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Chapter 1 
Introduction 

The development of the Internet—without which it is hard to imagine today’s world— 
entails the need to ensure the safety of its users. This problem is of an interdisciplinary 
nature, as researchers in various fields of IT [1, 2], mathematics, psychology (behav-
ioral analysis) [3–5] to medicine (telemedicine) are working on it. The importance 
of this problem has increased significantly with the spread of the use of Internet 
resources during the COVID-19 pandemic, when the most important aspects of our 
lives, in particular those related to payments, were transferred to the virtual world. 
At the same time, the dynamic development of technology brought new challenges 
for the creators of IT systems, unknown until two decades before, related to ensuring 
the security of data collected and stored in social networks, which can be used to 
build user profiles and influence the behavior of their owners based on this knowl-
edge [1, 2]. Suffice it to say, that the company Cambridge Analytica, which boasts 
on its website that it can influence the results of elections. Another consequence 
of the COVID pandemic is that it has resulted in a huge increase in the number of 
non-advanced Internet users-persons with very little experience and knowledge of 
the risks involved and with a low level of digital competence. This group includes 
children and young persons studying, but also elderly persons, who had to switch to 
performing their work duties remotely from day to day. One of the biggest threats to 
data security is data theft. It is obvious that data leakage and systems compromising 
have a very negative impact on the functioning of governments, local governments, 
private companies, hospitals, etc. Such attacks most often exploit gaps in firewalls 
or unified threat management (UTM) tools. Unfortunately, detection of such soft-
ware errors or misconfigurations is possible only after they occur. However, it is 
worth noting that the amount of information that is transmitted by devices active in 
networks is impossible to analyze by a human without appropriate tools. Such issues 
can be attributed to the class of problems from the family of Big Data. 

Network traffic generated by users, recorded in the form of log files, creates 
huge data resources. Their analysis by a human (e.g. an IT security expert), without 
appropriate tools, is practically impossible. It is worth emphasizing that time is of
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2 1 Introduction

paramount importance in the process of analyzing network events. At the same time, 
if a network attack occurs, in order to detect it, it is often necessary to link events 
that occurred over long periods. The time of analysis of log data depends on the 
complexity of applied algorithms and the hardware on which they are run. Today, 
the problem of information security concerns every field in which computers are 
used. Large corporations, public institutions such as municipal authorities, schools, 
and small companies and households need to ensure the security of their system 
and network resources. The degree to which protection is ensured depends largely 
on the available financial resources—the more financial resources entities have, the 
greater are their choice options in terms of hiring experts and buying high-quality 
equipment. 

As mentioned earlier, a significant factor in this process is the human and their 
knowledge and skills. Currently, there are no solutions on the market that would 
ensure the security of computer networks without the participation of a human. The 
natural approach, therefore, is to use computational intelligence techniques to analyze 
the collected information. 

State-of-the-art network solutions use artificial intelligence algorithms— 
including neural networks, which have recently become especially popular—to 
support data analysis, for example, through grouping and visualization. 

The quality of neural networks depends on a high degree of the available training 
data. In particular, it should be representative of a given problem and there should 
be a sufficient amount of it. 

Thanks to the use of the latest technologies, the processing of Big Data files 
and machine learning can be successfully implemented in the security of IT systems. 
However, there are still several challenges associated with the use of neural networks 
in this field. The first of them comes down to choosing the structure of the neural 
network that we want to use to solve a given task. Another is to obtain data that accu-
rately represents a specific issue, which will be used during training. An important 
problem is also the computational complexity of the training processes and the oper-
ation of already learned structures. It is worth noting that the use of convolutional 
networks to solve such complex problems became possible only a few years ago. It 
was influenced by the results of research on the possibility of using the computing 
power of GPUs (e.g. CUDA technology) in the processes of training and testing 
neural networks. 

This book presents techniques for ensuring the security of IT systems described 
in the literature and proprietary solutions based on artificial intelligence methods. 
The topic is extremely broad, so only selected issues will be discussed, in partic-
ular on the areas of profiling users and systems of the network, preventing leaks of 
sensitive (personal) data, crucial for the functioning of entities, and defense against 
phishing attacks. Furthermore, innovative structures of so-called glial networks will 
be presented. They might be helpful when we attempt to interpret the knowledge 
stored in convolutional networks. It is worth emphasizing that all the proposed solu-
tions can be used after a simple adaptation in various areas, not only those related 
to security. Their advantage over methods described in the current literature will 
be presented. Today, the problem of information security concerns every field in
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which computers are used. Large corporations, public institutions such as municipal 
authorities, schools, and small companies and households need to ensure the secu-
rity of their system and network resources. The degree of protection depends to a 
large degree on the available financial resources. As mentioned earlier, a significant 
factor in this process is the human and their knowledge and skills. Currently, there 
are no solutions on the market that would ensure the security of computer networks 
without the participation of a human. State-of-the-art network solutions use artificial 
intelligence algorithms to support data analysis, for example, through grouping and 
visualization. 

In order to ensure network security, devices such as UTM or firewalls are most 
often used. The main task of the firewall is to block network connections if they do 
not meet the criteria predefined by the administrator, e.g. they refer to a wrong TCP 
port, transmission occurs from an unauthorized IP address or MAC address, or over 
unauthorized network protocols. Often more advanced devices are equipped with an 
intrusion prevention system [6]. Their task is to protect network users by filtering 
network packets according to established rules or using an IDS—intrusion detection 
system in network-based IDS (NIDS). These tools require constant supervision and 
optimization from the administrator since most changes in the network require the 
addition of new rules to threat detection systems. 

Regardless of the strategy adopted, a firewall does not analyze the transmitted 
traffic for potential threats in the permitted rules. A more advanced tool are IPS. 
Their task is to block traffic based on reports from modules such as IDS. The task of 
IDS is to identify whether the observed network traffic is allowed. 

Artificial intelligence is not widely used in existing network tools. Most hardware 
manufacturers have their own approach to using machine learning to build security 
policies, and so far none has been standardized. The most popular solutions are next-
generation firewalls. Recognized companies offer solutions to automate network 
security management processes. An example of such solutions is XSIAM of the 
company Palo Alto Networks. Until now, the tools of this company analyzed logs 
from networks collected on the basis of SIEM. However, the architects of Palo Alto 
noticed that the response time of the system was too long, even several days. Therefore 
a state-of-the-art AI tool has been created. It gathers detailed data—not just log 
entries and alerts-to stimulate machine learning for natively autonomous responses, 
such as correlating alerts and data, detecting highly advanced threats, and automatic 
correction based on native threat analysis and attack surface data. 

The second leading company that uses AI is Fortinet. Since December 2019, neural 
networks have been used both in the research laboratory for analyzing transmitted 
threats and in FortiEDR—a solution that analyzes the behavior of network users in 
real-time. Based on the received information, an appropriate scenario is executed. 
The solution primarily detects malware on users’ devices. In the area of adaptive 
firewalls using AI, F5 can boast the biggest achievements with its BIG-IP ASM 
products. In the initial phase, the system identifies the correct use of the application 
and begins to build a security policy based on a statistical analysis of the traffic 
and expected behavior of the application. In this phase, the system does not block 
requests until the Policy Builder program finishes processing an appropriate number
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of network traffic events and building of security policy elements. In the next phase, 
the Policy Builder improves and tightens the security policy over time, until the 
number of changes of the existing policy stabilizes. In the final phase, Policy Builder 
further refines the security policy, until it is ready to take over oversight of the security 
features. Example of the system operation: A security strategy is created using the 
automatic policy-building option. The client sends a GET request for a /sell.php file. 
As no PHP-type file exists yet in the rules, the BIG-IP ASM system allows for the 
request but marks PHP as an invalid file type and sends a copy of the request to 
the Policy Builder program. The system continues flagging requests for PHP files 
as illegal until the request threshold is reached for that file type. After reaching the 
threshold for PHP files, the BIG-IP ASM system updates the security policy and no 
longer considers PHP to be an invalid file type [7–9]. 

One security extension can be HIDS—host-based intrusion detection systems— 
which, unlike IDS, works only on one device and in the classic version enable detec-
tion if an intrusion occurred in the past. Their functioning is based on Edmond 
Locard’s statement that “every contact leaves traces” [10], which in criminology 
means that a criminal leaves something at the crime scene and takes something from 
there as well. These techniques involve in-depth analysis of the data on the victim’s 
computer. Checked actions include the last access to the file, the time of modification 
of the registers, unclear entries in the logs, changes in the size of the file without it 
being open since the last use, and many more. The system can also investigate actions 
based on the so-called signature detection, that is, check sequences of behavior, the 
occurrence of which may indicate a potential attempted attack, for instance, several 
attempts to enter an incorrect password, or open a connection through a port of 
a previously blocked service. Currently, the HIDS solution is an addition to more 
complex protection packets. Examples of such programs include Tripwire [11], Aide 
[12], Afick [13] and IBM Proventia Server Intrusion Prevention System. There is also 
a combination of IDS and HIDS techniques, which means monitoring both the entire 
network and a single device. Such solutions are called NNIDS—network node IDS. 

Manufacturers of commercial solutions for detecting attacks include Cisco IDS, 
IBM Proventia Server, Palo Alto. All these systems are based on databases of network 
threat signatures. This means that the threat in question must have already been 
checked by the research team of the security company. These solutions are not 
immune to new zero-day threats, that is, never-before-published information about 
bugs in the software. The exception is HP TippingPoint Next Generation Intrusion 
Prevention System (NGIPS). It is based on an in-depth analysis of packets and the 
behavior of devices within the network, but the company has not revealed the exact 
principle of the system for security and commercial reasons. However, we can observe 
that it does not follow only static rules like a typical firewall, and the decision to block 
traffic is made based on the identification of anomalies in the network. 

The security of IT systems can be ensured in many ways. It is important that 
the systems are able to cooperate with each other without adversely affecting each 
other’s operations. User authorization based on their behavior is a technique that is 
commonly used in ICT systems. The development of this field is possible thanks to 
new data sets and the development of new methods of identification. An example is the
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possibility of conducting authorization based on facial features—Face ID [14, 15] or 
spoken commands through voice analysis [16]. Despite a continuous improvement 
of the level of security measures used to store logins and passwords (e.g. Active 
Directory, Samba services) and the creation of security rules for tools such as firewalls 
based on specific IP addresses, it should be noted that infecting or hacking into a 
given station causes traffic to be generated from previously authenticated accounts 
and classified IP addresses. Therefore, these methods do not guarantee complete 
safety. 

The first one is the analysis of data from network traffic. It has been the subject 
of many studies. The article [17] deals with the identification of network users based 
on the applications and thus the protocols they use. Data representing the problem 
was collected over a period of about two months. The set of obtained information 
occupied 112 GB and described the transmitted packets in text form (including port 
number, source and target address, number of transmitted packets and their size, 
time, etc.). Based on the data, a system of classical multilayer neural network type 
for recognizing 46 users was created. The efficiency of the presented solution ranges 
from 86.3% to 12.6%, with an average of 47.5%. 

Also noteworthy is the work [18] using data from network traffic to detect whether 
users’ computer hardware and phones were infected with malware. The study was 
conducted on data generated by 1923 users over a two-month period. They were 
characterized by 36 features, such as: the number of user records in the logs, the 
average length of session, the average time difference between the sessions starting 
times, the average number of sent and received bytes, the average number of sent 
packets, the number of unique IP addresses and ports in recorded traffic, the number 
of applications accessed by the user and the number of recorded sessions in specific 
periods. The purpose of the system was only to determine whether a given device 
was infected. The type of threat was not a subject of verification. The idea was 
to use the k-means algorithm [19] to group events. The final result of the correct 
threat classification was 79% of the test network traffic, which translated into 86% 
ROC AUC. area under the ROC curve) [20]. Another example of network traffic 
analysis using soft computing methods can be the application type detection based 
on transmitted packets. The authors of [21] proposed a method for packet analysis in 
a defined task this way, using convolutional networks and data collected in the ISCX 
VPN-nonVPN database [22]. The proposed solution can also be used for deep packet 
inspection (DPI) [23], a technique used to determine priority in network traffic or to 
block unauthorized applications in secured network traffic. 

