metric is scaled in terms 
of percentage, it is easier to compare MAPE for different datasets. However, you 
have to be mindful of the fact that the percentage error for very small values (or 
zero values) tends to look very big.

•	 SMAPE (Symmetric MAPE): SMAPE is similar to MAPE, but addresses some of 
the shortcomings discussed above. SMAPE bounds the upper percentage value so 
that errors from small values do not overpower the metric. This makes SMAPE a 
good metric that you can easily compare across different problems.

•	 Accuracy: Accuracy is one of the metrics used for classification problems. It can be 
represented as follows:

Accuracy = number of correct predictions/number of total predictions

It is essentially the ratio of the number of correct predictions and all predictions. 
For unbalanced problems, this metric can be misleading, hence it is never used by 
itself to determine how well a model did. It is typically used in combination with 
other metrics.

•	 Balanced Accuracy: Balanced accuracy overcomes the issues with accuracy by 
normalizing the accuracy across the two classes being predicted. Let's say that the 
two classes are A and B:

(a) Accuracy rate for A = number of correct A predictions/total number of As

(b) Accuracy rate for B = number of correct B predictions/total number of Bs
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(c) Balanced accuracy = accuracy rate for A + accuracy rate for B/2

Balanced accuracy is essentially the average of the accuracy rate for A and the 
accuracy rate for B.

•	 AUC (Area Under the ROC Curve): AUC is the area under the ROC (Received 
Operator Characteristic) curve. This metric is frequently used for classification 
problems as this also overcomes the deficiencies associated with the accuracy 
metric. The ROC curve represents the relationship between the true positive rate 
and the false positive rate. The AUC goes from 0 to 1 and it shows how well the 
model discriminates between the two classes. A value of 0.5 represents a random 
model, so you would want the AUC for your model to be greater than 0.5.

•	 Gamma Deviance: Gamma deviance is used for regression problems when the 
target values are gamma-distributed. For such targets, gamma deviance measures 
twice the average deviance (using the log-likelihood function) of the predictions 
from the actuals. A model that fits perfectly will have a deviance of zero.

•	 Poisson Deviance: Poisson deviance is used for regression problems when the aim is 
to count data that is skewed. It works in a way that is very similar to gamma deviance.

•	 LogLoss: LogLoss (also known as cross-entropy loss) is a measure of the inaccuracy 
of predicted probabilities for a classification problem. A value of 0 indicates a 
perfect model, and as the model becomes worse, the logloss value increases.

•	 Rsquared: Rsquared is a metric used for regression problems that tells how well 
the fitted line represents the dataset. Its value ranges between 0 and 1. 0 indicates 
a poor model that explains none of the variation, while a value of 1 indicates a 
perfect model that explains 100% of the variation. It is one of the most commonly 
used metrics, but it can suffer from the problem that you can increase it by adding 
more variables without necessarily improving the model. It is also not suitable for 
non-linear problems.

Now that we have discussed some of the commonly used metrics, let's look at how to look 
at other results to assess the quality of your model, and the effects of different features on 
your model.

Understanding the results
In this section, we will discuss various visualizations of metrics and other information to 
understand the results of the modeling exercise. These are important visualizations that 
need to be inspected carefully in addition to looking at the model metrics discussed in the 
previous section. These visualizations are generated automatically by DataRobot for any 
model that it trains.
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Lift chart 
The lift chart shows how effective the model is at predicting the target values. As the 
number of data points is typically very large to show in one graphic, the lift chart sorts 
the output and aggregates the data into multiple bins. It then compares the averages of 
predictions and actuals in each bin (Figure 2.13):

Figure 2.13 – Lift chart

The preceding lift chart shows how the predictions have been sorted from low to high and 
then binned (60 bins in this case). You can now see the average prediction and average 
actual value in each bin. This gives you a sense of how well the model is doing across the 
entire spectrum. You can see whether there are ranges where the model is doing worse. 
If the model is not doing well in a range that is important to your business, you can then 
investigate further to see how you can improve the model in that range. You can also 
inspect different models to see whether there is a model that does better in the region that 
is more important. Lift charts are more meaningful for regression problems.
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Confusion matrix (binary and multiclass)
For classification problems, one of the best ways to assess model results is by looking 
at the confusion matrix and its associated metrics (Figure 2.14). This tab is available for 
multiclass problems:

Figure 2.14 – Confusion matrix

The confusion matrix maps predicted versus actual counts (frequency) for each class. Let's 
look at the sedan column. The big green circle indicates how many times we correctly 
classified a sedan as a sedan. In that column, you will also see red dots where the model 
predicted it to be a sedan, but it is a different type. You can see these for all classes. The relative 
scales should give you an idea of how well your model did and where it is having difficulty.

If you select a specific class, you can look at the class-specific confusion matrix on the 
right. You can see two columns (+ for predicting a sedan, - for predicting something that 
isn't a sedan). Similarly, you see two rows (+ where it is a sedan, and - for when it is not a 
sedan). You also see some critical definitions and metrics:

•	 True Positives (TP) = Where it is a sedan and is predicted as a sedan
•	 False Positives (FP) = Where it is not a sedan but is predicted as a sedan
•	 True Negatives (TN) = Where it is not a sedan and is predicted as not being a sedan 
•	 False Negatives (FN) = Where it is a sedan but is predicted as not being a sedan
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Using these, we can now compute some specific metrics for this class:

•	 Precision = correct fraction of predictions = TP/All Positive Predictions = TP/(TP+FP)

•	 Recall = correct fraction of actuals = TP/All Positive Actuals = TP/(TP+FN)

•	 F1 Score = harmonic mean of precision and recall. So, 1/F1 = 1/Precision + 1/Recall

ROC
This tab is available for binary classification problems. The ROC (Receiver Operator 
Characteristic) curve is the relationship between the true positive rate and the false 
positive rate. The area under this curve is known as AUC. It goes from 0 to 1 and it shows 
how well the model discriminates between the two classes (Figure 2.15):

Figure 2.15 – ROC curve and confusion matrix
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You can also see the confusion matrix (described earlier) and the associated metrics 
for the two classes. You can move the thresholds and assess the resulting trade-offs and 
cumulative gains. Since most problems are not symmetric in the sense that true positives 
have different business values compared to true negatives, you should select the threshold 
that makes sense for your business problem.

Accuracy over time
This tab is available for time series problems (Figure 2.16) and compares the actual versus 
predicted values over time for a series:

Figure 2.16 – Model accuracy over time

You can view these values for the backtests or the holdout datasets. The diagram will 
clearly show where the model is not performing well and what you might want to focus on 
to improve your model.
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Feature impacts
Besides model performance, one of the first things you want to understand is how 
impactful the features are in terms of your model's performance. The Feature Impacts tab 
(Figure 2.17) is perhaps the most critical for understanding your model:

Figure 2.17 – Feature impacts

The graphic shows a sorted list of the most important features. For each feature, you 
can see the relative impact that a feature has on this model. You can see which features 
contribute very little; this can be used to create new feature lists by removing some of the 
features that have very little impact.
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Feature Fit
The Feature Fit tab (Figure 2.18) shows an alternative view of the contribution of a 
feature. The graphic shows the features ranked by their importance:

Figure 2.18 – Feature Fit

For the selected feature, it shows how the predictions compare to actuals for the range of 
values of a feature. Reviewing these graphs for the key features can provide a lot of insight 
about how a feature impacts the results and range of values that perform better and ranges 
where it performs the worst. This could sometimes highlight the regions where you might 
need to collect more data to improve your model.
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Feature Effects
Feature Effects show information that is very similar to Feature Fit (Figure 2.19). In this 
graphic, the features are sorted by Feature Impacts. Also, Feature Effects are focused on 
partial dependence:

Figure 2.19 – Feature Effects and Partial Dependence

Partial dependence plots are one of the most important plots that you want to study 
carefully. These plots tell you how a change in the value of a feature impacts the change in 
the average value of the target over a range of values for the other features. This insight is 
critical to understanding the business problem, understanding what the model is doing, 
and, more importantly, what aspects of the model are actionable and what range of values 
will produce the maximum impact.
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Prediction Explanations
Prediction Explanations describe the reasons for a specific prediction in terms of  
feature values for the specific instance or row that is being scored (Figure 2.20). Note  
that this is different from Feature Impacts, which tell you the importance of a feature  
at a global level:

Figure 2.20 – Prediction Explanations

Prediction Explanations can be generated for an entire dataset or a subset of data, as 
shown in the preceding screenshot. For example, it will provide the top three reasons 
why the model predicted a specific value. These explanations are sometimes required for 
regulatory reasons in certain use cases, but it is a good idea to produce these explanations 
as they do help in understanding why a model predicts a certain way and can be very 
useful in validating or catching errors in a model. DataRobot uses two algorithms for 
computing the explanations: XEMP (exemplar-based explanations) or Shapley values. 
XEMP is supported for a broader range of models and is selected by default. Shapley 
values are described in the next section.
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Shapley values
Shapley values (SHAP) are an alternative mechanism for producing prediction 
explanations (Figure 2.21). If you want to use SHAP for explanations, you have to specify 
this in the advanced options during the project setup before you press the Start button. 
Once DataRobot starts building the models, you cannot switch to SHAP. SHAP values are 
only available for linear or tree-based models and are not available for ensemble models:

Figure 2.21 – SHAP-based explanations

SHAP values are based on cooperative game theory, which tries to assign values to 
contributions of a team member in a collaborative project. In the context of machine 
learning, it tries to assign the value contribution of a specific feature when there is a team 
of features collaborating to make a prediction. SHAP values are additive and you can 
easily see how much of the final answer is due to a specific feature value.

Summary
In this chapter, we covered some of the basic machine learning concepts that will come 
in handy as we go through the remaining chapters, and they will also be useful in your 
data science journey. Please note that we have only covered concepts at a high level, and 
depending on your job role, you might want to explore some areas in more detail. We have 
also related this material to how DataRobot performs certain functions and where you 
need to pay closer attention.
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Hopefully, this has given you some insights into what DataRobot will be displaying 
and where to focus your attention in different stages of your project. Since DataRobot 
automates a good chunk of model building and prediction tasks, it might be tempting 
to ignore many of the outputs that DataRobot is automatically producing for you. Please 
resist that temptation. DataRobot software is taking considerable pains and resources to 
produce those outputs for a very good reason. It is also doing much of the grunt work 
for you, so please take advantage of those capabilities. Specifically, we have covered the 
following: What are the things to watch out for during data preparation? What data 
visualizations are important for gaining an understanding of your dataset? What are the 
key machine learning algorithms, and when do you use them? How do you measure the 
goodness of your model results? How do you assess model performance and understand 
what the model is telling you about your problem?

Now that we know the basics, we will start our data science journey in the next chapter by 
learning how to understand the business problem and how to turn it into a specification 
that can be solved by using machine learning.





3
Understanding and 

Defining Business 
Problems

This chapter covers topics that are the most critical for success and yet are not discussed 
in detail in data science programs or books. Although the topic of understanding and 
defining business problems is mentioned very briefly as something that should be done, it 
is very rare that the discussion will go into how to actually do it properly. In this chapter, 
we will go into specific tools and methods that can be used to gain an understanding of 
the system under consideration and determine the problem that needs to be solved. 

This section is independent of DataRobot, as DataRobot cannot help you with this part of 
the process. This is something that a data analyst, a business analyst, or a data scientist has 
to do. Correctly defining a business problem is hard to do—it is not automatable, and it is 
also not done properly most of the time. If you gain this skill, you will become invaluable. 
This is a key area where there will always be a need for experienced data scientists (or 
whatever they are called in the future). 

By the end of this chapter, you will have learned about some of the core concepts and 
methods you need to know in order to ensure that you are solving the right problems. The 
rest of the book will explain how to solve those problems in the right way. 
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In the chapter, we're going to cover the following main topics:

•	 Understanding the system context

•	 Understanding the why and the how

•	 Getting to the root of the business problem

•	 Defining the machine learning (ML) problem

•	 Determining predictions, actions, and consequences for Responsible artificial 
intelligence (AI)

•	 Operationalizing and generating value

Understanding the system context
All problems arise within the context of a system. A system could be a single cell of an 
organism, a global population, or the entire economy. In the same way, all solutions need 
to fit into a system. A technological solution (for example, an AI solution) will typically 
require changes to processes, people, skills, other IT systems, or even the business model 
for it to be effective. For an organization, the system could be its entire supply chain, 
competitors, and customers. Given that a system's definition can be very broad, it is 
generally advisable that you imagine a system to be broader than the problems you are 
considering. You want all the components or agents that your problem touches to be part of 
the system context. Defining the system boundary is part art and part science, and it is an 
iterative process. Given that you will be looking at the system from a broader perspective, 
this also means that the same system context will be valid for multiple ML projects or use 
cases. The understanding you gain here will pay dividends across many projects.

Data scientists or analysts who might have worked in an organization or industry would 
have intuitively learned many of the systemic aspects of the problem. They might feel that 
they do not need to look into this further as they already understand key issues. While 
that might be true, it is also true that people develop blind spots and start to overlook 
key missing pieces or carry implicit assumptions that are mostly correct but sometimes 
wrong. Using structured methods to capture systemic understanding helps overcome 
these problems and also ensures that everyone is working from a common understanding. 
These issues are typically ones leading to problems or delays in projects downstream. Let's 
look at how we build this understanding by creating a context diagram.
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A context diagram is a high-level view of your system, showing key players and their 
interactions, as illustrated here: 

Figure 3.1 – Context diagram

The specific diagramming convention is not that important; what is more important is 
that you understand and document the components and understand how they interact. 
There are many diagramming conventions out there, so feel free to use the one you like. 
Make sure to capture three to five important instances of each topic in the diagram. The 
arrows need not be one-way. 

As you look at this simple diagram, you will agree that we should know all of these things. 
As you try to build this diagram, you might be shocked to learn that finding and capturing 
this information is not that straightforward. Most people in an organization will have 
some notion of these things but might not be able to precisely specify the most important 
customers or key performance indicators (KPIs), and so on. In most organizations, it 
might take some time and discussion to put this together. Most of the components in the 
diagram are easy to understand but some are a bit confusing, so it's worth discussing them 
a little bit, as follows:

•	 Key objectives: Key objectives are measurable metrics that let you determine 
whether you are achieving your goals in a timely fashion. These typically take the 
form of financial performance, market share, customer satisfaction, reputation, 
quality levels, and compliance. It is important to have precise and measurable 
definitions and alignment with the goals of the organization. These represent true 
value to an organization, and it is important to understand how your projects and 
models impact these.
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•	 External drivers/risks: These are external factors or drivers that impact the key 
objectives but are not under your control. Notice that we are not discussing specific 
events, but changes in value of factors that might be considered events—for 
example, the factor might be gross domestic product (GDP) change. It is not in our 
control, and a value of -20% might indicate a financial crash. So, our driver in this 
case is GDP change as opposed to financial crash.

•	 Key decision levers: These are also drivers that impact key objectives, but they 
are in our control. For example, the number of employees is a factor that is in 
our control (as we can decide how many to hire) and it will have an impact on 
outcomes. Other examples could be how much to invest in new technology or in 
marketing, and so on. These could be strategic decisions or choices, such as creating 
a new distribution channel, bundling products, and so on. Regardless of type, the 
important thing to remember is to make sure that the idea is captured in a precise 
way—for example, if a new distribution channel is a driver, you should know what 
the five actual choices are.

Note of caution
Please do not get trapped in philosophical debates. Quickly create the first 
iteration of your diagram and refine it in the future, as needed. It is OK to 
move forward with the first draft, as your analysis might inform and change the 
current thinking.

As you may have guessed by now, the reason for highlighting these three items is that 
historic data about them will be critical for any data science project. You will also agree 
that data about these factors is critical for operational as well as strategic decisions, yet 
you might find that this data might not be easily available or might have quality issues. In 
addition, pay special attention to key knowledge stores. These will be the databases, data 
warehouses, data lakes, or filesystems that contain data for your organization. We will 
revisit these items again in the following sections. 

Now that we understand the context, we want to understand how our system operates 
and why it behaves a certain way. Both of these aspects are critical to understanding the 
system. In the next section, we will describe how to create that understanding.
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Understanding the why and the how
The key to understanding a system's function and its behavior lies in the following aspects:

•	 Process: How do objects and information flow through the system's processes?

•	 Interaction: How do different entities or components of the system interact with 
each other?

•	 State: How does the state of an entity evolve over time?

•	 Causal: What are the causal relationships?

Each of these aspects is represented via diagrams. There are many diagramming 
conventions for process modeling, causal modeling, and interaction diagrams. These 
conventions are used differently in different domains. You can follow any of the 
conventions that you like or are already familiar with. In this book, we will follow certain 
conventions that are amenable to computational modeling. What that means is that these 
diagrams can be combined with data and turned into models that can be used for analysis. 
This will become important in the later stages of our project. In-depth details of how to 
create these diagrams and turn them into computational models are beyond the scope 
of this book, but if you are interested you can seek out other sources to learn about these 
techniques. Even if you do not create computational models, these diagrams will provide 
useful insights that you will be able to use in your ML projects. It is possible that you have 
people in your organization that build—or have built—such diagrams. You should seek 
those people out and elicit their help in building these diagrams. Let's look at each of these 
aspects in more detail.
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Process diagrams
In an organization's operation, there are several functions that have well-defined 
processes. Objects, people, or information flow through these processes, as illustrated in 
the following diagram:

Figure 3.2 – Process diagram

Based on the system context, you already know the most important processes in an 
organization. You can start building diagrams for these key processes—or at the very 
least, the one that is relevant to your project. It is important to build end-to-end process 
flows—for example, the entire customer journey, or the entire development process for a 
product. It is also important to understand the process from a customer's viewpoint (gray 
boxes) and not just internal processes (white boxes). Make sure to capture failure points 
or rework paths, or where a process might end abruptly instead of normal completion. As 
entities flow through these processes, decisions or computations are made that could be 
candidate ML problems. Regardless of the project you are starting from, it is a good idea 
to identify other potential opportunities along the way. It may turn out that looking at the 
process differently or building a different ML model could provide larger benefit or might 
preempt a need for the current project. Whether or not that turns out to be the case, it is 
important to capture this information. By the way, did you notice in the preceding process 
diagram that the customer is not receiving a reject message? As you can imagine, this is an 
important part of the customer experience that is being left out. I am sure that error will 
be caught at some point, but making the process explicit increases the odds of catching it 
sooner and taking it into account as you are building your models.
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Besides building the diagram, it is important to capture data about the process. You 
will frequently run into situations where someone has already built a process diagram 
but did not capture any data. If you are reading this book, then I do not need to tell you 
how important collecting that data is for accurately understanding the process. Typical 
information to be captured is counts and types of objects flowing through each step,  
time taken at each step, labor hours and resources required at each step, probability of 
taking a specific path, quality metrics, and so on. If such information is not being captured 
for key processes, then it is important to start collecting this information as soon as 
possible. This information could be critical for building a business case for your project, 
serving as useful features in the model, and helping identify problems that might be 
otherwise hidden. 

It is important to note again that you do not want to get stuck in terminology debates,  
and instead quickly create a diagram that is sufficient to help you understand what 
happens in the process, as opposed to a very detailed view with every little nuance in it.  
It is OK to revisit this if a need arises to get into more details on some specific aspect of 
the process.

Actual processes are typically a little more complex than what we show in Figure 3.2 but 
not by much, and it is not uncommon to uncover things that are not known to many 
people outside the specific department where these tasks are done. In my experience, it 
is also not uncommon to find that no single person understands the entire process. The 
exercise can be valuable in itself by highlighting key problems but it is especially valuable 
to the data science team building models to automate some part of this process, yet I am 
surprised to see how many times data science teams build models without understanding 
the process.
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Interaction diagrams
There are many interactions happening in a system that do not follow a fixed process. 
These interactions can happen in different orders and need to be kept flexible, and are 
best understood via interaction diagrams. Those of you with software development 
backgrounds are likely familiar with such diagrams that show interactions among software 
components or objects. In our case, we are interested in understanding interactions 
between key players in a system, as illustrated in the following diagram:

Figure 3.3 – Interaction diagram

The diagram shows a marketplace where several competitors are selling their products. 
Customers come to this marketplace to purchase the products. The competitors spend 
money to advertise their products on various media channels, and set their prices. The 
consumers are influenced by the advertising, pricing, and word of mouth from other 
consumers. At any given time, many of these interactions are taking place, creating a 
complex and dynamic environment. If you are building a pricing model you have to take 
all of this into account, or your model will show great statistical fit to data but will prove 
ineffective during operation.
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Note that key players can be people, organizations, bots, marketplaces, fraudsters, and so 
on. The idea behind building this and other diagrams is to codify and make explicit what 
you know. This enables everyone to share a common view of the system and question 
assumptions or point out missing information. It is also important to make sure that 
you treat these diagrams as hypotheses that need to be tested with data. You have to 
continually ask whether the data supports what we are saying in these diagrams. If not, 
then maybe your assumptions need to be refined, or perhaps you have missing data or 
other data-quality problems. Perhaps the data collection is biased. I am sure you have 
heard stories about how biased data was used to make predictions that turned out to be 
totally wrong. Building a diagram is not a guarantee that you will catch biased data, but it 
does improve your odds of catching it.

State diagrams
A state diagram captures the evolution of state of some important entity or actor in a 
system. Typical candidates are customers and products. As with other diagrams, you build 
these diagrams for only the important or critical actors in a system. 

An example state diagram can be seen here:

Figure 3.4 – State diagram

State diagrams are very similar in concept to Markov chains (this concept represents 
the probability of transitioning a system from one state to another state in such a way 
that the probability is fixed and not dependent on any previous history), except in a state 
diagram you do not have to assume that history does not matter. A state diagram is built 
for a specific agent. Figure 3.4 shows a state diagram of a person progressing through 
various states over time. The arrows represent transitions from one state to another, and 
the person stays in a given state until they transition to the next state. The transition is 
typically assumed to be instantaneous. You can also think of the transitions in terms of 
transition probabilities (in which case, it starts resembling a Markov chain). The diagrams 
can be hierarchical in the sense that a state can be decomposed into sub-states, and those 
sub-states can be interconnected via transitions. 
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In addition to building a diagram, you want to understand what causes a transition to 
take place. Is it deterministic or is it random? You also want to collect data about how 
often and when these transitions take place as this data is very useful for further analysis, 
as well as for building ML models. Transitions of one actor might cause a transition in 
another actor's state, thus state diagrams are also connected to interaction diagrams. Each 
of the transitions is a potential candidate for an ML model, where you can use data to 
predict when a transition (and which one) might fire. As you can imagine, building these 
diagrams will lead to the identification of opportunities that might otherwise be missed.

Using these diagrams, you now have an understanding of how a system functions. We are 
now ready to look at what determines a system's behavior.

Causal diagrams
Causal diagrams intend to capture our understanding of cause-and-effect relationships 
present in a system. This understanding may or may not be correct. In fact, you might 
never be able to prove causation. Philosophical debates aside, you can greatly improve 
your understanding by using the methods outlined in this section, combined with data.

An example causal diagram can be seen here: 

Figure 3.5 – Causal diagram
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The preceding diagram shows the relationships in a housing market (this is just an 
example—it doesn't show all the causal influences). It says that as interest rates go up, 
home sales decline. Home sales are also influenced by demand and prices. As prices go 
up, the rising prices can increase demand as more people want to buy homes to make 
money, but the price itself is a deterrent. You can see that there are opposing effects and 
feedback loops present in this simple diagram. No wonder the dynamics confound us, and 
this frequently leads to the system going haywire. Everyone thinks they understand how 
the housing market works, but real understanding is difficult to achieve in the presence 
of complex dynamics. Similar dynamics are at play in many business situations. It is easy 
to build an ML model to predict home prices, but it is much harder to understand the 
overall dynamics. This lack of understanding can lead to a situation where you are using 
excellent ML models to make bad decisions, hence building such models is critical for 
understanding the true nature of the problem you are trying to solve. Such diagrams are 
also useful for understanding and treating confounding variables and counterfactual 
analysis [Pearl].

There is one more representation of causal models that comes from the discipline of 
system dynamics. This representation combines some ideas from the other diagrams 
with causal diagrams to create a view that can be very insightful and can be easily turned 
into a dynamic simulation model. System dynamics is a vast discipline in itself, and there 
are many good books and papers on the topic [Sterman]. Here, I will only introduce 
the notion and what it looks like, and how it can be useful. Here is an example system 
dynamics (also known as stock and flow) diagram:

Figure 3.6 – System dynamics (stock and flow) diagram
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This diagram captures ideas from a state diagram, a process diagram, and a causal 
diagram into a composite view that can be very instructive. Imagine the journey of a 
product as it changes state, going from a raw product to a shipped product. Each box in this 
case represents the quantity of a product in a specific state—for example, the Assembled 
Product box represents all products that have been assembled and are now waiting to 
become finished products. This happens at a rate called the finish rate. The finish rate is 
dependent on how many assemblers are available to perform the work. You will also 
notice that some assembled products turn out to be defective. These products flow into 
the Defective Product box at a rate called the defect rate. These then have to be repaired 
by repairers. Because of defects, the shipping target is not met and there is a shortfall. 
This shortfall increases pressure on the employees, which increases burnout. The burnout 
in turn reduces the number of assemblers (they quit or get sick). Since the number of 
assemblers is reduced, this slows down the finish rate. This in turn increases the pressure 
and more people are shifted to become repairers, as repairs can be done faster. This leaves 
no one working as preventers and causes the vicious cycle to continue, with the process 
becoming more and more backlogged. 

This dynamic plays out in many organizations and they wonder why they are always 
under pressure. Once the diagram is laid out, you can see the problem is that they are 
fixing symptoms as opposed to the root problem of defects. In this simple diagram it is 
easy to see, but in more complex situations you can run simulations of these diagrams 
to find the problem points. The diagram also helps to clarify the relationship between 
the processes, decisions, and business objectives. These diagrams can be simulated to 
understand the business impacts of decisions, as well as the impacts of deploying ML 
models. This is a great way to show the value of your efforts in a way that most people can 
easily understand.

Now, let's come back to ML. If this analysis is not done, then it is most likely that defect 
repair will get flagged as a problem, and it is likely you will be building a model to predict 
how many defects will be created or predict how many items will be shipped. You will 
build a great model, but that will not solve the problem. The key problem is to find which 
factors are causing the defects and how the defects can be reduced. This will require the 
manufacturing team to work closely with the data science team to find a solution. Again, 
the key point is that unless someone does this analysis, the data science team is likely to be 
solving the wrong problem. You might think that this doesn't happen often, but I contend 
that this happens a lot more than you might think because the true problem often stays 
hidden for a long time.
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In general, it is best to treat each causal relationship you have drawn in these diagrams as 
a hypothesis. The diagram then represents a collection of hypotheses. There are statistical 
and simulation methods that can be used to validate these hypotheses. For this, you will 
need to start collecting data or start discovering where that data is stored. Now that we 
have learned about these diagrams, let's look at how we get to the root of the problem.

Getting to the root of the business problem
Some problems are easy to solve, while others prove to be much harder. One of the 
reasons this happens is that when a problem's symptoms appear somewhere else and after 
some delay, then it is very difficult to know where the problem really is. By definition, the 
symptoms are clearly visible—they are explicit and you can easily collect data about them. 
The underlying problem, on the other hand, is happening in some other department or 
building and is not visible because it is not causing immediate pain. Most likely, no data is 
being collected about the root problem, or it might be too hard to collect that data. Given 
the nature of ML, it is almost a given that all the data you are getting is about symptoms. If 
you are lucky, you might get some data about the root problem as well (although you will 
not know it). 

One of the ways to get started is by using an old method called five whys, which basically 
involves asking the question Why? five times to get to the root cause. Many times, there 
might be multiple causes at each level. So, in practical terms, many people use another 
diagram that is called a fishbone diagram to capture this information, as illustrated here:

Figure 3.7 – Fishbone diagram
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In the preceding fishbone example diagram, we are trying to understand why we have a 
software defect problem. As you ask why questions and capture the causes, you begin to 
add potential causes. You continue this process until you feel that you have captured the 
essence of the problem. As you can tell, this is partly a causal diagram and can be used as 
a starting point for building a causal model for your system while maintaining focus on a 
specific problem. Data can then be collected to confirm or reject the hypotheses. As you 
can see, this fishbone diagram will inform the system dynamics diagram we saw in Figure 
3.6. The key point of the exercise is to understand the root cause and work on fixing this. 
I hope you are beginning to see that accurately predicting something is not always the 
same as fixing the real problem, and you have to be a bit careful about setting up your ML 
problem for your project to be successful. Also, notice that there might be multiple causes 
leading up to a problem and you might have to address multiple issues in order to see 
significant mitigation of the problem. On the other hand, addressing only one aspect (say, 
employee burnout) without understanding the full picture could lead you to conclude that 
burnout is not a problem. It is not uncommon in organizations to have reached wrong 
conclusions that then get incorporated into the myths of the organization—"we already 
tried that, and it does not work."

Now that we have identified the business problem that needs to be tackled, let's look at 
how we turn it into an ML problem.

Defining the ML problem
Before we get into the details of ML, it is important to note that not all problems are 
appropriate to be solved with ML. For a problem to be a good candidate, it should have 
the following characteristics (we will focus only on supervised learning (SL) problems  
for now):

•	 There is a clear target or label value that would be useful if an algorithm can predict 
it. In the absence of an algorithm this value remains unknown, requires a person's 
judgment, or requires substantial effort for it to be determined. Sometimes, the 
target will not be the actual variable of interest but a critical component of that 
calculation. This part is not always obvious, but the problem analysis you did in 
previous sections of this chapter will certainly help in clarifying which variable 
makes the best target.

•	 You have access to a large enough historical dataset that contains the values of the 
target or label you wish to predict. You will need to create a list of data sources that 
contain relevant data and start understanding the data that they contain.
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•	 Determine which type of SL problem is best suited to your problem (regression, 
classification, or time series). Sometimes, you can cast one type of problem into 
another type.

•	 There is typically a trade-off between accuracy, explainability, and understandability. 
It is important for you to consider what is more important for your business 
problem. In many situations, we are willing to sacrifice accuracy to improve 
understandability. This, in turn, determines which algorithms and which 
explanatory method you should select.

You will have to review your datasets and the business problem definition to see whether 
you can craft a specification such that the conditions listed previously are satisfied. In 
doing so, there are several transformations that might have to be performed, such as these:

•	 Transform the target such that it is more valuable as an output or better suited to 
solve the business problem. Take the following examples:

(a) If numeric target values are over a very large range of values or are distributed 
with a high skew, then you can try to log the target as a new target.

(b) If the actual value is less important than a range, then you can create bins and 
use the binned values as targets.

(c) Sometimes, a change in value or the rate of change makes for a better target.
•	 Create interaction features based on the causal diagrams. Take the following 

examples:

(a) Intermediate variables in the causal model that are not directly observed but can 
be computed by combining various other features.

(b) If your target is in log form, then it might make sense to create logs of  
various features.

(c) Similarly, you might want to bin certain features if the bins have a special 
significance in the business problem.

(d) Explore whether creating rate-of-change features would be important for  
your model.

•	 Identify missing data that showed up in the causal diagram but is not present in 
your dataset. Depending on the importance and how easy it is to get this, you 
might want to collect it before building the model. Another choice is to get the data 
collection process started in parallel with building the model with the data you 
already have. In the latter case, you can always revisit the model in the next iteration 
when you have collected the data.
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In addition, you also have to think about how you will define and assess errors. Which 
metric will be best for the problem? We covered metrics in Chapter 2, Machine Learning 
Basics, and DataRobot automatically picks an appropriate metric for the problem. I have 
found the selections to be very good most of the time, so it is a good idea to go with the 
recommendation unless you have a good reason not to. In addition to metrics, you need 
to think about whether you care more about errors in a specific range versus some other 
range—for example, maybe you want to be more accurate in the high-value range of a 
feature versus the low-value range. In such cases, you can consider using this numeric 
feature (this has to be a non-target feature) as a weight for computing the error metrics. 
You can find this setting under Advanced Options in the Additional tab, as illustrated in 
the following screenshot:

Figure 3.8 – Additional options
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The preceding screenshot shows the options for selecting a feature to be used as a 
weighting for the predictions. Note that this has to be set at the start of a project. Once the 
model building starts, you cannot change this setting.

Once you have the ML problem defined, DataRobot comes into action to build the 
models. We will cover this in later chapters. For now, we want to discuss what happens 
when the models are built and are now able to generate predictions.

Determining predictions, actions, and 
consequences for Responsible AI
After the model is built and deployed in DataRobot, it might seem that our job is  
done—but not so fast. You should start analyzing what the predictions profile looks like 
and start discussing with users and stakeholders the details of actions to be taken. The 
models you have helped build are likely to introduce many changes in your system and 
will impact other people. It is therefore important to try to make sure that these impacts 
are not negative. Making sure that your models will not cause harm is called Responsible 
AI. This will build upon the work you did during the understanding phase through 
various diagrams.

Just as in previous sections we saw how a causal diagram helps you to relate features to 
a target, we can also see how the target affects other parts of the system. The diagram 
should reveal how the target impacts key objectives or outcomes; it should also reveal key 
feedback loops that will change the behavior of the rest of the system, as well as giving 
a hint of other consequences. This makes it relatively straightforward to understand 
and compute the return on investment (ROI) from your model. A common challenge 
expressed by data science teams is that they find it hard to express the impacts of a 
model. As you can now see, the work we put into understanding our system from a causal 
perspective also helps to determine the business impact of the model.

It is very common to see that most systems don't provide a free lunch—there are always 
trade-offs. Your actions might improve one objective but might hurt another. It is very 
important to understand these trade-offs and to ensure that your stakeholders understand 
them as well. It is very possible that even though the model will provide a positive ROI, 
it might cause performance to degrade in other areas, such that you might not want to go 
forward with it. Some of these consequences could be in the areas of regulatory or ethical 
issues. These areas are often overlooked, only to be discovered (painfully) at a later point 
in time. One of the key benefits of doing this analysis is to make sure you are catching any 
problems earlier.



84     Understanding and Defining Business Problems

Another mechanism that is often used is to simulate the system dynamics diagrams. 
This allows you to understand the dynamic behavior of your system and can serve as a 
virtual experiment. Virtual experiments or simulations let you test out different strategies 
in a safe environment before launching your models. Not only does this help you avoid 
costly mistakes—it can often also suggest improvements or strategies to further optimize 
the benefits. The reasons many data science projects do not succeed are that data 
science teams rarely do this, typically do not have the skills to do this analysis, and have 
historically not taken this part very seriously. Let's look here at a simple example of an ML 
model in a system:

Figure 3.9 – Impact analysis

In this example, you have a price promotion model that uses some features to generate 
a promotion price. This model monitors the sales and updates the price accordingly. 
For some reason (database updates, approvals, and so on), there is a delay involved in 
updating these prices on the e-commerce site. This creates a lag in the sales data that is not 
known to the modeling team because the modeling team did not understand the entire 
flow and how much time it takes to update prices on the site. If you were to do an analysis 
of this simple diagram, you would discover that such feedback loops with delays produce 
oscillating behavior. This means that the pricing will always be off—sometimes higher and 
sometimes lower. This behavior is somewhat similar to what you see in most model results 
anyway, so it is entirely possible that this effect will be missed. The system will perform 
poorly even though the model itself was fine. I have kept this example very simple to make 
a point. You can imagine that if the situation were more complex, most people would not 
be able to see the problem on their own till it is too late. 
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On the flip side, you can also evaluate how much sales impact your model will make 
compared to the status quo. This is a great way to show ROI and the business value of 
your work. Since simulations based on these diagrams are a visual representation of 
your business, most people find it a lot easier to understand as compared to narratives or 
spreadsheets. This also helps in gaining acceptance of your ML models.

While DataRobot does not help with many of these aspects, it does offer mechanisms to 
determine whether your model is biased along with any protected features and measure 
the amount of bias that exists in the model. This, combined with the preceding analysis, 
can go a long way to ensure that your models are not biased and that the results are not 
being used in a way that goes against your organization's values. Now that we are happy 
with the model's expected results, we can start the process of deployment.

Operationalizing and generating value
Operationalizing a model in your infrastructure can be a complicated undertaking. There 
are some aspects of deployment that are made simple by DataRobot, but there are other 
parts of deployment that are outside the scope of DataRobot and can be quite challenging. 
Let's discuss the tasks that are part of this process, as follows:

•	 Deploying a model as an application programming interface (API): One of the 
very first tasks is to deploy your model as an API so that it can serve predictions 
as needed. You will have to decide whether this needs to be a batch or real-time 
operation. DataRobot automates much of the task of setting this up, and you can 
have an API serving predictions in minutes.

•	 Integration and testing with business systems: Having an API is only part of 
the story—you will now need to integrate this API into your business systems. 
Sometimes, you can serve up predictions to users via standalone Excel files or 
web pages, but for many use cases integration is required. This can sometimes 
take time and effort and can slow things down. Another potential path that 
many organizations are beginning to use is robotic process automation (RPA). 
DataRobot offers integrations with several RPA tools that can speed up the 
integration process if your use case is amenable to an RPA implementation.

•	 Building an end use interface: This is not needed if your use case calls for complete 
automation, but most use cases will have some level of user involvement. With 
integration out of the way, you will still require some way for the user to interact 
with the prediction and make appropriate decisions. You will need to consider how 
users will adjust to a new way of doing business and how to make this experience as 
frictionless as possible. In fact, in many use cases, the predictions are specifically set 
up to reduce friction in an existing process.
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•	 User training: Make sure you are planning for and ready to offer training to users 
whose workflow is being impacted by the new models. Creating training and 
offering this training is a great way to increase adoption and acceptance of the 
model. Many times, this is thought of after the fact and can cause delays or  
reduce acceptance.

•	 User acceptance and change management: This is typically an ongoing process. 
It is generally a good idea to involve users and stakeholders from the start. If users 
feel that their voice is heard, this will improve the chances of acceptance. Users can 
also help avoid potential problems that the data science team will not catch on their 
own. Frequent communication about why you are doing this project, how it impacts 
the users, and how their work will change (hopefully for the better) are all good 
strategies to improve your odds of success. Building the diagrams listed previously 
in conjunction with users is a great way to start this dialog and is ultimately what 
adds value to the business. As you can see, many things have to happen before and 
after a model is built to realize value. It is no wonder that projects often do not 
succeed in adding value.

•	 Model monitoring and maintenance: Once the model is operational, you will 
need to set up mechanisms to monitor the prediction service and the performance. 
Over time, the performance tends to degrade, or you might want to improve the 
performance of the model. This requires the models to be updated or retrained with 
new data. Luckily, DataRobot makes these tasks very easy as it provides mechanisms 
to set up the monitoring and retraining of the models.

Summary
In this chapter, we covered some tools and methods to help you gain an understanding 
of your system and the business problem you are trying to solve. Some of these methods 
will be new or unfamiliar to even experienced data scientists, but it is important to take 
the time to internalize them and practice them on your projects. Some of this will feel 
unnecessary given the time pressures. This is one of the reasons tools such as DataRobot 
are beneficial, as they reduce the time you need to spend on repetitive tasks and allow you 
to focus on things that tools cannot do.
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Hopefully, I have convinced you that the combination of data science teams focusing 
more on understanding the problem and using automation tools for some of the model 
building and tuning tasks provides the best value to an organization. A lot of the work 
done here will also come in handy toward the end of the project when we are getting ready 
to operationalize the models into the organization. Specifically, in this chapter, we have 
learned how to understand the broader system context, how the system operates, and why 
it behaves a certain way. We also saw how to get to the root problem that a business needs 
to solve and turn the business problem into a form that can be solved with ML. We then 
learned how to make sure that the solution solves the right problem and does not create 
unintended side effects.

Finally, we learned how to make sure that the solution is accepted by the stakeholders and 
gets operationalized, leading to the realization of business value.

We are now ready to start working with some example datasets and begin using DataRobot 
to help solve the business problem we have uncovered and the ML problem we have defined.

Further reading
•	 Causality: Models, Reasoning and Inference, Second Edition, Judea Pearl, Cambridge 

University Press.

•	 Business Dynamics: Systems Thinking and Modeling for a Complex World, John D. 
Sterman, Irwin/McGraw-Hill.





Section 2:  
Full ML Life Cycle  
with DataRobot:  

Concept to Value

This section will cover the entire life cycle of building and deploying an ML model with 
DataRobot. Upon completion, you will know how to take a project from start to finish. 
Although the tasks are listed linearly, these tasks will happen iteratively during any real 
project, and at many points in this process, you will jump back to a previous step to 
perform some tasks all over again.

This section comprises the following chapters:

•	 Chapter 4, Preparing Data for DataRobot

•	 Chapter 5, Exploratory Data Analysis with DataRobot

•	 Chapter 6, Model Building with DataRobot

•	 Chapter 7, Model Understanding and Explainability

•	 Chapter 8, Model Scoring and Deployment





4
Preparing Data  
for DataRobot

This chapter covers tasks relating to preparing data for modeling. While the tasks 
themselves are relatively straightforward, they can take up a lot of time and can sometimes 
cause frustration. Just know that if you feel this way, you are not alone. This is pretty 
normal. This is also where you will begin to notice that things are a bit different from your 
experience in an academic setting. Data will almost never arrive in a form that's suitable 
for modeling, and it is a mistake to assume that the data you have received is in good 
condition and of good quality.

Most real-world problems do not come with a ready-made dataset that you can start 
processing and use to build models. Most likely you will need to stitch data together 
from multiple disparate sources. Depending on the data, DataRobot might perform data 
preparation and cleansing tasks automatically, or you might have to do some of these on 
your own. This chapter covers concepts and examples to show how to cleanse and prepare 
your data and the features that DataRobot provides to help with these tasks.
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By the end of this chapter, you will know how to set up data to hand it off  
to DataRobot and begin modeling. In the chapter, we're going to cover the following  
main topics:

•	 Connecting to data sources

•	 Aggregating data for modeling

•	 Cleansing the dataset

•	 Working with different types of data

•	 Engineering features for modeling

Technical requirements
Some parts of this chapter require access to the DataRobot software, and some tools for 
data manipulation. Most of the examples deal with small datasets and therefore can be 
handled via Excel. The datasets that we will be using in the rest of this book are described 
in the following sections.

Automobile Dataset
The Automobile Dataset (source: Dua, D. and Graff, C. (2019). UCI Machine Learning 
Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of 
California, School of Information and Computer Science) can be accessed at the UCI 
Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/
Automobile). Each row in this dataset represents a specific automobile. The features 
(columns) describe its characteristics, risk rating, and associated normalized losses. Even 
though it is a small dataset, it has many features that are numerical as well as categorical. 
Features are described on the web page, and the data is provided in .csv format.

http://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/datasets/Automobile
https://archive.ics.uci.edu/ml/datasets/Automobile
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Appliances Energy Prediction Dataset
This dataset (source: Luis M. Candanedo, Veronique Feldheim, Dominique Deramaix, 
Data driven prediction models of energy use of appliances in a low-energy house, Energy 
and Buildings, Volume 140, 1 April 2017, Pages 81-97, ISSN 0378-7788) can be accessed 
at the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/
datasets/Appliances+energy+prediction#). This dataset captures temperature 
and humidity data in various rooms in a house and in the outside environment, along with 
energy consumption by various devices over time. The data is captured every 10 minutes. 
This is a typical example of a time series dataset. Data is provided in .csv format, and the 
site also provides descriptions of the various features. All features in this dataset are numeric 
features. The dataset also includes two random variables to make the problem interesting.

SQL
For some parts of this chapter, it will be helpful to know SQL, although you do 
not need to know SQL to go through the example problems.

Connecting to data sources
By this point, you should have a list of data sources and an idea of what data is stored 
there. Depending on your use case, these sources could be real-time data streaming 
sources you need to tap into. Here are some typical sources of data:

•	 Filesystems

•	 Excel files

•	 SQL databases

•	 Amazon S3 buckets

•	 Hadoop Distributed File System (HDFS)

•	 NoSQL databases

•	 Data warehouses

•	 Data lakes

•	 Graph databases

•	 Data streams

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction#
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction#
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Depending on the type of data source, you will use different mechanisms to access this 
data. These could be on-premises or in the cloud. Depending on the condition of the 
data, you can bring it directly into DataRobot, or you might have to do some preparation 
before you bring it into DataRobot. DataRobot has recently added capabilities in the form 
of Paxata to help with this process, but you might not have access to that add-on. Most of 
the processing work is done via SQL, Python, pandas, and Excel. For the purpose of this 
book, we will only focus on Excel.

If you are not already familiar with SQL and pandas, then it will be helpful for you to start 
learning about them as soon as you get an opportunity:

1.	 You can connect to a data source by going to the Create New Project menu, as 
shown in the following figure:

Figure 4.1 – Connecting to a data source
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2.	 You can search for an existing data source that has been defined, or you can add a 
new data connection. If you select the add new data connection option (shown in 
the preceding figure), you will see the following connection choices:

Figure 4.2 – Types of data connection
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3.	 You will see the connection choices available for your organization. What you see 
here could be different from the preceding figure. Most databases with JDBC drivers 
are supported, but you might have to check with your administrator. As an example, 
let's select the MySQL option, as shown in the following figure:

Figure 4.3 – Configuring a data connection

In the preceding figure, you will see the configuration parameters for configuring a 
MySQL data source. Other data sources are similar in nature. Here, you will enter the 
configuration settings that can be obtained from your database administrator. You will 
need to create a similar connection if you are connecting to a database to get data into 
Python or Excel.

Note
You will need to have some working knowledge of SQL or work with someone 
who knows SQL to make use of these options.
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Aggregating data for modeling
From the previous chapters, you might remember that machine learning algorithms 
expect the dataset to be in a specific form and it needs to be in one table. The data needed 
for this table, however, could reside in multiple sources. Hence, one of the first things 
you need to do is to aggregate data from multiple sources. This is often done using SQL 
or Python. Recently, DataRobot has added the capability to add multiple datasets into 
a project and then aggregate this data within DataRobot. Please note that there are still 
some data cleansing operations that you might have to do outside of DataRobot, so if you 
want to use the aggregation capabilities of DataRobot, you need to do cleansing operations 
prior to bringing this data into DataRobot. We cover data cleansing in the following 
section. If you choose to do data aggregation inside DataRobot, you have to make sure to 
do this at the very start of the project (Figure 4.4):

Figure 4.4 – Add secondary datasets
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In the preceding figure, just below the Start button, you can click on Add datasets. Once 
you click on it, you will see a window that lets you specify the additional dataset, as shown 
in Figure 4.5:

Figure 4.5 – Secondary datasets

Here, you can add a new dataset and define the relationships between your main dataset 
and the secondary datasets. For time series problems, you can also use this capability to 
aggregate your data to the right timescale and join it with the main dataset.

Please note that this does require some understanding of how relational tables work and 
some SQL concepts. If you are not familiar with these ideas and you are not sure what 
indexes to use, work with someone who understands databases to help you set this up.

Cleansing the dataset
This step can come before or after the data aggregation we talked about in the previous 
section. We introduced some concepts around data cleansing in Chapter 2, Machine 
Learning Basics, so let's look at how to actually do it on a dataset. For this, let's start with 
the Automobile Dataset. Please refer to the Technical requirements section to access the 
UCI repository for this dataset:

1.	 Let's download two files: imports-85.data and imports-85.names. The data 
file is in .csv format, so let's rename the file with the .csv extension and open it 
using Excel (you can use any text editor). You will now see the data (Figure 4.6):
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Figure 4.6 – Automobile data

2.	 You will notice in the preceding screenshot that it is missing the header 
information. To retrieve the header information, open the .names file in any 
text editor. You will see the names of attributes as well as their definitions. Create 
an empty row at the top of your .csv file and you will have to manually type the 
names of these attributes as the first row of your file. Now let's save this file as 
autodata.csv. It should now look as shown in Figure 4.7:

Figure 4.7 – Automobile data with headers

Please review all the cells in this data file. You will have already noticed that many cells in 
the preceding figure have a ? instead of a value. While there are several features where the 
values are missing, for most of them it is negligible, except for normalized-losses 
where 20% of the total values are missing. Given that our dataset is very small, we do not 
want to drop the rows with missing data. Also, DataRobot has mechanisms to account 
for missing values, so we are going to leave most of them as is. The only one that we want 
to consider is normalized-losses. If normalized-losses is our target variable, 
then we have no choice but to drop those rows. If not, we can first try to go as is and let 
DataRobot build a model. We can then try an alternative strategy of using the average 
value of normalized-losses per Symboling value to see if that makes any difference. 
I will use Excel's pivot table functionality to compute these averages (Figure 4.8):

Figure 4.8 – Pivot table
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The reason for using Symboling is that it is an indicator of risk. Depending on the 
problem and what you are trying to accomplish, you can choose some other feature 
for this purpose. For now, we will use Symboling to illustrate how to do it. There are 
more sophisticated imputation methods available, such as a K-Nearest Neighbor-based 
imputation method, that you can explore if desired (https://scikit-learn.org/
stable/modules/generated/sklearn.impute.KNNImputer.html).

In reviewing the Appliances Energy Prediction Dataset, we see that the data looks very clean 
and no further cleansing is required. In real-world projects, you will almost never find a 
dataset that is free of problems. Typical problems in time series datasets to watch out for are 
as follows:

•	 Very little data: You need at least 35 or so datapoints for regression and 100 
datapoints for classification problems to allow DataRobot to do something useful 
with your data.

•	 Data gaps: Sometimes data might be missing for certain timesteps. In these cases, 
you can use values from the timesteps before or after to assign values for the missing 
time step. You can also let DataRobot do this for you.

•	 Interrelated series: Often you will have multiple timeseries that you are trying to 
forecast. If the series are similar and are interrelated, then you can combine them 
into a single model. This can often improve the forecast accuracy. In these cases,  
you have to create a feature that tells DataRobot that these series are part of the 
same cluster.

We will revisit the data quality based on what DataRobot finds. Now that the dataset looks 
reasonably clean (which is very unusual by the way), let's investigate this data further.

Working with different types of data
You will have noticed that some of the features have numeric values while others have 
categorical values. For example, the aspiration feature can have two values: std or turbo. 
Such categorical features require some preprocessing to convert them into numeric 
values. Luckily DataRobot takes care of that processing for us. You might want to check 
for misspellings, though, to make sure that the possible values match the expectations. 
For example, you might find standard as well as std in your datasets. In this case, 
DataRobot will treat them as different values, even though they are the same.

https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
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There are some features that can be treated as categorical or as numerical. For example, 
Symboling can be treated as numerical or as categorical. In general, if the numerical value 
has meaning, it is better to treat it as numerical. Another example is num-of-cylinders; 
here, the values are expressed as text. Given that there is a numerical order here, it might be 
beneficial to turn this into a numeric variable, as shown in Figure 4.9:

Figure 4.9 – Categorical to numerical feature conversion

Here, we have created (in Excel) a new feature, cylinder-count, that carries the 
numerical values for the number of cylinders. In this example, we are using Excel for  
the data manipulation, but this can be achieved via many methods, such as SQL,  
Python, and Paxata. You can do similar data manipulation and create a new column for 
num-of-doors as well.

Let's take a look at the make feature in the following figure. This seems to have 22 possible 
values, but we have very limited data available. If we count the number of rows for each 
make, we can see how much data is available for each make:

Figure 4.10 – Data for each make
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We notice that some car types have very little data available, so it might be useful to 
combine some of them. For example, we can combine (using Excel) the highlighted rows 
into a make called other. Where you draw the line depends upon your understanding 
of the business problem or discussions with domain experts. Even with that knowledge, 
you might have to try out a few different options to see what works best. This is what 
makes machine learning an iterative and exploratory process. Also keep in mind that 
you have limited time available, so don't over-explore either. There is certainly a point of 
diminishing returns where additional tinkering will not produce many benefits.

DataRobot also allows special processing for images and geo-spatial data. We will cover 
them in Chapter 11, Working with GeoSpatial Data, NLP, and Image Processing. Now let's 
look at other transformations that can be done on data.

Engineering features for modeling
As part of the system's understanding you would have gained some insights into your 
problem and dataset that can be used to create new features in your dataset by combining 
the existing features in various ways. For example, we can create a new feature called 
volume by multiplying length, width, and height. Similarly, we can create a feature called 
mpg-ratio by dividing highway-mpg by city-mpg. Let's also create a feature called 
cylinder-size by dividing engine-size by cylinder-count. The equations for 
these features are as follows:

•	 volume = length * width * height

•	 mpg-ratio = highway-mpg / city-mpg

•	 cylinder-size = engine-size / cylinder-count

Figure 4.11 shows an example of what these feature values look like:

Figure 4.11 – Engineered features for the Automobile Dataset

As you can now see, many possibilities exist to create new features that could prove helpful 
in solving your problem. Many of these new features may not be useful, and it is OK to drop 
them later. Sometimes, such features will have meaning for the customers or stakeholders, 
and you might want to keep them instead of some other features that are redundant.
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Let's take a look at the Appliances Energy Prediction Dataset file. With this dataset, we 
can create the following features:

•	 total-energy = Appliances + lights

•	 avg-temp-inside = (T1 + T2 + T3 + T4 + T5 + T7 + T8 + T9 ) 
/ 8

•	 avg-rh-inside = (RH_1 + RH_2 + RH_3 + RH_4 + RH_5 + RH_7 + 
RH_8 + RH_9 ) / 8

•	 temp-inout-diff = T6  –  avg-temp-inside

•	 rh-inout-diff = RH_6  –  avg-rh-inside

•	 windchill-factor (I am creating an approximate windchill factor based on 
https://www.weather.gov/media/epz/wxcalc/windChill.pdf)  
= T_out * (Windspeed0.16 )

The new data features will appear as shown in Figure 4.12:

Figure 4.12 – Engineered features for the Appliances Energy Prediction Dataset

As you can see, these features use our knowledge about the domain that we can find by 
talking to domain experts or doing some research on the internet. You might be able to 
find even more such features by doing some research about dew points, pressure, and 
visibility. It will be hard for the automation to catch all of these on its own, but on the 
other hand, the automation might be able to find some additional interesting features 
based on them. Recently, DataRobot has also been adding capabilities to automatically 
do some feature engineering, but these capabilities are somewhat limited. One area where 
these capabilities are very useful is time series problems. In this particular area, these 
capabilities are extremely helpful in trying out a wide range of features that will be hard to 
match on your own. Having said that, it is still your responsibility to inject your domain 
knowledge into the model via engineered features.

https://www.weather.gov/media/epz/wxcalc/windChill.pdf
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Summary
In this chapter, we covered methods to help you prepare the dataset for building the 
models. Many of these methods have to be applied outside of DataRobot, although 
DataRobot is beginning to provide support for many of the data preparation tasks. As we 
discussed, many of these tasks cannot be automated at this point in time, and they require 
domain understanding to make appropriate decisions.

Specifically, in this chapter we have learned how to connect to various data sources and 
how to aggregate data from these sources. We looked at examples to address missing 
data issues and other data manipulation that should be done prior to modeling. We 
also covered several methods for creating new features that can be very important for 
improving the model's performance.

We are now at a stage where we will be working almost completely inside the DataRobot 
environment to analyze the data and build models. In the next chapter, we will use 
DataRobot to analyze the datasets.



5
Exploratory Data 

Analysis with 
DataRobot

In this chapter, we will cover tasks related to exploring and analyzing your dataset with 
DataRobot. DataRobot performs many functions that you will need to perform this 
analysis, but it is still up to you to make sense of it.

By the end of this chapter, you will have learned how to utilize DataRobot to perform 
exploratory data analysis (EDA). In this chapter, we're going to cover the following  
main topics:

•	 Data ingestion and data cataloging

•	 Data quality assessment

•	 EDA

•	 Setting the target feature and correlation analysis

•	 Feature selection
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Data ingestion and data cataloging
Now that we have our datasets ready, we have two choices to bring them into DataRobot. 
We can go to either the Create New Project / Drag Dataset page (Figure 1.5) or the AI 
Catalog page (Figure 1.17). If the dataset is relatively small, we may prefer to start with the 
Create New Project method. After a few iterations, when the dataset has stabilized, you 
can move it into the AI Catalog page so that it can be reused in other projects.

Let's start by uploading our automobile dataset as a local file that we created in Chapter 4, 
Preparing Data for DataRobot. You can name the project Automobile Example 1, as 
shown in the following screenshot:

Figure 5.1 – Uploading dataset for a new project

You will notice that DataRobot automatically starts analyzing the data and performs a 
quick exploratory analysis. You can see that it found 30 features and 205 rows of data. 

Note
If you are using an Excel file that has multiple sheets, make sure that the data 
you want is in the first sheet.



Data quality assessment     107

Data quality assessment
DataRobot will also perform a data quality assessment and notify you if it finds any data 
issues, as shown in the following screenshot: 

Figure 5.2 – Data quality issues

In this case, it has found outliers in eight features. You can look into the details to see if 
these look acceptable or if you need to drop or otherwise fix these outliers. We will do this 
as we explore and analyze each of these features in the following section.

Notice that it also looked for any disguised missing values or excess zeros in any feature. 
These can be hard to detect manually and can be problematic for your models, so it is 
important to fix these issues if they come up. For example, you saw in Chapter 4, Preparing 
Data for DataRobot, that we already fixed the issue of excess zeros in the normalized-
losses feature. If we had not done that previously, DataRobot would alert us to fix this 
or filter out those rows before proceeding. It will also perform additional analysis once a 
target feature is selected.

You will carry out the same process with the Appliances Energy dataset.
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EDA
As you saw in the previous section, DataRobot automatically performed an initial analysis 
of the dataset. Let's see how we will review this data and gain insights from it. If you scroll 
down the page, you will see a table of features and an overview of their characteristics, as 
shown in the following screenshot:

Figure 5.3 – Data analysis overview

You can see that in this table, DataRobot has computed and listed any data quality concerns 
regarding a feature, what type of variable it is, how many unique values are in the dataset, 
and how many values are missing. These are all very important characteristics, and you 
need to review all of them to make sure that you understand what they are telling you.
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For example, is the variable type selected by DataRobot what you expected? If you look 
at num_of_doors, you will notice that this is categorical. Even though this is correct 
because the data contained is in the form of text, you know that this is really numbers. You 
might want to fix this (just as we did for num_of_cylinders in Chapter 4, Preparing 
Data for DataRobot). Doing this ahead of time will reduce rework and wasted effort 
downstream. Similarly, you will notice that num_of_doors has two missing values. If 
this number were higher, we would have tried to address the missing values, as discussed 
in Chapter 4, Preparing Data for DataRobot. Also, pay attention to unique values. For 
some features, we expect many unique values, while for others, we do not. Check if what 
DataRobot found is consistent with your expectations. If not, try to determine the reason 
for this. Pay special attention when a categorical variable has a large number of unique 
values. We will soon discuss how to address this issue.

For numeric features, you will also see summary statistics such as Mean, Median, Std 
Dev (for standard deviation), Min, and Max. Review these for each feature to see if they 
all look reasonable. If you click on any feature row, it will expand and show more detail, as 
shown in the following screenshot:

Figure 5.4 – Feature details for "symboling"
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Here, you can see a histogram of all the values. You can now see how this data is 
distributed. One aspect to pay special attention to is the area where you don't have much 
data. For example, you can see that the amount of training data available for the value -2 
is very limited, so we should expect there to be problems trying to predict these values. 
Now, let's look at the details of normalized_losses in the following screenshot:

Figure 5.5 – Feature details for "normalized_losses"

In this view, we can see that there seem to be very few losses around 140 and 180. If this 
were a large dataset, this would be a cause for concern. Since our dataset is very small, it 
is not surprising to see such gaps. Also, note that these are average losses per year and not 
losses experienced by an individual car. Next, in the following screenshot, we will look at 
the make feature to see how it is distributed:
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Figure 5.6 – Feature details for "make"

Since make is a categorical feature, you can see how frequently each value shows up. 
Remember that we had already consolidated some car types that had very little data into 
other. If we hadn't done that, we would notice here that some types have very few data 
points and need to be addressed or they will not do well during training. Let's look at 
fuel_type to see what we can glean from this data, as shown in the following screenshot:

Figure 5.7 – Feature details for "fuel_type"
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Here, we notice that diesel cars are not well represented, and this might be normal for 
cars. Anytime we see such imbalances, we should try to see if they can be addressed. Now, 
when we look at the engine_location feature, as shown in the following screenshot, 
we see that we have a problem:

Figure 5.8 – Feature details for engine_location
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As you can see in the preceding screenshot, the rear feature is barely registering on the 
dataset. From a practical standpoint, what this means is that the algorithms will ignore 
this feature. If you did not look carefully, you might assume that engine_location 
has no impact on your target, but as you can tell from this screenshot, our dataset is not 
large enough to make that determination. Let's now look in the following screenshot at 
engine_type to see what we find here:

Figure 5.9 – Feature details for "engine_type"

In this case, we find that one type dominates and some of the types are barely represented. 
Looking at this distribution, you might want to create another feature where you 
transform this into a binary value, 0 for ohc and 1 for every other type. This will also 
create some balance in the dataset.
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Please bear in mind that this might or might not prove to be useful. You have to try it out 
in your models and see what works. Let's now look in the following screenshot at num_of_
cylinders and cylinder_count, a feature that we created during data preparation:

Figure 5.10 – Feature details for "num_of_cylinders" and "cylinder_count"
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As you can see, even though it is the same data, transforming the values provides a 
different impression compared to what you get when you first look at the histograms. The 
numeric values are a more accurate representation of the data and should result in a better 
model compared to the categorical values.