Information on the use of artificial neural networks in systems of network security 
can already be found in 2015 in the publication [24]. The system described there 
included a function for detecting network attacks. It was based on recurrent LSTM 
(long short-term memory) neural networks. The task was to identify threats in the 
shared KDD Cup 1999 [25] database, where four classes of attacks were listed: DoS, 
R2L, U2R, Probe, and 20% of data from normal traffic. This problem was solved 
with an accuracy of over 98%. A more effective solution to the above problems was 
presented in the fourth part of the monograph.
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Designing neural networks to solve specific problems often comes down to modi-
fying structures already well-known in the literature. Obviously, a model that is 
too small will not be able to capture all the important features during training. If a 
model is too large, a phenomenon of overfitting occurs [26, 89]. In order to improve 
the performance of the neural network in relation to both the quality of the model 
and the speed of operation, model simplification (pruning) is applied. It consists of 
reducing the parameters of the neural network by removing unnecessary neurons 
or weights. One of the methods for selecting an architecture by deleting nodes of a 
neural network, which is popular at the moment, is presented in [27]. In this method 
dropping neurons is based on the minimum value of the Euclidean norm (L2 norm) 
of weights vectors. A completely different approach is to reduce similar parameters 
of the model [28]. Neurons are compared during training and if the result of the 
action of two neurons for training data is the same, then just one neuron is left This 
technique requires additional training after the parameter is removed. Optimization 
of neural network design and the training process itself is also part of the research 
undertaken in this book. In Chap. 5, a technique for optimizing neural networks with 
the help of so-called glial cells is presented. 

The last chapter of this book describes the analysis of event logs of IT systems 
in order to detect hidden sequences using neural networks. In security-related tasks, 
detected anomalies in sequential data can be used, among other things, to detect 
intrusions [29]. The last chapter presents a technique based on the latest methods of 
processing text data, which allows for approximate processing using BERT networks. 
It can be applied to predict the possibility of failure of the inspected system.



Chapter 2 
Artificial Neural Networks 

Artificial neural networks are now one of the most popular tools for analyzing large 
data sets. They are the subject of extremely intensive research in the field of artificial 
intelligence. Advanced capabilities of these algorithms are used, for example, by 
Internet search engines. An example is the combination of Microsoft resources and 
Open AI to create a solution for the Edge browser that allows for intelligent data 
retrieval using ChatGPT. 

The first authors who proposed the concept of building an artificial neuron in 
the form of an arithmetic-logical system were Warren McCulloch and Walter Pits. 
The idea they presented in 1943 is still the basis for the construction of multilayer 
neural networks. Based on the formal model of the neuron, in 1957 Frank Rosenblatt 
presented a concept based on simple mathematical calculations performed by elec-
tromechanical elements—potentiometers, thanks to which the system was “able to 
learn”. It consisted of several neurons and constituted the first neural network. In the 
training process, the system adjusted the value of potentiometers to select the best 
values of weights in the network. Interest in neural networks waned when Marvin 
Minsky and Seymour Papert published “Perceptrons” in 1969 [30]. They pointed to 
the largest drawback of neural networks at that time, which stopped the development 
of this science for many years. Minsky and Papert proved that under the assump-
tion of linear activation functions, it makes no sense to build structures consisting 
of more than one layer of neurons. Single-layer networks, however, are not able to 
model some mappings, e.g., the XOR (exclusive or) problem, see Fig. 2.1.

The change of activation functions to nonlinear and the introduction of a new 
technique for training neural networks—the algorithm for backpropagation of errors 
in 1975 by Paul Werbos [31] allowed for the construction of multilayer networks, now 
called Fully Connected layers (FC) or dense layers). At that moment, the foundations 
were laid for the construction of current architectures—the so-called deep networks. 
A diagram of a classical multi-layer network is shown in Fig. 2.2.

Its structure is based on the connection of many individual neurons Ni shown in 
Fig. 2.3. In this model, the symbol xi denotes subsequent input signals, while wi is the
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8 2 Artificial Neural Networks

Fig. 2.1 The XOR problem—the solution of the separability problem in the case of samples 
positioned in this way is possible only using nonlinear activation functions

Fig. 2.2 Diagram of a multi-layer neural network

vector of weights in the i-th unit subject to adaptation in the training process. Depen-
dencies that allow the training process to be performed according to the algorithm 
of backpropagation of errors were determined based on the book [1].

The output signal of the neuron number (i) in the layer number (k) is determined 
based on the formula 

x (k) 
i (n) = +1 

for i = 0 and k = 1, L. The input signal of the neuron Nk 
i is related to the output 

signal of the k − 1 layer as follows 

x(k) 
i = 

⎧ 
⎨ 

⎩ 

ui(n) f or  k  = 1 
y(k−1) 
i (n) f or  k  = 2, . . . ,  L 

+1 f or  k  = 1, . . . ,  L and i = 0 
(2.1)
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Fig. 2.3 Mathematical model of neuron

Figure 2.3 shows the action of a single neuron, where w(k) 
ij (n) is the vector of 

weights, wi is the weight of the i-th neuron i = 1, …, Nk , of the  k-layer connecting 
the neuron to the j-th input signal x (k) 

j (n) , j = 0, 1, …, Nk−1. The vector of neuron 
weights Nk 

i is denoted as follows 

w(k) 
i (n) =

[
w(k) 

i,0 (n), . . . ,  w(k) 
i,Nk−1 

(n)
]T 

, k = 1, . . . ,  L , i = 1, . . .  Nk (2.2) 

The output signal of the neuron Nk 
i at the n-th moment, n = 1,2,…, is described 

by the formula 

y(k) 
i (n) = f

(
s(k) i (n)

)
(2.3) 

where 

s(k) i (n) = 
Nk−1∑

j=0 

w(k) 
ij (n)x(k) 

j (n) (2.4) 

Based on the work [1], dependencies will be derived that allow for the adaptation 
of weights in neural networks in accordance with the algorithm of backpropagation 
of errors. Note that the output signals of neurons in the L-th layer 

yL 1 (n), y
L 
2 (n), . . . ,  yL NL 

(n) (2.5)
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are also the output signals of the entire network. They are compared with the so-called 
network template signals 

dL 1 (n), d
L 
2 (n), . . . ,  dL NL 

(n) (2.6) 

As a result, we get errors 

ε (L) 
i (n) = d(L) 

i (n) − y(L) 
i (n), i = 1, . . . ,  NL (2.7) 

We can formulate the measure of an error resulting from the comparison of signals 
(2.5) and (2.6) as the sum of squares of the differences (2.8), i.e. 

Q(n) = 
NL∑

i=1 

ε (L)2 

i (n) = 
NL∑

i=1

(
d(L) 
i (n) − y(L) 

i (n)
)2 

(2.8) 

Formulas (2.3) and (2.4) indicate that the measure of error (2.8) is a function of  
network weights. Network training involves adaptive correction of all weights w(k) 

ij (n) 
to minimize this measure. To correct any weight, we can apply the steepest descent 
rule in the form (2.9), where the constant η > 0 determines the size of the correction 
step. 

w(k) 
ij (n + 1) = w(k) 

ij (n) − η 
∂Q(n) 

∂w(k) 
ij (n) 

(2.9) 

If 

∂Q(n) 
∂w(k) 

ij (n) 
= 

∂Q(n) 
∂s(k) i (n) 

∂s(k) i (n) 
∂w(k) 

ij (n) 
= 

∂Q(n) 
∂s(k) i (n) 

x(k) 
j (n) (2.10) 

and we assume that 

δ (k) i (n) = −1 

2 

∂Q(n) 
∂s(k) i (n) 

(2.11) 

we will obtain: 

∂Q(n) 
∂w(k) 

ij (n) 
= −2δ (k) i (n)x(k) 

j (n) (2.12) 

The final form of the algorithm is: 

w(k) 
ij (n + 1) = w(k) 

ij (n) + 2ηδ (k) i (n)x(k) 
j (n) (2.13)
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The method of calculating the value of δ (L) 
i (n) given by formula (2.16) depends 

on the layer. For the last layer, it is 

δ (L) 
i (n) = −  

1 

2 

∂Q(n) 
∂s(L) 

i (n) 
= −  

1 

2 

∂
∑NL 

m=1 ε
(L)2 

m (n) 
∂s(L) 

i (n)
= −1 

2 

∂ε (L)2 

i (n) 
∂s(L) 

i (n) 

= −  
1 

2 

∂
(
d(L) 
i (n) − y(L) 

i (n)
)2 

∂s(L) 
i (n)

= ε (L) 
i (n) 

∂y(L) 
i (n) 

∂s(L) 
i (n) 

= ε (L) 
i (n)f'

(
s(L) 
i (n)

)
(2.14) 

For any layer k /= L we obtain 

δ (k) i (n) = −  
1 

2 

∂Q(n) 
∂s(k) i (n) 

= −  
1 

2 

Nk+1∑

m=1 

∂Q(n) 
∂s(k+1) 

m (n) 
∂s(k+1) 

m (n) 
∂s(k) i (n) 

= 
Nk+1∑

m=1 

δ(k+1) 
m (n)w(k+1) 

mi (n)f'
(
s(k) i (n)

)

= f'
(
s(k) i (n)

) Nk+1∑

m=1 

δ(k+1) 
m (n)w(k+1) 

mi (n) (2.15) 

Let’s define the error in the k-th layer (except for the last layer) for the i-th neuron 

ε (k) i (n) = 
Nk+1∑

m=1 

δ(k+1) 
m (n)w(k+1) 

mi (n), k = 1, . . . ,  L − 1 (2.16) 

When we substitute (2.21) into Formula (2.20), we obtain 

δ (k) i (n) = ε (k) i (n)f'
(
s(k) i (n)

)
(2.17) 

As a result, the algorithm of backpropagation of errors can be formulated as 
follows 

y(k) 
i (n) = f

(
s(k) i (n)

)
, s(k) i (n) = 

Nk−1∑

j=0 
w(k) 

ij (n)x(k) 
j (n) (2.18) 

ε (k) i (n) =
{
d(L) 
i (n) − y(L) 

i (n) dla k = L
∑Nk+1 

m=1 δ
(k+1) 
m (n)w(k+1) 

mi (n) dla k = 1, . . . ,  L − 1 
(2.19) 

δ (k) i (n) = ε (k) i (n)f'
(
s(k) i (n)

)
(2.20) 

w(k) 
ij (n + 1) = w(k) 

ij (n) + 2ηδ (k) i (n)x(k) 
j (n) (2.21)
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The above table defines the dependencies that are necessary to train the network 
using the backpropagation of errors algorithm. The error signal ε is propagated from 
the last to the first layer and based on it the value of the weights in the network is 
modified. 

The above algorithm can be extended with additional techniques that increase the 
training speed and improve the training quality of the model. A widely used method 
is momentum, described by Formula (2.22). 

w(k) 
ij (n + 1) = w(k) 

ij (n) + 2ηε (k) i (n)f'
(
s(k) i (n)

)
x(k) 
j (n) 

+ α
[
w(k) 

ij (n) − w(k) 
ij (n − 1)

]
(2.22) 

This technique involves introducing an additional element to the recursion, where 
the parameter (0,1). 

2.1 Initialization of Weights Values in Neural Networks 

Initialization of neural network weights before the start of the training process is of 
great importance for training efficiency and effectiveness. Correct initialization of 
weights allows the training process to converge more quickly and can help avoid 
problems such as stopping at local minima or slow learning. The most popular 
method is the random initialization of weights according to a certain distribution, 
for example, a uniform distribution or a normal distribution. In the early research 
on neural networks, it was assumed that weights should be assigned pseudorandom 
values within the range (− 1,1). One of the first methods for initializing neural 
network parameters is the method of scaling the values of weights relative to the size 
of the network input [2] (2.25) 

wij ∼ U
(

0, 
1 

Nk

)

(2.23) 

where U denotes a uniform probability distribution of values from the range (− 1,1), 
Nk is the size of the input layer and k is the number of the network. An extension of 
the above is a method presented in [3]. This method is based on the average number 
of connections located in two adjacent layers of a neural network. 

wij ∼ U

)

−
/

6 

Nk + Nk+1 
, 

/
6 

Nk + Nk+1

)

(2.24) 

This technique involves introducing an additional element to the recursion, where 
the parameter α ∈ (0, 1).
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2.2 Convolution Neural Networks 

The recent huge interest in neural networks—which can be called a revolution in 
research on AI techniques—has been caused by the development of a new type, the 
so-called convolutional neural networks [4]. Unfortunately, the models described 
earlier had a number of limitations [5]. Convolutional networks have a much more 
advanced structure and much greater potential in terms of operation. The basis of their 
functioning is convolutions. A diagram of these operations is presented in Fig. 2.4. 