Hopefully, we have highlighted what DataRobot provides automatically and what kinds 
of insights can be gained by looking at the graphs generated by DataRobot. We are now 
ready to set our target feature and do additional analysis.

Setting the target feature and correlation 
analysis
By the time you reach this stage, you should already have a pretty good idea of the 
problem you are trying to solve and what should be the target feature. It is not unusual 
to use different features as targets for different use cases. Also, sometimes you will set a 
transformed feature as a target (for example, log of a feature). For the Automobile dataset, 
we want to predict the price of cars. Once you select the target feature, as shown in the 
following screenshot, it will analyze that feature and provide some recommendations:

Figure 5.11 – Setting target feature
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You can see from the preceding screenshot that it is showing how the price is distributed. 
DataRobot also cautions that some of the target values are missing. Ideally, we would filter 
out the rows with missing target values before uploading the dataset. You will also notice 
that DataRobot has characterized this as a regression problem. Another thing to note is 
that it has picked the optimization metric to be Gamma Deviance. You can read more 
about this metric in Chapter 2, Machine Learning Basics, or you can explore it in more 
detail in DataRobot's help sections. For now, it looks like a good choice, given the wide 
variance of price values.

Before we click on the Start button, we should explore the advanced options. The 
reason for this is that once you click the Start button, you cannot make changes to the 
options. Having said that, it is often hard to make all the right choices without completely 
understanding the data. One way to overcome this issue is to ignore the advanced options 
for now and go ahead with the exploration. 

Once we know what we want, we can create a new project and select the appropriate 
options. You can see that this is an iterative process, and we will often try something and 
come back and redo some of it. Also, notice that Modeling Mode in Figure 5.11 is set to 
Quick. This is normally a good choice to get started. With that in mind, we can actually 
skip the options and go ahead and click the Start button. You will notice that DataRobot 
will get started on performing additional analysis, as shown in the following screenshot:

Figure 5.12 – Feature analysis
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You will notice that in addition to performing additional analysis, DataRobot will actually 
start building the models. This might be surprising since we are still doing analysis, but fear 
not—these are not the final models. Let DataRobot build these models, as some of these 
will provide useful insights into our data. We will most likely discard these models later on, 
but they will prove useful in our journey. Once DataRobot has finished doing all the tasks, 
you will see an Autopilot has finished message, as shown in the following screenshot: 

Figure 5.13 – Initial analysis complete
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You will now notice that DataRobot has populated an Importance column for all the 
features. This is the relative importance of a feature in reference to the target feature. We 
can also check to see if there are additional data quality issues that have been found. For 
that, let's click on the View info dropdown in the Data Quality Assessment box. You will 
then see the options, as shown in the following screenshot:

Figure 5.14 – Data Quality Assessment

We saw some of the issues previously, but we now see that there are features that 
potentially have target leakage. If target leakage exists, we will filter those features out. By 
looking at the warning signs associated with each feature, we discover that these features 
are horsepower and engine_size. Since these are important features and have 
an obvious impact on price, we will retain these features. We also see another warning 
symbol in the header row, as shown in the following screenshot:
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Figure 5.15 – Missing target values

Clicking on the symbol, we see that DataRobot has already filtered out rows where the 
price is missing. This is good, as it means we don't have to recreate our dataset and upload 
it again into DataRobot. You will also notice in the following screenshot that a new tab 
called Feature Associations is now present at the top left of the screen. This is a critical 
tab for our data analysis task. Let's click on this tab to look at what DataRobot has found:

Figure 5.16 – Feature Association



120     Exploratory Data Analysis with DataRobot

DataRobot calls these associations instead of correlations, and the reason is that DataRobot 
uses mutual information (MI) instead of correlation coefficients. The benefits of using MI 
are that it is able to better reflect non-linear relationships and can also handle categorical 
features. If you perform correlation analysis, you will find that the results are very similar 
in the case of linear relationships. In addition to finding the relationships, DataRobot also 
tries to find any clusters of interrelated features. You will notice that different clusters are 
color-coded differently. These offer additional insights into your problem. For example, 
you will see that there is a cluster of features related to the engine that includes a group of 
tightly correlated features such as engine_size, bore, cylinder_size, and stroke. 
Understanding these relationships as a collective can be very important to solving a business 
problem. In this particular case, it tells you that you cannot modify one of these in isolation.

Changing the bore will affect many other features, even if your model does not end 
up with those features. Ignoring these aspects is what typically leads to downstream 
problems, so please pay special attention to these relationships.

You can gain additional insights by sorting the associations by their importance, as shown 
in the following screenshot:

Figure 5.17 – Feature associations sorted by importance
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The preceding screenshot shows the features sorted by their impact on the target feature. 
This tells you which features are most likely to be prominent in your model. One thing 
to look for is how this lines up with the causal model that you built during the problem 
understanding stage. Is it consistent? If not, where are the differences and surprises? These 
typically lead to new insights into your problem. It is also useful to look at the MI values in 
totality. For this, you can click on the Export button to export all MI values as a .csv file. 
You can then analyze them in tools such as Excel, as shown in the following screenshot:

Figure 5.18 – MI values
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This gives you a better feel for the relative scale of these values. In this view, we can see that 
aspiration has very little impact on price. This seems a little counterintuitive and merits 
some additional investigation. For this, we can look at this association in more detail by 
clicking on the View Feature Association Pairs button. You can now select price and 
aspiration to see the association details, as shown in the following screenshot:

Figure 5.19 – Association pair details

Here, we can see that for the same value of aspiration, the price can vary quite a bit. 
Still, we can see that on average, turbo has a higher price. Based on this, we will keep it 
in the mix for modeling. We should also discuss with the domain experts to see why it is 
not correlating in a stronger fashion with price. These discussions can lead to creating 
other features that might clarify this relationship. On the other hand, the relationship 
between price and num_of_doors doesn't look very interesting. 

It is a good idea to review the association pairs to see what insights can be gained. At 
a minimum, review the ones with very high or very low values. Specifically, look for 
non-linear relationships. For example, let's look at the association between curb_weight 
and highway_mpg, as shown in the following screenshot:
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Figure 5.20 – Association between curb_weight and highway_mpg

Here, you will notice that as curb_weight increases, the miles per gallon (MPG)  value 
decreases, which makes intuitive sense. We also see that the curve starts flattening at higher 
weights. This could be due to many reasons, as other factors affecting MPG do not increase 
with weight.

Note that while this may or may not affect the predictive accuracy of the model, 
understanding these relationships is key to determining actions to be taken based on the 
model. For example, weight reduction might not provide much MPG benefit for weights 
larger than 3500. We can also investigate the association between curb_weight and 
drive _wheels, as shown in the following screenshot:

Figure 5.21 – Association between curb_weight and drive_wheels
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In the preceding screenshot, we can see that curb_weight is impacted by the choice of 
drive_wheels. It is possible that if we use both these features in our model, the model 
will give a much higher preference to curb_weight and might find not much value in 
using drive_wheels. Business users might therefore interpret drive_wheels as not 
very important. 

As you can see, this is not true since curb_weight is itself influenced by drive_wheels. 
It has been observed that an accurate model can sometimes give a false impression if you are 
not careful. DataRobot can do this analysis and produce these graphs, but it is up to you to 
understand and interpret these correctly.

Let's look again at some of the individual feature graphs we looked at before. For this, let's 
look at the feature details shown in Figure 5.13 and click on curb_weight. This will 
show us details about the feature, as shown in the following screenshot:

 

Figure 5.22 – Feature details for curb_weight
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You will notice that we now have some more information in this graph. Specifically, we 
can now see how price varies with curb_weight as well as how the curb_weight 
value is distributed. Looking at these relationships can give you additional insights into 
your problem, especially when the relationship is non-linear. For example, let's look at the 
details for highway_mpg in the following screenshot:

Figure 5.23 – Feature details for highway_mpg

As you can see, the price drops exponentially as the MPG value increases. Given this 
non-linearity, which also seems to be present in other features, it might be useful to try 
creating a new target feature by taking a log of the price. Similarly, by looking at the other 
features, you can get ideas on feature transformations that might prove beneficial. Some 
of you might be wondering why we should do this since the new algorithms can handle 
non-linearity. While that is true, it is still better to transform your non-linear problems if 
it makes sense from a business-understanding perspective. Also, it allows the algorithm to 
focus its computational energy in other areas that might otherwise be overlooked.

Now that we have understood the features and have transformed them as needed, we can 
focus on selecting a feature set to start the modeling process.
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Feature selection
The basic idea behind feature selection is to select features that show high importance for 
the target. In addition, we want to remove any features that are highly cross-correlated 
(or have high MI values) to other features. The selected set of features are represented as 
feature lists in DataRobot. If you click on the Feature Lists menu on the top left of the 
page, as shown in the following screenshot, you will see the feature lists that DataRobot 
has created for the dataset:

Figure 5.24 – Feature Lists

Here, you will see a list that contains all the raw features, ones that have selections based 
on univariate analysis (that is, analysis of features one at a time), and also ones that 
have the most important features. The DR Reduced Features M8 list or the Univariate 
Selections list look like good starting points. Click on the Project Data menu to go back 
to the data view. Now, let's inspect the univariate list by selecting  Univariate Selections 
from the Feature List dropdown, as illustrated in the following screenshot:

Figure 5.25 – Selecting a feature list
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You can now inspect the list of features that have been selected. You can modify this list 
and create new feature lists by dropping any features that you do not want to include in 
this list. As you can see, DataRobot has done much of the feature selection for you to 
get things started. You can remove some more now, or you can remove them in the next 
iteration after you have built an initial set of models.

Interestingly, DataRobot has already built some models with some of these lists, which we 
will explore in the next chapter.

Summary
In this chapter, we learned how to bring data into DataRobot. We learned how to assess 
data quality and to perform EDA by using DataRobot's features. We saw how DataRobot 
makes it very easy to explore data, set up target features, and perform correlation (or, 
more accurately, association analysis).

We learned how to leverage DataRobot's output to gain a better understanding of our 
problem and dataset, and then how to create feature lists to be used in model building. 
You could do these tasks in Python or R and they are not very difficult, but they do 
consume some time. This time is better served in focusing on understanding the problem 
and the dataset.

In the next chapter, we will jump into something that most of you must be waiting for: 
building models.





6
Model Building with 

DataRobot
In this chapter, we will see how DataRobot is used to build models. Much of the model-
building process has been automated, and DataRobot offers many capabilities to explore 
a wide range of algorithms automatically, as well as allowing data scientists to fine-tune 
what they want to build. This results in significant time savings for data science teams and 
leads to the exploration of many more models than would otherwise be possible. It also 
leads to better adherence to best practices and hence fewer chances of making mistakes.

By the end of this chapter, you will have learned how to utilize DataRobot to build a wide 
range of models. In this chapter, we're going to cover the following main topics:

•	 Configuring a modeling project

•	 Building models and the model leaderboard

•	 Understanding model blueprints

•	 Building ensemble models
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Configuring a modeling project
In the previous chapter, we created a project and performed data analysis. We also saw 
that DataRobot automatically built several models for us. To build these models, we used 
default project settings.

In this section, we will cover what DataRobot did for us by default and look at how we can 
fine-tune that behavior. If you remember, once we click the Start button on the project 
page (see Figure 5.1 in Chapter 5, Exploratory Data Analysis with DataRobot), we cannot 
make any changes to the project options. We will therefore create a new project to review 
and select the options we want. 

For this, let's go into DataRobot and select the Create New Project menu option. Just 
as before, we will now upload the same automobile dataset file that we used before. 
This time, you can name the project Automobile Example 2, as illustrated in the 
following screenshot:

Figure 6.1 – Uploading the dataset for a new project

You can select the same target feature (price) as we did previously. Now, instead of clicking 
the Start button, please click on Show advanced options at the bottom of the screen. You 
will now see the Advanced Options screen, as illustrated in the following screenshot:
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Figure 6.2 – Advanced Options

Here, you can see the partitioning options. You can see the default settings and can change 
them as needed. Since the amount of data we have is very limited, I have reduced the 
number of cross-validation folds to 3 and the holdout percentage to 15%. You can easily 
change these values and run with a different setup as needed. Next, we click on the Smart 
Downsampling tab, as illustrated in the following screenshot:

Figure 6.3 – Smart Downsampling
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Given that this is not a classification problem, we need not worry about downsampling 
here. If you have an imbalanced dataset for a classification problem, you can use this 
option to downsample. Let's now look at the Feature Constraints tab, as illustrated in the 
following screenshot:

Figure 6.4 – Feature Constraints
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Here, you can set up constraints on features such as monotonicity—that is, whether 
the target values move in the same direction as the value of a feature increases. At this 
point, we do not foresee a need to set such constraints.  Such constraints could be part 
of regulatory requirements in certain use cases. If they are, they can be specified here. 
Most use cases do not require such a constraint. Let's now click on the Additional tab, as 
illustrated in the following screenshot:

Figure 6.5 – Additional options
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Here, we see an option to change the optimization metric to be used for modeling. I have 
found DataRobot's recommendations to be very good and you should use this option 
unless you have a compelling business reason to select a different metric. Given that we 
are in the early stages of modeling and we are interested in understanding our data, we 
will select the Search for interactions option, unselect the Create blenders from top 
models option, and select the Include only models with SHAP value support option. As 
discussed in Chapter 2, Machine Learning Basics, SHapley Additive exPlanations (SHAP) 
values are helpful for understanding the models and will provide additional insights into 
our problem. This might come at the cost of model accuracy, but we will worry about 
improving accuracy later. If you scroll down further on this page, you will see even more 
options, as illustrated in the following screenshot:

Figure 6.6 – More options
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Here, you can set options to place an upper bound on running time, cap the value of 
target variable predictions, set a random seed, or add a weighting for a specific feature. For 
now, we do not see a need to change any of these defaults.

This completes the configuration process, and we are now ready to build the models.

Building models and the model leaderboard
Once we are done making any changes to the configuration settings, we can scroll up and 
click the Start button. DataRobot will now start automatically building the models, as 
illustrated in the following screenshot:

Figure 6.7 – Automated building of models
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You can see which models DataRobot is building and how much training data is being 
used. You will notice that DataRobot will first build quick models with smaller datasets, 
learn which one performs better, and then selectively build models with more data. In the 
present case, you might not see this because there is very little data to begin with. Once 
DataRobot is done building the models, it will show the model leaderboard, as illustrated 
in the following screenshot:

Figure 6.8 – Model leaderboard

In the preceding screenshot, you will see which models rise to the top based on the metric 
you have selected for cross-validations. You can also choose different metrics from the 
dropdown to see how the models compare for different metrics. You can clearly see which 
models rose to the top. It is not uncommon to see gradient boosted models in the top tier. 
You will also notice that the model rankings change a bit based on the metric selected. 
You will see that once DataRobot has selected a model for deployment, it has unlocked the 
holdout results and trained the model with 100% data to prepare for deployment. For now, 
we will ignore that as we are not yet ready to discuss deployment. Another thing to notice 
is the feature list used for the top models. You will see that a new Informative Features 
+ feature list has been used. This is a feature list that DataRobot created for these models. 
Let's take a look at what this list contains, as follows:
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Figure 6.9 – New feature list
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As you can see, this list contains a subset of the features, and it also contains a new feature 
that DataRobot created automatically: (bore) DIVIDED BY (length). This ratio 
might have significance for an engine, and you should discuss its role with subject-matter 
experts (SMEs). If not previously known, this could represent a new insight for your business 
team. It turns out that this is called stroke ratio and is considered an important parameter 
for engines. The next step in the modeling process is to see if there is a need to further refine 
this feature list. Let's go back to the model leaderboard, select the top-performing model 
eXtreme Gradient Boosted Trees Regressor (Gamma Loss), go to the Understand tab and 
select the Feature Impact sub-tab, as illustrated in the following screenshot: 

Figure 6.10 – Understand and Feature Impact tabs
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You will see that feature impacts are not computed for every model, so go ahead and 
click on the Enable Feature Impact button to let DataRobot compute it. Once clicked, 
DataRobot will start computing the impacts and show you the results, as illustrated in the 
following screenshot:

Figure 6.11 – Feature impacts
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You will notice that the feature impacts are computed using SHAP values, which we 
discussed previously. By default, it shows the top 25 features. We will discuss the details of 
the features and the model later on. For now, we want to look at the entire feature set. For 
this, we will click on the Export button in the bottom-right corner. We will now see the 
Export option, as illustrated in the following screenshot: 

Figure 6.12 – Exporting feature impacts
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You can download this information as a .csv file to explore it in more detail. Let's  
use Excel to open the .csv file to review the feature impacts, as illustrated in the 
following screenshot:

Figure 6.13 – Feature impacts of the entire set
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As you can see, the last seven features don't add much, and we can try removing them 
and see the impact. One of the benefits of a tool such as DataRobot is that running these 
experiments is very quick and easy. Now that we know what we want to do, let's go back 
to the Feature Impact screen. Notice the + Create feature list button on the bottom left. 
Clicking on that button brings up a dialog box for creating a new feature list, as illustrated 
in the following screenshot:

Figure 6.14 – Creating a new feature list
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Here, we can give the feature list a new name, FL1 top23, and specify that we want 
the 23 best features. Now, we can click the Create feature list button to save this new 
feature list. Now that a new feature list has been created, we can now click on Configure 
Modeling Settings in the column on the right side of the page. This will bring up the 
configuration dialog box, as illustrated in the following screenshot:

Figure 6.15 – Configure Modeling Settings
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We can now select the new feature list, FL1 top23, from the dropdown. We can modify 
the other settings if we need and click the Run button. DataRobot will now start building 
models with the new feature list and when the process completes, you can see the new 
models in the leaderboard, as illustrated in the following screenshot:

Figure 6.16 – Leaderboard with new models
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As you can see, the model built with the new feature list did better and is now at the top of 
the leaderboard (ignore the deployment-ready model, as it uses the entire dataset). As we 
can see, removing features that did not contribute much actually helped the model (even 
if just a little). Given that this model uses a smaller set of features, it is a more desirable 
model. We can continue this process as needed. At this point, we also start looking more 
deeply at the model's details and the results it is producing. We will come back to that 
topic in the next chapter. For now, we want to look at the model blueprints or the steps 
DataRobot takes to build a model.

Understanding model blueprints
DataRobot performs a lot of data transformations and hyperparameter tuning while 
building a model. It leverages a lot of best practices to build a specific type of model, and 
these best practices are codified in the form of blueprints. You can inspect these blueprints to 
gain insights into these best practices and also to better understand which steps were taken 
to build a model. To inspect the blueprint for a model, you can click on a model, go to the 
Describe tab, and then select the Blueprint tab, as illustrated in the following screenshot: 

Figure 6.17 – Model blueprint
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Here, you can see the workflow steps. As you can see, this blueprint is fairly simple. This is 
because gradient boost methods are very flexible and do not require a lot of preprocessing. 
Let's look at another model that did pretty well, the Generalized Additive2 Model 
(Gamma Loss) blueprint, as illustrated in the following screenshot: 

Figure 6.18 – Model blueprint for Generalized Additive2 Model (Gamma Loss)

Here, you can see that preprocessing was required for categorical variables and also for 
missing values. Let's now look at another blueprint for a deep learning (DL) model. Select 
the Keras Slim Residual Neural Network Regressor using Training Schedule model and 
select the Blueprint tab, as illustrated in the following screenshot:
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Figure 6.19 – Model blueprint for Keras

You can see that for Keras, we need to perform data cleansing, scaling, and one-hot 
encoding for categorical variables. You can inspect the details of each of these steps by 
clicking on the model box, as illustrated in the following screenshot: 

Figure 6.20 – Process step details
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You can now see an explanation of which tasks were performed and which 
hyperparameter settings were used for building the model. There is also a link to 
additional details about the method used. After inspecting the blueprints, you might see 
that one of your favorite algorithms was not used by DataRobot, and you might wonder 
what the performance of that algorithm or model might look like. To do this, you can click 
on the Repository tab at the top left of the page, as illustrated in the following screenshot: 

Figure 6.21 – Repository of blueprints
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Here, you will see all the blueprints DataRobot has to offer that are relevant to this project. 
As you can see, this is a pretty comprehensive list. Please note that this list will vary for 
projects of different types (for example, a time-series project). You can select any one of 
these blueprints and build a model. The new model will be shown on the leaderboard, 
where you can assess its relative performance. For now, we are not interested in doing that 
for this particular project.

We are interested at this point in comparing some of the models to see how well they 
compare at a more detailed level. For this, let's click on the rightmost tab at the top, called 
Model Comparison. This brings up a page where you can select any two models to see 
how they match up, as illustrated in the following screenshot: 

Figure 6.22 – Model Comparison
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Here, we have selected the XGBoost model and the generalized additive model (GAM) 
model for comparison across multiple metrics. We can see that the two models are not 
too far apart, and you can select either one depending on other factors. As we discussed 
previously, GAMs have the advantage of being easy to explain to business users and can 
be presented as a factor lookup table (LUT), sometimes called a rating table. There might 
also be regulatory reasons to select a GAM model. Let's explore a bit further by clicking 
on the Compute dual lift data button, to take us to the following screen:

Figure 6.23 – Dual lift chart

Dual lift charts are used to compare the results of two models. For a dual lift chart, the 
results are sorted by the difference between the two models as opposed to the target value. 
The values are then binned to display the results for each bin. The shaded area depicts 
the difference between the two models. Here, again, we see that the two models are very 
similar in their performance.

If two models have overall good scores but show large deviations in values in this chart, 
then these models will be good candidates for creating an ensemble model.
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Building ensemble models
It is well known that ensembles of models tend to perform better and also tend to be 
more robust. DataRobot provides the capability to automatically build ensemble models; 
however, this does require some trade-offs. For example, ensemble models take more time 
and computational resources to build and deploy, and they also tend to be more opaque. 
This is the reason we did not start off by building ensemble models. Once you have built 
several models and you are interested in ways of improving your model accuracy, you can 
decide to build ensembles. As we saw in the previous sections, we have to explicitly select 
the option to build ensembles, and that also means that we cannot compute SHAP values. 
Let's look at how this is done. Let's first go to the project list page, which shows all of your 
current projects, as illustrated in the following screenshot:

Figure 6.24 – Project list

Here, we will select the Actions icon for the project that we have been working on, which 
is Automobile Example 2. From the menu, we will select the Duplicate option. You 
will now see the Duplicate dialog box, as illustrated in the following screenshot:

Figure 6.25 – Duplicating a project
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We can give it a new name, Automobile Example 3, and we will select Copy dataset 
only. This way, we can apply new project settings. Let's click Confirm. This will create a 
new project. We can select the target as price, and now we click on the Advanced Options 
tab, as illustrated in the following screenshot:

Figure 6.26 – Advanced options for ensembles (blenders)
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This time, we will select the Create blenders from top models option and uncheck the 
Include only models with SHAP value support option. Now, we can click the Start 
button to let DataRobot build the models. Once DataRobot has finished building the 
models, we can inspect the leaderboard, as illustrated in the following screenshot:

Figure 6.27 – Leaderboard with ensemble models



154     Model Building with DataRobot

You will notice the DataRobot has built an AVG Blender model that seems to be the  
top model, but not by much. Blended models can sometimes produce substantial lift  
over individual models, so it is worthwhile exploring this option. We can select this  
model and click on the Describe tab and then the Blueprint tab, as illustrated in the 
following screenshot:

Figure 6.28 – Blueprint for AVG Blender

We can now see that the blender has selected two XGBoost models, and hence it is not 
surprising that the lift is not much better. In this case, we will not select the blended 
model, and we go back to the previous project.

Summary
In this chapter, we learned how to build and compare models by leveraging DataRobot's 
capabilities. As you saw, DataRobot makes it very easy to build many models quickly 
and helps us compare those models. As you experienced, we tried many things and built 
dozens of models. This rapid model exploration is DataRobot's key capability, and its 
importance to a data science team cannot be overstated. If you were to build these models 
on your own in Python, it would have taken a lot more time and effort. Instead, we used 
that time and thinking to experiment with different ideas and put more energy toward 
understanding the problem. We also learned about blueprints that encode best practices. 
These blueprints can be useful learning tools for new and experienced data scientists alike. 
We also learned how DataRobot can build ensemble or blended models for us.
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It might be tempting to jump ahead and start deploying one of these models, but it is 
important to not directly jump into that without doing some analysis. We are now ready 
to dig deeper into the models, understand them, and see if we can gain more insights  
from them.





7
Model 

Understanding  
and Explainability

In the last chapter, we learned how to build models, and we will now learn how to use 
output generated by DataRobot to understand the models and also use this information 
to explain why a model provides a particular prediction. As we have discussed before, this 
aspect is critically important to ensure that we are using the results correctly. DataRobot 
automates much of the task of creating charts and plots to help someone understand  
a model, but you still need to know how to interpret what it is showing in the context 
of the problem you are trying to solve. This is another reason why we will need people 
involved in the process, even if much of a task has been automated. As you can imagine, 
the task of interpreting the results will therefore become more and more valuable as the 
degree of automation increases.

In this chapter, we're going to cover the following main topics:

•	 Reviewing and understanding model details

•	 Assessing model performance and metrics

•	 Generating model explanations

•	 Understanding model learning curves and trade-offs
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Reviewing and understanding model details
In the last chapter, we created several models for different projects. DataRobot creates 10 
to 20 models in a project, and it would be very onerous to look at and analyze the details 
of all of these models. You do not have to review each of these models, and it is common 
to review only the top few models before making a final selection. We will now look at 
the leaderboard for models in the Automobile Example 2 project and select the top 
model, as illustrated in the following screenshot:

Figure 7.1 – Model information

In the preceding screenshot, we selected the Model Info tab within the Describe tab to 
get a view of how large the model is and the expected time it takes to create predictions. 
This information is useful in real-time applications that are time-sensitive and need to 
score thousands of transactions quickly. Let's now go to the Feature Impact tab within the 
Understand tab, as shown in the following screenshot:
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Figure 7.2 – Feature impacts 

This is one of the most important charts for the model as it shows how much a feature 
contributes to this XGBoost model. We can see that the top contributors are curb_weight, 
engine_size, horsepower, highway_mpg, and cylinder_count. On the other 
hand, cylinder_size and engine_type contribute very little. While it is true that 
cylinder_size is not very predictive, we must not forget that prediction is not always 
the end objective. We know that cylinder_size has an effect on engine_size, an 
important feature. The objective might be to use this information to figure out ways to 
reduce costs. For that, we might want to reduce engine_size, but you cannot reduce 
engine_size directly. For that, you need to reduce the size or count of cylinders, which 
will lead to a reduction in engine_size. Having a causal diagram of this problem to guide 
you becomes very helpful in determining the best actions to take to achieve our objectives.
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Before we take action, let's inspect what the results look like for a Generalized Additive 
Model (GAM), as shown in the following screenshot:

Figure 7.3 – Feature impacts for a GAM

Figure 7.3 shows the important features of the GAM. While many of the features look 
similar, we notice that engine_type is fairly high in importance for this model, whereas 
engine_type was very low in importance for the previous model. This is not an error—
it points to the fact that many of the features are interrelated and different models can 
pick up signals from different features, and that predictive power is not necessarily the 
same as the root cause. To take action, we need to understand the root feature that leads 
to a change in the target feature. To put this another way, the feature that best predicts 
something is not always the feature that can be changed to create the desired change  
in the target.
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To further understand how a feature affects the target, let's select the Feature Effects tab 
within the Understand tab of the model, as shown in the following screenshot:

Figure 7.4 – Feature effects 

The preceding screenshot shows partial dependence plots for various features. The 
selected plot is for curb_weight. The plot shows a fairly linear relationship between 
curb_weight and price. We do see some unusual dips in price in a few spots—for 
example, around a curb_weight value of 2700. Before we take that too seriously,  
we notice that the amount of data around that is very limited. This tells us that this 
particular observation is likely due to a lack of data. This does raise the issue that  
our model is likely to predict a lower price in that small region, which in turn could  
result in lower revenue.
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Let's look at another feature in the following screenshot:

Figure 7.5 – Partial dependence for engine_size

The preceding screenshot shows a highly non-linear relationship between engine_size 
and price. We see a very dramatic rise in price around the engine_size value of 180.  
It is hard to know how real this effect is without discussing it with domain experts.  
We can notice that the amount of data available for sizes greater than 130 is very small, 
hence the effects we see could be simply due to a lack of data. Taken as is, it indicates  
that prices stagnate beyond a size of 200, and this could be an important insight for  
the business.

Let's take a look at another partial dependence plot for highway_mpg in the  
following screenshot:
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Figure 7.6 – Partial dependence plot for highway_mpg

Figure 7.6 shows another highly non-linear relationship, with a key transition point 
happening around a highway_mpg value of 28. This clearly shows a big price drop 
around 28, hence this is a critical point. This could be due to regulations, where going 
below 28 places you in a different type of vehicle or engine. We also notice that once  
you get above that threshold, any further change is not very meaningful from a price 
impact (however, it could still be very impactful from other perspectives). If you do  
not know why this is, it is important for you to discuss this with your subject-matter 
experts (SMEs).

My main objective for showing and discussing these plots is to show you how important  
it is to spend your time analyzing and reviewing these plots rather than spending all of 
your time coding up these plots. Since DataRobot automatically creates these for you,  
you can now spend your time doing the more value-added work of analyzing these results 
to help improve your business.
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Let's revisit the engine_size plot, but this time for the GAM, as shown in the  
following screenshot:

Figure 7.7 – Partial dependence plot for the GAM

Figure 7.7 shows the partial dependence for the GAM. Comparing this with Figure 7.5,  
we see that Figure 7.7 shows clearer thresholds around values 95 and 180. Discussing this 
with domain experts could help you determine which model is a better representation of 
reality and which model helps you to better set pricing. One of the benefits of GAMs is 
that you can easily smooth out these curves and shape them for deployment. Remember—
accurate prediction is not always the same as better intervention or action.

GAMs are a lot easier to understand and explain. Let's look at another chart here that 
helps in that understanding:



Reviewing and understanding model details     165

 Figure 7.8 – Feature coefficients

Figure 7.8 shows the coefficients for different features in the GAM. You will notice that 
DataRobot has created some derived features. You can click on them to see more details. 
This provides a high-level view of the coefficients, but there is another view that provides  
a better view for understanding the model. For that, let's click on the Rating Table tab 
within the Describe tab for the GAM, as shown in the following screenshot:

Figure 7.9 – Rating table for a GAM



166     Model Understanding and Explainability 

This view lets you download the rating table built by DataRobot; you can also modify  
this table and upload it back to use the modified table. This mechanism thus allows  
you to manually fine-tune your model based on your understanding of the problem. This 
feature is therefore very powerful as it allows you a lot of flexibility, but at the same time, 
you must use this carefully. Let's click on the Download table button and download the 
comma-separated values (CSV) file. Once downloaded, we can open the file using Excel, 
as shown in the following screenshot:

Figure 7.10 – Rating table for a GAM
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You can now see what the rating table looks like. Here, you see that DataRobot has created 
bins for various features. For each bin, it has assigned the coefficient and relativity as to 
how changes in a feature impact the target variable. To understand this a bit better, we can 
create plots for individual features in Excel, as shown in the following screenshot:

Figure 7.11 – Feature relativities

In Figure 7.11, you can see how a given feature such as body_style contributes to the 
price. The GAM model is essentially a sum of all the contributions from the selected 
features. Given the rating table, anyone can easily calculate the price, and this can also 
be implemented in a very simple manner. Given that the individual feature effects are 
non-linear (and still very understandable), this allows these models to perform very  
well while still being very easy to understand. It is no wonder that GAMs are becoming 
very popular.
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There is one more chart that we want to look at that is frequently helpful in understanding 
the contributions of features. For this, we will click on the Insights menu item at the top 
of the page, which brings up the chart shown here:

Figure 7.12 – Model insights

Figure 7.12 shows the variable effects using a DataRobot selected model that is built 
using constant splines (in this case, the Ridge Regressor model). This shows the effects 
of the key feature values in one view, and you can get a sense of relative impact as well as 
the positive versus the negative contribution of features. A constant spline is a feature 
transformation where a numeric feature is converted into pieces made up of constant 
splines. The value of the feature is one if the value falls within a specific interval; 
otherwise, it is zero. You can review this chart with reference to the feature effects for  
the models you have selected to see if there are any inconsistencies between these charts.
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Now that we understand the model from the perspective of which features are important 
and how they contribute toward the target value, we can focus on how well the model  
is doing.

Assessing model performance and metrics
In this section, we will focus on how well a model is doing in trying to predict the target 
values. Let's start by looking at the overall performance comparison across different 
models, as shown in the following screenshot: 

Figure 7.13 – Performance across models
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The preceding screenshot shows the overall leaderboard, which we have seen before. Here, 
we can see the overall performance of different models based on the Gamma Deviance 
metric. We can also review the performance based on other metrics by clicking on the 
drop-down arrow near the metric, which shows us a list of metrics we can choose from,  
as illustrated in the following screenshot:

Figure 7.14 – Performance metrics
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Figure 7.14 shows the various metrics we can select from. You will typically see a similar 
trend across different metrics in terms of which models surface to the top spots. In 
general, the metric that DataRobot selects is a very good choice, if not the best choice. 
Let's now inspect the performance details of specific models by clicking on the model and 
selecting the Lift Chart tab within the Evaluate tab, as shown in the following screenshot: 

Figure 7.15 – Lift chart
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The lift chart illustrated in the preceding screenshot shows how the predictions stack up 
against the actual values. You can select the number of bins to aggregate the results. The 
maximum value is 60, and that is normally a good starting point. This means that the 
predictions are first sorted in ascending order and then grouped into 60 bins. The results 
you see are the average values within that bin. The reason for binning is that if you look 
at the entire dataset, there will be so much data that you will not be able to make any 
sense out of it. You can see that the model does very well over the entire range of values, 
with some small pockets where the differences seem higher than the rest. We typically 
want to see lift charts for multiple models, to see if there are areas where one model does 
better than another model. Let's now look at the lift chart for the GAM, as shown in the 
following screenshot:

Figure 7.16 – Lift chart for the GAM
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The results in Figure 7.16 look very similar to the results from Figure 7.15, but we can  
see that the GAM did not do as well for higher values. We now know where specifically 
the GAM is weaker as compared to the XGBoost model. Let's look further by clicking on 
the Residuals tab within the Evaluate tab, as shown in the following screenshot:

Figure 7.17 – Model residuals
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The residuals seem to be well distributed around the mean but with a small skew toward 
-ve values. Let's also check how the residuals are distributed for the GAM. We can see the 
output in the following screenshot:

Figure 7.18 – Residuals for the GAM

The residuals for the GAM are also well distributed but with a slightly larger skew 
compared to the XGBoost model. Overall, the performance of the models looks very 
good. We can now look into understanding individual predictions and their explanations.
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Generating model explanations
Another key capability of DataRobot is that it automatically generates instance-level 
explanations for each prediction. This is important in understanding why a particular 
prediction turned out the way it did. This is not only important for understanding the 
model; many times, this is needed for compliance purposes as well. I am sure you have 
seen explanations generated or offered if you are denied credit. The ability to generate these 
explanations is not straightforward and can be very time-consuming. Let's first look at the 
explanations generated for the XGBoost model, as shown in the following screenshot:

Figure 7.19 – Model explanations
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Since we selected the SHAP option for this project, the model explanations are based 
on SHapley Additive exPlanations (SHAP) algorithms. Here, you can see the overall 
distribution of predictions on the left, and you can see that most of the dataset lies in 
the range of 0 to 10000. You can select some specific points and see the components 
that make up that prediction. In Figure 7.19, we have selected the prediction point of 
27788.86. We can see the top contributing elements on the right, where engine_size 
is contributing the most, and in this case, the value of engine_size is 183. Notice that 
the relative contribution of features can vary on a case-by-case basis, and the ordering of 
features here will not exactly match the feature-impacts order we saw in the preceding 
section. Let's compare this with explanations generated by the GAM, as shown in the 
following screenshot:

Figure 7.20 – Model explanations for GAM
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In the preceding screenshot, the point selected is for a prediction of 31465.18. For this 
point, we can see the features that are the main contributors toward that price, and we also 
note that there was a reduction or -ve contribution due to the make of the vehicle being 
Mercedes-Benz. We can also see that in this case, the contribution of engine_size of 
183 is much larger for the GAM.

The explanations for the entire dataset can be downloaded and analyzed for additional 
insights. You can also upload an entirely new dataset to score it and generate these 
explanations very easily, by clicking on the Upload new dataset button.

As you have seen in this chapter, different models have different performance, use the 
features a little bit differently, and have different levels of understandability. There are a few 
other dimensions that should be looked at before making a final selection of the model  
you want to use. Let's now look at model learning curves and some of the model trade-offs.

Understanding model learning curves and 
trade-offs
In machine learning (ML) problems, we are always trying to find more data to improve 
our models, but as you can imagine, there comes a time when we reach a point of 
diminishing returns. It is very hard to know when you have reached that point, but  
you can get indications by looking at the learning curves. Fortunately, DataRobot makes 
that task easy by automatically building these learning curves. When DataRobot starts 
building models, it first tries a broad range of algorithms on small samples of data. 
Promising models are then built with bigger sample sizes, and so on.
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In this process, we discover how much performance improvement happens as more data is 
added. To look at the learning curves, you can click on the Learning Curves menu item at 
the top of the screen, as seen in the following screenshot:

Figure 7.21 – Model learning curves
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You can see the different model types on the right-hand side of the page. Here, you can 
click on the models you want to inspect and compare. After selecting the models, you 
click on the + Compute Learning Curves button. This brings up a dialog box showing the 
selected models and corresponding sample sizes, as shown in the following screenshot:

Figure 7.22 – Models selected for comparison
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If the selections in Figure 7.22 look correct, you can click the Compute button. You will 
now see the learning curves for the selected models, as shown in the following screenshot: 

Figure 7.23 – Comparison of learning curves

You can now see the improvement in performance as the sample size increases. We can 
see that the GAM learns very rapidly, but as the sample size increases, the XGBoost model 
takes over. We can see that both models will benefit from additional data. We can also see 
that if we only had half of the data we currently have, then the GAM would have been the 
clear winner.
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We can now look at another trade-off for models—namely, the trade-off between speed 
and accuracy. If you click on the Speed vs Accuracy menu item at the top of the page,  
you will see a chart, as shown in the following screenshot: 

Figure 7.24 – Speed versus accuracy trade-off

You will notice the DataRobot has built an AVG Blender model that seems to be the top 
model, but not by much. Blended models can sometimes produce substantial lift over 
individual models, so it is worthwhile exploring this option. We can select this model and 
click on the Blueprint tab within the Describe menu item.
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Summary
In this chapter, we covered how to build and compare models by leveraging DataRobot's 
capabilities. As you saw, DataRobot makes it very easy to build many models quickly 
and helps us compare them. As you experienced, we tried many things and built dozens 
of models. This is DataRobot's key capability, and its importance to a data science team 
cannot be overstated. If you were to build these models on your own in Python, it 
would have taken a lot more time and effort. Instead, we used that time and thinking to 
experiment with different ideas and put more energy toward understanding the problem. 
We also learned about blueprints that encode best practices. These blueprints can be 
useful learning tools for new and experienced data scientists alike. We also learned how 
DataRobot can build ensemble or blended models for us.

It might be tempting to jump ahead and start deploying one of these models, but it is 
important to not directly jump to that without doing some analysis. In the next chapter, 
we will dig deeper into the models to understand them and see if we can gain more 
insights from them.
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Model Scoring  

and Deployment
In the previous chapter, we learned how to use outputs generated by DataRobot to 
understand models and why a model provides a particular prediction. We will now 
learn how to use models to score input datasets and create predictions to be used in the 
intended applications. DataRobot automates many tasks that are required for scoring and 
generating row-level explanations. 

Creating predictions, however, is not where these tasks end. In most cases, these 
predictions need to be transformed into actions for consumption by people or 
applications. This mapping of predictions to actions requires an understanding of business 
and therefore needs a person to interpret the results (in most use cases). In this chapter, 
we will discuss how this is done. We're going to cover the following main topics:

•	 Scoring and prediction methods

•	 Generating prediction explanations

•	 Analyzing predictions and postprocessing

•	 Deploying DataRobot models

•	 Monitoring deployed models
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Scoring and prediction methods
DataRobot provides multiple methods to score datasets using models that have been 
created. One of the easiest methods is batch scoring via the DataRobot user interface 
(UI). For this, we need to follow these steps:

1.	 Create a file with the dataset to be scored. Given that we are using a public dataset, 
we will simply use the same dataset to score. In a real project, you will have access 
to a new dataset for which you want to create predictions. For our purposes, we 
simply created a copy of our imports-85-data.xlsx dataset file and named it 
imports-85-data-score.xlsx. 

2.	 Now, let's select the Predict tab and then the Test Predictions tab for the XGBoost 
(XGB) models, as shown in the following screenshot: 

Figure 8.1 – Batch scoring
In the preceding screenshot, you will see that you have an option to drag and drop 
a new dataset to add the scoring file to the model. 

3.	 Let's select our imports-85-data-score.xlsx scoring file and drop it into 
the Drag and drop a new dataset box. Once you drop the file, it will get uploaded 
and you can see it in the interface, as shown in the following screenshot: 
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Figure 8.2 – Computing predictions

4.	 You can now click on the Compute predictions button to start the scoring process. 
Once this process is complete, you can click on the Download predictions button 
to download the predictions generated by the model. The download is in the form 
of a .csv file that you can view in Excel, as shown in the following screenshot: 

Figure 8.3 – Downloaded predictions
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The downloaded predictions file can now be joined with the original dataset for  
further analysis.

The second method for scoring a dataset is via the DataRobot batch prediction 
application programming interface (API), which will be discussed in the  
following section.

Generating prediction explanations
In this section, we will focus on how to generate explanations along with predictions 
for the scoring dataset. After uploading the scoring dataset (as we discussed in the 
preceding section), you can now go to the Understand tab and then select the Prediction 
Explanations tab, as shown in the following screenshot:

Figure 8.4 – Prediction explanations
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In the preceding screenshot, you can see that it now shows the scoring dataset that was 
uploaded. You can now click on the icon next to the dataset filename to compute the 
explanations. Once the computation is complete, you will see the download icon. You can 
use the download icon to download the generated explanations for the predictions made 
by the model. The explanations come in the form of a .csv file that can be opened using 
Excel, as shown in the following screenshot: 

Figure 8.5 – Prediction explanations file

In the preceding screenshot, we see that the file contains the predictions, as well as an 
explanation for each prediction. For example, if we look at row 69 that is highlighted in 
Figure 8.5, we see that the value of make explains 5.17% of the value difference from the 
base for this automobile. Similarly, you can see the relative contribution of each feature 
value. Notice that the features in the file are not sorted by the most important feature and 
also that the most important feature for a given row is not the same as some other row. 
The feature importance will change from row to row.

Now that we have the predictions and their explanations, let's look at how to analyze these 
and determine how to use them to take actions or make decisions.
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Analyzing predictions and postprocessing
Before we charge off to deploy the model, it would be advisable to analyze the predictions 
and see if they make sense, whether there are some patterns in the errors, and also how 
to turn the predictions into something actionable. These are aspects where traditional 
data science tools and methods are not of much help, and you need to rely on judgment 
and methods from other disciplines to help formulate the next steps. For this, let's start 
by combining the scoring dataset file with the explanations file. This can be done in 
Structured Query Language (SQL), Python, or Excel. The combined file looks something 
like this: 

Figure 8.6 – Combined scoring data and predictions

We also created a new ERROR column that simply subtracts prediction from price. 
We can now use Excel to create a pivot table and look at the results from multiple 
perspectives. For example, let's create a pivot table and look at the Average of ERROR 
value by symboling, as shown in the following screenshot: 

Figure 8.7 – Average of ERROR value by symboling
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The preceding screenshot shows that errors are much higher for the value -2. Looking 
at the dataset, we find that we have only three data points for -2, thus it is not a surprise 
that the model performs poorly. This tells us that we cannot trust the results when the 
symboling value is -2 and that we should try to get more data for this value. Analysis such 
as this can point to areas of improvement and where to focus your efforts. We also realize 
that since this is an average error, we should use the average of the absolute percentage 
value of the error to prevent incorrect conclusions, as shown in the following screenshot: 

Figure 8.8 – Average of abs perc ERROR value by symboling

Now, we see that the absolute percent error decreases as the symboling value increases. 
At this point, there is no hard and fast way to find insights except exploring the output 
data and looking at it from different perspectives to see what you can find. Typically, it is a 
good idea to sort the errors and look at rows that have unusually large errors, and then see 
if you can determine why this is so.

Now, on to one of the most important aspects of building a data science model—
understanding which actions to take. Now that we have a reasonable model to predict 
price, a question arises: What should we do with this information? Hopefully, the answer 
was determined at the start of the project as to what was the goal of this exercise. Let's 
assume that the objective is to set the price of a new vehicle by looking at the prediction of 
the model and providing all the parameters such as engine_size, and so on. We could 
also imagine that a model such as this could be useful even during the design stage when 
designers are trying to determine trade-offs between different parameters such as bore or 
width. This goes on to say that a predictive model can many times be applied to use cases 
that were not considered while building the model. 

This, however, requires us to understand the broader context of the business problem. 
This is the primary reason we took time to discuss and understand the business context in 
Chapter 3, Understanding and Defining Business Problems. It might be useful to revisit that 
chapter to refresh the concepts discussed there as we will use some of the techniques that 
were introduced there, such as causal modeling.
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To determine how we use price prediction, let's review what we know about how price 
relates to other parameters. In Chapter 5, Exploratory Data Analysis with DataRobot, 
we looked at association analysis information. Association strengths using mutual 
information were generated by DataRobot. We can use that information to draw a 
network graph between different features, as shown in the following screenshot. You can 
do this by drawing a circle for each feature, and then creating lines between features that 
have high association strengths:

Figure 8.9 – Network graph of associations between features

In Chapter 7, Model Understanding and Explainability, we saw the feature importance for 
price in terms of SHapley Additive exPlanations (SHAP) values is specific to the model 
we selected. The following might represent a causal diagram for this problem:
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Figure 8.10 – Causal diagram for the XGB model

The left side of the diagram represents the most important features from the SHAP  
values. Let's imagine that the actual price charged is a bit different from the prediction. 
The Price Delta feature reflects a decision someone might make to charge a price different 
from the prediction. The Price feature impacts Units Sold, which ultimately affects the 
profitability. Note that this reflects just one possible way of using this model to help make 
pricing decisions.

If, on the other hand, we imagine that we are trying to help the car design team come up 
with the best car configuration that will also be the most profitable one, then we might 
look at the diagram a bit differently. This is because different choices of car or engine 
design will also impact the cost of the car. Also, we know from Figure 8.9 that the features 
are not independent. Changing the bore feature will change the Engine Size and the 
Horsepower features. Hence, when we are looking into making decisions, we have to 
think about the causal impacts as well. This is a very simplified view, and you can imagine 
that for a real problem, these diagrams will be a lot more complex. Imagine business 
leaders making those decisions by taking into account all of these relationships in their 
heads. This is one of the reasons that many times, models are not used by business users.

In our example problem, the causal diagram shown in Figure 8.10 is fairly simple. You 
can imagine real-world problems where this diagram will be a lot more complex. In such 
cases, it is very difficult to assess the impact the deployment of a model will have on the 
ecosystem. This includes users and other stakeholders. Complex problems tend to have 
many unanticipated consequences, especially when the affected parties are people. 
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In such situations, if the potential impact may be large, it is advisable to test the new 
model in a synthetic or simulated environment. With the testing and impact analyses 
complete, we are now ready to deploy our model.

Deploying DataRobot models
DataRobot makes it pretty easy to deploy the models you have developed. To prepare a 
model for deployment, here are the steps:

1.	 Let's unlock the project so that we can see the metrics for the holdout datasets, as 
shown in the following screenshot:

Figure 8.11 – Unlocking DataRobot models
In the preceding screenshot, you can see the Unlock project Holdout for all 
models option on the right side of the interface. 

2.	 You should unlock the project only after you have selected the model that you are 
choosing for deployment. In our case, we have selected the XGB model that uses the 
FL1 top23 feature list. Clicking on this option brings up a dialog box, as shown in 
the following screenshot:
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Figure 8.12 – Unlocking project holdout

3.	 Unlocking the project is an irreversible process. Let's unlock the project and see the 
holdout metrics, as shown in the following screenshot:

Figure 8.13 – Unlocked project view
Figure 8.13 shows that the holdout values are higher than the cross-validation 
values, as expected. The holdout values are a better representation of the kind of 
performance you should expect from a model after deployment. 
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4.	 Now that the project is unlocked, let's retrain the selected model with 100% of the 
data to improve this model's performance. For that, click on the orange + sign for 
the model, as shown in Figure 8.13. This will bring up a dialog box for changing the 
sample size, as shown in the following screenshot: 

Figure 8.14 – Defining new sample size
In the preceding screenshot, you see options to change the sample size. 

5.	 Drag the slider bar all the way to 100% to indicate that you want to train the model 
with 100% of the data, as shown in the following screenshot: 
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Figure 8.15 – Setting new sample size

6.	 You can now click the Run with new sample size button. DataRobot will now retrain 
the XGB model with 100% of the data. For the XGB model, you can now click on the 
Predict tab and then the Deploy tab, as shown in the following screenshot: 

Figure 8.16 – Deploying a model
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7.	 Next, click on the Deploy model button. This will bring up a new page, as shown in 
the following screenshot: 

Figure 8.17 – Creating a deployment for the model

8.	 You can now give a name to your deployed model. You can also select your 
prediction environment where the deployed model is hosted, as set up by your 
administrator. Under the Data Drift section, you can specify if you want to track 
data drift or enable challenger models. You can also enable the storage of prediction 
rows, which allows DataRobot to analyze performance over time. Similarly, you can 
enable the tracking of attributes for segment-based analysis of model performance. 

9.	 You can now click the Create deployment button. DataRobot will now deploy 
your model and create a baseline for model drift. Once completed, you will see 
information about your deployed model, as shown in the following screenshot: 
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Figure 8.18 – Deployed model overview
You can now see the endpoint for the REpresentational State Transfer (REST) 
API for your prediction model. For example, for the price Predictions model, the 
prediction environment is https://app2.datarobot.com.

10.	 You can now invoke this API to generate predictions. You can also see other 
information about your deployment by clicking on different tabs. If you click on the 
Service Health tab, you will see a page like this:

Figure 8.19 – Service health of deployments
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The preceding screenshot shows the status of the price prediction model. It shows how 
many predictions have been done, the response time for a prediction, and the error rates. 
The screenshot does not show any values because we just deployed this model.

We are now ready to start monitoring this deployed model.

Monitoring deployed models
As you will have guessed by now, the job of the data science team does not end once 
a model is deployed. We now have to monitor this model to see how it is performing, 
whether it is working as intended, and if we need to intervene and make any changes. 
We'll proceed as follows:

1.	 To see how that works, let's click on the Predictions tab, as shown in the  
following screenshot:

Figure 8.20 – Making predictions using the deployed model

2.	 We can now upload a dataset to be scored, by dragging and dropping a file (here, 
we will use the same file that we used before during model training) into the 
Prediction source box. We can now see other options becoming available, as shown 
in the following screenshot:
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Figure 8.21 – Computing predictions for a dataset

3.	 After selecting the options, we can click on the Compute and download 
predictions button. After DataRobot finishes the computations, we will see the 
output file becoming available, as shown in the following screenshot: 

Figure 8.22 – Downloading predictions
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The output file can now be downloaded and analyzed. Since we are interested 
in monitoring the model, let's click on the Service Health tab, as shown in the 
following screenshot:

Figure 8.23 – Service health of the model
We can now see that the model has serviced 15 requests with a median response 
time of 325 milliseconds (ms) and an error rate of 0%. The overall service health 
looks good. 

4.	 We can now look at the data drift for the model by clicking on the Data Drift tab, as 
shown in the following screenshot:
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Figure 8.24 – Data drift for the model

In the preceding screenshot, at the top of the Data Drift page, we see the data drift 
between the scoring data and training data. The left graph shows drift by feature 
importance, and we can see that the amount of drift is very low. This is not surprising 
since we used the same dataset. For real datasets, the drift will be a bit higher. Similarly, 
the graph on the right shows the distribution of records grouped by price. Here again, we 
see that the distributions are very similar for the target feature, price. If you scroll down 
the page, you will see additional graphs, as shown in the following screenshot: 

Figure 8.25 – Data drift for the model: additional information
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The preceding screenshot shows the average prediction values over time. This will indicate 
whether the predictions have been stable or if they have changed over time. You will have 
to rely on your understanding of the business problem to determine whether the amount 
of drift is acceptable or not. DataRobot will also give you an indication by showing a 
red, yellow, or green status. A red status would indicate that there is an issue that needs 
to be resolved; similarly, yellow means that you should be aware of potential issues, and 
green indicates that everything looks fine. In general, the issue could be errors in the data 
pipeline or a change in the business environment. A change in the business environment 
would be an indication that the model needs to be retrained.

If the model needs to be retrained or if you need to rebuild the model, you can follow the 
steps that we have outlined in the preceding chapters. This completes a basic view of how 
you use DataRobot to build and deploy a model. 

Summary
In this chapter, we learned how to use models after training. We discussed the methods 
that are used to score a dataset and also methods that are used for analyzing the 
resulting outputs. We also covered methods and considerations for turning predictions 
into actions or decisions. This is a critical step whereby you have to engage with 
your business stakeholders to make sure that introducing this model will not cause 
unforeseen problems. This is also the time to work on change management tasks such as 
communicating changes to people who are impacted by the change and ensure that users 
are trained in the new process and know how to use the new capabilities.

We then discussed how to use DataRobot capabilities to rapidly deploy a model and 
then monitor the model performance. It is easy to underestimate the importance of this 
capability. Model deployment and monitoring are not easy, and many organizations spend 
a lot of time and effort trying to deploy a model. Hopefully, we have shown how easily this 
can be accomplished with DataRobot.

We have now completed the basic steps needed to build and deploy a model and can now 
go over some advanced concepts and capabilities of DataRobot. You are now ready to 
dive into advanced topics based on your interest or based on the type of project you will 
be working on. For example, if you are working on a time series problem, then you can 
review Chapter 9, Forecasting and Time Series Modeling.



Section 3:  
Advanced Topics

This section covers many of the advanced topics and capabilities that you can leverage 
once you have mastered the previous sections. This section provides examples of advanced 
capabilities that experienced data scientists will use to make them more productive. Some 
chapters in this section require a familiarity with Python programming.

This section comprises the following topics:

•	 Chapter 9, Forecasting and Time Series Modeling

•	 Chapter 10, Recommender Systems

•	 Chapter 11, Working with Geospatial Data, NLP, and Image Processing

•	 Chapter 12, DataRobot Python API

•	 Chapter 13, Model Governance and MLOps

•	 Chapter 14, Conclusion





9
Forecasting 

and Time Series 
Modeling

In this chapter, we will understand what time series are and will see how DataRobot 
can be used to model them. Time series modeling is becoming increasingly useful in 
businesses. However, the challenges associated with forecasting make it quite challenging 
for many skilled data scientists to successfully carry out time series modeling, and this 
form of modeling could also be extremely time-consuming. DataRobot provides an 
automated process that enables data scientists to carry out time series projects in an 
effective and efficient fashion. In this chapter, we will introduce the concept of forecasting, 
stressing its commercial importance and inherent challenges, and illustrate how 
DataRobot can be used to build its models.
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By the end of this chapter, you will have learned how to utilize DataRobot in building 
time series forecasting models. In addition, we will look at making predictions with 
these models. We go further by building models for multi-series time series as part of the 
advanced topics. Here are the main topics to be covered in this chapter:

•	 Conceptual introduction to time series forecasting and modeling

•	 Defining and setting up time series projects 

•	 Building time series forecasting models and understanding their model outcomes

•	 Making predictions with time series models

•	 Advanced topics in time series modeling

Technical requirements
Some parts of this chapter require access to the DataRobot software and some tools for 
data manipulation. Most of the examples deal with small datasets and therefore can be 
handled via Excel. The dataset that we will be using in this chapter is described next.

Appliances energy prediction dataset
This dataset can be accessed at the University of California Irvine (UCI) Machine 
Learning Repository (https://archive.ics.uci.edu/ml/datasets/
Appliances+energy+prediction#). 

Dataset citation
Luis M. Candanedo, Véronique Feldheim, Dominique Deramaix, Data driven 
prediction models of energy use of appliances in a low-energy house, Energy and 
Buildings, Volume 140, 1 April 2017, Pages 81-97, ISSN 0378-7788.

This dataset captures temperature and humidity in various rooms in a house and in the 
outside environment, along with energy consumption by various devices over time. The 
data is captured every 10 minutes. This is a typical example of a time series dataset. Data 
is provided in .csv format and the site also provides descriptions of the various features. 
All features in this dataset are numeric features. The dataset also includes two random 
variables to make the problem interesting.

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction#
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction#
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Conceptual introduction to time series 
forecasting modeling
The dynamic nature of the commercial environment makes time a pivot resource for 
business success. As a result, businesses need to account for the time factor in their 
decision-making. Changes occur within commercial settings at a high pace, which makes 
it pertinent for organizations to take rapid yet considered actions. Analytic technology 
provides organizations with tools that enable forecasting of the future so that decision-
makers have crucial time in hand to ensure their decision aligns with their organizational 
objectives. Organizations use time-specific data to predict the volume of sales in a future 
period. Other writers have differentiated time series modeling from forecasting models. In 
this chapter, we have used the term interchangeably and consider time series forecasting 
to involve the use of advanced analytics to gain insights that guide business decisions 
leveraging time-based data.

Time series forecasting supports numerous aspects of business planning. With forecasting, 
human and other forms of resource planning can be optimized to ensure that expected 
outcomes are realized. Through forecasting, cash flow, profit, and budgeting projections 
are more rigorously established, thereby mitigating human bias. Forecasting sales could be 
influenced by several factors that are controllable and non-controllable. Certain consumer 
factors that change with time tend to affect the volume of sales. These factors include 
changes in population, customer taste, and interests. In addition, demand is sensitive to 
broader economic variables, such as inflation, that also change with time. As a result, it 
becomes pertinent to use some features that could act as proxies for these consumer and 
economic variables in addition to lagged or historic sales. Because some of these variables 
are challenging to acquire, analysts tend to be limited to a few historic values and volumes 
in modeling future outcomes.
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Although a detailed discussion on time series is out of the scope of this book, it is, 
however, pertinent to appreciate that the properties of modeling time series make them 
more challenging to work with. In addition to difficulties with other forms of predictive 
modeling discussed in previous chapters of this book, time series modeling comes with 
additional challenges. One of the assumptions of linear regression modeling is that of 
independence of observations, that is, that observations or data rows are independent. 
However, this assumption is inevitably broken with time series modeling. Within time 
series, autocorrelation occurs naturally, as observations are similar across different time 
periods. It is also possible that highly corrected observations don't occur successively, in 
which case seasonality occurs. Series are considered seasonal when observations across a 
fixed time frame have higher levels of correlation. Indeed, these are periodic fluctuations 
in observations. A similar volume of sales of flight tickets during holiday periods brings 
this to life. Seasonality could indeed occur yet fails to follow a fixed time frame, described 
as cyclicity. Qualifying cycles generally require considerably larger datasets than other 
properties of series as cyclicity is mostly related to external factors such as macroeconomic 
or political changes within the business environment.