Multi-layer networks described in the previous section Feedforward neural 
networks (FNN) are commonly used for processing data with fixed input sizes, i.e. 
where each observation consists of a set of features with a size defined at the design 
stage. They are used for a variety of tasks, including: classification, regression or 
even generating new data (patterns) [6–8]. They can be successfully used in areas 
such as recognizing handwritten numbers, analyzing sentiment in text, or identifying 
objects based on a set of features. However, they have significant limitations when 
working on large-scale information or on a structure in which key objects can be 
rotated or scaled. Examples of such data sets are images. In such cases, convolu-
tional neural networks (CNN) are a much better solution. The architecture of these 
networks allows us to use feature maps to extract local patterns and features. In 
addition, empirical studies clearly confirm the advantages of convolutional networks 
when processing scaled and rotated objects. A breakthrough in the works related to 
CNN networks is described in numerous scientific publications [9–12].

Fig. 2.4 Examples the max-pooling and sub-sampling operations with a size of 2 × 2 
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Convolution is the basic operation in data analysis performed by convolutional 
networks. During this operation, a filter with specific weights of neurons is “shifted” 
over the input data, and then the scalar product between the filter and the data fragment 
is calculated. This process leads to the extraction of local patterns and features from 
the data. The values of individual filter elements determine the weights of the neurons. 
The result of a convolution operation is a feature map, representing extracted features 
and patterns. Figure 2.4 presents how this operation works. 

The convolution operation described above can be written using Formula (2.25), 
where I stands for the input image (pixel matrix), F for filter with a dimension of 
f 1 × f 2 (neuron weight values), and b for bias, ñ for the number of maps of input 
features on which the convolution is performed. 

(I ∗ F)i j  = 
f1∑

m=0 

f2∑

n=0

~n∑

c=1 

I i+m, j+n,c Fm,n,c + b (2.25) 

The key element in the convolutional layer are filters values. They are selected 
in the training process of the neural network using the previously presented error 
backpropagation algorithm. 

In the literature, we can distinguish three types of filters applied in neural networks, 
depending on their dimensions: 1D, 2D, and 3D. Each of them is used in different 
areas of information processing. 2D and 3D filters are particularly useful in neural 
networks designed for image processing, while 1D filters are used in natural language 
processing (NLP) and signal processing, where data sequence is important. 

3D filters are extensions of 2D filters that take into account the third dimension, 
as in the case of image sequence analysis (e.g., video time sequences) or analysis of 
three-dimensional objects. 3D filters are used in medicine, computer graphics, gesture 
recognition, spatial data processing, and other fields where spatial information is 
crucial. 

1D filters are used in data processing where data is ordered or sequential, e. 
g. in the analysis of texts, audio signals or temporal data. Examples of sequential 
processing applications include speech recognition, text data analysis, acoustic signal 
processing, and many more [13]. Depending on the type of data and the context, the 
right filter selection (1D, 2D, 3D) allows us to effectively model the features and 
patterns present in the data, taking into account their specifics and structure. 

In addition to the operation of convolution, working with convolutional networks 
may also entail pooling [14], padding [15] and sub-sampling [16] (average pooling 
[17]) operations, example in Fig. 2.5. The pooling layer is used mainly after the 
convolutional layer and is intended to reduce the spatial dimensions of data. The 
most common technique is the so-called max pooling, although other types exist, 
including average pooling or L2 pooling. The max pooling operation consists of 
dividing the input data into areas (e.g., square regions) and selecting the largest value 
in each of them. Thus, this operation extracts the most important information from 
a given area and reduces its dimensions. Pooling helps maintain local invariance,
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Fig. 2.5 Examples the max-pooling and sub-sampling operations with a size of 2 × 2 

which means that regardless of the location in the input data, the isolated feature will 
be recognized. 

Pooling is performed in the process of modeling the structure of the neural network 
by adding appropriate layers. It helps to reduce the dimensionality of data, and thus the 
number of parameters and calculations in the network. This, in turn, speeds up training 
and reduces the risk of overfitting. Another operation characteristic of convolutional 
networks is sub-sampling. It enables the recognition of features at different scales 
and reduces the impact of small shifts in data. It should be emphasized here the sub-
sampling and max-pooling operations not only reduce the dimensionality of data but 
also help to extract the most important features, which can lead to better performance 
and increase in the ability of networks to generalize knowledge. These techniques 
are often used in convolutional networks, both in convolutional and fully connected 
layers, to reduce the size of data while preserving relevant information and improving 
network performance. 

It should be noted that each of the above operations in convolutional networks 
affects the change in the dimensions of the signal in subsequent layers (dimensions 
of the so-called feature maps—FM). Apart from determining the dimensions of the 
input signals in the training process, it is also necessary to determine the step ŝ of  
“shifting” the filters. This value is calculated using Formulas (2.26), (2.27) 

w
Δ' = 

w
Δ − Fw

Δ

s
Δ + 1 (2.26) 

h
Δ' = 

h
Δ

− F 
h
Δ

s
Δ + 1 (2.27) 

where h
Δ'

, w
Δ' denotes new dimensions of feature maps after max-pooling or sub-

sampling performed using a filter with the size of Fw
Δ × F 

h
Δ. When designing a 

network, we need to select the dimensions of the filters in subsequent layers so 
that the resulting feature maps will allow us to perform subsequent convolution or 
pooling. Obviously, the values determining the height and width must be integers, 
hence the results obtained from the calculations using Formulas (2.26), (2.27) must  
be rounded up.
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Based on the assumptions resulting from Eqs. (2.26) and (2.27), the layer size is 
reduced in each operation. This is an additional difficulty when designing convolu-
tional networks. A popular solution to this problem is to perform a padding operation 
on the input layer. The padding layer (operation) is used to preserve information at 
the edges of input data during the convolution. As a result, the size of the output may 
decrease depending on the size of the filters and the shift step. Padding consists in 
adding values equal to “0” around all edges of the input data. For example, if we use 
padding of size one, we “expand” the range of input data by one row of zeros at the 
top and bottom, and one zero column on the left and right side of the data. Thanks to 
this, convolutions can be performed on the input data while the original information 
on the edges is preserved. It should be emphasized that padding is especially relevant 
when important features of objects are located at the edges of the input data, or when 
we want to maintain the size of the input and output data in the machine-learning 
process (Fig. 2.6). 

The biggest advantage of convolutional networks is the lower number of weights 
and connections compared to fully-connected networks. This is achieved through 
the mechanism of shared weights. It is a technique used in convolutional networks, 
where the same weights are used to process different fragments of input information. 

In practice, filters (weights) in convolutional layers are applied over the entire 
input data space. A good example is the processing of image data, where filters are 
“shifted” (convolution operation) along the entire content of the image. The convo-
lution network is then able to detect the same features and patterns in different spots 
of the image. There are several advantages to weight sharing. As mentioned earlier, 
it significantly reduces the number of parameters in the network, which helps to 
limit the computing load on the equipment and prevents overfitting. Another benefit 
is that parameter sharing allows for better use of spatial information, as the same 
weights are applied to different parts of data. Weight sharing is an important mecha-
nism in convolution networks that improves the efficiency of parameters use and the 
extraction of features from data. Noise and interference in images pose a significant 
challenge to convolutional networks. As mentioned earlier, one of the main types of 
information processed by deep networks are images. Although the human eye may

Fig. 2.6 Example of 
padding process (dark green 
indicates original data, light 
green—added zero value 
vectors) 
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be able to ignore subtle changes in images, in neural networks even minor disrup-
tions can affect the classification process and lead to errors. Convolutional networks, 
built of convolutional layers, have the ability to detect local patterns and features in 
images. Convolutional filters act as detectors of patterns, such as edges, textures or 
shapes. Detected features are then used to classify objects. However, noise in images 
can result in unwanted interference in the detected features, making the classification 
process difficult. For example, small changes in brightness, contrast or extra pixels 
can affect the final results of classification by a convolutional network [18]. Although 
the change in the image may be invisible to humans, the convolutional network may 
not be able to correctly identify the objects. This may be because the noise introduces 
unexpected changes in the features detected by the convolution filters, making it diffi-
cult for the network to interpret them correctly. To deal with this problem, many tech-
niques for improving the noise immunity of convolutional networks can be applied. 
Examples include normalization layers that help reduce the impact of noise, and data 
augmentation techniques that introduce a variety of transformations to training data 
to increase the generalization capacity of the network. Another approach is to use 
net architectures with a greater ability to model noise and interference. For example, 
residual layer networks (ResNet) or generative networks (GAN) [19] may be more 
resistant to interference, which results in better classification outcomes in the pres-
ence of noise. In any case, ensuring the noise immunity of convolutional networks 
is an important research challenge that leads to the continuous development of tech-
niques and methods to improve the performance of these networks under realistic 
conditions associated with the occurrence of image interferences.



Chapter 3 
Application of Artificial Intelligence 
Methods in Profiling Computer Network 
Users 

The use of artificial intelligence (AI) techniques in the field of IT security is becoming 
increasingly common. Taking into account the capabilities of convolutional networks 
in the field of analysis of large data sets described in previous sections, it is a natural 
approach. Soft computing algorithms offer new possibilities to detect, analyze and 
prevent various types of threats and cyber attacks. Here are some important aspects 
related to the use of AI in IT security: 

1. Threat detection and analysis: AI can be used to analyze large amounts of data 
concerning network activity to detect unusual patterns and behaviors that may 
indicate potential threats. Advanced machine training algorithms can identify 
previously unknown attacks and adapting to new types of threats. 

2. Prevention of attacks: AI can help build defence systems that are able to recognize 
and block attempted attack in real-time. The use of machine learning to analyze 
and classify new types of attacks allows for rapid response and implementation 
of appropriate preventive measures. 

3. Log analysis and incident detection: AI can automate the analysis of large 
sets of system, network, and application logs to identify irregularities, suspi-
cious activity, and potential security incidents. This can significantly shorten the 
response time and allows for appropriate corrective action to be taken quickly. 

4. Protection against phishing and spam: AI can be used to identify and block 
phishing attacks and spam. Advanced machine learning models can learn to 
recognize the features and patterns that indicate these types of attacks, which 
enables effective filtration and protection against them. 

5. Analysis of user behavior: Using AI to analyze user behavior can help detect 
unauthorized access and suspicious activity. Systems can monitor user activity, 
identify non-conformities with normal behavior patterns and suspicious activity, 
which enables a rapid response to potential threats. 

The introduction of artificial intelligence into IT security has the potential to 
significantly increase effectiveness in detecting and preventing attacks, and speed
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up the response to incidents. However, independently of these advantages, it is also 
necessary to provide appropriate protective measures, monitor the machine learning 
process and understand the limitations and potential risks associated with the use of 
AI in this area. This section presents proprietary solutions for creating user profiles in 
computer networks. One of the key pieces information that are processed by neural 
networks in this approach are logs of user activity in the computer network, including 
the history of visited websites. It is worth noting that building a correct user profile 
can allow us to find data that deviate from the constructed patterns and thus detect 
anomalies. Non-standard behavior in the computer network, which differs from that 
defined in the profile, can be caused by the following factors: 

1. hacking into the IT system and generating traffic by an unauthorised person; 
2. presence of viruses or trojans that generate network traffic on infected stations. 

Analyzing user logs and comparing them with their profile can help us identify 
such anomalies and take appropriate action. Applying the newest neural network 
models described in the literature to analyze user logs and create their profiles enables 
us to effectively detect suspicious activity and anomalies in the computer network 
[20]. This in turn makes it possible to react quickly to potential threats and introduce 
appropriate protective measures. 

An example of a user profile construction application is [21], based on smartphone 
user activity. Research conducted on collected data showed that each user has a unique 
way of using a mobile device. This is due to their individual preferences, habits and 
physical features. The concept of this system is analogous to the method used in 
criminology by profilers to identify the perpetrators [22]. Profiles try to discover the 
modus operandi by analyzing collected the information and determining features that 
are characteristic of only one person. Each user of the network leaves traces of their 
activities. Some of them are consciously generated by the user, for example, signed 
posts on social media, while others are closely related to the mechanisms of operation 
of computer networks. However, it should be remembered that any such activity on 
the network can be reflected in various logs. Currently, administrators have access to 
a huge amount of information that can be analyzed. Obviously, analyzing single logs 
will be less effective than an analysis of long-term events. It should be stressed that 
this task is practically impossible to be performed by a human without appropriate 
tools. An important part of current research is aimed at determining what features 
should be taken into account in order to construct the best user profile. The concept 
of a user profile refers to a set of features and their values, based on which it is 
possible to identify a particular person who uses the computer network. Examples of 
features for network traffic include: the type of applications used (TCP ports, target 
addresses, domain names), the moment at which requests are executed, the domain 
names of visited websites and their content. 