Autocorrelation also gives rise to linearity, a concept that describes an overarching 
trend where consecutive observations are similar, albeit changing in such a way that they 
follow a linear trend. Due to this linear trend, albeit sometimes with some integrated 
fluctuations, the mean of specific time frames will follow a pattern but is unlikely to be 
the same, hence the use of moving average (MA) and autoregression approaches to 
represent time series. However, series can still be characterized by the extent to which 
their statistical properties change over time. They are considered stationary when they 
have a constant mean and variance that are independent of time. What is most interesting, 
albeit problematic statistically, is that some time series data has a combination of these 
properties. A good example is the volume of flights. Though gradually increasing over 
time, being seasonal, during an economic downturn this falls generally. In this example, 
we can see elements of seasonality, cyclicity, and linearity.

Another concept that sometimes gets lost in the details is that of actionability. 
Actionability being the ability of stakeholders to act because of an analysis or a model's 
outcome, it is very common for data scientists to focus on the accuracy of predictions. 
While accuracy is important, what is more important is to provide actionable guidance to 
decision-makers. A forecast that enables you to take action today is more valuable than a 
forecast that is more accurate but not actionable. Care must be taken while defining the 
forecasting problem to ensure the actionability of the model being developed.
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The foregone conversation in this section highlights the properties that make time series 
modeling more challenging for typical data scientists. DataRobot has developed unique 
processes that enable data scientists, including those with limited statistical exposure, to 
create complex yet robust time series models. In the subsequent section, we will look at 
how to define and set up time series problems in DataRobot.

Defining and setting up time series projects
In Chapter 4, Preparing Data for DataRobot, through to Chapter 8, Model Scoring and 
Deployment, we explored the creation, understanding, scoring, and deployment of basic 
models in DataRobot. We saw that DataRobot automatically built several models for us 
and we could then score a dataset using these built models. Further, after we have chosen 
a model that best aligns with our needs, DataRobot provides us a process to deploy our 
selected model. Due to the difference between time series modeling and other forms 
of predictive modeling, we will explore in this section how to mitigate problems by 
effectively defining and setting up time series projects in DataRobot. 

The dataset we will use to explore the use of time series modeling with DataRobot is the 
Appliances energy prediction dataset that we explored in Chapter 4, Preparing Data for 
DataRobot. The goal of the project is to predict energy usage. This energy usage time series 
dataset has 4 and a half months' worth of 10-minute readings from differing data sources. 
First, the data involved room temperature and humidity in a house. These were monitored 
using a wireless sensor network and the data was stored every 10 minutes. Each of the 
nine rooms in the house had their readings for temperature and humidity stored for 
the time frame. Second, there was external data that provided a nearby airport (public 
source) detailed information pertaining to weather information outside the house, again 
with a 10-minute interval. This included wind speed, visibility, dew point, pressure, and 
humidity. This information was merged with the data using date and time. In addition, 
appliances and light usage aligned to date and time were attached to the dataset. 
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Within this dataset, it is easy to see that the goal of this time series prediction is predicting 
energy usage. The immediate influencing variables are the temperature and atmospheric 
pressure within the house; however, the external data from the weather outside the house 
is important. We created features calculating the average conditions across the nine rooms 
in the house. In addition, we engineered features that captured the difference between 
the mean room and the external temperature, as well as the difference between the mean 
room and external pressure. Since we have two time series (appliance usage and light 
usage), we will approach this problem in two ways. First, as a single time series, we will 
look at the sum of both appliance and light usage. Subsequently, within the advanced 
section, we will examine the multiple time series approach, with which we will be making 
predictions for each usage type. As with other prediction projects on DataRobot, we ingest 
the data as a .csv file, as seen in the following screenshot: 

Figure 9.1 – Choosing a target variable for time series
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The project is named Energy_Prediction and the target variable selected is  
total_energy (the sum of light and appliance usage). We proceed as follows:

1.	 After selecting a target variable, we select a time variable and the nature of the time-
based modeling. Clicking the Set up time-aware modeling button, as shown in Figure 
9.1, highlights the importance of time as a dimension and provides an opportunity to 
choose a time variable. In this case, we choose the date feature, which specifies the 
date and times of all readings, as illustrated in the following screenshot: 

Figure 9.2 – Choosing a time-aware function and time variable

2.	 Once the Set up time-aware modeling button is clicked and the time feature 
is selected, the platform requests the type of time-awareness model to be built. 
There are two options—Automated time series forecasting with backtesting and 
Automated machine learning with backtesting, as described next: 

•	 Automated time series forecasting with backtesting—This option considers 
previous data in predicting future data. With time series, there is a need to forecast 
multiple future points. A case in point for this type of time-aware project could be 
estimating departmental stores' daily sales for the next month using data from their 
last year's sales. 
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Automated machine learning with backtesting—The automated machine learning 
option, sometimes referred to as out-of-time validation, basically creates time-
based features in a row and then uses a typical predictive model that predicts a 
target variable for that row. Here, we do not use the typical cross-validation scheme; 
instead, this approach employs older data for training and holds back newer data for 
backtesting. Our project's context problem falls within the forecasting category type, 
so this option is selected, as seen in the following screenshot: 

Figure 9.3 – Time-aware modeling options

Once we have selected the Automated time series forecasting with backtesting option, 
we are presented with a Time-Aware Modeling options tab (see Figure 9.3). Here, a few 
options are to be carefully selected. We express how far back the model draws data to 
make predictions and also how far forward the model makes predictions for. Let's first 
consider the Feature Derivation Window option. This rolling window highlights a lag 
upon which features and statistics for time series models are derived in relation to the 
time from which a forecast is made (forecast point). The rolling window is expressed in 
relation to the forecast point and automatically moves forward with the passage of time. 
In an ideal situation, this window should cover a seasonal period in your data. Essentially, 
this window typically answers the question: How far back does the data our model uses 
to make predictions stretch? Also, there should be enough time between the end of the 
window and your forecasting time to cater for any data ingest delays still limiting this time 
gap, ensuring the data is recent enough. This period is known as the blind history. In our 
case, we have assumed that an hour would be enough time to allow any blind history, so 
set the gap before the forecasting point to 60 minutes. Considering our data is limited to 4 
and a half months, seasonality within the context of our problem would be day and night 
usage. Accordingly, we have set our rolling window to 2 days (2,880 minutes), which, 
when accounting for the initial 60-minute forecast point gap, amounts to 2,940 minute
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The second consideration is for the Forecast Window option. This defines, in relation to 
the forecast point, how far in the future we are predicting. This has two elements; first, 
when the prediction starts. The predictions should provide enough time for actions to 
be taken yet not be too far in the future to ensure these predictions are accurate enough. 
Secondly, we select our prediction end. This is dependent on the start point as well as 
the nature of our problem. So, this aspect answers the question: How far forward should 
predictions be made? For the problem at hand, we have selected an operationalization 
gap, a gap between the forecast point and the start of the prediction window of 1 day 
(1,440 minutes). Also, the rolling window is set at 1 day, which in consideration of our 
operationalization gap becomes 2,880 minutes.

Having set up the time series forecasting project in this section, we will now explore 
the processes around building the models, from understanding feature lists and their 
distributions to looking at their impacts on evaluating models.

Building time series forecasting models and 
understanding their model outcomes
Similar to projects we looked at in Chapter 4, Preparing Data for DataRobot, through 
to Chapter 8, Model Scoring and Deployment, once we have finished with the initial 
configurations, we scroll up and click on the Start button. By doing this, DataRobot 
automatically builds time series models for this project. Before we evaluate the models, it 
would be useful to understand the nature of the features the platform extracts. DataRobot 
extracts features from the data that differ considerably from those of other prediction 
models, as is evident in the following screenshot:
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Figure 9.4 – Feature lists

The lists shown under the Feature Lists tab are constructed as part of exploratory data 
analysis (EDA) and itemize differing lists of features that DataRobot employs in creating 
models. Many of the feature lists involve derived features, which are created automatically 
based on properties of time series. A further discussion on derived features will be carried 
out later in this section. It is easy to see that some of the lists involve features that are 
extracted from the original data (for example, Time Series Extracted Features). Others 
involve features created solely from dates, while some are assessed as informative. Most 
lists appear to be combinations of differing types (for example, Time Series Informative 
Features). Importantly, the feature lists provide the descriptions as well as the number of 
features for each feature list name. Feature lists that could be pivotal are presented as part 
of the Leaderboard feature, as illustrated in the following screenshot, which guides our 
final model choice: 
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Figure 9.5 – Model leaderboard

The Leaderboard feature offers insights into models that have been built for a DataRobot 
project. It provides information regarding model names and identifiers (IDs), their 
accuracy metrics, and their types, versions, and sample sizes for the model development. 
With time series modeling, however, there are some differences, as noted next. Firstly, the 
sample size is present in data ranges. This is due to the time-based nature of time series 
datasets. Unlike other modeling forms, the time order of the data does affect outcomes; 
as a result, data is selected in time ranges. In this case, as can be seen in Figure 9.5, our 
models were built using 3 months', 21 hours', and 51 minutes' worth of data. Secondly, 
instead of the Validation and Cross-Validation columns, we have the Backtest 1 and 
All Backtests columns. The backtests follow logically from the discussion regarding the 
sample size (see Chapter 6, Model Building with DataRobot). The backtests provide an 
evaluation of the model performance on a subset of the data. However, unlike a typical 
validation, the data is time-ordered, and the size and number of backtests can be altered as 
needed. We have used the default backtest setting for this example project so that the data 
was partitioned in such a way that only one backtest partition was available for modeling. 
Finally, with time series modeling projects, there appear to be more feature lists. As with 
other predictive project types, the models could be ordered or selected using any of the 
columns on the Leaderboard feature. 
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There are a number of metrics against which time series forecasting models could be 
assessed. This, of course, depends on the model. For regression-type outcomes, some 
advocate the use of Root Mean Square Error (RMSE). The nature of the problem remains 
critical in determining the metrics for assessment. That said, the role of the baseline 
model on the leaderboard is crucial to evaluating other models. The baseline model 
employs the most recent value in making its predictions. As such, comparing models 
with the baseline prediction blueprint plays a pivotal role in the model evaluation as 
it somewhat answers the question: To what extent are our models better than a naïve 
prediction from the most recent data? DataRobot provides the Mean Absolute Scaled 
Error (MASE), which compares the Mean Absolute Error (MAE) of models of interest 
with those of the baseline model. For instance, the Eureqa Generalized Additive Model 
(250 Generations) model, as presented in the following screenshot, has a comparative 
ratio of about 0.76 for Backtest 1. This suggests that the Eureqa model is about 24% 
better than the baseline. Since the Holdout metric could highlight considerable changes 
within the data, it should be included in model evaluation but not used in isolation. 
Other indications when evaluating models are covered within the Advanced topics in time 
series modeling section of this chapter. Model names could be clicked to provide elaborate 
insights about the data and its processes. We now turn to those we consider unique to 
time series forecasting, using the Eureqa Generalized Additive Model (250 Generations) 
example here:

Figure 9.6 – Impact of original features
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The Understand tab presents us with Feature Impact, Feature Effects, Prediction 
Explanations, and Word Cloud capabilities, which we have already encountered in 
Chapter 7, Model Understanding and Explainability. Feature Impact shows the relative 
extent to which features contribute to a model's overall accuracy. A click on the Feature 
Impact tab opens the Original features page (see Figure 9.6). The original features are 
features as they were in the dataset. 

The other tab within Feature Impact depicts the effect of derived features on the accuracy 
of the model. As alluded to earlier, derived features are those constructed based on the 
characteristics of time series. For instance, the stationary nature of some time series 
suggests that their statistical properties do not change over time. In the case of our model, 
the most impactful derived feature (total_energy (1440 minute average 
baseline)) is seen to be a feature constructed based on the stationary nature of the 
time series, as illustrated in the following screenshot. This is because it highlights the 
importance of the average 1,440-minute baseline energy on the accuracy of the model:

Figure 9.7 – Impact of derived features
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It is reasonable, as is evident in Figure 9.7, that a considerable number of derived features 
appear to be created from the stationary property of time series, which on its own could 
be indicative of this time series being quite stationary. That said, caution needs to be 
exercised on reaching this conclusion because our dataset only entails 4 and a half months' 
worth of data; for instance, our dataset only covers January 2016 to May 2016, so does 
not account for the late Summer, Autumn, and early Winter months. As such, seasonality 
could occur if we were using a dataset covering a longer time frame.

DataRobot creates features that capitalize on the properties of time series to improve the 
accuracy of its models. Although not evident in this project, with seasonality or cyclicity, 
DataRobot establishes when periodic variations occur and creates features accordingly. 
Based on this information, it next detects patterns of seasonality—for instance, a 
seasonality that occurs during a time frame could be defined either by counting up from 
the beginning of the time frame or counting down from the end of the time frame. As 
such, the platform could detect and build features that, for instance, use energy usage 
on the last Saturday of March to predict energy usage on the last Saturday of April. 
In a similar fashion, DataRobot uses features built on differencing to improve model 
performance. It could utilize the average usage during the first week in March as a feature 
to predict usage during the first week of April. 

Moving on to the Describe tab, upon opening the Blueprint tab, we are exposed to 
the stages involved in the modeling process of time series projects. As detailed in the 
following screenshot, we can quickly appreciate that this is not very different from those of 
other predictive projects encountered in preceding chapters: 
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Figure 9.8 – Model blueprint

We have now spent time building and understanding time series forecasting models. The 
next logical step is to use our selected model to make predictions.

Making predictions with time series models
DataRobot provides us with tools to make predictions pain-free. There are two approaches 
to making predictions for time series. For small datasets under 1 gigabyte (GB), 
predictions could be made using the Make Predictions tab on the Leaderboard feature. 
This involves setting up and uploading a prediction dataset, then scoring it within the 
Drag and drop a new dataset user interface (UI) functionality. For significantly larger 
datasets, models need to be deployed and predictions are made using an application 
programming interface (API). In this chapter, we will cover the first approach to making 
predictions. With DataRobot, general model deployments and working with APIs are 
extensively discussed in Chapter 12, DataRobot Python API.
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The leaderboard's drag-and-drop approach to scoring models for time series models 
somewhat differs from those of traditional models, as seen in Chapter 8, Model Scoring 
and Deployment. When the Make Predictions tab is opened, DataRobot briefly outlines 
the recency and quantity of the data needed to make predictions. This outline is mostly 
consistent with the forecasting windows established as part of the configuration during 
the model development, as well as features derived. As the prediction process shows in the 
following screenshot, the prediction dataset requires a minimum of 4,320 minutes of historic 
data outside of the 60 minutes prior to the forecasting point. In addition, when models 
include derived features that involve features in earlier time periods, the earlier time period 
is also included in the dataset requirement. Because the model in question has 24-hours'-
difference derived features, this increases the requirement to 5,820 minutes. This 5,820-
minute requirement includes an initial 60-minute forecast point gap window, 4,320-minute 
base prediction requirement data, and 1,440 minutes added on for the derived differencing 
features. This enables the model to predict 2,880 minutes in advance of the forecasting point 
after the 1,440-minute operationalization gap. Some of these features are presented here: 

Figure 9.9 – Make Predictions window



Making predictions with time series models     221

To make predictions, if the data format is consistent with the training data, proceed  
as follows: 

1.	 Click on Import data, which allows the data to be ingested from a local source, 
a Uniform Resource Locator (URL), оnе оf уоur еxіѕtіng dаtа ѕоurсеѕ, оr AI 
Catalog. If no row is found after the default forecast point, DataRobot generates 
a template. For this to be done, there must be no empty row within the forecast 
window and the template file must meet the upload size limit conditions. After the 
file has been uploaded, DataRobot sets the forecast points and includes the rows 
required to meet the forecast window expectations. 

2.	 Click on the Compute predictions button after uploading the data, as illustrated 
in the following screenshot, since the uploaded prediction file is the most recent, 
without gaps and the fill number of rows expected:

Figure 9.10 – Computing time series predictions
The Forecast settings button in Figure 9.10 provides options for predictions where 
either the forecasting point is not expected to be the most recent or changes the 
range for which predictions are to be made. 
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3.	 To make changes of this nature, click on the Forecast settings button, which 
opens the Forecast Point Predictions tab by default, as illustrated in the following 
screenshot. This window offers a forecast point slide tab selector, which can be 
configured by either a slide or entering the actual time value. Invalid dates are, 
however, disabled:

Figure 9.11 – Forecast Point Predictions settings

As alluded to earlier, there is a limit to times that can be selected as a forecast point. 
The forecast point must be less than or equal to the most recent one. In the case of this 
project, this is 2016-05-27 19:00:00:00, which is the most recent data row time, with an 
operationalization gap of 1440 minutes. A similar operation could be carried out to alter 
the prediction date ranges. The Forecast Range Predictions feature would ideally be used 
to validate models as opposed to making future predictions. 

In this section, we highlighted the importance of ensuring our prediction dataset for 
time series models is like that for training models. We went on to make predictions and 
interpreted other outcomes from the model. Next, we will explore more advanced topics 
involving time series modeling with DataRobot.
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Advanced topics in time series modeling
In this chapter, we have learned how to configure, build and make predictions with basic 
time series forecasting models in DataRobot. In the preceding section, our attention was 
focused on building models that have one-time series. However, you could have a situation 
where you might have to make multi-time series predictions. Within the context of our 
energy utilization problem, we might want to forecast the usage of lights and appliances. 
Elsewhere, an energy company might want to forecast energy usage for differing cities or 
households within the same model. We will now take a deep dive into solving problems of 
this nature. Also, we will explore future ways other advanced approaches may be used in 
assessing our time series models. Finally, we will acknowledge the role of scheduled events 
on time series and highlight the provisions made by DataRobot to handle this possibility.

The dataset used for this project highlights the energy usage of lights and other appliances. 
For the earlier project, we totaled up all usage as our target variable, but in this project 
(named Energy_Prediction_2), models will be built to predict usage for each device 
type. This dataset now has two series, implying timestamps could recur, yet timestamps 
within each series must be unique. The differentiating column, Device_type, is the 
ID for the device type that the usage is attributed to. After qualifying the project as being 
time-aware and choosing its type as Automated time series forecasting with backtesting 
(see Figure 9.2 for more information on the setup of a time series project), due to the data 
having multiple rows with the same timestamp, the multiple time series is automatically 
selected. The next step, as shown in the following screenshot, is to select the series ID, 
which in this case is Device_type:

Figure 9.12 – Multi-series time series forecasting setup
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For this project, we are interested in further evaluating our models. So, the sequel to 
customizing our forecasting window, within the Partitioning tab of the Advanced 
Options window, is to configure our backtests to help us manage validation folds (for 
more on validation folds, see Chapter 6, Model Building with DataRobot). Here, we 
simplistically set the number of backtests to 5 + Holdout. The following screenshot 
details the setup for this configuration, and we can see how the training, validation, and 
holdout data is partitioned from the initial data. It is important to highlight that to set 
up the backtests, we must consider any form of seasonality, periodicity, and/or cyclicity 
within the data and ensure that every fold has at least one instance of these. This is because 
every backtest should be a complete dataset on its own, so seasonality, periodicity, and 
cyclicity need to be accounted for within each backtest. The validation and gap lengths can 
also be altered. The default length for this project is set to over 13 hours and 9 minutes. 
You can see the configuration here:

Figure 9.13 – Backtest configuration
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Having configured backtesting, we then click on Start to train the models. When models 
are created, the process of evaluation is like that for single time series models. As evident 
in the following screenshot, we can see the All Backtests metric, which measures the 
average performance of a model across all backtests. As such, it provides an interesting 
way to quickly assess not only the model performance but also the consistency of the data 
pattern over time:

Figure 9.14 – Accuracy over time
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The Accuracy Over Time feature within the model Evaluate tab enables users to have 
a visual yet in-depth assessment of their models over time (see Figure 9.14). Here, the 
predicted and actual are visually presented. Within this window, you can choose a Series 
to plot setting and alter the Backtest and the Forecast distance settings. This view, within 
the context of a business, helps understand if there are periods of poor performance that 
could imply an aspect of a business not represented in the data. The Forecasting Accuracy 
window, as shown in the following screenshot, is another important representation that 
suggests how model performance changes as the forecast distance changes: 

Figure 9.15 – Forecasting Accuracy window

The Forecasting Accuracy window highlights alterations in models' performance 
as forecasts are made into the future. This view allows us to assess where models' 
performance is similar across time, which is indicative of when models could be 
used within the business. Furthermore, it highlights when the models' performance 
considerably exceeds those of the baseline model when the MASE performance metric is 
used. As illustrated in Figure 9.15, the model's performance on Backtest 1 seems to begin 
to be considerably better than the baseline model around the +1,960-minute mark. The 
stability view presents users with the measure of scores across time ranges. 

With the quest for better-performing models comes a need to adopt some changes to 
modeling paradigms. The default models available for time series modeling might just 
not provide the required performance. In that case, the model repository, as explained in 
Chapter 6, Model Building with DataRobot, presents us with options to select traditional 
time series models such as AutoRegressive Integrated Moving Average (ARIMA) and 
more recent models such as Keras Long Short-Term Memory (LSTM) and XGBoost 
(XGB). Depending on the nature of the time series under investigation, these modeling 
approaches sometimes present better performance.
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Summary
In this chapter, we have extensively examined how DataRobot could be used to build 
time series models. We briefly discussed the unique opportunities time series modeling 
presents businesses, as well as the challenges it presents for analysts and data scientists. We 
used DataRobot to create both single and multiple time series models. We also described 
how predictions could be made using models built by DataRobot. This was followed by a 
discussion on advanced aspects of DataRobot's time series capabilities. 

Forecasting is extremely important to business because of its ability to foretell what is 
likely to occur in the future considering time-dependent variables. Another commercially 
valuable area is the ability to suggest the interest that differing clients would have for a 
wide array of products. This is where recommender systems come in. 

In the next chapter, Chapter 10, Recommender Systems, we look at how DataRobot could 
be used to build recommender engines. 
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Recommender 

Systems 
In this chapter, we will learn about what recommender systems are, discuss their various 
types, and work through a DataRobot implementation of a content-based recommender 
system. Within this chapter, recommender system, recommendation system, 
recommender engines, and recommendation engines are used interchangeably. 

In their simplest form, recommender systems suggest potentially relevant items to 
users or buyers. In today's commercial environment, businesses tend to have numerous 
items, products, or services for sale, making it more challenging for users or buyers to 
connect with their desired products or services. This chapter explains the ubiquity of 
recommendation engines in the current business space. 

Although this book is not the place to cover every aspect of recommendation systems, 
we will discuss how to utilize DataRobot to build and (make predictions from) 
recommendation engines and present a conceptual overview of these systems, as well as 
a brief discussion of their types. Thus, by the end of this chapter, you will learn how to 
utilize DataRobot to build a content-based recommendation engine. The main topics in 
this chapter include the following:

•	 A conceptual introduction to recommender systems

•	 Approaches to building recommender systems
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•	 Defining and setting up recommender systems in DataRobot

•	 Building recommender systems in DataRobot

•	 Making recommender system predictions with DataRobot

Technical requirements
Most parts of this chapter require access to the DataRobot software. The code example 
is based on a relatively small dataset, Book-Crossing, consisting of three tables, whose 
manipulation was carried out with Jupyter Notebook.

Check out the following video to see the Code in Action at https://bit.ly/3HxcNUL.

Book-Crossing dataset
The example used to illustrate the use of DataRobot in building recommendation systems is 
based on the Book-Crossing dataset by Cai-Nicolas Ziegler and colleagues. This dataset was 
accessed at http://www2.informatik.uni-freiburg.de/~cziegler/BX/. 

Note
Before using this dataset, the authors of this book have informed the owner of 
the dataset about its use in this book. 

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, Georg Lausen (2005). 
Improving Recommendation Lists Through Topic Diversification. Proceedings of 
the 14th International World Wide Web Conference (WWW '05). May 10 – 14, 
2005, Chiba, Japan.

The data was collected during a four-week collection of the Book-Crossing community 
between August and September 2004. The subsequent three tables, provided in CSV 
format, make up this dataset. 

•	 Users: This table presents the profile of the users, with an anonymized User-ID 
presented as integers. Also provided are the users' Location and Age values.

•	 Books: This table contains the characteristics of the books. Its features include 
ISBM, Book-Title, Book-Author, Year-Of-Publication, Publisher.

•	 Ratings: This table shows the book ratings. Each row provides a user's rating for a 
book. The Book-Rating value is either implicit as 0 or explicit between 1 and 10 
(the higher the number, the better the rating). However, within the context of this 
project, we will focus solely on ratings that are explicit for the model development. 
The table also includes the User-ID and ISBN values.

https://bit.ly/3HxcNUL
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
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A conceptual introduction to recommender 
systems
Businesses have a long-standing history of recommending their products or services to 
customers. For instance, walk into a bookshop and you are likely to see a list of popular 
books bought by other customers. This is a simple kind of recommendation system, as it 
gives buyers a snapshot of potential products to purchase.

In a bid to win in the digital economy, businesses are becoming increasingly customer-
centric. Customer centricity implies that companies aim to put the needs of the customer 
first. Still, with the needs of customers being as diverse as the customers themselves, 
businesses need to take a unique approach in putting forward their products. This 
explains, in part, the failings of popularity-based recommendation systems, as they fail 
to consider the unique profiles of buyers. As such, with growing digitalization, increased 
business offerings, and a growing diversity of customers' needs, this approach is unlikely 
to win. 

Interestingly, data science tools can offer a number of approaches to make recommender 
systems more intelligent by considering the needs of the buyers in a variety of ways.

In presenting the different types of recommender systems, we will continue to use the 
bookshop example.

First, the item-based collaborative filtering approach to recommendation systems 
makes product suggestions to book buyers based on the buyer's product purchase history 
and how those products relate to others. As such, if an individual bought Book A, and 
Book A is linked to Book B, then Book B is suggested. The second approach, user-based 
collaborative filtering, considers similarities between buyers when making suggestions. 
As such, if Buyer A is similar to Buyer B, and Buyer A buys Book C, then Book C would be 
recommended to Buyer B. The third approach, content-based recommendation, takes 
into account both the book and user characteristics in making suggestions. Finally, the 
hybrid system approach uses a combination of collaborative-based and content-based 
methods in making recommendations. It is easy to see that both of these methods come 
with strengths and weaknesses. We will now take a deeper look at these approaches and 
how DataRobot can be used to build a content-based recommendation system.
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Approaches to building recommender systems
Recommender systems aim to suggest relevant products to buyers. Because of their 
ability to consider the uniqueness of buyers, intelligent recommender engines have 
generated billions of dollars for businesses and helped buyers find relevant products. They 
represent a win-win for both consumers and businesses. Various data-driven approaches 
to creating intelligent recommendation systems have been introduced. There are three 
major approaches to recommendation systems: collaborative filtering systems, content-
based systems, and hybrid systems. Let's discuss each of these approaches in the following 
sub-sections.

Collaborative filtering recommender systems
The core idea behind collaborative filtering recommender systems is leveraging past 
actions by others to infer what an individual might be interested in. Collaborative filtering 
approaches draw on data stores of the historic interaction between products and users. 
Table 10.1 presents an interaction matrix of users rating books. Each user rated a book 
with a number between 1 and 5, with 5 representing the highest level of enjoyment. 
Where there are no ratings, the individual is assumed not to have read the book. There 
are two broad types of collaborative filtering: item-based collaborative and user-based 
collaborative filtering. 

Table 10.1 – User/product interaction matrix
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Item-based collaborative filtering systems (or item-to-item collaborative algorithms) find 
similarities between items and base their recommendations on these similarities. This 
approach is grounded in suggesting items to individuals based on how similar items are to 
the ones these individuals previously enjoyed or bought. Drawing on Table 10.1, an item-
based filtering approach would easily see that Book C and Book E are rated in a similar 
way by previous readers. Based on this item relationship, if an individual rates Book C 
highly, a recommendation of Book E is made and vice versa. So, since User 5 highly rated 
Book E and has not seen Book C, a recommendation of Book C is put forward, as there is a 
high likelihood of them liking Book C.

With user-based collaborative filtering systems, similarities are found between users, and 
recommendations are based on these. User-to-user collaborative algorithms aim to 
find users with similar behavior or who are in the same behavioral neighborhood, as 
established by their historic actions. The algorithm then considers what their preferences 
are and makes recommendations. The core idea of these recommendation systems is the 
assumption that if individuals are alike, what they like will be similar. From Table 10.1, 
it could be inferred that User 2 and User 4 have similar book interests. Because User 4 
has rated Book D highly, the likelihood of User 2 liking Book D is considered high and 
therefore recommended. As we can see, both collaborative filtering approaches are based 
on the idea of similarities. 

Similarity metrics offer a basis for recommendations to be made. There are several 
similarity metrics, with the Pearson correlation coefficient and Cosine similarity being 
among the most popular. Others have approached this measurement of similarity drawing 
on neighborhoods. The K-nearest neighbors algorithm is utilized to find the nearest items 
or users to the one being recommended or recommended to, respectively.

Because the interaction dataset is easily acquired, building collaborative filtering is 
considerably easier than content-based systems, as will be discussed in the next sections. 
However, the collaborative approach to recommendation systems has a few shortcomings. 
Within the context of Table 10.1, a new user, User 6, is introduced with no history. It is 
easy to see that the collaborative filtering system will struggle to make recommendations 
to this user. The problem is similar for an item without historic data. This problem, 
otherwise known as the cold start problem, is well documented. Data sparsity is another 
problem commonly associated with collaborative filtering. Most platforms and large 
businesses have buyers and products. Still, the most active users would only buy a fraction 
of the available products. As such, there is a gap in the data needed to meaningfully 
compute the similarities when powering these engines.
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Content-based recommender systems
Content-based recommender systems make suggestions based on the item characteristics 
and user profiles. This approach has a different type of data structure underpinning it. 
Content-based systems are machine learning (ML) models, built by leveraging historic 
datasets consisting of item descriptions, user profiles, and user preferences. Some writers 
differentiate content-based recommender systems from demographic systems, but here, we 
consider demographic information as part of the profile of the user. In the case of buying, 
this classification model is used to predict the likelihood of users liking an item. Within 
the context of a books recommendation system, every book needs to be associated with 
its description, which could include its genre, cover, number of pages, size, and publisher, 
while information regarding the user could include their location, profession, age, and 
marital status. As illustrated in Table 10.2, the users' ratings come in addition to these. 
In this case, because the rating is represented by a value between 1 and 5, the model is 
regression-based, as it predicts an interval variable. This model becomes a content-based 
recommendation engine.