Based on the studies described in this book, it can be concluded that an appro-
priate combination of characteristic values is a kind of “fingerprint” of the user. 
However, it is important to understand that the resources of the Internet are constantly 
evolving in a dynamic way. Therefore, the system based on the described solution 
must constantly collect new data, and already created profiles must be regularly
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Fig. 3.1 Memory usage chart for a convolutional neural network with varying input data using a 
minibatch of size 260 

updated. The proprietary uses real logs from a cluster of Palo Alto tools, working 
in the active-active mode, which contain information about network traffic that uses 
the HTTP and HTTPS protocols. One of the key pieces of information processed in 
this system will be URLs. Requests are generated when network users access the 
Internet via browsers, but also by various applications running on a given station (for 
example, antivirus programs or system updates). Collected features, such as URLs 
of websites visited by the users, are subjected to pre-processing that makes them 
usable for machine learning algorithms. 

In the presented system, URLs are grouped into sessions of 8 to 300 addresses. 
The limitation of the maximum number of addresses per session is due to hardware 
limitations associated with training convolutional networks. The input data for the 
neural network is encoded using numerical vectors. Therefore, it is necessary to 
translate text information (e.g. URLs) into numeric values. This translation process 
is done by “1 of n” encoding [23]. Assuming an average URL length of 32 characters 
and a dictionary size of 70 characters, the neural network input layer must be 70 × 
9600. This represents the maximum memory requirement of GPU tools. 

Figure 3.1 shows the actual memory requirements of GPU cards depending on the 
size of the URL sequence visited. The simulation process uses the Microsoft CNTK 
library and the CUDA version 10 controller. 

Apart from the maximum number of URLs per session, another criterion for 
grouping URLs is time. It was assumed that if more than 30 min have passed between 
two registered events for a given user, the URLs belong to separate sessions. This 
suggests that the user did not use Internet resources in the form of websites (most 
likely, they left the computer). 

In Fig. 3.2, you can see the trace of events recorded at a given moment on the 
PaloAlto cluster. Web traffic in the form of m in visited websites in real conditions 
was used for the research described in this book. All data collected in the Palo Alto 
device logs were divided into test and training sets with a ratio of 20:80.
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Fig. 3.2 Example of network traffic logged on the Pa3220 family PaloAlto cluster 

Table 3.1 TOP most 
frequent IP addresses present 
in the training data 

IP Count Domain 

142.250.217.100 24,810 Google LLC 

20.76.201.171 22,158 Microsoft Corporation 

142.250.203.142 16,922 youtube.com 

212.77.98.9 14,982 Wirtualna Polska Media S.A 

172.217.22.3 14,112 Google LLC 

86.111.241.163 10,118 elara.iq.pl 

185.184.8.30 9186 PHOENIX NAP 

173.241.240.143 8125 OPENX TECHNOLOGIES 

217.74.66.216 6267 INTERIA.PL Sp z.o.o 

185.14.253.220 6731 s11.smartsupp.com

Tables 3.1 and 3.2 present the most popular addresses in the test and training 
sequences used for conducting research. After conducting the training and testing 
process on this prepared data set, the received solution was to be tested in real-
life conditions. About three months after the completion of the system, new sets of 
information from the Palo Alto firewall were collected and new data was created 
to verify the proposed neural network model. This prepared validation set served to 
assess the quality of the system operation. 
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Table 3.2 TOP most 
frequent IP addresses present 
in the test data 

IP Count Domain 

142.250.217.100 10,754 Google LLC 

142.250.203.142 8214 youtube.com 

16.58.208.46 8110 Google LLC 

20.76.201.171 6234 Microsoft Corporation 

212.77.98.9 5104 Wirtualna Polska Media S.A 

172.217.23.174 4174 Google LLC 

157.240.253.35 4017 facebook.com 

212.77.98.29 2918 o2.pl 

217.74.66.216 2853 INTERIA.PL Sp z.o.o 

185.14.253.220 1428 s11.smartsupp.com 

3.1 Profiling Users Using the Random Forest Algorithm 

The random forest algorithm is one of the most popular machine learning algorithms 
in the family of ensemble methods. It is used for both classification and regression 
tasks. 

The idea behind a random tree algorithm is to construct multiple decision trees 
and combine them into a single model. Each tree is trained on randomly selected 
subsets of training data, as well as on randomly selected subsets of features. Such 
random sampling is intended to increase tree diversity and reduce overfitting. The 
process of building a tree in a random tree algorithm consists in dividing data based 
on different features, so as to maximise the purity of the division (e.g. entropy, 
Gini index). Trees are built until a certain stop criterion is reached, for example, 
the maximum depth of the tree or the minimum number of observations in the leaf. 
Once trees are constructed, predictions are made by majority voting (in the case of 
classification) or averaging (in the case of regression) the results of all the trees in 
the forest. The random tree algorithm has many advantages, such as resistance to 
overfitting, the ability to handle a large number of features and large data sets, and 
the ability to evaluate the validity of features. However, the random tree algorithm 
may be prone to overtraining in case of improper selection of hyperparameters. In 
these situations, applying regularisation techniques, such as reducing tree depth or 
increasing the number of trees in the forest, can help improve results. 

To apply this algorithm, it is necessary to write the input data in an appropriate 
way. In this solution, it will be combined with the Bag-of-Words (BOW) method 
[24]. BOW is a natural language processing technique used in text analysis and 
classification tasks [25]. It consists in representing a document as a collection of 
unique words, while ignoring their order, grammatical structure and context. 

The process of creating a BOW representation consists of several steps. Figure 3.3 
illustrates an example of creating a BOW (Bag of Words) set from URL addresses. 
First, tokenization, i.e. splitting the document into single words or tokens, is
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Fig. 3.3 Example of using 
the BOW method to build 
learning sets 

performed. Then a dictionary containing all unique words that occur in all docu-
ments is created. The next step is to assign numeric values to each word in the 
dictionary, e.g., by assigning indexes. Ultimately, each document is represented as 
a vector of length equal to the number of words in the dictionary. Values in a vector 
can represent, for example, the number of occurrences of a word in a document or 
its validity in the context of an entire document collection (for example, TF-IDF-
term frequency-inverse document frequency). TF-IDF [26] is a statistical method 
used in natural language processing to evaluate the validity of words in a document 
in the context of an entire document collection. It is widely used for text analysis, 
information retrieval and document classification. TF-IDF takes into account the two 
main features of a word: term frequency (TF) in a document and inverse document 
frequency (IDF) throughout a document collection. 

Term frequency (TF) measures how often a word appears in a document. It is 
calculated as the ratio of the number of occurrences of a word to the total number 
of words in the document. It can be calculated in various ways, for example, using 
a normal frequency, a normalised frequency, or a logarithmic frequency scale. 

IDF measures how rare a word is in a collection of documents. Words that occur 
less often have a higher IDF value. IDF is calculated as inverted frequency of occur-
rence of a word in the entire document collection. It can be calculated in a variety 
of ways, for example, using a simple inverse ratio of the frequency of a word to 
the number of documents containing that word, or more advanced measures such 
as IDF with smoothing. TF-IDF is calculated by multiplying the frequency (TF) of 
a word in a document by the “rarity” (IDF) of that word throughout the document 
collection. The resulting TF-IDF values indicate how important a given word is in a 
given document in the context of other documents. The use of TF-IDF allows us to 
discover keywords that distinguish a given document from other documents. It can be 
used to evaluate document similarity, categorize documents, search for information, 
or recommend content. It is worth noting that TF-IDF is one of many methods of 
assessing the validity of words within text analysis. There are also other techniques,
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such as word embedding or methods based on machine learning, that can provide 
more complex word representations and better results in some text analysis tasks. 

Although the BOW representation is a simple approach, it does have some limita-
tions. It ignores the structure and semantics of the text and does not take into account 
the relationship between words—just the presence or absence of a given word in a 
given collection. In addition, for large data sets, it can lead to the creation of long 
vectors and sparse matrices, which in turn, may require a lot of memory and affect 
computational performance when processing such representations. To correct these 
shortcomings, more advanced word processing techniques are used, such as models 
based on neural networks (e.g. recurrent networks, attention models), or methods 
using word embedding. 

The input features used in the proposed algorithm are the components of the URL 
of a particular user. In this case, special characters such as [.,: „” /] were treated as a 
separator between words in accordance with the logic of URL construction and the 
BOW algorithm. In order to improve the performance of the algorithm, we should 
try to determine the impact of each element from the training and testing string using 
TF-IDF. In this approach, the weight of each word in the dictionary is determined 
based on the number of its occurrences in the entire training data set. Thanks to the 
use of TF-IDF, it becomes possible to determine the minimum weight value for each 
of the words used for training the classifier. 

T Fi, j · I DFi = ni, j
∑

k nk, j 
· ln

(
d 

mi

)

(3.1) 

Thus, this method allows us to significantly reduce the size of the dictionary used 
in the process of building training vectors (we remove elements with small weight 
values). Thus, the calculation time can be significantly reduced. The significance 
value of each element is calculated according to Formula (2.27), where ni, j is the 
number of occurrences of the pseudo-word i in the sequence j, where k is the number 
of all sequences in the training string, mi is the number of sequences containing at 
least one pseudo-word i. d is the number of all sequences. The term pseudo-word 
refers to strings that build a URL, separated by characters from the previously defined 
list of separators. It was a reference to the basic terminology of the BOW method. 
In an experiment using these techniques to classify users, algorithms implemented 
in scikit-learn [27] and Python were applied. As part of the experiment, a dictio-
nary of 531,841 pseudo-words, corresponding to parts of URLs, was created. The 
next step was to create a set of teaching vectors to represent the websites visited by 
the user in subsequent sessions. Based on that 16–512 decision trees were gener-
ated. Table 3.3 presents the results of studies for selected numbers of trees in a 
random decision forest. The values shown were averaged based on a tenfold repe-
tition of each example. The following measures were used to compare the obtained 
results: Accuracy, Precision, Recall, and F1. Measures were calculated on the basis 
of [28, 29]using the scikit-learn package. The metric calculation for each class was 
performed using the mean.



26 3 Application of Artificial Intelligence Methods in Profiling Computer …

Table 3.3 Correctness of users classification using the random forest algorithm 

Number of trees in the forest Accuracy (%) Precision Recall F1 Training time [s] 

16 31.8 0.21 0.21 0.21 8 

32 38.1 0.28 0.25 0.28 10 

64 48.3 0.51 0.47 0.48 15 

128 68.1 0.71 0.61 0.61 29 

256 69.1 0.71 0.63 0.62 72 

512 67.2 0.69 0.60 0.60 98 

The result of the designed system in the case of classification of 68 users was 
69.1%. This result was obtained using 256 decision trees. 

Figure 3.4 visualizes the data collected in Table 3.3. It shows how the learning 
time increases with the growth in the number of trees. Conducted experiments have 
shown that a larger number of trees does not significantly influence the increase of 
correctness of the classification, but it does significantly increase the training time 
of the model. The optimal result was achieved using this number of trees, which 
provided a balanced compromise between classification accuracy and training time. 

Fig. 3.4 Comparison of time and efficiency of proposed decision tree models
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3.2 Convolutional Networks in User Profiling 

Another approach to creating user profiles is based on convolutional networks, which 
were originally designed to classify images. To perform the task of building profiles, 
it is necessary to correctly encode input data that are not graphic objects. In [65], a 
method allowing for the processing of text data by convolutional structures was 
proposed. In the conducted study—as in the case of decision trees—the 1 of n 
encoding was used, where n represents the size of the dictionary and equals 70 char-
acters. This dictionary contains alphanumeric characters (a − z), special and punctu-
ation characters, and characters often found in URLs. According to this method and 
its assumptions, each user session is represented as a 70 × 9600 matrix, the values 
belong to the range {0,1} and one-hot encoding at the character level is applied. 

The one-hot encoding method, also known as binary category encoding, is a 
technique used in data analysis and machine learning to represent categorical or 
discrete variables as binary vectors. The idea behind this method is to assign each 
unique category a separate dimension or feature. Then, for each observation, a vector 
of length equal to the number of unique categories is created, in which all values 
are zero, except for one dimension corresponding to the observation category, which 
has a value of 1. For example, if we have a categorical variable “color” with three 
unique values: “red”, “green” and “blue” we can encode it using three dimensions: 
[1, 0, 0] for “red”, [0, 1, 0] for “green” and [0, 0, 1] for “blue”. One-hot encoding 
is widely used because it allows categorical variables to be represented in a format 
that can be directly processed within machine learning models. It also allows us to 
preserve information about the distance between categories, without introducing an 
artificial order. The disadvantage of such information encoding is that it leads to an 
obvious increase in the dimensionality of data, especially when a large number of 
unique categories/classes are being considered. To counteract this, we can introduce 
additional operations aimed at reducing dimensionality, such as principal component 
analysis (PCA) or feature selection. The following is an example of “1 of n” encoding 
mechanism for two sentences: “ This is an example of the first sentence” and “This 
is an example of the second sentence” First, we create a dictionary of unique words: 
[“This”, “is”, “an”, “example”, “of”, “the”, “first”, “second”, “sentence”]. Then, we 
encode sentences using the one-hot method: 

The first sentence now has the form: [1, 1, 1, 1, 1, 0,1] and the second sentence 
has  the form:  [1, 1, 1, 0, 1, 1].  