From the preceding discussion, we can see that a content-based system can easily mitigate 
the cold start problem, as books and users are likely to have some forms of descriptions. 
In comparison to collaborative filtering systems, content-based systems are more scalable, 
as in the production environment, predictions can easily be made when needed, rather 
than having to make predictions for all users and products at the same time. Importantly, 
even when users only rate or buy a few products, content-based systems will still perform 
well, as they focus on the descriptions and not necessarily the users or products. That 
said, most content-based systems struggle when the characteristics of the items are not 
readily available. Within certain contexts, it could be challenging to generate attributes for 
a product (for instance, if the product is or has images or sounds). In cases of this nature, 
content-based systems will have no descriptions to analyze. Additionally, demographic 
information of users might not be readily available due to growing online privacy 
concerns. The limitations of both the collaborative filtering and content-based approaches 
to recommendation gave rise to the use of hybrid systems.



Approaches to building recommender systems     235

Hybrid recommender systems
Hybrid recommender systems are an integrated approach to recommendation systems. 
Hybrid systems generate recommendations to users by leveraging a combination of two or 
more recommendation strategies. By doing so, they mitigate the limitations attributed to 
either of the strategies, thereby benefiting from the wisdom of the many. 

There are several approaches to hybrid systems. The most commonly used (and the 
easiest to implement) is the weighted approach. Here, scores from independent 
recommendation systems are aggregated to give an overall recommendation score. 
Aggregation methods vary and can include basic averaging, applying rules, and using 
linear functions. The staged approach could also be deployed. This typically involves 
the recommendation systems' results being integrated as input features in another 
recommendation system. As such, the output of the Stage 1 system becomes an additional 
input for the Stage 2 system. The switching approach involves using a rule to switch 
between different recommendation systems to capitalize on their advantages in a given 
context. For instance, if collaborative filtering is seen to give better results, a switch regime 
could use the collaborative filtering approach, but when there is a cold start, it could 
change to the content-based approach. An advantage the hybrid system has over content-
based systems is the ability to develop recommendations when item features are difficult 
to establish. As will be demonstrated in Chapter 11, Working with Geospatial Data, NLP, 
and Image Processing, DataRobot has advanced feature extraction capabilities for images 
and text data.  
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Defining and setting up recommender systems 
in DataRobot
DataRobot, due to its ability to extract features from images, audio, and text data, 
effectively manages the feature availability limitation of the content-based recommender 
systems. This, in addition to DataRobot's automated ML models' processes, means 
it is well positioned to leverage the advantages of the content-based approach while 
compensating for the feature-unavailability limitation of this approach. As described 
in the Technical requirements section, the dataset used for our example consists of three 
tables. This includes the user table (presenting profiles of the users), the book table 
(outlining characteristics of the books), and the rating table (containing user book 
ratings). Since we have one table describing the books, and another, the users, integrating 
these and the ratings sets the scene for the content-based recommender system. To do 
this, we employed Jupyter Notebook. Figure 10.1 presents the script we ran to ingest the 
dataset, manipulate it, merge the tables, and write it back as a CSV file:

 

Figure 10.1 – Data manipulations in Jupyter Notebook

Rows on the rating table where rating had a value of 0 were excluded, as the ratings 
were implicit. These rows will be used to demonstrate how to make predictions 
with recommendation engines in the Making recommender system predictions with 
DataRobot section. Having manipulated the tables by changing their headings, as well 
as consolidating the ratings, books, and users values into a table, each row has the 
description of a user and a book, and also a rating. A snapshot of the data is shown in 
Table 10.2. Although we could create the DataRobot project in Jupyter Notebook using 
the Python API method (as will be illustrated in Chapter 12, DataRobot Python API) for 
consistency, we downloaded the data as a file: rating.csv.
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Table 10.2 – Data snapshot

Following the process established in Chapter 6, Model Building with DataRobot, we created 
a DataRobot project for the recommender system. When doing this, we drag the rating.
csv file into the initial project window. This opens up the window shown in Figure 10.2. For 
each row, since the book rating is used as an indicator of the user's interest, it can be used 
as the target variable. Due to the nature of the target variable, ratings, the ML models for 
this recommender system will be of the regression models type. 

Figure 10.2 – DataRobot project initiation window 
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As expected, ratings made are the range of 1 to 10. Ideally, we will drop the rows with 
implicit ratings (of 0) and user_ID fields to create a robust dataset for modeling. The 
next thing to do is build the recommender system's ML models.

Building recommender systems in DataRobot
One of the strengths of driverless artificial intelligence (AI) platforms such as DataRobot 
lies in their simplification of the data science model-building process. Given the similarity 
of the content-based recommendation model-building process to the typical ML one, 
DataRobot's ML capabilities could be leveraged in building these systems. Having set up 
the data (as detailed in the previous section), click on Start (Figure 10.2) to commence the 
modeling process. To avoid over-optimistic model performance which fails to generalize 
where users provide more than one ratings for items, it might be useful to partition the 
rating according to the users. To do this, within the Advanced options window, open the 
Group tab and enter user_id in the Group ID Feature field.

As detailed in Chapter 6, Model Building with DataRobot, DataRobot commences the 
development of ML models when the Start button is clicked. However, with recommender 
systems, the DataRobot's present strong prediction accuracy as the platform benefits from 
cutting-edge technological advances in developing models. Recommendation datasets 
pose difficulties for modeling because of their high data sparsity and dimensions. The 
DataRobot's models exploit higher-order combinatorial features learned from the input 
data. Though some of these models will not run automatically when the Start button is 
clicked, they can be accessed in the Repository tab. Because these models are based on 
the Keras neural network, they use a training schedule in their development. So, they 
can easily be found by entering Training Schedule or simply Training in the 
search field in the model Repository tab during model creation. This will bring up a list of 
relevant models (see Figure 10.3):
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Figure 10.3 – Selecting the advanced modeling approaches most suitable for recommender systems

In addition to selecting these modeling methods to be included in the list of models to 
be created, the models' Sample Size, Cross Validation runs, and Feature List options 
are to be set For the current project, we selected 16% of the sample size (which snaps to 
Autopilot Stage 1) based on the Informative Features, and then carried 
out all five Cross Validation runs. A final click on Run Tasks includes these in the 
processing queue. 



240     Recommender Systems 

After the models have been created, the next step is to evaluate them in terms of their 
accuracy. Prior to this, it is important to examine the Relative Importance chart to 
check if our model aligns with common sense. As is apparent in Figure 10.4, opening the 
Variable Importance window through the Insight window offers us the opportunity to 
explore these models:

Figure 10.4 – Variable importance

The values next to Scores based on Text feature (location) and Scores based on Text 
feature (title) suggest that the model performance is significantly informed by a person 
field and an item field. Models that capitalize on the learned creation of higher-order 
variables excel in these situations. This is because they generate higher-order variables 
that are interactions between the person-specific and item-specific features, drawing on 
learning from the data. As a result, in the preceding case, a feature that combines the 
presence of an aspect of a location (for example, London) and an aspect of the title (for 
example, Kingdom) could be interpreted as influential to the model. So, in this simplified 
example, a higher-order feature that is an interaction between London and Kingdom 
is created. The rating predictions consequently change considerably depending on the 
presence of this newly created higher-order feature. 
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In model selection, using the definite root mean squared error (RMSE) evaluation 
metrics, we see that Keras Slim Residual Neural Network Regressor 
using Adaptive Training Schedule (1 Layer: 64 Units) is the 
best-performing model (see Figure 10.5). It is important to highlight that measuring 
the accuracy of models for recommendation systems in some contexts is not as 
straightforward. Imagine that in this case, we could only have a rating of 1 when an 
individual buys a book, and otherwise it would be 0. Naively measuring how accurate the 
model is becomes limited, as a 0 rating does not necessarily imply that an individual is not 
interested in an item. This is because it is possible that the individual has never read the 
book. Because a good recommender system will recommend items whose characteristics 
align with an individual's profile as a potential book to read that are unread, it is likely 
to have a significant proportion of false positives. This is because, although their current 
rating is 0, the user in question will most likely be interested in reading them. In cases 
like these, the Recall type becomes a more important metric in evaluating the model 
performance. Given that we are only certain of cases where individuals buy items, it is 
reasonable to evaluate those cases in isolation. Therefore, the extent to which the model 
accuracy predicts books that are read correctly, usually referred to as the Recall, becomes 
a more suitable metric. 

Figure 10.5 – Leaderboard tab for recommendation systems
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For a recommendation system, accuracy and prediction speed is very important to 
consider when deciding which model to use. To ground this discussion, it is important 
to understand that there are two major approaches to making predictions with 
recommendation systems. The first approach is a batch scoring of combinations of 
users by items, where items are yet to be read by the user. This dataset becomes larger 
exponentially as items and users increase. The second approach is a real-time prediction. 
For instance, imagine an individual arrives at an e-commerce platform. That individual's 
data with those of the products is rapidly scored and suggestions are scored nearly 
instantly. In both cases, the speed of the prediction is pivotal for commercial success. The 
DataRobot Speed vs Accuracy chart offers some support in analyzing speed and accuracy 
for recommendation systems. As seen in Figure 10.6, the RMSE metric for that Keras 
Slim Residual Neural Network Regressor using Adaptive Training 
Schedule (1 Layer: 64 Units) is 1.6746, and its prediction speed is 35.57 ms 
per every 1,000 predictions. The validation scores for some blender models appear better, 
but these are much weaker in terms of the speed of prediction.

Figure 10.6 – DataRobots' Speed vs Accuracy chart

This suggests that though it is very accurate, this model is very slow in making 
predictions. The Speed vs Accuracy chart presents a snapshot visualization of several 
models' speed and accuracy. A more in-depth pairwise comparison can be carried out 
using the Model Comparison tool. To continue the discussion of prediction, we will now 
turn to making recommendation system predictions in DataRobot.
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Making recommender system predictions with 
DataRobot
Creating suggestions from recommendation engines on DataRobot is straightforward. 
We use the drag and drop approach (as discussed in earlier chapters), as our prediction 
dataset is only small. With larger datasets (over 1 GB), as is more typical for recommender 
systems, using the DataRobot prediction API is advised. The API approach to creating 
models and making predictions is covered in depth in Chapter 12, DataRobot Python API. 

Our prediction dataset for our example is 64 MB in size, and so the drag and drop 
approach is appropriate. For this prediction approach, we specify the columns we want to 
use from the original dataset. Ideally, we at least need an identifier for the item and user. 
As illustrated in Figure 10.7, we have chosen to include the ISBN, user_id, and title 
fields in our predictions. We drag and drop the prediction dataset into the specified 
region. As usual, this dataset is quickly evaluated, and we are presented with the Run 
external test or Compute prediction options.

Figure 10.7 – A recommendation engine prediction setup
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At this point, we click on Compute predictions to commence the prediction process. 
Following the completion of the prediction process, the predictions are downloaded as 
a .csv file (see Table 10.3). As noted previously, the prediction set is drawn from the 
original dataset where the ratings were implicit (so the rating score was zero). Thus, the 
prediction dataset has only a limited sample of the possible person-item interactions. 
Some users (for instance, the user with 8 as  user_id), have about 10 items scored, 
while some have only 1 item scored. In an ideal situation, all items not seen by an 
individual would be rated. That said, suggestions served to the user are then made in order 
of predicted interests. For user 8, the book titled A Second Chicken Soup for 
the Woman's Soul (Chicken Soup for the Soul Series) is served first. 
In some cases, the top n recommendations is used. By top n in our book case, we mean, 
for each user the top n books are selected based on their prediction values.

 Table 10.3 – A recommendation engine sample prediction

The selected model can be deployed as a REST API using DataRobot, as shown in Chapter 
8, Model Scoring and Deployment, and then the data can be scored via the DataRobot 
API call (which we will discuss in Chapter 12, DataRobot Python API). Some DataRobot 
models can be downloaded as JAR files, which can be integrated with other applications 
to make real-time predictions. Elsewhere, a batch prediction can be made using different 
person-item interactions, before being stored in a big data storage table, such as Google 
Cloud BigQuery. 
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Summary
In this chapter, we introduced and appraised different approaches to recommendation 
systems. We examined the data structure requirements for content-based and 
collaborative filtering recommendation systems, and we discussed their underlining 
assumptions. We then point out the strengths of DataRobot in extracting features 
from challenging data types (for instance, image data) that normally limit the use of 
content-based systems. We then illustrated the use of DataRobot in building and making 
predictions using a content-based recommender system based on a small dataset. 

It is important to highlight that the dataset used for this project was made up of multiple 
data types. DataRobot is capable of extracting features and integrating different data 
types to create ML models. In the next chapter, we will explore how to use datasets with a 
combination of image, text, and location data when creating ML models. 
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Processing 
In this book thus far, we have focused mainly on numeric and categorical features. This 
is not always the case in big data, as with big data comes an increasing data variety. 
Image, text, and geospatial data is becoming increasingly valuable in gaining insight and 
providing solutions to the most complex problems. Recently, for instance, location-based 
data has been used to improve the effectiveness of advertising campaigns. For example, 
different ads can be shown to users according to their location; if they are coffee lovers 
and close to coffee shops, push notifications could be sent to their mobile devices. In other 
cases, chatbots, based on advanced text analytics or natural language processing, provide 
businesses with an efficient and effective avenue to solve customer problems. What is 
most interesting and an emerging approach to solving commercial problems is the use of 
multimodal datasets, which combine different variable types in the same project. 
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Understandably, the topic of analyzing different variable types is enough to be covered 
in a book in its own right. Yet providing an overview of the analysis of different variable 
types is key in grounding the use of DataRobot in building multimodal models that 
involve text, image, and location data. With that foremost in mind, in this chapter, we 
will delve into the definitions and approaches to analytics with text, image, and geospatial 
data. Thereafter, we will use DataRobot to build and make predictions with a model that 
capitalizes on the uniqueness of a multimodal dataset in predicting house prices. As such, 
the topics that will be covered are as follows:

•	 A conceptual introduction to geospatial, text, and image data

•	 Defining and setting up multimodal data in DataRobot

•	 Building models using a multimodal dataset in DataRobot

•	 Making predictions using multimodal datasets in DataRobot

Technical requirements
Most of the analysis and modeling carried out in this chapter requires access to the 
DataRobot software. Some manipulations were carried out using other tools, including 
MS Excel. The dataset utilized in this chapter is the House Dataset.

House Dataset
The House Dataset can be accessed at Eman Hamed Ahmed's GitHub account 
(https://github.com/emanhamed). Each row in this dataset represents a specific 
house. The initial feature set describes its characteristics, price, zip code, images of the 
bedroom, bathroom, kitchen, and frontal view. There was no missing data. We went on to 
develop text descriptions for each house, based on the number of bedrooms, bathrooms, 
city, country, state, and actual size of the property. Elsewhere, the ZIP codes were 
converted into latitude and longitude, which were added to the dataset as columns. More 
information on the base features is provided at the GitHub link and the data is provided  
in .csv format.

Dataset Citation
House Price Estimation from Visual and Textual Features. In Proceedings of the 
8th International Joint Conference on Computational Intelligence, H. Ahmed E. 
and Moustafa M. (2016). (IJCCI 2016) ISBN 978-989-758-201-1, pages 62–68. 
DOI: 10.5220/0006040700620068

https://github.com/emanhamed
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A conceptual introduction to geospatial, text, 
and image data
Just like we use different senses to holistically understand objects around us, a machine 
learning (ML) model also benefits from data coming from different types of sensors and 
sources. Having only one type of data (for instance, numeric or categorical) limits the level 
of understanding, predictability, and robustness of a model. In this section, we will present 
a more in-depth discussion of the business importance of different data types in building 
models, the associated challenges, and the preprocessing steps necessary to mitigate these 
challenges. 

Geospatial AI
Geospatial understanding has had long-standing implications for decision-making 
in certain industries, including mineral exploitation, insurance, retail, and real estate. 
While the commercial importance of data science is well established, location-based AI 
is just beginning to gain recognition. The use of ML in improving business performance 
has brought to the fore the importance of augmenting datasets with location-based 
information and features in building predictive models. 

Typical ML models built mainly from categorical and numeric data have contributed 
immensely to realizing business goals, but decisions are governed by more than numeric 
and categorical information. Indeed, the events take place at certain locations. ML models 
need location-based information in order for the location context to effectively present 
commercial insight and predictions. What works in one geography may not work in another.

The potential commercial impact of using ML and location-based information comes with 
several challenges:

•	 A lack of datasets, tools, and people skills. 

•	 Connecting ML pipelines to native location-based analysis techniques is not 
straightforward. 

•	 Only a few R and Python packages have geospatial capabilities. 

•	 Understanding these capabilities requires further education and training for analysts. 

DataRobot's location AI capability helps alleviate some of these challenges. The location 
AI capability complements the existing AutoML experience by adding in a repertoire 
of geospatial analytic and modeling tools. With DataRobot, location features could 
be selected from the dataset, but the location AI capability enables the platform to 
automatically recognize geospatial data and create geospatial features. A variety of 
geospatial data file formats can be uploaded. These include GeoJSON, Esri shapefiles, and 
geodatabases, PostGIS tables, as well as traditional latitude and longitude data.
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Natural language processing
As humans, we communicate effectively via a vast range of words with or without 
limitations on the volume of words to use. More than words, body language, tonality, and 
words' context are crucial to effective communication. For example, using the same set of 
words, the cat is bigger than the dog has a different meaning to the dog is bigger than the 
cat. Naturally, humans understand, draw conclusions, and make predictions of the future 
based on free text. The use of free text comes with valuable information and rich insights 
can be harvested from it. Yet, since free text fails to follow a consistent structure, they pose 
challenges to being processed by machines.

Conversations and other forms of free text are messy and unstructured as they do not 
fit neatly into traditional tables with rows and columns. Natural Language Processing 
(NLP) sits at the intersection of data science and linguistics and involves the systematic 
use of advanced processes for analysis, understanding, and the extraction of data from free 
text. Through NLP, scientists can leverage free text to generate valuable insight, which is 
then integrated as features in building better-performing models. Text mining allows the 
identification of unique words or groups of words that are associated with certain outcomes. 
For example, in the house price prediction case, the description of the house improves the 
predictability of the models in estimating the house price. Thinking about it, the description 
also contributes to an individuals' decision of buying a house. Individuals' propensity to 
buy houses influences property pricing. NLP algorithms can identify the effect of word 
sequencing and influence words or phrases, and a word's context within sentences.

NLP is key to machines being able to extract important information from text. 
Consequently, NLP allows machines to decide feelings described in free text by giving 
a number score to a text, indicating its sentiment to a topic or event. Similarly, it aids in 
the identification of classes that certain words most likely belong to. This capability has 
given birth to several applications, including text classification, named entity recognition, 
sentiment analysis, and summarization of text. 

To get free text to provide useful insight or be integrated into models is not an easy task. 
As earlier alluded to, raw text has no structure, so structure needs to be introduced. 
Also, numerous words have the same meaning and you could have the same word mean 
different things in different contexts. In a typical analytics process, there are numerous 
steps taken to normalize free text. At least four steps are required:

1.	 The first step in most text processing is splitting text corpus into separate words. 
This step, also called tokenization, enables the identification of keywords and 
phrases. The separated words are referred to as tokens. N-grams are the basic units 
for text analytics.
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2.	 Next, there are certain words that contribute little or nothing to the meaning of a 
text. These are generally common words; for instance, in the English language, we 
have words such as the, that, is, and these. Within the context of text mining, these 
words are referred to as noise or are sometimes called stop words. So, this step is 
called noise removal. 

3.	 After that, words are converted to their root meanings. There are a few approaches 
to this. As an illustration, stemming typically converts to the root word stem by 
eliminating certain letters. So, words like happy, happiness, happily, and happiest 
will all be returned to the root word happ. Because the same words could have 
multiple meanings, disambiguation of words becomes crucial in text processing. 
Whereas stemming returns words to their roots by cutting off their prefix or suffix, 
lemmatization examines the context of words to ensure stemmed words are 
converted to logical bases called lemma. For example, the word anticipate when 
stemmed might be returned to ant. Within the context, however, ant would not 
make sense; as such, lemming will ensure that the word anticipate is retained.

4.	 A final, yet important, step is the process of featurization where lemma or root 
words are converted into features. Again, there are several ways this can be done. 
The most straightforward method involves developing features for each unique 
token and counting the number of that token in each text corpus (Table 11.1 
presents a demonstration of this process):

Table 11.1 – A demonstration of featurization

Following featurization, developed text variables are either used as predictors alone or 
integrated with other variables in building models. While the importance of analytics with 
free text within the commercial setting is well established, ancient wisdom suggests that "a 
picture is worth a thousand words." This raises the importance of using image analytics in 
driving business value. As we have established in this section, the core purpose of NLP is 
the extraction of text features from raw text. Image processing performs a similar function 
for images, as described in the next section. 
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Image processing
Images provide valuable information to customers about products and services. Images 
are fast becoming crucial to business success as they influence the propensity to buy. As 
the data landscape continues to grow, image data is also becoming readily available and 
important. This offers analysts the opportunity to include image features when creating 
insights for businesses.

Image data, like text data, lacks structure. In fact, with image data, there is an uncertainty 
of features. To bring this to life, let's imagine the case of identifying individuals from their 
pictures. The image of an individual could be colored or grayscale, the position of an 
individual's face or body could change, and their background and outfits are unlikely to be 
the same across images. These and other variations make the data generated from differing 
images of the same person appear very different. As such, features from an image are 
unlikely to be consistent with those of another image, despite the individual being the same 
person; therefore, the image data would have challenges with feature uncertainty. Yet, the 
human eye can see the individual in those images as the same and easily recognize them.

The smallest indivisible units within images are known as pixels. For grayscale images, 
pixels are interpreted as 2D arrays. Each has a strength represented by a value between 
0 and 255, referred to as pixel intensity. For grayscale images, 0 is shown as completely 
black, while completely white gives 255. On the other hand, color images have 3D arrays 
with blue, green, and red layers. Like black on the grayscale images, each of those layers 
has its own values from 0 to 255, where the final color is a combination of corresponding 
values on each of the three layers.

Image processing typically follows predefined steps in extracting useful and consistent 
features from images that align with the purpose of extraction. Activation maps are then 
applied to the extracted images to reduce the computational load required to process 
the volume of data from each image. As such, the activation maps essentially reduce the 
feature space. The reduced feature space is then flatted into a tabular structure, enabling 
it to be used as variables in the typical ML modeling process. Though this is a simplified 
illustration of image processing, there are other approaches to it. This ensures we have 
some understanding of how the challenge of image inconsistency and limited structure 
can be managed.
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We have so far established the added value of geospatial, text, and image data. We have 
discussed the challenges in using these data types and also highlighted the key steps in 
using them to build models. Sometimes, different data types such as images and text are 
integrated into the same dataset in training models. This type of dataset is referred to as 
a multimodal dataset. While a multimodal dataset presents unparalleled opportunities, 
it comes with huge challenges. The difficulties and steps highlighted for each of the 
data types are expected to be addressed. DataRobot has capabilities that make use of 
multimodal data more accessible. The platform enables preprocessing steps and integrates 
these datasets in making predictions. For the rest of the chapter, we will demonstrate how 
to use the price listing dataset to train a model and make predictions. 

Defining and setting up multimodal data in 
DataRobot
DataRobot's location AI, text mining, and visual AI automated ML capabilities make 
working with text, location, and image data relatively straightforward. With these 
capabilities, DataRobot can help analysts in building models and making predictions 
against text, image, and location-based datasets. Data set up for an image model differs 
considerably from other types of models. Using our House Dataset, our first task is to set 
up the data.

The house dataset has zip codes for the houses. We created and integrated latitude and 
longitude coordinates from the zip codes as new columns. Other features created from the 
zip codes not evident in Table 11.2 are the city, county, and state where each of the houses 
was located. Further text description columns were built from the number of rooms, the 
size of the house, and its location: 

  

Table 11.2 – The developed price list dataset
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The original data comes with 2,140 images, each of the 535 houses having a bedroom, 
bathroom, frontal view, and kitchen. For the image data to be included in the analysis, 
the data can be set up as a ZIP file with a structured .csv file sitting next to the image 
folder. Four new image columns were created for the bedroom, bathroom, frontal view, 
and kitchen. As such, each data row on the .csv file had paths to their images, as shown 
in Table 11.2. The paths point to locations on the corresponding image file in the ZIP 
file. Within the ZIP file, the .csv file with the tabular features sits needs to the folder, 
containing all the images. Each image has a unique name that is consistent with the image 
path columns on the .csv file. The setup for the ZIP file and HousePrice folder is 
shown in Figure 11.1. That said, the dataset could still be ingested using the AI Catalog. 
This also gives DataRobot the ability to connect to other data sources for the images. 
Furthermore, the Paxata tool can be deployed in the data preprocessing if you have access 
to that tool:

Figure 11.3 – Data setup for the ZIP file (left) and image folder (right)

The image on the left of Figure 11.1 shows how the ZIP file is set up. The folder containing 
the image files, Houses Dataset, is next to the HousePrice.csv file. The image on the 
right presents image files within the Houses Dataset folder. Here, the images are labeled, 
with the locations, consistent with cells on data, HousePrice.csv (as shown in Table 
11.2). With the data completely set up, the next step is to commence model development.
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Building models using multimodal datasets in 
DataRobot
Having fully set up our ZIP file with the multimodal dataset, we proceed into initiating the 
project within DataRobot. The data ingestion using the drag and drop method is like the 
earlier project, except in this case we upload the ZIP file. Following the upload of the ZIP 
file, the price is selected as the target variable. DataRobot automatically detects the text, 
image, and geospatial fields (see Figure 11.2). The geometry feature is a location-based 
feature made up of the latitude and longitude variables in the original dataset. Apart from 
latitude and longitude coordinates, location features can be formed from other native 
geospatial formats, such as Esri shapefiles, GeoJSON, and PostGIS databases. These can be 
uploaded using drag and drop, AI Catalog, or URL methods:

Figure 11.4 – Feature Name list
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5.	 The location-based visual representation of the listing price can be viewed by 
selecting the Price option in the Feature Name list. This Exploratory Spatial Data 
Analysis (ESDA) is conducted by opening the Geospatial Map tab and clicking on 
the Compute feature over map button. As seen in Figure 11.3, the Geospatial Maps 
window offers a location-based analytics visualization of the dataset. It shows the 
distribution of properties over space – the number of houses in each area and their 
average prices: 

Figure 11.5 – Geospatial Map
The map legend offers vital information about the map. It highlights that the color 
of the hexagon shows the average house prices within the location. Elsewhere, it 
presents the frequency of cases by the height of the hexagons. This ESDA feature 
shows not only the visual distribution of house prices across the map but also an 
illustration of house counts in differing areas. Similar geospatial analysis can be 
conducted for other features, such as house area variables and bedrooms. 

This preliminary examination of image features can be conducted by selecting any 
of the image variables. This shows a sample of images within the Feature Name list. 
Here, differing image features can be seen and organized by house price ranges. 
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6.	 To further explore the image features at a property level, we click on View Raw 
Data. This opens the dataset in its final format on DataRobot. Unlike the initial 
.csv file with image paths, the images are integrated into the dataset (see Figure 
11.4). For each of the rows, the images are clearly displayed. A further scroll will 
show the free text description of the listed properties. This multimodal dataset of 
text, location, and image features can now be used to build a more robust model 
and make predictions of house prices:

Figure 11.6 – The DataRobot view of the multimodal data

7.	 As with earlier projects, we click on Start to commence the model-building 
process. On completion of the modeling process, the models are evaluated using the 
RMSE metric. The leaderboard shows DataRobot has built 36 models in total. The 
top-performing is the Nystroem Kernel SVM Regressor model. 
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As can be seen in Figure 11.5, opening the model presents its blueprint, outlining 
all the steps necessary to make the data ready for this model. Because of the 
multimodal nature of the data, the preprocessing steps are quite complex. 
DataRobot conducted geospatial processing, which was integrated with some 
numeric variables and high-level image and text processing (the latter not visible 
in Figure 11.5). For more information on each step, a click on the step box provides 
some insight on the modeling step and a link to comprehensive documentation on 
the step: 

Figure 11.7 – The model blueprint for multimodal data modeling
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8.	 Within the Understand tab, the Feature Impact view highlights the extent to 
which features contribute to the overall performance of the model (see Figure 11.6). 
The Feature Impact view for this project shows that Area is the most impactful 
feature of the house; next is the FullDescription text feature. Thereafter, the 
Bedrooms and Image_kitchen features follow suit. What is rather interesting 
is the fact that Image_bathroom seems to have a negative impact on the model 
accuracy. This suggests that insights from these images lead the model away from 
actual house prices: 

Figure 11.8 – Feature Impact for multimodal models
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For this reason, leading the model away from improved performance, we use the image 
embedding and activation maps to understand how the model uses bathroom images 
to make predictions. By doing so, we will use the bathroom feature to demonstrate 
the image feature exploration capabilities available in DataRobot. DataRobot conducts 
unsupervised learning to cluster images according to their similarity. Still within the 
Understand tab, this is presented within the Image Embeddings sub-tab for each image 
feature. Figure 11.7 presents the image embedding for the bathroom views. We can see 
DataRobot clusters similar images together. It seems that images that are dominantly 
white goods are presented in the right-hand and upper parts of the visualization. We can 
filter the visualization in accordance with house prices:

Figure 11.9 – Image embedding

Activation Maps adds to this information by offering insight into what aspect of images 
the model is leveraging in making predictions. This is critical to confirm that the model is 
using the key aspects of images. Figure 11.8 presents the activation map for the image_
bathroom variable. It appears the model makes its predictions mainly from white 
fixtures in the bathroom. This might offer insight into why image_bathroom is seen 
as having a negative impact on the model performance. It is possible that this extraction 
from white fixtures misleads the model:
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Figure 11.10 – Activation map

Location-based information comes with significant information complementing other 
data types. However, some models struggle in certain geographical areas. Inspecting the 
performance of models and considering locations empowers the analyst in taking actions 
on model performance improvement. DataRobot's Accuracy Over Space capability 
presents a spatial representation of a models' residual at differing locations (see Figure 11.9 
for an example). This chart could lead the analyst into considering the rationale behind 
higher residuals in certain areas: 

Figure 11.11 – Accuracy Over Space
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For instance, as evident in Figure 11.9, the Phoenix area has a higher average residual price 
of over $380k than most places. This area might for instance be considered an area of low 
income. This visualization could point the data scientist toward including features around 
localized economic indices. This might provide an explanation for the high residual. 
Including such features could therefore improve the overall performance of the model. 
The data partition for measuring accuracy could be set by altering between the validation, 
cross-validation, or holdout partitions. Also, the accuracy metric type and aggregation can 
be adjusted in accordance with the user's requirements.