It is worth noting that one-hot encoding for texts often leads to the formation 
of sparse matrices, especially with very large dictionaries. As a result, numerous 
performance problems may arise, which, as mentioned earlier, require the use of 
techniques to reduce dimensionality. One-hot encoding on the level of characters 
consists of representing each character in the text as a separate one-hot vector. In this 
case, each character is assigned a unique index in the alphabet and is then represented 
as a vector of length equal to the size of the alphabet. For example, consider the word 
“coding”. We create an alphabet consisting of unique characters: [‘C’, ‘o’, ‘d’,’i’, 
‘n’, ‘g’]. Then we encode the word using the one-hot method at the character level:
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‘C’ → [1, 0, 0, 0, 0, 0] ‘o’ → [0, 1, 0, 0, 0, 0] ‘d’ → [0, 0, 1, 0, 0, 0] 
‘i’ → [0, 0, 0, 1, 0, 0] ‘n’ → [0, 0, 0, 0, 1, 0] ‘g’ → [0, 0, 0, 0, 0, 1] 

As a result, each character is represented as a vector with a length equal to the 
number of unique characters in the alphabet, where only one position has a value of 
1, and the rest of the positions have a value of 0. In the context of the defined problem, 
where the input data are encoded sessions of visited URLs, a convolutional network 
structure was designed. Its main aim was to classify these sessions and assign them 
to specific users. 

For the purpose of the task, a convolutional network structure consisting of several 
layers was used. It included convolutional layers, nonlinear activation layers (e.g. 
ReLU), and pooling layers that reduce the size of data. The adopted network archi-
tecture is represented in Fig. 3.5. In the classification process, the input data, which 
are encoded sessions of visited URLs, are processed by successive layers of the 
convolutional network. Convolutional layers extract local features from the input 
data while pooling layers reduce the dimensions of the data by selecting the most 
important features. The last layer in the tested model is a fully connected layer, which 
ultimately presents the classification result for a given session—and assigns a user ID. 

Fig. 3.5 Diagram of a network used for user profiling
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The network input, in addition to data in the form of encoded visited URLs, 
was further expanded by two channels that represent the time of day when the user 
accessed the network resources. This information provides a time context for the 
classification process. In this case, each session consisting of visited URLs is now 
represented by a 9600 × 72 matrix, where 70 columns correspond to Bag-of-Words 
encoding for URLs, and two additional columns represent the time of day. A diagram 
of the network structure including these additional channels is shown in Fig. 3.5. 
Additional channels representing the time of day were encoded so that the value 1 
for channel 71 corresponds to the hours when the user is most likely at work, that is 
between 7:30 a.m. and 4:30 p.m., and the value 1 for channel 72 corresponds to the 
remaining hours. Thanks to the introduction of this information, the variability of user 
behavior depending on the time of day could be analyzed, which has a significant 
impact on the quality of network operation (quality of the classification process). 
Proper selection of network parameters, such as the number of convolutional layers, 
filter size, and the number of neurons in the fully connected layers, enables the 
convolutional network to detect important features and effectively classify sessions 
based on encoded URLs. The smallest error on the test string obtained by the network 
was 26.9% (Fig. 3.6). 

In Fig. 3.7 the values of filters of the first layer of trained CNN are shown.

Fig. 3.6 The course of the learning process (quality of operation in relation to the number of 
epochs) 
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Fig. 3.7 Visualization of CNN’s first layer filters for user classification (light colors mean higher 
values) 

3.3 User Profiling Using Recurrent-Convolutional 
Networks 

This section focuses on advanced neural network models, such as LSTM (long 
short-term memory) and GRU (gated recurrent unit), which are particularly useful 
in sequential data analysis. These models have gained popularity in the context of 
natural language processing, due to their ability to efficiently store and use long-
term dependencies in sequential data. LSTM and GRU networks are extensions of 
classical Recurrent Neural Networks (RNNs) [30]. Unlike standard RNNs, which 
have difficulty storing long-range information in sequential data, LSTM and GRU 
introduce additional control mechanisms that allow for efficient analysis and use of 
long-term dependencies. An LSTM network introduces a special memory cell struc-
ture that can store and update information depending on the input and state of the 
previous iteration. So an LSTM network is able to retain important information for 
a long time and avoid the phenomenon of vanishing or exploding gradient, which 
often occurs in standard RNNs. A GRU network introduces a simplified memory cell 
structure, which consists of only two gates: a reset gate and an update gate. These 
gates allow a GRU network to control what information is stored and updated in the 
memory cell. Both types of networks, LSTM and GRU, have their unique features 
and applications, and the choice between them depends on the specific problem and 
data. Further information on these models, their structure, operation, and practical 
applications will be provided later in this section. 

User profiling can also be performed with the help of convolutional-recurrent 
networks. Such structures may seem to be a natural tool to use in the problem of 
profiling users of computer networks. It should be remembered that in the case of 
convolutional networks, the size of the input vector had to be arbitrarily determined, 
thus, depending on the number of URL requests, information was lost (the input 
signal was shortened) if a specified size was exceeded, or the input vectors had to be 
filled with 0 value in the absence of sufficient data. This difficulty does not occur in
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recurrent networks. In this section, unidirectional recurrent networks LSTM (long 
short-term memory) and GRU (gated recurrent units) [31, 32], as well as bidirectional 
recurrent networks BiLSTM (bidirectional long short-term memory) and BiGRU 
(bidirectional gated recurrent units) were tested. For birecurrent structures, we use 
the same two cells—LSTM or GRU simultaneously in a single network model. The 
general concept of operation of the networks used in the paper is shown in Fig. 3.8. 

The variant of a recurrent network used in this section is commonly referred to 
as “many-to-one”. [33] In the presented case, it is not important for the model how 
many addresses a given session consists of, since this number naturally affects the 
number of calculation calls in the recurrent cell. 

Figure 3.9 depicts the progression of outputs when feeding successive URL 
addresses into a recurrent neural network. The output has been limited to 5 users 
to make the changes more visible on the graph. Thus, many URLs in a given session 
are used to indicate a single user ID encoded in a vector of “1 of n” type. Analogically 
to the case described in the previous section, a single URL was recorded in a 52 × 
70 + 2 matrix, where 52 represents the maximum number of letters in a single URL, 
70 represents the number of letters in the adopted alphabet, and 2 represents the time

Fig. 3.8 Diagram of 
recurrent networks used in 
user profiling problem 
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Fig. 3.9 Presentation of recurrent network outputs when calling subsequent addresses from the 
sequence 

Table 3.4 A recurrent network model for network user profiling, variant 1 

Layer No. Layer description 

1 Input with a size of: 52 × 70 + 2 × 1 
2 1D convolution with ReLU activation, 128 feature maps, 1D filter, width 5, step 1 

3 1D convolution with ReLU activation, 256 feature maps, 1D filter, width 3, step 1 

4 MaxPooling 1D filter, width 6, step 3 

5 Recurrent cell, inner size 384 

6 Output 1 of 68 

of day like in the previous studies. As a result of numerous experiments in which 
various models of recurrent networks were subjected to the training process, the best 
results were obtained for the structure presented in Table 3.4. 

Tables 3.6 and 3.7 present training times and obtained results of simulations for 
different types of recurrent networks.

It is easy to see that the best result was obtained for the BiGRU network. However, 
comparing this solution with the one presented in the section on convolutional 
networks, it should be noted that a minimally better result was obtained for the 
CNN network. In addition, the training time of this solution is longer in each of the 
variants of the recurrent network. Data contained in Tables 3.6 and 3.7 are averaged 
after a 20-fold repetition of the simulation.
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Table 3.5 A recurrent network model for network user profiling, variant 2 

Layer No. Layer description 

1 Input with a size of: 52 × 70 + 2 × 1 
2 1D convolution with ReLU activation, 64 feature maps, 1D filter, width 5 step 1 

3 1D convolution with ReLU activation, 128 feature maps, 1D filter, width 3 step 1 

4 1D convolution with ReLU activation, 256 feature maps, 1D filter, width 2 step 1 

5 MaxPooling 1D filter, width 6, step 2 

6 Recurrent cell, inner size 384 

7 Output 1 of 68 

Table 3.6 Training times in one epoch for all neural networks with two variants of input 
convolutional layers 

Type Time [s/epoch] 

Variant 1 Variant 2 

LSTM 132 186 

BiLSTM 211 231 

GRU 101 128 

BiGRU 198 229 

Table 3.7 Result of operations of recurrent networks 

Cell 
version 

Variant 1 Variant 2 

Qualification 
accuracy (%) 

Precision Recall F1 Qualification 
accuracy (%) 

Precision Recall F1 

LSTM 70.23 0.70 0.61 0.69 71.80 0.71 0.61 0.70 

Bi 
LSTM 

77.10 0.76 0.72 0.73 76.80 0.70 0.62 0.68 

GRU 72.42 0.71 0.70 0.70 73.40 0.70 0.70 0.68 

BiGRU 76.60 0.76 0.71 0.72 76.41 0.72 0.72 0.71

3.4 Detection of Network Traffic Anomalies Using OC-NN 

One-class classifier (OCC) networks are a special type of models designed to identify 
and recognize only one particular class or category in a set of many different classes 
of data. Training of a one-class network is based on only one class of data, which 
is considered to be the expected one. The model tries to learn the representation of 
the selected class and creates a decision boundary that contains most of the data 
belonging to it.
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In previously conducted simulations, the proposed solutions were aimed at 
assigning a user ID to input data. The solution proposed here has a different purpose, 
which is detecting anomalies and therefore, the task for the neural network is different. 
The goal now is to verify that the input data set matches the provided user ID. In 
other words, the task of the model is not to determine who the input data belongs 
to, but to verify if the provided input data is correct for a particular user. The first 
solution to this problem was implemented using the previously described convolu-
tional network. An example of such a network is shown in Fig. 3.10. Its structure is 
analogous to the one previously presented for the classification of computer network 
users, however, it was modified by: adding a binary network output and user ID 
encoded with the “one-hot” method to the input signal. 

Fig. 3.10 CNN network for detecting anomalies
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Figure 3.10 shows a comparison of the proposed network model with the classic 
OC-NN solution. In this case, the OC-NN network was implemented using multiple 
autoencoders, where the input data is marked with an identifier pointing to the user 
who generated it. A reference OC-NN network is used only for the analysis of 
samples of one class. The main task of the encoder is to extract features that enable 
classification, and for this purpose, a convolutional network structure is used. 

An autoencoder is a type of neural network used to detect and reproduce impor-
tant features of input data. It consists of two main parts: encoder and decoder. The 
encoder converts the input vectors into a smaller representation that contains the most 
important (compressed) information. The decoder then reproduces the input based 
on this shortcut. The main goal of an autoencoder is to minimize the reconstruction 
error, that is, to reproduce the input data as accurately as possible at the output. 

The autoencoder is trained on the input data, reconstruction is compared with the 
original data and network weights are updated in order to minimize the differences 
between them. Autoencoders are used to reduce the dimensionality of data, extract 
relevant features, denoise data (DEA—denoising autoencoder) and generate new 
data examples. They are particularly useful for high-dimensional data, where there 
is a need to find a low-dimensional representation of data while preserving relevant 
information. In the context of the solution described earlier, autoencoders are used 
to prepare classifiers within one-class neural networks (OC-NN). Each encoder is 
trained as a classifier for a specific class, and then a collection of trained autoencoders 
is used to assess whether a given session belongs to a given user. 

In the case of the autoencoder structure used in the described solution, some 
differences can be observed compared to traditional autoencoder structures. In this 
case, the network relies on a natural language processing (NLP) approach [34], 
which is reflected in the encoder, which generates a hash based on the URL session. 
Autoencoder training data is created based on a set of URLs that are treated like words 
in a sentence. No separator between addresses is used, and the URL itself is treated 
as a word in a sentence. This approach makes it possible to treat a URL session as a 
unit on which natural language processing techniques can be applied. The structure 
of an autoencoder used for texts is different from the structure of an autoencoder used 
for images [35]. In this case, a network inspired by [36] and adapted to this task was 
used. It is worth mentioning the output of the encoder described earlier, with a size 
of 128 × 64. Initially, attempts were made to create an autoencoder using a modified 
convolutional network with a U-Net [37] structure, but without links between feature 
maps of the same size. Unfortunately, this solution did not bring satisfactory results 
in the training process. The final solution used a “sub-pixel convolution” layer in 
one dimension, based on the technique described in [38]. The task of this layer is to 
expand the size of the layer at the expense of its height. This technique, combined 
with 1D convolutional networks, proved effective in generating spatial features in 
one dimension, which was essential for this task. A presentation of this task is shown 
in Fig. 3.11.

The chosen structure of the autoencoder turned out to be the optimal approach for 
the purpose of this task. However, it is worth noting that the size of the middle layers 
of the autoencoder, which contain semantic hashing of URL sessions, is relevant.
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Fig. 3.11 Processing in the “sub-pixel convolution” layer

The wrong size of these layers can lead to poor text mapping (poor autoencoder 
quality) or difficulties while training the discriminator, even if the mapping is of very 
good quality. In the case of the tested solution, the dimension of the middle layer of 
the autoencoder was 125 × 64, obtained from an input matrix of 72 × 4092. The 
structure of this autoencoder is shown in Fig. 3.12. It is the result of experiments to 
find an optimal structure that provides an appropriate balance between the quality of 
mapping and the possibilities to train the discriminator.

In the design of the autoencoder, the BatchNormalization method was applied after 
each convolutional layer, except for the last, and 22nd layer. The ReLU activation 
function was used to activate the layers, except for the last one. It is worth noting 
that the structure of the autoencoder was the same for each user, which means that 
the same network configuration was applied regardless of the user. This uniform 
structure of the autoencoder allowed for effective comparison and analysis of results 
for different users (Table 3.8).

Trained autoencoders were used to build an OC-NN model. In both solutions 
shown in Fig. 3.13, it is important to create a classifier that assesses whether the 
specified network traffic belongs to the selected user. The previous network-based 
solution was to assign input data to a specific user, while the current OC-NN solution 
focuses on anomaly detection based on the user ID.

Many simulations were performed to find the optimal network configuration. After 
analyzing the results, the optimal network structure was determined—it is presented 
in Table 3.9. This optimal network configuration includes an appropriate number 
of convolutional layers, batch normalization layers, activation functions, and other 
parameters that contributed to the best results in the problem under study. Table 3.9
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Fig. 3.12 Structure of the autoencoder for URL session

provides detailed information on this optimal network design, thanks to which we 
can understand the network configuration used in the experiments.

Information fed to the network input during the training and testing process 
consisted of two signals: URLs and a user ID, encoded as a “1 of n” vector. The 
task was to determine whether the input values are correlated, that is, whether the 
encoded network traffic corresponds to the user ID. After assessing the quality of the 
trained structure, it was found that its efficiency was only 62.1%, which in the case of 
binary classification means a result which is only minimally greater than the random 
value. To improve the results, an adaptation of a one-class neural network (OC-NN) 
solution proposed in [39] was applied. A proprietary modification was introduced. 
It consisted in adding a user ID to input data and using one classifier that uses data 
from different encoders [40]. This solution combines the idea of an OC-NN with 
the networks used for classification. The network structure is shown in Fig. 3.13. 
OC-NN operation consists in preparing a separate classifier for each class, which 
in the training process takes the form of an autoencoder. At the end of the training
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Table 3.8 Overview of the autoencoder layers 

Layer No. Layer type 

1 Convolutional output (72, 4096) 

2 MaxPooling output (72, 2048) 

3 Convolutional output (256, 2048) 

4 MaxPooling output (256, 1024) 

5 Convolutional output (256, 1024) 

6 MaxPooling output (256, 512) 

7 Convolutional output (512, 512) 

8 MaxPooling output (512, 256) 

9 Convolutional output (512, 256) 

10 MaxPooling output (512, 128)—discriminator input 

11 UpPooling output (128, 128) 

12 Convolutional output (256, 128) 

13 UpPooling output (128, 256) 

14 Convolutional output (512, 256) 

15 UpPooling output (256, 512) 

16 Convolutional output (512, 512) 

17 UpPooling output (256, 1024) 

18 Convolutional output (256, 1024) 

19 UpPooling output (128, 2048) 

20 Convolutional output (256, 2048) 

21 UpPooling output (128, 4096) 

22 Convolutional output (72, 4096) activation function: Sigmoid

Fig. 3.13 Scheme of operation of OC-NN structures described in the literature and the scheme 
presented in this book
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Table 3.9 Convolutional network of the OCC-NN type for detecting anomalies 

Layer No. Layer description 

1 Convolution 128 FM, filter size 7, step 3, ReLU activation 

2 MaxPooling filter size 3, step 3 

3 Convolution 256 FM, filter size 5, step 2, ReLU activation function 

4 MaxPooling filter size 3, step 3 

5 Convolution 256 FM, filter size 3, step 1, ReLU activation function 

6 MaxPooling filter size 3, step 3 

7 Fully Conected 512 + Dropout, ReLU activation function 
8 Fully Conected 256 + Dropout, ReLU activation function 
9 Output 2, softmax activation function

process, a set of trained autoencoders was obtained. Then, by “splitting” them as 
shown in Fig. 3.11, a set of models was obtained that can be used to compress the 
information. The encoded URL session, along with the ID, was then fed into the 
input of the discriminator, which assesses whether the session belongs to a given 
user. In this case, the discriminator had the structure of a convolutional network, 
used to classify text [23, 41]. The network structure is shown in Fig. 3.5. 

As part of tests, the presented method was modified by creating one autoen-
coder for all users. Compared to a traditional CNN network, this solution brought 
better results. However, it did not provide a sufficient solution to the problem, since 
the anomaly detection error was greater than in the case of dedicated autoencoders 
for individual users. The training process of the autoencoder was performed using 
the binary cross-entropy loss function. This feature is commonly used in unsuper-
vised training tasks, such as training autoencoders, where the goal is to reproduce 
input data as faithfully as possible at the output. By minimising the value of binary 
cross-entropy, the autoencoder tries to reduce the error of input data reconstruction, 
which contributes to learning effective representation of features. The conclusion is 
that modification of the presented method using a single autoencoder for all users 
brought some benefits, but there is still a need for further adjustments to improve the 
performance while detecting anomalies in user behavior. 

The Sørensen similarity coefficient or Dice coefficient, is a measure of simi-
larity between two samples or collections. It is widely used in fields such as image 
processing, natural language processing, bioinformatics and many more. 

The quality assessment of the trained autoencoder model was performed using the 
Sørensen similarity coefficient. The coefficient is defined as the ratio of the double 
number of elements common for two sets (A and B) and the sum of the number of 
elements in both sets. It can be expressed mathematically as: 

QS  = 
2 ∗ C 
A + B 

(3.2)
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where A and B are the numbers of all points of images A and B, respectively, and C is 
the number of points common for both images. The value of the Sørensen similarity 
coefficient ranges from 0 to 1, where 0 means no similarity between sets and 1 
means full overlapping of sets. The higher the value of the coefficient, the greater the 
similarity between sets. In practice, the Sørensen similarity coefficient is often used 
to compare two sets or samples to assess their degree of similarity or overlapping. 

The discriminator training was performed using the “cross entropy with softmax” 
loss function. In the case of OC-NN network training, the training factor is defined 
as follows: 

• For the first 10 epochs the training factor was 0.001, 
• For the next 15 epochs the training factor was 0.0001, 
• For the next 20 epochs the training factor was 0.00005, 
• The maximum number of training epochs was 580. 

When training autoencoders, the best results were obtained using the following 
training factor values for each user: 

• For the first 10 epochs the training factor was 0.001, 
• For the next 300 epochs the training factor was 0.0001. 

In both cases of training, that is, for both the autoencoder and the CNN network, 
the stochastic gradient descent (SGD) algorithm with a momentum value of 0.9 
was used. This gradient optimisation algorithm is widely used in training of neural 
networks [42]. 

In order to ensure a balance in the sample representation for each class, fifty-
five users with a similar number of logs were selected for the study. On average, 
there were 23,860 sessions per user, which were called positive sessions. In order 
to assess the quality of the developed algorithms, negative vectors were introduced 
into the training and testing sets. Negative vectors are data in which the label (class) 
that denotes the user has been changed. The process of generating the testing and 
training set included the following steps: 

1. network traffic data was collected and divided into sessions for individual users, 
as previously described. 

2. An equal number of negative and positive sessions were generated for each user. 
To achieve this, a user ID was assigned to data from sessions of other, randomly 
selected users. 

3. Sessions were saved with a Boolean value that indicates if the session is false or 
true. 

Table 3.10 contains a summary of the experiments results. It was confirmed that 
the best results were achieved using a network with dedicated autoencoders [43] for 
individual users.
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Table 3.10 Results of simulation tests for anomaly detection in network traffic 

System Qualification accuracy (%) Precision Recall F1 

CNN OC network 62.1 0.62 0.51 0.51 

OC 1 × autoencoder network 69.2 0.63 0.61 0.67 

OC 68 × autoencoder network 83.1 0.83 0.81 0.79 

When analyzing the obtained results, attention should also be paid to the quality 
of the operation of autoencoders. In the proposed structure, the best mapping effi-
ciency of encoded URLs was 92%. However, there were exceptions for six users, 
where mapping efficiency for the testing set was 71.1–73.7%. The average quality 
of autoencoders for all users was 83.1%. The conducted experiments clearly show 
that methods based on convolutional networks are very effective in tasks involving a 
creation of user profiles and detecting anomalies in computer networks. It should be 
emphasised here that even most proficient computer network administrators will not 
be able to analyze such large data sets and achieve such fast response times without 
tools based on AI techniques.



Chapter 4 
Convolutional Glial Networks 

Glial cells, also known as glia, are cells found in the brain and nervous system along-
side neurons. They are necessary for the proper functioning of the nervous system and 
perform a variety of supporting and protective functions. Glial cells make up about 
90% of all cells of the brain. There are several types of these cells depending on their 
functions, e.g., astrocytes, oligodendrocytes and microglia. Astrocytes are the largest 
group of glial cells. They perform many functions, such as maintaining chemical and 
ion homeostasis in the brain, supporting neuronal metabolism, participating in the 
formation and maintenance of synaptic connections, and delivering nutrients and 
oxygen to neurons. Oligodendrocytes are responsible for the production of myelin in 
the central nervous system, while in the peripheral nervous system this role is played 
by Schwann cells. Oligodendrocytes are responsible for the production of myelin 
sheaths, which surround the axons of neurons in the central nervous system. Myelin 
sheaths provide isolation and accelerate the conduction of nerve impulses. Microglia 
perform an immune function in the brain. They are the first line of defence in the 
event of damage to nerve tissue and are involved in inflammatory processes and the 
removal of dead cells and pathogens. Glial cells also perform supportive functions 
such as delivering nutrients and oxygen to neurons, maintaining ion and pH balance, 
removing toxins and metabolic waste, and providing structural support to neurons. 
Abnormal functioning of glial cells can contribute to the development of various 
neurological diseases, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s 
disease and brain tumours. Perhaps the most important finding in the field of brain 
research is that glial cells are involved in neuronal communication. Astrocytes, for 
example, can secrete chemicals called gliotransmitters that influence the functioning 
of neurons and the transmission of signals in the brain. Glial cells play an important 
role in neuronal development. During embryogenesis, glial cells are involved in the 
formation of brain structures, the migration of neurons, the formation of synaptic 
connections and the formation of myelin sheaths. Glial cells are also associated with 
synaptic plasticity, i.e., the ability of synapses to become stronger or weaker. Studies 
suggest that astrocytes can affect synaptic processes such as long-term potentiation
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(LTP) and long-term depression (LTD). They also play an important role in the repair 
and regeneration of the brain after damage. Oligodendrocytes can repair damaged 
myelin sheaths, and astrocytes can form glial scars that protect damaged areas of the 
brain. Continuous broadening of knowledge on glial cells opens up new perspectives 
in the field of therapy and treatment of neurological diseases. For example, research 
on stem cells indicates that they have a potential to repair brain damage by differen-
tiating into glial cells or neurons. Investigations of glial cells are ongoing, and the 
exact functions of these cells in the brain are still being studied. However, we already 
know that they are extremely important for the nervous system to function properly 
and that they have a significant impact on cognitive processes and condition of the 
brain. 