Complementing its location-based features engineering, DataRobot's location-based 
analytics capabilities can exploit its location awareness to create spatially autocorrelation 
features, sometimes known as spatially lagged features, which are extremely insightful. The 
eXtreme Gradient Boosted Trees Regressor (Gamma Loss) model's fourth 
most important feature, GEO_KNL_K10_LAG1_Price, is one such feature (see Figure 
11.10). This feature describes the spatial dependence structure for price using a kernel size 
augmented by distance. The k-nearest neighbor approach can also be deployed:

Figure 11.12 – Spatial lag features
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Text analytics information such as the Word Cloud is not available within the 
Understand tab for this model. We turn to the Insights view to learn more about the 
FullDescription text feature, which is indeed one of the most impactful features of 
this model. Though not visible on the model blueprint (Figure 11.10), the text variable was 
scored using another model, Auto-Tuned Word N-Gram Text Modeler using 
token occurrences – FullDescription, which essentially develops scores using 
N-Gram and their token occurrence. During this modeled step, the FullDescription 
feature was converted into tokens for a differing number of words (as N in N-grams) and 
scored. Thereafter, this feature was transformed on the link scale and standardized. For 
text-related insights, we turn to the Insights view, offering two important text insight 
capabilities, Word Cloud and text mining.

The Word Cloud provides a diagrammed representation of the effect of certain words or 
groups of words (otherwise referred to as tokens) within the FullDescription feature 
in influencing the house price. The size of the words, as shown in Figure 11.11, highlights 
the frequency of the tokens, while the color suggests its effect coefficient. This coefficient is 
standardized typically between -1.5 and 1.5. The closer the color of the words is to red, the 
greater the coefficient and, consequently, the greater the house price is:

Figure 11.13 – Word Cloud for a multimodal dataset

We can assume that when the FullDescription variable contains words in orange, 
alameda county, and big, the prices are likely to be high. Similarly, with small-sized 
words, and city riverside, a lower price is expected. The text mining capability displays 
similar information to the Word Cloud using a bar graph. 
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Now that we have been able to build models using multimodal datasets, conduct analysis 
on their features, and evaluate the performance of those models, we will next focus on 
making predictions with models.

Making predictions using a multimodal 
dataset on DataRobot
After building a model, there are many ways to make predictions on a DataRobot. For 
this use case, we will illustrate the prediction capability using the Make Prediction 
method, which is available within the Predict tab. We initially create a prediction ZIP file 
dataset using the step outline in the Defining and setting up multimodal data in DataRobot 
section of this chapter. The developed prediction dataset is either dragged and dropped 
into the highlighted area or locally imported. As seen in Figure 11.12, we select the 
features we are interested in, including the prediction dataset: 

Figure 11.14 – Making a prediction from multimodal datasets
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In this illustration, we selected House_id, FullDescription, Bedrooms, City, 
and State. We can also see that the prediction dataset has 400 houses. Finally, Compute 
predictions is selected to make predictions. When predictions have been completed, they 
are downloaded. This straightforwardly creates a downloadable .csv file, which has all 
the requested columns (see Table 11.3): 

Table 11.15 – A prediction table from a multimodal dataset

The Prediction column presents the predicted price for each row. This finalizes the 
process of making predictions with multimodal datasets. As expected, after models made 
from multimodal datasets have been deployed, predictions can be made against them. 
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Summary
In this chapter, we have explored how insights can be generated from an image, location, 
and free text. In so doing, we highlighted the benefits that these data types present, as well 
as the challenges that come with each of them. We also pointed out how these are typically 
addressed in the mainstream. We proceeded to build models with a multimodal dataset 
using DataRobot and make predictions from the model. We also looked at a variety of 
ways to derive insights from the location, free text, and image aspects of the models. By 
demonstrating the process of model building using a multimodal dataset, we showed how 
DataRobot simplifies the handling of the challenges different data types pose. 

Having said that, it is important to draw attention to the fact that DataRobot appears to 
have some limitations in terms of free text processing. Whilst the platform significantly 
simplifies the process of text processes, at the time of this publication, we are unsure of the 
extent to which domain-specific stop words can be included in the DataRobot process. 
It appears generic stop words are dropped, but sometimes there are domain-specific 
stop words that need to be accounted for. Elsewhere, within the context of multimodal 
modeling, we are unsure whether the text aspects of models could be tuned to include 
and alter the methods of stemming and lemming. It is therefore recommended that 
you perform your own text processing and feature engineering before feeding text into 
DataRobot to achieve better results. 

In this chapter, as well as the previous ones, we have interfaced with DataRobot using 
the platform. Although the platform comes with numerous capabilities, these capabilities 
come with some limitations. These limitations, together with how they can be alleviated 
using programmatic access to the platform, are extensively covered in Chapter 12, 
DataRobot Python API.
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Users can access DataRobot's capabilities using DataRobot's Python client package. This 
lets us ingest data, create machine learning projects, make predictions from models, 
and manage models programmatically. It is easy to see the advantages that Application 
Programming Interfaces (APIs) offer users. The integrated use of Python and DataRobot 
lets us leverage the AutoML capabilities DataRobot presents, all while exploiting the 
programmatic flexibility and potential that Python possesses. 

In this chapter, we will use the DataRobot Python API to ingest data, create a project with 
models, evaluate the models, and make predictions against them. At a high level, we will 
cover the following topics: 

•	 Accessing the DataRobot API 

•	 Understanding the DataRobot Python client 

•	 Building models programmatically

•	 Making predictions programmatically 
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Technical requirements
For the analysis and modeling that will be carried out in this chapter, you will need access 
to the DataRobot software. Jupyter Notebook is crucial for this chapter as most of the 
interactions with DataRobot will be carried out from the console. Your Python version 
should be 2.7 or 3.4+. Now, let's look at the dataset that will be utilized in this chapter.

Check out the following video to see the Code in Action at https://bit.ly/3wV4qx5.

Automobile Dataset
The automobile dataset can be accessed at the UCI Machine Learning Repository ( 
https://archive.ics.uci.edu/ml/datasets/Automobile). Each row 
in this dataset represents a specific automobile. The features (columns) describe its 
characteristics, risk rating, and associated normalized losses. Even though it is a small 
dataset, it has many features that are numerical as well as categorical. Its features are 
described on its web page and the data is provided in.csv format.

Dataset Citation
Dua, D. and Graff, C. (2019). UCI Machine Learning Repository (http://
archive.ics.uci.edu/ml). Irvine, CA: University of California, 
School of Information and Computer Science.

Accessing the DataRobot API
The programmatic use of DataRobot enables data experts to leverage the platform's 
efficacies while having the flexibility associated with typical programming. With the 
API access of DataRobot, data from numerous sources can be integrated for analytic or 
modeling purposes. This capability is not only limited to the data that's ingested, but also 
the output of the outcome. For instance, API access makes it possible for a customer risk 
profiling model to get data from differing sources, such as Google BigQuery, local files, 
as well as AWS S3 buckets. And in a few lines of codes, the outcomes can update records 
on Salesforce, as well as those surfaced on PowerBI via a BigQuery table. The strength of 
this multiple data source integration capability is furthered as this enables the automated, 
scheduled, end-to-end periodic refresh of model outcomes. 

In this preceding case, it becomes possible for the client base to be rescored periodically. 
Regarding scoring data, the DataRobot platform can only score datasets that are less than 
1 GB in size. When problems require huge datasets, the Batch Prediction API normally 
chunks up the data and scores them concurrently. For a dataset with hundreds of millions 
of rows, it is possible to set up an iterative job to chunk up the data and score it iteratively 
using the Batch Prediction API.

https://bit.ly/3wV4qx5
https://archive.ics.uci.edu/ml/datasets/Automobile
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
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In addition, the API access to DataRobot allows users to develop user-defined features 
that make commercial sense before analysis and those based on scored model outcomes. 
This makes the modeling process more robust as it allows human intelligence to be 
applied to outcomes. In the preceding client risk profiling case, it becomes possible to 
classify customers into risk categories for easier business decision making. Also, based on 
the explanations given, the next best actions could be developed. 

Furthermore, programmatic use of DataRobot allows users to configure differing 
visualizations as they deem fit. This also offers analysts a broader range of visual outcome 
types. The Seaborn and Matplotlib Python libraries offer a huge range of visualization 
types with differing configurations. This also allows certain data subgroups or splits to be 
visualized. Among other benefits, it becomes possible to even select certain aspects of the 
data to be visualized.

One of the big advantages of accessing DataRobot using its API is the ability to create 
multiple projects iteratively. Two easy examples come to mind here. One approach to 
improving the outcomes of multi-class modeling is to use the one versus all modeling 
paradigm. This involves creating models for each of the classes. When scoring, all the 
models are used to score the data and for each row, the class with the highest score is 
attributed to the row. To bring this to life, let's assume we are building models to predict 
wheel drive types based on other characteristics. First, models are created for the three main 
types of wheel drives; that is, front-wheel drive (FWD), four-wheel drive (4WD), and 
rear-wheel drive (RWD). Data is then scored against all three models, and the model that 
presents each row with the highest prediction is assumed as the class the row belongs to.

The model factory is another example where multiple model projects are integrated into 
a system so that each project builds models for a subgroup in the data. In some problems, 
data tends to be nested in that certain variables tend to govern the way models behave 
generally. A point in case is modeling the performance of students nested in class. These 
features, such as the class teacher for schools, tend to control the effect other exogenous 
variables have on the dependent variable. 

In the case of cars, their brands typically drive their prices. For instance, irrespective of 
how similar a Skoda is to an Audi, the Audi will most likely be more expensive. As such, 
when developing models for such a case, it is ideal to create models for each of the car 
brands. In the context of programmatically accessing DataRobot, the idea would be to run 
an iteration of the project for each of the car brands. 

In addition to creating and scoring DataRobot models programmatically, we will use Jupyter 
Notebook's Integrated Development Environment (IDE) to build projects for a case of one 
versus all and a model factory. However, before we can create projects with DataRobot using 
an API, certain identification processes must be covered. Let's have a look. 
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To programmatically access DataRobot, users need to create an API key. This key is then 
used to access the platform from a client. To create an API key, open the Account menu 
at the top right-hand corner of the home page (see Figure 12.1). From there, access the 
Developer Tools window (see Figure 12.1):

Figure 12.1 – Accessing Developer Tools

After opening the Developer Tools window, click on Create New Key and enter the 
name of the new key. On saving the new key's name, the API key will be generated (see 
Figure 12.2). After this, the generated key is copied and secured. The API key, along with 
the endpoint, is necessary to establish a connection between the local machine and the 
DataRobot instance:

Figure 12.2 – Creating an API key
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The endpoint parameter is the URL of the DataRobot endpoint. https://app.
datarobot.com/api/v2 is the default endpoint for the US cloud-based endpoint 
for its US and Japanese users. The EU-managed cloud endpoint is https://app.
eu.datarobot.com/api/v2. VPC, on-premises, hybrid, or private users usually 
have their deployment endpoint as their DataRobot GUI root. To enhance security, these 
credentials are sometimes stored and accessed as .yaml files. These two credentials 
enable a connection between a computer and a DataRobot instance to use the DataRobot 
Python client.

Using the DataRobot Python client 
The Python programming language is one of the most popular programming languages 
used by data scientists. It is flexible yet powerful. Being able to integrate the AutoML 
capabilities of DataRobot and utilize the flexibility of Python offers data scientists various 
benefits, as we mentioned earlier. 

Programming in Python using the Jupyter IDE. 
Now, let's explore the DataRobot Python client. 

To use the DataRobot Python client, Python must be version 2.7 or 3.4+. The most up-to-
date version of DataRobot must be installed. For the cloud version, the pip command will 
install the most recent version of the DataRobot package. On Python, running !pip 
install datarobot should install the DataRobot package.

Having installed the DataRobot package, the package has been imported. The Client 
method of the DataRobot package provides the much-needed connection to the 
DataRobot instance. As shown in Figure 12.3, the basic format for the Client method is 
as follows:

Import DataRobot as dr

dr.Client(endpoint= 'ENTER_THE_ENDPOINT_LINK', token = 'ENTER_
YOUR_API TOKEN')

In terms of data ingestion, data can be imported from different sources. This process 
is identical to normal data imports with Python. The local file installation is quite 
straightforward. Here, all you need is the API key and the file path. Figure 12.3 presents 
the code for ingesting the automobile dataset. For the JDBC connection, to get data from 
platforms such as BigQuery and Snowflake, in addition to the API key, the identity of the 
data source object is required, as well as the user database's credentials – their usernames 
and passwords. The user database's credentials are provided by their organization's 
database administrators.

https://app.datarobot.com/api/v2
https://app.datarobot.com/api/v2
https://app.eu.datarobot.com/api/v2
https://app.eu.datarobot.com/api/v2
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In this section, we established how to access the credentials necessary to programmatically 
use DataRobot. We have also imported data programmatically. Naturally, conducting 
some analysis and modeling comes after ingesting data. In the next section, we will create 
machine learning models using the Python API.

Building models programmatically
Now that we have imported the data, we will start building models programmatically. 
We will look at building the most basic models, then explore how to extract and visualize 
feature impact, before evaluating the performance of our models. Then, we will create 
more complex projects. Specifically, we will build one versus all multiclass classification 
models and model factories.

To create a DataRobot project, we must use the DataRobot Project.start method. 
The basic format for this is importing the necessary libraries (DataRobot, in the following 
case). Thereafter, the access credentials are presented, as described in the previous section. 
It is at the point that the Project method is called. project_name, sourcedata, 
and target are the minimal parameters that are required by the Project method for 
projects to be created. The project_name parameter tells DataRobot the name to give 
the created project. sourcedata provides information regarding the location of the 
data that's required to create models. This could be a location or a Python object. Finally, 
target specifies the target variable for the models to be built, as shown here:

import datarobot as dr

dr.Client(endpoint= 'ENTER_THE_ENDPOINT_LINK', token = 'ENTER_
YOUR_API TOKEN')

project = dr.Project.start(project_name = 'ENTER_PROJECT_NAME',

sourcedata='ENTER_DATA_LOCATION',

target='ENTER_YOUR_TARGET_VARIABLE')

The basic format for creating projects was shown in the preceding section and illustrated 
in Figure 12.3. Once the models have been created, we can use the project.get_
models method to get a list of them. This list of models is presented in order by their 
validation scores by default. For this example, we will be using the automobile dataset, 
which we used to build models in Chapter 6, Model Building with DataRobot. The project's 
name is autoproject_1. Here, the file's location is specifically stored in a pandas object 
called data. The target variable is price. Note that these parameters are case-sensitive:
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Figure 12.3 – Programmatically creating DataRobot models and extracting their lists

Once you've created the model, the get_models method is called to list the models. 
We can see that the best performing model is Gradient Boosted Greedy Trees 
Regressor (Least-Square Loss). To evaluate this model, we need to extract its 
ID. To do so, we must create an object, best_model_01, to store the best-performing 
model. This metrics method is then called for this model. As shown in the following 
screenshot, the cross-validation RMSE for this model is 2107.40:

Figure 12.4 – Programmatically evaluating DataRobot models
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To provide some insight into the price drivers, we need the feature impacts. These can be 
retrieved through the DataRobot API using the get_or_feature_impact method. 
To visualize the feature impacts for projects, we must define a function called plot_FI 
that takes in the model's name and chart title as parameters, gets the feature impacts, 
and then normalizes and plots them using Seaborn's bar plot method. Regarding the 
autoproject_1 project, the following screenshot shows how to retrieve and present the 
feature impacts using the plot_FI function:

Figure 12.5 – Defining a function and extracting the feature impacts

Programmatic access to DataRobot furthers the benefits the platform offers. With 
programmatic access, you can take advantage of the iterative process within Python, and 
users can create multiple projects for the same dataset. Now, let's look at two ways to create 
multiple projects from the same dataset: multi-class classification and model factory.
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Multi-class classification involves classifying instances into more than two classes. 
It is possible to create a single project that classifies rows into either of these classes. 
Essentially, this is a model that classes rows into one of all the available classes. Another 
way to approach this problem involves building different models for the different classes. 
Within this approach, a model is built for each of the classes as a target. You can see how 
this can be executed using Python's iterative process; that is, by looping through all the 
target levels. The one versus all method is better for performing classification problems 
with more than two classes. 

Now, let's demonstrate how to use the one versus all method on the auto pricing project. 
Here, we will create price classes using the pandas quantile-base discretization function, 
qcut. qcut helps divide data into similarly sized bins. Using this function, we can 
divide our data into price classes – low to high. The following screenshot shows this price 
discretizing process and checking the distribution of cases across the classes:

 

Figure 12.6 – Price discretization

Having created the classes, to allow for data leakages, we will drop the initial price 
variable. We will write a loop that builds models for each of the price classes. Perform the 
following steps:

1.	 Turn the price_class variable into dummy variables.
2.	 For each iteration, create a DataRobot project after a dummified price class name.
3.	 For each iteration, we drop the price_class dummy level being modeled. This 

ensures that there are no leakages.
4.	 For each iteration, we must build the models for a target variable dummy.



276     DataRobot Python API 

5.	 After creating the projects, the top-performing model for each project is selected 
and stored in a dictionary:

Figure 12.7 – Creating a one versus all classification suite of projects

This process involves creating projects with a suite of models with targets iterating through 
all the price classes. After creating the projects, the best model for each target class is 
selected using an iteration of all the projects with names starting with Auto, and then the 
top-performing model for each project. These best models are placed in a dictionary. 
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It is sometimes recommended, if not ideal, to create different projects with a subset of the 
data. After selecting all the cases for the target variable, you must create a random subset 
of the data for each project creation iteration. In the auto pricing case, however, we were 
unable to explore this as the out-sample size was limiting.

A model factory is a multi-level modeling system where a model is developed for a 
subgroup of cases. For instance, the price of a car might be heavily determined by its fuel 
type in that it becomes beneficial to build different models for each fuel type within the 
same system. Programmatically building model factories is somewhat like the one versus 
all approach to classification. Instead of projects being iteratively created for each of the 
unique target variable levels, as with the one versus all process, the model factory involves 
building models for each level of a predictor variable. The key steps in building the model 
factory process, which involves iterating through each of the unique variable levels, are as 
follows (fuel-type):

1.	 First, create and store a project.
2.	 Select cases for the target variable (the influencer of interest). In this case, the 

variable is fuel-type. Here, this variable is selected, and differing levels of this 
variable are used to create DataRobot projects. In simple terms, this step involves, 
for instance, selecting all the rows with fuel-type set to gas as a subgroup.

3.	 If necessary, define the evaluation metric. Here, we can alter aspects of the advanced 
options we encountered in Chapter 6, Model Building with DataRobot. Other 
advance options can be selected and altered.

4.	 If necessary, set a data limit that a class will be deselected for (for instance, if the 
number of rows is less than 20 for that class). The importance of this step lies in 
the fact that some variable levels could have very low occurrences, so the sample 
size within the subgroup is small. Therefore, creating models out of these becomes 
a challenge. This step becomes the best place to drop such variable levels using the 
count of cases within the subgroup.

5.	 All the models from all the projects are selected and stored in a dictionary.
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Some of these steps are evident in creating a model factor for the auto pricing problem 
(see Figure 12.8). Here, fuel-type is selected as the feature that projects are created on. 
In this case, only two projects are created: one for gas automobiles and another for diesel 
ones. Now that we've created the models, the next step is to collect the best-performing 
models for each fuel-type:

Figure 12.8 – Creating model factories

The efficacy of using one versus all multiclass classification models and model factories 
lies in their ability to fit models to each level of the target variable. This happens in an 
automated fashion and considers the sample validation, all the preprocessing steps, and 
the model training process. When data cardinality and volume are high, these approaches 
would mostly outperform typical modeling.
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For the model factory, multiple projects are created for the different levels of the feature of 
interest. To evaluate this, the best-performing model for each project is selected from the 
dictionary for all projects. This set of best models from all the projects is stored in another 
dictionary object. A for loop is then run across all the models of the dictionary to extract 
the performance of the model, as shown in the following screenshot:

Figure 12.9 – Evaluating the performance of models with a model factory
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Improved model performance is only one of the reasons you should use the one versus all 
multiclass classification models, as well as model factors. Sometimes, understanding the 
drivers is equally as important. Visualizing the feature importance for the different fuel 
types could present an interesting contrast in drivers. This means that different factors 
affect the prices of different fuel types. This could have a bearing on strategic decisions. As 
shown in the following screenshot, the Python API can be used to plot the feature impacts 
by leveraging chart functions from Seaborn and Matplotlib:

Figure 12.10 – Feature impacts for the differing diesel and gas automobiles
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As we can see, there are some differences in the feature impacts for the automobile fuel 
types. While curb-weight seems to be an important driver, its effect is relatively more 
important for diesel vehicles. Similarly, for gas cars, the power that's generated by these 
automobiles, as typified by the engine_size and horsepower features, carries more 
importance in determining price than those of diesel cars. You can already see the effect 
such preliminary findings could have on decisions and how this could be applied to other 
commercial cases. Using feature importance to examine multiple models can also be 
applied in the case of one versus all classification problems. 

In this section, we created basic DataRobot projects using the Python API. After, we 
solved more complex problems by using multiple projects within a system. There, we 
created one versus all projects to solve multiclass classification problems and model 
factories to solve multi-level problems involving subgroups. We also explored feature 
impact and model evaluation. Having programmatically created models, we will now 
learn how to make predictions using these models. Specifically, we will learn how to 
deploy models, make predictions, extract explanations from models, and score large 
datasets through parallelization.

Making predictions programmatically
The possibilities that programmatically using DataRobot presents are enormous. By 
using its API, models can be deployed and predictions can be made against them. Before 
making programmatical predictions within the production environment, models need to 
be deployed. DataRobot models are deployed using Portable Prediction Servers. These are 
Docker containers that can host machine learning models, which serve predictions and 
prediction explanations through a REST API. 

To deploy models, we can use the DataRobot package's deployment method. Here, we 
must provide a description, the DataRobot model's ID, as well as its label to create the 
deployments. A typical Python deployment script follows this format: 

deployment = dr.Deployment.create_from_learning_model(

MODEL_ID, label='DEPLOYMENT_LABEL', description='DEPLOYMENT_
DESCRIPTION',

    default_prediction_server_id=PREDICTION_SERVER_ID)

deployment
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As per this approach, the following screenshot shows how autoproject_1, which we 
created in the Building models programmatically section, can be deployed. Here, the model 
ID is best_model_1. We will label AutoBase Deployment with a description of 
Base Automobile Price Deployment:

Figure 12.11 – Deploying a model programmatically

The deployment process can be iterated to enable those of more complex projects. For 
instance, with model factories, irrespective of the number of levels the differentiating 
variable has, with a single for loop, all the best models can be deployed to DataRobot. 
For each of the best models, a deployment is created, which is then used to score new data. 
The script for deploying the model factory for the automobile project, along with the fuel 
type as its differentiating variable, is shown in the following screenshot:

Figure 12.12 – Deploying models from a model factory

Having deployed the models, predictions can be made against them. To make simple 
predictions within the development environment, we can use the DataRobot 
BatchPredictionJob.score_to_file method. To make predictions, this method 
requires the model ID, prediction data, and the location where the scored data will be 
stored. Here, we will use best_model_1 to score the same model we used to develop the 
model, the df data object, and the location path, which specifies the prediction file path 
as ./pred.csv. The passthrough_columns_set parameter specifies the columns 
from the original dataset that will be included in the predictions. Since this is set to 
'all', all the columns are returned, as shown here: 
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Figure 12.13 – Simple programmatic prediction

These predictions comprise all the columns from the initial dataset, in addition to the 
predicted prices. There are cases where it is ideal to include rationales behind predictions. 
In such cases, the max_explanations parameter should be included in the job's 
configuration. This parameter sets the highest number of explanations to be provided for 
every data row.

Summary
DataRobot provides us with a unique capability to rapidly develop models. With this 
platform, data scientists can combine the benefits of DataRobot and the flexibilities of 
open programming. In this chapter, we explored ways to access the credentials needed 
to programmatically use DataRobot. Using the Python client, we demonstrated ways in 
which data can be ingested and how basic projects can be created. We started building 
models for more complex problems. We created model factories as well as one versus all 
models. Finally, we demonstrated how models can be deployed and used to score data.

One of the key advantages of programmatically using DataRobot is the ability to ingest 
data from numerous sources, score them, and store them in the relevant sources. This 
makes it possible to carry out end-to-end dataset scoring. It becomes possible for a system 
to be set up to score models periodically. With this comes numerous data quality and 
model monitoring concerns. The next chapter will focus on how to control the quality of 
the models and data on the DataRobot platform, as well as using the Python API.
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and MLOps
In the previous chapters, we learned how to build, understand, and deploy models. 
We will now learn how to govern these models and how to responsibly use these 
models in operations. In earlier chapters, we discussed the methods for understanding 
the business problem, the system in which the model will operate, and the potential 
consequences of using a model's predictions. MLOps is a word made up of machine 
learning and DevOps. It is made of processes and practices to efficiently, reliably, and 
effectively operationalize the production of machine learning (ML) models within an 
enterprise. MLOps aims to ensure commercial value and regulatory requirements are 
met continuously by ensuring production models' outcomes are of good quality and 
automation is in place. It provides a centralized system to manage the entire life cycle of 
all ML models in production.
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Activities within MLOps cover all aspects of model deployment, provide real-time 
tracking accuracy of models in production, offer a champion challenger process that 
continuously learns and evaluates models using real-time data, track model bias and 
fairness, and provide a model governance framework to ensure that models continue to 
deliver business impact while meeting the regulatory requirements. In Chapter 8, Model 
Scoring and Deployment, we covered model deployment on the DataRobot platform. 

Furthermore, in Chapter 8, Model Scoring and Deployment, we extensively covered 
aspects of monitoring models in production. Given the crucial role model governance 
plays within the MLOps process, in this chapter, we will introduce the model governance 
framework. One key aspect of model monitoring is to ensure that models are not biased 
and are fair towards all people impacted by the model, which we will explore in this 
chapter. After that, we will take a deeper look at how to enable other aspects of MLOps, 
including how to maintain and monitor models. Thus, we're going to cover the following 
main topics:

•	 Governing models

•	 Addressing model bias and fairness

•	 Implementing MLOps

•	 Notifications and changing models in production

Technical requirements
Most parts of this chapter require access to the DataRobot software. The example utilizes 
a relatively small dataset, Book-Crossing, consisting of three tables, whose manipulation 
was described earlier in Chapter 10, Recommender Systems. As will be covered in the 
data description, we will create new fields in addition to those used in Chapter 10, 
Recommender Systems.

Book-Crossing dataset
The example used to illustrate the aspects of model governance is the same as the one 
used for building recommendation systems in Chapter 10, Recommender Systems. The 
dataset is based on the Book-Crossing dataset by Cai-Nicolas Ziegler and colleagues 
(http://www2.informatik.uni-freiburg.de/~cziegler/BX/). The data 
was collected during a 4-week crawl from the Book-Crossing community between August 
and September 2004. 

http://www2.informatik.uni-freiburg.de/~cziegler/BX/
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Important Note
Before using this dataset, the authors of this book have informed the owner of 
the dataset about its usage in this book: 

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, Georg Lausen (2005). 
Improving Recommendation Lists Through Topic Diversification. Proceedings 
of the 14th International World Wide Web Conference (WWW 2005). May 
2010–2014, 2005, Chiba, Japan

The subsequent three tables, provided in .csv format, make up this dataset. 

•	 Users: This table presents the profile of the users, with anonymized User-ID and 
presented as integers. Also provided are the user Location and Age.

•	 Books: This table contains the characteristics of the books. Its features 
include ISBM, Book-Title, Book-Author, Year-Of-Publication, 
and Publisher.

•	 Ratings: This table shows the ratings. Each row provides a user's rating for a book. 
The Book-Rating is either implicit as 0 or explicit between 1 and 10 (the higher, 
the more appreciated). However, within the context of this project, we will focus 
solely on ratings that are explicit for the model development. The table also includes 
the User-ID and ISBN fields.

In addition, using Excel, we created two extra fields using age and a rating column. We 
created the RatingClass field, which considers a rating over 7 as a High rating or 
else it is Low. Similarly, we created the AgeGroup field; this classes ages over 40 as Over 
Forty and those under 25 as Under 25, or else they are considered simply Between 
25 and 40. Finally, we dropped out data rows with a missing age column. 

Governing models
Organizations using ML governance define a framework of rules and controls for 
managing the ML workflows pertaining to model development, production, and post-
production monitoring. The commercial importance of ML is well established. Still, only 
a fraction of companies investing in ML are realizing the benefits. Some establishments 
have struggled to ensure that the outcomes of ML projects are well aligned with their 
strategic direction. Importantly, many organizations are subject to regulations, such as the 
recently implemented General Data Protection Regulation within the European Union 
and European Economic Area, which affect the use of these models and their outputs. 
Businesses, in general, need to steer their ML use to ensure regulatory requirements are 
satisfied and strategic goals and values are continually realized.
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Having an established governance framework in place ensures that data scientists 
can focus on the innovative part of their role, which is solving new problems. With 
governance, data scientists spend less time assessing the commercial value their models 
are delivering to the business, evaluating models' performance of production, and 
examining whether there has been data drift. Model governance simplifies the model 
versioning and change tracking process for all production models. This is always a key 
aspect of ML audit trailing. In addition, notifications could be set up to alert stakeholders 
when a model in production encounters anomalies and changes in performance. When 
there is a significant decline in performance, models in production could be swapped with 
better-performing challenger models in a seamless fashion. Although this process might 
require reviews and authorization from other stakeholders, it is much more simple and 
straightforward than a typical data science workflow. 

It is clear that governing models throughout the entire process is a complex and time-
consuming undertaking. Without tool support, it is easy for the data science teams to miss 
key steps. Tools such as DataRobot make this task easier, ensuring that many required 
tasks are performed automatically. This ease of use can also sometimes make the teams 
use these tools without thinking. This can be dangerous too. Thus, a judicious mix of 
using the tools such as DataRobot and setting up process controls and reviews is needed 
to ensure proper governance.