The main subject of investigations described in this section is the assessment 
of the potential of applying the latest findings on the structure and function of the 
human brain to optimize the design of artificial neural networks. In numerous recent 
medical publications, we find reports on the influence of glial cells on the formation 
of connections between neurons in the brain and the transmission of information. An 
important issue of the last two years is research on the use of glial cells in oncology, 
cardiology and dentistry. Polish doctors from Wrocław are pioneers in these fields. 
Based on their knowledge of glial cells, they reconstructed a severed spinal cord [44, 
45]. In his book “The Other Brain” R. Douglas explains the importance of these cells 
for thought processes and addresses important issues such as: 

the results of recent studies on mutant mice with a disturbed sleep cycle which made many 
scientists aware that the other brain is not just a shadow of the neuronal brain or a slave which 
satisfies its needs- the other brain can control the neuronal brain. According to Douglas, 
astrocytes coordinate the work of clusters of neurons that cause neurons to rhythmically 
produce impulses, like a conductor coordinating a group of musicians in an orchestra playing 
a piece of music. 

The analysis of these issues is a key aspect of studies described in this section, 
which focus on the search for synergies between the latest developments in the field 
of neurobiology and the design of advanced models of artificial neural networks. 
Based on the collected information, an experiment was conducted to create a new 
neural network architecture with an ability to supervise the process of building and 
training convolutional networks. This approach refers to existing research on the 
human brain, which indicates that glial cells protect neurons and are responsible 
for establishing connections between them. With this in mind, new structures of 
neural networks were developed that are able to control the activity of connections 
between neurons by adjusting the values of weights, which leads to the elimination 
of unnecessary connections and thus unnecessary neurons or groups of neurons. This 
section presents an adaptation of existing training algorithms to this new architecture 
(Fig. 4.1).

New concepts of neural network structures and their training techniques were 
verified in the context of ensuring the security of information systems, based on the 
analysis of network traffic. This process is very complex, especially due to the huge 
amount of data processed, which directly affects the calculation time. If a threat is 
detected, a quick response is required, so it is crucial that the neural network acts on
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Fig. 4.1 Neurons and glial cells (illustrative drawing)

the given input signal in the shortest possible time. It is due to the need to optimize 
the network structure, since reducing its size results in a significant reduction in the 
number of calculations and time of response to the input signal. This section presents 
proprietary methods of optimizing neural network structures using the example of 
models of network structures based on glial cells, described in the previous sections. 

4.1 Optimization of Convolutional Networks Using Glial 
Cells 

Artificial neural networks constitute the basis of the most widely used algorithms for 
data analysis today. However, they are treated as “black boxes” with a specific role. 
The quality of their operation can be assessed on the basis of statistical measures 
and test samples. Although the way neural networks work is known as are the algo-
rithms adapting structures to correct operation on specific data sets, the current state 
of knowledge does not allow us to formulate the rules of operation for processes 
embedded in the model. Methods of knowledge transfer between networks are still
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unknown. This book contains an analysis of the processes accompanying the training 
and operation of convolutional networks, with focus on the interpretation of the 
knowledge stored in them using the author’s model inspired by biological glial cells. 
A CIFAR-10 dataset described in the literature is used to demonstrate the capabil-
ities of the proposed new network structures [46]. It is a popular dataset used in 
the fields of image recognition and machine learning. It consists of 60,000 RGB 
images with a size of 32 × 32 pixels, divided into 10 equal classes. Each class 
represents specific objects and scenes, such as cars, birds, dogs, cats, airplanes, etc. 
CIFAR-10 consists of 50,000 training images and 10,000 test images. It is widely 
used to evaluate and compare the performance of different machine learning algo-
rithms in an image classification task. It is a valuable dataset applied in the study 
of various machine learning techniques, including neural networks, convolutional 
neural networks (CNN), and other image classification algorithms. Because of its 
popularity, there are many scientific publications and studies that rely on it as a 
benchmark for evaluating the effectiveness of various methods in the field of image 
recognition. The best results in terms of classification of this set of information using 
the “standard” convolutional network were achieved in the studies [47, 48]. Literature 
present network types [49, 50] that allow us to achieve better final results. However, 
in order to demonstrate the advantages of the proposed concept, a comparison of 
functionality will be performed on the basis of well-established structures presented 
in the literature [49]. Within the studies on glial cells in convolutional networks, three 
experiments were conducted to test the operation of structures with glial cells. 

4.2 The Use of Glial Cells to Optimize the Structure 
of a Convolutional Network with a Known Structure 
on the Example of an Image Classification Task 

Pruning is the process of reducing excess parameters in neural networks while main-
taining the quality of their operation. It consists in removing unnecessary connections 
or sometimes entire neurons. 

There are different methods of optimising (pruning) a network, but the general 
process can be described as follows: 

1. A neural network is first trained on a given dataset. 
2. Then, the significance of each weight in the network is calculated based on 

their impact on the cost function. It can be done, for example, by analyzing the 
backpropagation gradient. 

3. Based on a certain threshold or criterion, weights or neurons are removed. It can 
be, for instance, a simple removal of all weights below a certain threshold. 

4. After the neural network is pruned, it is often re-trained on the same dataset or 
on a reduced dataset in order to adjust the remaining weights and optimize its 
operation.
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5. After such process the neural network model takes up less memory and requires 
less computing power to operate. It is extremely important when using such a 
structure in an environment with limited resources, such as mobile devices or 
embedded systems. 

Techniques that were used to optimize the structures of dense multilayer neural 
networks do not work well in convolutional networks, due to the need to perform 
a very large number of calculations. Therefore a concept of using glial cells to 
simplify convolutional network structures at the level of aggregated feature maps 
was developed and will be presented below. In Fig. 4.2 these blocks are marked as 
“convolution blocks”. For this purpose, a convolutional network structure presented 
in [97] will be used, in which a correct classification result of 82% was obtained. A 
diagram of the original network [97] is shown in Fig. 4.2.

The proposed concept assumes that a convolutional glial network consists of two 
parts (two convolutional networks with a structure similar to that presented in [16]), 
a “glial driver” (Fig. 4.2, symbol Glial) and a CNN structure, each of which receives 
the same input signal during operation. The connection of the glial driver to the CNN 
is carried out by multiplying the output signal from a given convolution block by the 
output of the driver dedicated to this block. 

Training such a structure required the development of an innovative concept of 
applying advanced optimisation techniques to reduce the structure of convolutional 
networks. The method is based on the use of existing deep neural network training 
mechanisms and advanced data analysis algorithms. The results of the simulations 
carried out as part of the experiment suggested that the proposed concept allows for 
an effective removal of unnecessary feature maps without adversely affecting the 
quality of network operation. In the case of the analyzed structure, the classifica-
tion correctness remains at a high level of 84.1%, which proves the effectiveness of 
the method. The proposed training process required the development of dedicated 
strategies that involve alternating training of the CNN block and the “glial driver”. 
Optimization of the network structure is achieved by appropriate adjustment of acti-
vation functions such as the sigmoid function (values from the range 〈0, 1〉) for  the  
outputs of the glial network and the ReLU function for the other network elements. 

An example diagram of removal of a single feature map is shown in Fig. 4.3. The  
filters used to create the map are highlighted in green. Blue indicates filters which 
use the same map.

The proposed solution requires a non-standard way of training the structure. The 
process is divided into two stages: first we train the convolutional module, and then 
the glial module. At the first stage, the glial module has blocked weights and does 
not participate in the training process. At the second stage, the convolutional module 
has blocked weights while the glial module is trained. During the training of the 
glial module, the outputs of the glial network are initially randomly selected. Each 
feature map has an equal chance of being turned off or on for each class. The training 
process covered 120 epochs. After the training procedure, the network structure was 
optimized by removing filters that create feature maps for which the values of the 
outputs from the glial module were below the specified threshold (in the experiment,
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Fig. 4.3 Selection of filters and maps in a convolutional network

the threshold value of 0.3 for the sigmoid function was adopted). Switching off 
these feature maps did not adversely affect the classification result during the testing 
process. After the network structure was optimized, the weights in the glial module 
were randomly assigned again, and the training process was repeated. This approach 
allows for optimal selection of the convolutional network structure by switching off 
some feature maps based on the output values of the glial module. This process 
helps to simplify the network and can lead to better classification efficiency and 
effectiveness (Fig. 4.4).
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Fig. 4.4 The process of training the network with a glial structure 

Thanks to the use of a glial network, it is possible to optimize the basic network 
to 82 feature maps, which accounts for 16% of all maps in the entire basic network 
structure. 

4.3 The Use of Glial Cells to Optimize the Structure 
of the Convolutional Network When Solving Problems 
Using Previously Unknown Models 

Overfitting is a phenomenon that occurs in machine learning when a neural network 
model is too closely adjusted to training data, which leads to poor generalisation for 
new, unknown data. In practice, this means that the model works correctly only for 
data coming from the training set, but unfortunately generates incorrect results for 
input information which does not belong to this set. It is often the result of excessive 
training of details and noise in training data that is not relevant to the overall pattern. 
Thus, overfitting leads to very high accuracy for training data, but low accuracy 
for data outside this set. This can occur when the model has too much capacity
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(e.g., too many parameters in the neural network) relative to the available training 
data. The opposite of overfitting is underfitting. It occurs when a neural network is 
unable to adjust to the training data and cannot capture enough relevant patterns or 
dependencies present in the data. Symptoms of underfitting include poor accuracy 
for both training data and new test data. This phenomenon can occur when the model 
is too simple, that is, its capacity is too low for it to adjust to diverse patterns in the 
information contained in the training set. The goal for persons supervising the training 
process of the network is to find a balance between underfitting and overfitting, so 
that the model is sufficiently extensive, so that it can capture the dependencies in the 
data and at the same time is able to generalise its operation to new input information 
from outside the training set. 

This section presents a technique that allows for an optimal selection of the 
structure (number of filters, layers and initial weights) of convolutional networks 
using glial cells. In the described methodology, the simplification of the structure 
consists in removing specific filters instead of entire convolutional blocks, unlike in 
the previously presented concept. The CIFAR-10 [51] base, which was described 
in the previous paragraph, was used to conduct the tests. The structure of the glial 
network was different form the one in the previous point, where the outputs of the glial 
driver were passed only to selected feature maps of the CNN network. To demon-
strate the methodology of pruning the network, we began training the structure of the 
convolutional network along with an additional glial driver with a very large number 
of filters in the CNN network. To test how the glial network can optimize the size 
of the convolutional network, the proposed optimal output network was extended. A 
network diagram is shown in Fig. 4.5.

Table 4.1 shows data from the training process. Based on the experiment, it is 
possible to determine the optimal parameters of the designed convolutional network. 
The initial size of the structure was 256 feature maps in each convolutional block. 
The result of the first network training were 86.1% correctly classified samples from 
the test string. After 9 optimisation stages, the initial structure was reduced to 85, 
95, 112, and 135 feature maps for subsequent network layers. For this architecture, 
the efficiency for the test string increased to 86.1%. The experiment was completed 
after 19 stages, when the quality decreased to 61.3%.

4.4 Using Glial Cells to Extract Knowledge from a CNN 
Network 

Knowledge transfer between neural networks, also known as transfer learning, is 
a technique applied in machine learning that involves using knowledge and skills 
taught by one neural network to improve performance or shorten the training time 
of another structure with reference to a related task. The idea of knowledge transfer 
is that certain features and representations learnt by one neural network on one task 
can be useful for solving another, similar task. Instead of performing training from
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Fig. 4.5 The structure of the glial network used in the experiment

scratch on a new task, we can use already learnt weights, parameters and network 
structure as a starting point. The knowledge stored in the weights can include the 
extraction of features, patterns or data representations and its transfer can take place 
at different levels of neural networks, e.g., at the level of hidden layers, the output 
layer or even at the level of individual weights. There are different approaches to this 
issue, such as fine-tuning [52], where learnt weights are adjusted to a new task, or 
feature extraction, where already learnt features are used as a starting point for a new
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network. Knowledge transfer has many advantages, such as reducing the time and 
resources needed to train a new network, improving performance on smaller data 
sets, and the ability to generalise in case of entirely new topics. It is especially useful 
when limited training data resources are available or when the model needs to be 
quickly adapted to new tasks. It is a popular and effective technique in the field of 
machine learning, and many well-known neural network models were trained using 
knowledge transfer. In practice, knowledge transfer in convolutional networks can 
be applied in several ways: 

1. Fine-tuning: It consists in adapting a trained convolutional network to a new task 
by continuing the training process, but at the same time freezing some layers 
and adjusting the weights only in chosen layers. The weights of these layers are 
initialised with the values of the trained network and then adjusted based on new 
training data. 

2. Transfer learning: It is an approach in which learnt weights of a convolutional 
network are used as a feature extractor for a new network. Learnt convolutional 
layers are frozen, and only new layers are added and trained on a new task. This 
way we benefit from the network’s acquired ability to detect image features, 
which often leads to better performance on a new task. 