DataRobot's MLOps provides organizations with an ML model governance framework 
that helps in the management of risks. Using the model governance tool, a business 
executive can track important business metrics and ensure that regulatory requirements 
are met on a continuous basis. They can easily assess the model performance in 
production to ensure that models are fit for purpose. Furthermore, with governance in 
place, the commercial criticality of models is defined before deployment. This ensures that 
when models are critical to the business, certain changes to the model need to be reviewed 
and authorized by stakeholders before such changes are fully implemented. In line with 
ethics, the use of ML models is expected to enable a fair process. So, models' outputs 
should be purged of any form of biases. In subsequent sections in this chapter, in addition 
to other aspects of MLOps, we will examine how bias could be mitigated in the ML model 
in development as well as in production.
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Addressing model bias and fairness
A key characteristic of ML lies in its learning from the past to predict the future. This 
implies that future predictions would be influenced by the past. Some training datasets are 
structured in ways that could introduce bias into ML models. These biases are based on 
unspoken unfairness evident in human systems. Bias is known to maintain prejudice and 
unfairness that preexisted the models and could lead to unintended consequences. An AI 
system that is unable to understand human bias mirrors, if not exacerbates, the bias present 
in the training dataset. It is easy to see why women are more likely to receive lower salary 
predictions by ML models than their male counterparts. In a similar example, credit card 
companies using historic data-driven ML models could be steered into offering higher rates 
to individuals from minority backgrounds. Such unwarranted associated are caused by 
human bias that is inherent in the training dataset. It is unfair to include bias-laden features 
with unbiased ones in model development. A fair process considers an individual's payment 
history in making predictions about their credit, but unfair outcomes are possible when 
predictions are made based on the payment history of their family.

Supervised learning models can be particularly unfair, as certain data has circular 
dependency. For instance, to obtain a credit card, people need a credit history, and to have 
credit histories, credit cards are required. Since models are critical to credit assessment, 
it becomes nearly impossible for some people to get a credit card. Also, limited data 
about certain subgroups makes them more vulnerable to bias. This is because a minimal 
outcome distribution change in training data for such groups could skew the prediction 
outcomes for members of the group. These all point toward the extent to which ML 
models should manage bias and support a fair process.

Many industries – for instance, health care, insurance, and banking – take specific measures 
to guard against any form of bias and unfairness as a regulatory expectation. While it is 
inherently challenging to address bias in humans, it is somewhat easier to address ML bias. 
So, as part of ML governance, addressing ML bias could be pivotal in ensuring that their 
products don't amplify the skepticism about the ethical aspects of ML systems.
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In addressing potential unwarranted outcomes, DataRobot has introduced a bias and 
fairness monitoring and control capability. This capability is selected and configured 
during model development. Let's step back and demonstrate how bias could be addressed 
in DataRobot. As with the typical platform, we upload the data as described in the 
preceding chapters. In the project configuration window (as within Figure 13.1), we open 
Advanced Options and the Bias and Fairness tab: 

1.	 It is within this tab that we define protected features, how fairness is established 
and measured, as well as the target variable. We specify the fields in the prediction 
dataset that need to be protected. These are entered in the Protected Features input 
field. In this case, the AgeGroup field is selected as to be protected (see Figure 
13.1). In some industry datasets, attributes such as sex, ethnicity, age, and religion 
must be selected. In this way, DataRobot manages and presents metrics to measure 
any potential model bias within each of the protected fields:

Figure 13.1 – Configuring bias and fairness during the model development

2.	 Next, the Favorable Target Outcome field is selected. This is the level of the target 
variable that is desirable. In this case, the target variable is the RatingClass level 
of High. This enables the measurement of bias on this level of the target variable. 
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3.	 The Primary Fairness Metric field outlines the metric against which fairness is 
measured. It is important to highlight that fairness differs considerably across use 
cases. The fairness for an insurance risk modeling tool would strive to ensure that 
the risk all potential clients carry is representative, whereas fairness within that 
employment tool would aim for members of a protected group to have similar 
chances of being employed when compared to those from other groups. The 
choice of Primary Fairness Metric helps DataRobot understand how to measure 
bias. A few metrics are presented to be selected. These include Proportional 
Parity, Equal Parity, Prediction Balance, True Favorable Rate 
& True Unfavorable Rate Parity, and Favorable Predictive & 
Unfavorable Predictive Value Parity.  

4.	 If a user is unsure of the metric to choose, they can click on Help Me Choose, 
which presents a further set of questions. Answering these questions presents a 
recommendation of a Fairness Metric value, as shown in Figure 13.2: 

Figure 13.2 – Fairness Metric recommendation
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In choosing our metric, because we are keenly interested in our model having 
similar prediction accuracy across age group membership, the Equal Error option 
is selected in response to how we want to measure model fairness. Since our 
outcome distribution is somewhat balanced between high and low, we choose No 
to the Does the favorable target outcome occur for a very small percentage of the 
population? question. Following this, DataRobot suggests True Favorable Rate & 
True Unfavorable Rate Parity. All throughout the process, the platform offers a 
description of the options and presents an explanation of the recommended metric, 
as well as those for other metrics.

5.	 A click on Select finalizes the process and the modeling process proceeds, as 
suggested in earlier chapters.

Model bias could be further examined after models have been developed. Since 
model bias and fairness were configured during model development, the Bias and 
Fairness tab is presented as part of the model's details (see Figure 13.3). When 
this tab is selected for any of the created models, the Per-Class Bias window is 
presented. Within this window, the relative extent to which the model is biased 
given the Fairness Score value is displayed. The AgeGroup Per-Class Bias value 
for the Light Gradient Boosting on Elastic Predictions model 
presented in Figure 13.3 is below the default threshold:

Figure 13.3 – Per-Class Bias exploration
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According to this outcome, the accuracy of the model in predicting the true unfavorable 
outcome (of a Low rating) for individuals within the Between 25 and 40 class is 
lower than the other two classes. The score for this class falls below the default 80% 
threshold. The default threshold of 80% was applied for Primary Fairness Metric, as 
we didn't set a value for it during the model development, as seen in Figure 13.3. By 
clicking the Show absolute values tab, the absolute measures are presented instead. While 
the other chart (not visible in Figure 13.3) suggests that the accuracy for the favorable 
outcome was consistent across classes, this model could still be unfair, as it will most likely 
falsely predict unfavorable outcomes for individuals in the Between 25 and 40 class. 
Figure 13.4 demonstrates how Cross-Class Accuracy, a set of more holistic accuracy 
metrics, could be used to assess accuracy across the protected classes:

Figure 13.4 – Cross-Class Accuracy examination



294     Model Governance and MLOps

Cross-Class Accuracy presents a set of accuracy metrics, assessing the model across 
differing levels of the AgeGroup class. As the outcome in Figure 13.4 suggests, the 
accuracy of the model seems to be lower for the Between 25 and 40 class across all 
accuracy measures. Because, as earlier alluded to, the performance of the model is similar 
across classes when it is the favorable class, only the lower true rate for the unfavorable 
outcome for the Between 25 and 40 class seems to affect the fairness of the model. 
Because models learn from past data, exploring the features that might be responsible for 
this bias might be crucial in taking further actions. Figure 13.5 shows the Cross-Class 
Data Disparity capability, which presents deep dives into why bias exists in ML models:

Figure 13.5 – A Cross-Class Data Disparity comparison between two age classes

To explore the rationale behind the model bias, the Cross-Class Data Disparity 
comparison compares the data distribution across two groups of a protected feature. In 
doing so, it presents the importance of the features against their distributional disparity. 
Of lowest importance, yet for obvious reasons with the largest disparity, the Age-Group 
feature seems to affect the model's accuracy. This is because Age-Group, being the 
predicted variable, will have the largest disparity in comparison to other variables, as it 
is identical to the predicted variable. The year book had a lower data disparity but had 
greater importance than the Age-Group feature. Further examination of the distribution 
of the year in the right-hand chart (Figure 13.6) shows that older books and books with 
a missing year seem to have been rated more by the Over Forty group in comparison 
with the Between 25 and 40 group. On the contrary, the Between 25 and 40 
cohorts seem to be rated more of the newer books than their older counterparts. 
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When model bias exceeds an enterprise-established threshold, steps need to be taken to 
manage this unfairness. Options to address this unfairness include dropping features that 
might be responsible for the bias and retraining the model, or changing the model for a 
more ethical model. Most of the time, these changes ultimately affect the overall accuracy of 
the model. However, in our example case, Light Gradient Boosting on Elastic 
Predictions wasn't our best-performing model. DataRobot has within its bias and 
fairness toolkit the Bias vs Accuracy leaderboard comparison capability (see Figure 13.6):

Figure 13.6 – Bias vs Accuracy leaderboard

The Bias vs Accuracy chart assesses multiple models on their bias and accuracy. Here, we 
see that Keras Residual AutoInt Classifier using Training Schedule 
was the most accurate model and met the ethic threshold. In this case, this model could 
be deployed into production. It is important to note that neural network-based models are 
generally not accepted by many regulators today, but this could change in the future.
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Processes concerning the assessment of ML model bias and fairness are expected to 
be integrated into the data science workflow to ensure model outcomes support a fair 
process. This becomes more important as conversations pertaining to ethical AI are 
becoming more ubiquitous across industries. Having looked at ways to ensure models are 
fair, we now progress into deploying the fair model, monitoring model performance in 
production, and other aspects of implementing MLOps in the next section.

Implementing MLOps
DataRobot, through its MLOps suite, provides capabilities to enable users to not only 
deploy models in production, but govern, monitor, and manage the models in production. 
In previous chapters, we have looked at how models are deployed on the platform and 
using the Python API client. MLOps provides an automated model monitoring capability, 
which tracks the service health, accuracy, and data drift of models in production. The 
automated real-time monitoring of production models ensures that models have high-
quality outputs. Also, when there is a performance degeneration, stakeholders are notified, 
so action can be taken.

In this section, we will focus on aspects of model monitoring that we didn't cover in 
Chapter 8, Model Scoring and Deployment, of this book. We looked at how to examine the 
quality of deployment services, as well as changes in the underline feature distribution 
between the training and prediction data across time through the service health and data 
drift capabilities. As time passes, more recent data with target variables is introduced to the 
deployment. DataRobot can then examine models' initial predictions and establish models' 
actual accuracy in production. DataRobot also provides the capability to switch between 
alternative models in production. This section focuses on the evaluation of production 
model accuracy, setting up notifications, as well as switching models in production.
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As you can guess by now, the job of the data science team does not end once a model 
is deployed. We now must monitor our models in production. After models have been 
deployed, before engaging in conversations pertaining to the monitoring of models, we 
need to control what individuals can do with those deployments. Stakeholder roles and 
responsibilities are important aspects of MLOps governance. Successful implementation 
of ML solutions depends on a clear definition of roles and what the actual duties of 
stakeholders are throughout ML models' production life cycles. As Figure 13.7 highlights, 
when deployments are shared with other stakeholders, each stakeholder is given a role 
that defines their access level to that deployment:

Figure 13.7 – Sharing deployments



298     Model Governance and MLOps

To open the deployment sharing window (as shown in Figure 13.7), after the model was 
deployed, the deployment action button (the triple dash icon) on the top right-hand side 
was selected. Then, Share was chosen. Here, this RatingClass Predictions deployment 
was shared with a stakeholder, ben@aaaa.com. Importantly, this individual was given 
the role of User. With the User role, this stakeholder can write and read. In an actual 
sense, they can view the deployment, consume predictions, view deployment inventory, 
use the API to get data, and add other users to the deployment. The Owner level has 
additional administration rights and can perform business-critical operations, such as 
deleting the deployment, replacing the model, and editing the deployment metadata. 
The lowest user role is Consumer, which only allows stakeholders the right to consume 
predictions via the API route.

Production model monitoring ensures that models continue to deliver high-quality 
business impact as expected during development. A decline in this quality is a result of an 
alteration in the production data distribution or changes in the extent to which features 
affect the endogenous variable. For instance, changes in usage affect customer attrition, a 
variable of importance to a business. During a holiday period, the predictions for attrition 
would be higher. Such fluctuations in attrition prediction cause worry to the business if 
they are not expecting this change in distribution or data drift. In the same way, the extent 
to which predictor variables could influence a business outcome could also change. A 
point in case could be the effect of price on the propensity to buy. During the peak of a 
pandemic, individuals are far more conservative in their purchase of non-essentials. Now, 
imagine the chances of the accuracy of an in-production buying propensity model built 
for a non-essential product built before the pandemic. It is easy to see that the accuracy 
of the model will decay in production quite rapidly, thus having a significant impact on 
the business performance. Such situations raise the need to monitor the performance of 
models post-deployment.

mailto:ben@aaaa.com
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In Chapter 8, Model Scoring and Deployment, we covered data drift, which examines 
changes in distribution between the training and production datasets, while accounting 
for their feature importance. Here, our focus will shift to monitoring the effect of variables 
on outcomes while in production. Changes in this effect could be established through the 
monitoring of production models' accuracy, a capability DataRobot offers. As part of the 
Deployments Settings window, as shown in Figure 13.8, there is an Accuracy tab:

Figure 13.8 – Deployment window for accuracy setup
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The Accuracy tab offers insight into the accuracy of production models. This capability 
allows users the ability to examine the performance of their production models over time. 
To compute the accuracy of a production model, actual outcomes need to be provided. 
After actuals have been uploaded, to generate accuracies, a set of fields needs to be 
completed. These include the Actual Response and Association ID fields, as well as those 
that are optional, Was acted on and Timestamp (see Figure 13.9):

Figure 13.9 – Accuracy setup features
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The Actual Response field specifies where the true outcome is in the data. In this case, 
the field is RatingClass. To link this to the earlier prediction dataset, Association 
ID, presented as rowid in this example, is requested to enable this connection. It is 
important to note that sometimes as a result of the models' predictions, action is taken by 
the business that could ultimately influence the outcome. To account for this possibility in 
calculating accuracy, the Was acted on and Timestamp variables are optionally requested 
(see Figure 13.10 for the selection of these features): 

Figure 13.10 – Production accuracy identification feature selection
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After the mandatory variables are selected, the Save button is clicked. This sets the 
computation off, thereafter opening the Accuracy window, displaying the production 
accuracy of the model. The performance of the production model is presented as tiles 
and as a graphical time series. Figure 13.11 presents the Deployment Accuracy window. 
The LogLoss, AUC, Accuracy, Kolmogorov-Smirmov, and Gini Norm metrics tiles are 
selected. Start shows the model's performance against the holdout dataset during the 
development process. It appears that this model is better in production than during the 
training. Through the customize tiles, other metrics and their order could be chosen. The 
Accuracy over Time graph shows how the accuracy of the model has changed over time. 
The leftmost green spot on the graph indicates the model accuracy against the holdout 
dataset during development:

Figure 13.11 – production model performance assessment over time

The Predicted & Actual chart tells a similar story. Here, the selected class is Low. There 
is an option to change the class being explored. It is important to note that with these, the 
accuracy of the model on the differing levels of the AgeClass protected variable could 
be monitored. This could be done by selecting AgeClass in the Segment Attribute 
option and then choosing either of the levels in the Segment Value field. While in the 
present scenario production accuracy mirrors those of data drift, it is possible to configure 
notifications so that stakeholders are notified when metrics depart in a manner that 
adversely affects the business. In the next section, we will cover these notifications, as well 
as how to change models in deployment. 
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Notifications and changing models in 
production
In this chapter, we have established why the commercial impact of models can decay 
and ways to track this impact in the DataRobot platform. In cases where the end-to-end 
prediction process is fully automated and human intervention is limited, it becomes 
crucial that systems that notify stakeholders of any significant changes in the performance 
of production models are available. DataRobot can send notifications for significant 
changes in service health, data drift, and accuracy. These notifications can be set up and 
configured within the Deployment window:

1.	 From the Settings tab, select Notifications. As shown in Figure 13.12, three options 
are presented: notifications being sent for all events, notifications for critical events, 
and no notifications being sent. Notifications for all events are sent by email; all 
changes to the deployments are emailed to the owner:

Figure 13.12 – Deployment Notifications setup
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In Figure 13.12, notifications are set to notify me about only critical deployment 
activities. This setting implies that the stakeholders are notified when there are 
critical activities occurring on the deployment.

2.	 The Monitoring tab (in Figure 13.13) presents options for defining the notifications 
that are to be sent. Here, Service Health notification is set to be sent daily at 1:00. 
There are options to set notifications to occur anywhere between an hourly and 
quarterly monitoring cadence. When the box is unchecked, the notification is disabled: 

Figure 13.13 – Monitoring notification setup

3.	 Notification for Data Drift has a few thresholds and configurations to be completed. 
As discussed in Chapter 8, Model Scoring and Deployment, data drift compares the 
distribution of incoming data to that used for the model development. Essentially, 
it looks at how recent production data differs from the training data across all 
features. Setting up a Data Drift notification involves the following considerations:

•	 Range defines the period from which data is drawn to be compared with the 
development data. For the example in Figure 13.13, the range is set to Last 7 
days, meaning that the data distribution for the preceding seven days is compared 
with that of the training data.
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•	 Being a feature drift metric, the Population Stability Index (PSI) threshold defines 
the extent to which feature drift needs to occur for a notification to be triggered. 
Here, the threshold is set to 0.2. Some features can be excluded from drift tracking 
using the excluded features options.

•	 The Feature Importance threshold allows users to define the threshold that 
differentiates the most important features from others is. In Figure 13.13, 0.45 is 
entered as the Permutation Importance metric threshold to achieve this goal. By 
so doing, features with permutation importance over 0.45 are deemed as Failing, 
while those with lower importance are considered At Risk. Here, some features are 
seen as important irrespective of the actual feature importance, and these can be 
selected using the starred features options.

•	 The At Risk and Failing thresholds alternatively enable the configuration of the 
minimum number of low- and high-importance features that are necessary for 
sending At Risk or Failing notifications. The rule present in Figure 13.13 allows  
the following:

a. At-risk notifications to be sent when two or more low-importance features  
(with Permutation Importance of less than 0.45) drifts beyond a PSI of 0.2 

b. Failing notifications to be sent when five or more low-importance features have 
significant drift

c. Failing notifications to be sent when one or more high-importance features have a 
drift whose PSI exceeds 0.45

4.	 Notifications pertaining to the Accuracy production model need to be set up within 
the monitoring window (as shown in Figure 13.13). Here, the Metric accuracy, 
Measurement threshold, and rules for At Risk and Failing notifications are defined:

a. Because the deployment is based on a classification problem, its Metric accuracy 
is selected from classification options. These include AUC, Accuracy, Balance 
Accuracy, LogLoss, and FVE Binomial, among others. In this case, Logloss 
is chosen.

b. The Measurement option defines how changes in the accuracy metric between 
production prediction and training data are compared. Here, the percent  
change is selected.

c. Rules are then set for At Risk and Failing notifications to be sent. In this case, At 
Risk notifications are sent when the accuracy of the model for prediction data is 5% 
that of the training. Similarly, 10% is the threshold that triggers a Failing notification.

d. As with Data Drift, the Accuracy notifications are set to be sent Every day at 
1:00. These could be configured to any cadence between daily and quarterly.
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5.	 After this setup, clicking the Save new setting button activates the notification routine. 
However, it is noteworthy that any stakeholder who has access to the deployment 
can configure the notifications they want to receive. When models' changes become 
significant, it might become necessary to replace the model in the deployment.

The performance of production models tends to decay with time. This raises the 
need for models to replace those in a deployment. Within the MLOps offerings, 
DataRobot offers the model replacement functionality. To change the model in 
a deployment, you navigate to the Deployment Overview window. The Replace 
model option is selected from the Action button on the right-hand side of the 
Deployment Overview window (see Figure 13.14):

6.	 Clicking the Replace model option presents a Paste DataRobot model URL 
request. This URL is for the location at which the new model can be found when 
opened from the leaderboard:

Figure 13.14 – Production model replacement

7.	 When Select is clicked, there is a prompt for the rationale for the model 
replacement. For this, options for Replacement Reason include Accuracy, Data 
Drift, Errors, Scheduled Refresh, and Scoring Speed. As shown in 
Figure 13.15, Data Drift is selected in this case.
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8.	 Finally, Accept and replace is clicked:

Figure 13.15 – Selecting the rationale for model replacement

Having replaced the model in the deployment, future predictions from this deployment 
will use the updated model. It is important to highlight that model replacement can only 
be carried out by the deployment owner. There are situations when the commercial impact 
of models is significant. In such situations, it is advisable to test the new or challenger 
model in a synthetic or simulated environment before switching models. In the typical 
data science workflow, the champion/challenger model scenario is well established. Here, 
challenger models compute predictions and their performance is compared with the 
one in production, the champion. With the testing and impact analyses complete, we 
are now ready to deploy our model. DataRobot provides data scientists the ability to test 
multiple challenger models while the champion is in production. This simplifies the model 
selection process when a model is to be replaced.

MLOps also offers the capability for changes in the model to be reviewed by different 
stakeholders. For this to happen, models are assigned importance levels as part of their 
deployments. These importance levels depend on the strategic commercial impact 
the model outcomes have on the business, the volume of predictions, and regulatory 
expectations. The importance levels thereafter drive who needs to review changes of the 
deployments before they are implemented.
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Summary
In this chapter, we highlighted the value of establishing a framework guiding the use of 
ML models in businesses. ML governance capability supports users in ensuring that ML 
models continue to deliver commercial value while meeting regulatory expectations. Also, 
we set controls for what different levels of stakeholders can do with ML deployments. In 
some industries, there is a need to seriously consider the impact of bias in any decision 
process. Because ML models are based on data that might have been affected by human 
bias, it is possible that these models will compound such bias. As such, we explored ways 
to mitigate ML bias during and after model development.

We also examined the effects features have on the outcome variable. Such changes could 
have a critical bearing on business outcomes, hence the need to monitor the performance 
of model outcomes in production. During this chapter, we explored ways the performance 
of models could be assessed over time. Importantly, we learned how to configure 
notifications when there are significant changes in data drift or/and model accuracy. 
Additionally, we examined how a model in production could be switched to a challenger 
as needed. 

We also highlighted some other MLOps features that were not covered in depth as 
part of this chapter. In the next chapter, we are going to look at what we think the 
future holds for DataRobot and automated ML in general. Also, given that this book 
is not all-encompassing with regards to DataRobot and the platform keeps expanding 
its capabilities, in the next chapter, we will point out some places where additional 
information for further development could be accessed.
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Conclusion

In the preceding chapters, we learned to build and deploy models with DataRobot. We 
learned the basics, along with some advanced data science concepts. The disciplines of  
ML and data science continue to evolve rapidly. In response, tools such as DataRobot are 
also enhancing their capabilities. While these tools will continue to advance and make 
data scientists more productive, it is also expected that the role of good data scientists  
will become increasingly important and better understood. I hope we have convinced 
you that data scientists are not about to become obsolete and also that these tools have 
a lot to offer for data scientists, regardless of their level of expertise. It is also true that 
the methods and tools that we have right now are still very limited when it comes to 
intelligence. There is a lot of learning and uncovering to be done before the systems we 
build can be called intelligent.

The information we have provided so far should help you get started in developing and 
deploying models and start impacting your business. There is still a lot more to learn in 
this journey. In this chapter, we will provide sources for finding additional information 
regarding DataRobot and also discuss what the future of data science and DataRobot 
might look like. We're going to cover the following main topics:

•	 Finding out additional information about DataRobot

•	 Future of automated machine learning

•	 Future of DataRobot
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Finding out additional information about 
DataRobot
There are many sources for additional information on ML, AI, and related methods. The 
best sources for DataRobot-related information are the following:

•	 DataRobot Website: https://www.datarobot.com

The website contains information about the platform and several resources and case 
studies. It also contains links to other useful sites, some of which are described next.

•	 DataRobot Community Site: https://community.datarobot.com

This is a site for the DataRobot user community. You can go to this site to connect 
with other users, see what information they are discussing, and ask questions.

•	 DataRobot Community GitHub: https://github.com/datarobot-
community

This is a GitHub site with repositories of DataRobot-related projects. You can see 
many code samples and examples for a wide range of DataRobot-related tasks. 
Here, you will find Python scripts and notebooks as well as samples in many other 
languages. This is a great place to go if you are ready to start using the DataRobot API.

•	 DataRobot Python Client: https://datarobot-public-api-client.
readthedocs-hosted.com/en/v2.25.0/

This link provides information about the publicly available Python package for 
DataRobot. Here, you will find information on how to get this package, install it, 
and use it. Note that you need a valid license to make use of this package.

•	 DataRobot Documentation

Once you are logged in to DataRobot, you can see links to extensive DataRobot 
documentation for the tool itself as well as the DataRobot API, as we discussed in 
Chapter 1, What Is DataRobot and Why You Need It.

•	 DataRobot Documentation Website: https://docs.datarobot.com

DataRobot recently decided to release all documentation on this site. This includes 
the DataRobot platform, APIs, tutorials, and notebooks, as well as a glossary. This is 
now the default site to look for all DataRobot-related documentation.

There are many publicly available information sources for ML methods, AutoML, 
and AutoML tools that you can find and explore online. Let's now discuss where ML 
seems to be headed.

https://www.datarobot.com
https://community.datarobot.com
https://github.com/datarobot-community
https://github.com/datarobot-community
https://datarobot-public-api-client.readthedocs-hosted.com/en/v2.25.0/
https://datarobot-public-api-client.readthedocs-hosted.com/en/v2.25.0/
https://docs.datarobot.com
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Future of automated machine learning
It has been over 5 years since automated ML tools started appearing in the data science 
community. There are now several open source tools (for example, TPOT and Auto-
WEKA) as well as proprietary tools (for example, Kortical and H2O) on the market. All 
major cloud providers now have some AutoML offering. Interest in these tools has been 
rising. It is safe to say that interest in these tools will keep rising and more offerings should 
be expected to come onto the market. We expect the tools to keep expanding the scope 
of tasks that will be automated to cover more aspects of the model development process. 
We can already see tools such as DataRobot offering more functions through internal 
development as well as through acquisitions such as Paxata. While it remains true that 
these tools do not support all use cases or types of modeling, they do cover a large number 
of use cases in a typical organization. More capabilities and algorithms are being added 
every quarter. We also expect that some niche vendors will emerge that focus on specific 
problems or methods such as reinforcement learning.

Many of the ideas and methods described in this book can be used with other AutoML 
tools or even with just a notebook environment with open source Python libraries. The 
AutoML tools essentially serve to automate many of the mundane and labor-intensive 
tasks. Even with these developments, we expect that not all aspects of the model 
development process can be automated. We covered many of these aspects in different 
chapters of this book. Hence, it is our belief that trained and experienced data scientists 
will always be needed. Adoption of these tools will enable the data scientists to cover more 
use cases and the resulting models will be of higher quality. These tools will also expand 
the reach of advanced algorithms to analysts in organizations who understand data 
science concepts but are not as familiar or comfortable with programming. Like any tool 
or technology, there is the possibility of misuse. Data-savvy organizations will put model 
governance and training programs in place to prevent problems relating to the use of bad 
or biased data, solving the wrong problem, or creating solutions that are not actionable. 
Also, the organizations should look into their specific needs and then select the tools most 
appropriate for their situation.

It is also expected that ML will need to move beyond pattern matching and we expect a 
bigger focus on causal modeling in the coming years. This is because many industrial use 
cases require specific decisions to be made or interventions that require decision makers 
to understand causal impacts and the consequences of these decisions. We have discussed 
some of these topics and methods. These methods defy automation in their current form 
and require substantial human input. For these methods to become mainstream, aspects 
of these methods need to be automated to enable organizations to start adopting them.
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As the tools expand to include causal modeling, it will become imperative that capabilities 
be added to build models at a systemic level or be able to compose models to create a 
broader view of the systems under consideration. We will see the emergence of "digital 
twin" models that will represent entire systems. It will also be necessary to manage and 
control the configuration of many experiments that will need to be conducted. Given 
that large datasets are involved in building single models, current methods for running 
multiple experiments on multiple models are not scalable.

We also expect more data scientists to adopt the AutoML tools as they start realizing that 
these tools will make them more productive, while still giving them all the flexibility they 
need. This is done by combining programming languages, APIs, and automation support.

Another trend to watch is tool vendors' focus on solving customers' problems. It is very 
common for some vendors to lose customer focus as they grow bigger, which ultimately 
can lead to their downfall. This is not a new phenomenon; it has been happening to tool 
vendors for a long time. We have seen many vendors lose this focus and fade into oblivion. 
Some of this will also happen to AutoML vendors, so be on the lookout for vendors who 
are not very responsive to your needs.

Future of DataRobot
DataRobot was the early pioneer in the AutoML space and seems to be the dominant 
player, but there are many others (H20, Kortical, and Google Cloud AutoML, to name a 
few) that are catching up rapidly. Many of the large cloud players are jumping into this 
space and have offerings that are very attractively priced. DataRobot continues to offer 
additional capabilities combined with good support from experienced data scientists. To 
that end, we expect that the DataRobot API will continue to evolve and become more 
robust to allow experienced data scientists to use DataRobot in a highly flexible and 
automated way.

We have noticed new capabilities being released even as this book is being written, such 
as the recent acquisition of the Zepl notebook platform. In addition to that, DataRobot 
continues to acquire other companies to round out its offerings. Recently, a lot of focus 
has been on MLOps and enabling the rapid deployment of models. As the features and 
capabilities increase, the learning curve for understanding and using DataRobot also 
increases. It is our experience that many data scientists who use DataRobot are not fully 
aware of its capabilities and are not utilizing it to its fullest extent. We hope that books 
such as this will help with this issue. This alone, however, will not be enough to maintain a 
competitive position. Expanding into next-generation capabilities outlined in the previous 
section will be necessary to maintain an edge.
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In conclusion, we hope that we have given you a good overview of how you can put 
DataRobot to practical use in your organization right away and make your data science 
journey more productive. Hopefully, we have convinced you that a data scientist's role is 
not just to produce predictions, but to help enable good decisions. Just as a lot of what we 
do automates the tasks of many roles in the organization, it is also imperative that we do 
not fear the automation of data science tasks. We hope that this book provides useful ideas 
to a broad range of data scientists across a broad range of industries.
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