3. Pretraining: It refers to pre-training of a convolutional network on a large dataset 
(e.g., ImageNet) and saving the learnt weights. These weights are then used for 
initialisation in the convolutional network on the new task. Thanks to this, the 
network gets some knowledge of the image features, which speeds up the training 
process on a new task. 

Knowledge transfer in convolutional networks has many advantages, such as 
reduced training time, better generalisation, better performance on smaller data sets, 
and ease of adaptation to new tasks. It is an important technique in the field of 
computer vision and is the basis for many advanced models and architectures, such 
as ResNet, VGG, and Inception, which were trained with it. 

This section presents the possibility of using convolutional structures with a glial 
module in the field of knowledge transfer. The aim of the experiment presented below 
was to demonstrate that glial structures are able to indicate specific sets of filters in 
the convolutional network, which determine the decision to indicate a given class. 
Therefore, building a new network model based on specific sets of previously learnt 
filters should allow it to be initialized with specific knowledge (Fig. 4.6).

The structure of the convolutional network from the previous section was adapted 
for the purposes of the experiment. The presented model contains two types of 
functions: dropout 2D and 3D. These are regularisation techniques used in convolu-
tional networks to prevent model overtraining. Both approaches are variants of the 
popular dropout method, which was introduced by Geoffrey Hinton and his team 
[53]. Dropout 2D (also known as spatial dropout) is used in convolutional layers and 
operates at the level of single feature maps. In each iteration of training, randomly 
selected units (neurons) are temporarily switched off (zeroed) with a certain proba-
bility. This action is aimed at eliminating the dependence between specific features 
and improving the overall ability of the model to generalise. Dropout 2D can be
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Fig. 4.6 Diagram of a glial network

applied after convolution or normalization layers or activation. Dropout 3D is a 
dropout extension to three-dimensional data, such as spatial data or sequential data 
in time. It is used in recurrent or convolutional layers where data has a third dimension 
(e.g. time or space). Dropout 3D helps to regularise the model, limiting excessive 
adaptation to specific areas of space or time. Both types (2D and 3D) are effective 
regularisation techniques in convolutional networks. They help to reduce excessive 
dependence between features, reducing model overtraining and improving its ability 
to generalise to new data.
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Fig. 4.7 Examples of ReLU and SELU activation functions 

In order to demonstrate the knowledge transfer capabilities of glial networks, as 
in Sect. 4.2, a two-phase model training was performed. In the first phase, only the 
convolutional network parameters (without the glial network) were trained. In the 
second phase, only the glial network cells were trained. In order to optimize the 
training process, the value of the training factor was changed geometrically every 50 
epochs (0.01; 0.001; 0.0001; 0.00001; 0.000001), and the momentum parameter was 
set at 0.9 at each stage of the simulation. A diagram of the training process is shown 
in Fig. 4.8. The best results were obtained by changing the activation function from 
ReLU to SELU [103], which is defined by Formula (2.31) 

selu(x) = λ
{
x i  f  x  > 0 
αex − α i f  x  ≤ 0 

(4.1)

SELU (scaled exponential linear unit) and ReLU (rectified linear unit) (Fig. 4.7) 
are two popular activation functions used in neural networks. ReLU has an output 
equal to zero for all negative input values (0 for x < 0), while SELU takes values 
from − 1 to (+)  infinity.  

Thanks to this SELU can generate both positive and negative values. The SELU 
function has a built-in normalisation property that promotes faster convergence of 
the neural network. Thanks to this, even without the use of normalization techniques 
such as Batch Normalization, SELU-based networks can effectively cope with the 
problem of vanishing and exploding gradient. In addition, SELU is a self-normalising 
activation function, which means that its output has a stable mean and variance even 
in deep neural networks. This can help to avoid the problem of vanishing gradient. 
The SELU function is more stable than the ReLU function, especially for large input 
values. ReLU in extreme cases can “generate” so-called “dead neurons”, while SELU 
provides greater variety and flexibility of outputs.



4.4 Using Glial Cells to Extract Knowledge from a CNN Network 57

Fig. 4.8 The process of training the network with a glial structure

This function uses two additional parameters: α and λ. The default values in the 
PyTorch library [54] are α = 1.673 and λ = 1.0507. 

As a result of the tests, the quality of the classification of 86.8% was obtained. In 
addition, unlike in simulations with the ReLU function, it was possible to indicate 
which feature map was disabled by the glial network for each class. 

It is also possible to optimize the network by removing filters that generate feature 
maps for which the value of the sigmoid outputs for each class was lower than the 
threshold assumed for the experiment. The network in this case was optimized by 
removing filters, where the maximum average value of the output signal of the glial 
structure (output of sigmoid functions) for a given class was lower than 0.3. However, 
this procedure required additional training after the pruning process. Removing filters 
without additional training of the network resulted in a significant reduction in the 
final classification result. 

Table 4.2 shows example values of 20 outputs of the glial driver for the first 
convolutional layer in the convolution network. From the table we can deduce what 
filters are required when transferring knowledge between convolutional networks.
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All filters that create a specific feature map where the glial driver indicated a value 
higher than 0.3 can be successfully transferred to a new convolutional network. 
Example: For class 1 all feature map filters except 7, 8, 19 are required.

4.5 Glial Cells in the Improvement of Network Security 

This section presents a technique that uses glial networks to build profiles of computer 
network users. For these issues it is extremely important to use the feature of this 
structure that allows us to indicate those parameters (sets of weights) that determine 
the indication of the final result, e. g., in the case of classification, indication of a 
particular class at the output. This is due to the fact that in the case of real problems, 
including the example presented here, the state of information systems frequently 
changes. In the analyzed example, it should be assumed that the number of users of 
the computer network is constantly changing, so the number of created profiles and 
their diversity will also change. 

The proposed solution based on the use of glial cells constitutes an innovative 
method of modifying the structure of neural networks in the context of user identifi-
cation. It is based on the assumption that it is possible to change the structure of the 
network without the need for repeated long-term training. This approach has many 
advantages in the context of user identification. One of them is the ability to modify 
the network structure depending on the classification of the target group of users. As 
a result, when a user is removed from the system, it is not necessary to conduct the 
training process again. The study used a modified convolutional network structure 
that had previously been used to classify users based on logs of visited websites. 
This modified network structure, together with glial cells, constitutes the basis for 
the presented solution. It should be noted that in the case of user classification, a 
network with 1D convolutional layers is used. The problem is to determine how 
the glial layer affects the convolutional layer. The networks used to classify text are 
based on 1D convolutions, so feature maps are vectors rather than two-dimensional 
matrices as in the case of 2D convolutions. Turning off the channel by the glial cells 
in this case means turning off one input line. The effect of glial cells on the network 
is similar to the application of a 2D convolution, since both approaches are aimed 
at optimising the network structure. The difference between them is mainly due to 
the implementation of the network and the optimisation process. When glial cells 
are used, the optimisation process involves removing feature maps and filters from 
the network, as it was described above. Disabling inactive weights for all users does 
not adversely affect the functioning of the entire network, as in the case where a 2D 
convolution is used. It is worth noting that the implementation of glial cells allows for 
flexible modification of the network structure depending on the needs and groups of 
users. Removing a feature map or inactive filters for a given task or user does not have 
negative impact on the operation of the network. Thanks to this approach, the optimi-
sation of the network structure can be implemented in an efficient and dynamic way, 
allowing the network to adapt to changing conditions and requirements (Fig. 4.9).
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The above scheme can be described by Formula (2.32), which is a modification 
of Formula (2.27). In the equation Gc has been added, which denotes the value of the 
glial function for each channel. It is always assumed to be a vector with a c dimension 
and an individual value for each channel. 

(I ∗ F)i j  = 
f1∑

m=0 

f2∑
n=0 

C∑
c=1

(
I i+m, j+n,c Fm,n,c + b

)
*Gc (4.2) 

The use of a glial network enables collecting statistics on the operation of the 
network. Table 4.3 contains information on the use of feature maps for individual 
users. The analysis of these statistics allows us to assess the effectiveness and effi-
ciency of the applied structure of the glial network and to make decisions regarding 
the optimization and further training of the network. 

In Fig. 4.10 the comparison of training process of the standard Convolutional 
Neural Networks (CNN) and the Glial CNN is presented. It is worth to see that Glial 
CNN needs more steps to achieve better results. This is due to the need to train the 
Glial driver as well. 

Table 4.3 The possibility to optimize the glial network for classification of users based on URLs 
(the output values of the glial driver are below the threshold of 0.3) 

Layer No. Number of feature maps Number of feature maps 
that can be removed 

Number of active feature 
maps per user 

1 256 6 28 

2 1024 41 33 

3 2048 67 12 

Fig. 4.10 Comparison of the learning process of the standard convolutional neural network (CNN) 
and the Glial CNN on the example of profiling network users
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Fig. 4.11 Visualization of the outputs of the first layer of the glial network for URL classification 

Based on the data presented in Table 4.3, it can be concluded that the entire 
network can be reduced by 73 feature maps, which is reflected in its efficiency, An 
additional advantage is the improved network accuracy, as the network error was 
reduced by 1.4% percent compared to the original CNN model. 

Figure 4.11 shows the effect of glial cells on neuronal baseline. It is easy to see 
that very small values of these cells practically remove a given cell from the network. 

Table 4.4 shows an example result of the sigmoid output values of the glial network 
for 16 feature maps in the first convolutional layer for the first 10 users. This example 
shows two feature maps (no. 4 and 8), which can be deleted without affecting the 
operation of the network. It is easy to see that maps no. 1 and 10 must remain in the 
network structure to secure its correct operation for each user.

Table 4.5 shows the possibility to select learnt filters for feature maps in order to 
create a smaller network for selected network users. Conducted tests indicate that all 
maps for which the values are below 0.3 have a weak impact on the final result of the 
classification, so this value is critical for removing feature maps from the network. 
If values with a larger impact are excluded, additional short training is necessary. 
It is necessary to create a table for each convolutional layer of the basic network. 
The glial network presented in this section was designed to simplify the trained 
convolutional network by removing unnecessary neurons. As a practical example 
of the use of such structures, the concept was tested on a real problem- creating 
profiles that identify Internet users. With the help of glial cells, filters specific to a 
particular user of the computer network were indicated. Based on this information, 
new networks were built to classify users using only those filters that the glial network 
indicated as relevant. It should be noted that these new structures no longer had glial 
cells (Table 4.6).

The use of glial cells allows us to optimize the network by removing filters 
that create irrelevant maps of features in specific sentences. Based on presented 
experiments, it can be observed that the proposed structures performed very well in
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Table 4.4 Comparison of the operation quality of different machine learning methods 

Method Classification quality 
obtained for data after 
a one-month break (%) 

Precision Recall F1 Training time (for 
the primary 
string) 

Random forest 68.2 0.67 0.66 0.62 72 [s] 

CNN network 72.4 0.71 0.68 0.69 241 [min] 

LSTM 70.1 0.69 0.61 0.69 481 [min] 

BiL LSTM 73.1 0.71 0.72 0.70 587 [min] 

GRU 71.4 0.70 0.67 0.68 532 [min] 

BiGRU 72.6 0.76 0.71 0.72 549 [min] 

CNN OC 
network 

60.2 0.62 0.51 0.51 219 [min] 

OC 1 × 
autoencoder 
network 

68.4 0.63 0.61 0.67 549 [min] 

OC 68 × 
autoencoder 
network 

79.2 0.76 0.77 0.74 1298 [min] 

Glial CNN 73.8 0.72 0.69 0.70 348 [min]

the process of classifying images and network users. The experiment presented in 
Sect. 4.2 contains a method of selecting the number of feature maps in each convo-
lutional layer. This process allows for selecting an optimal structure for solving 
classification problems using a CNN network. 

4.6 Detection of Phishing Threats 

Phishing attacks are common and dangerous form of cyberattacks. These are methods 
in which scammers simulate trusted institutions or organizations in order to extort 
confidential information from users. A typical example is sending fake emails or text 
messages containing links to fake websites. These websites are designed to resemble 
the original ones and mislead users, so that they provide their confidential data, 
such as passwords, bank account numbers or personal data. Phishing attacks rely 
on psychological manipulation and exploit users’ trust in recognize d institutions 
or individuals. Fraudsters can use a variety of techniques, such as faking logotypes, 
e-mail addresses, or the language used in communication, to make their message 
appear authentic and credible. The effectiveness of phishing attacks depends largely 
on social engineering and the ability of scammers to manipulate people. Therefore, 
it is important that users are aware of the risks associated with phishing and exercise 
caution when using the Internet and sharing their data. Creating fake websites is 
relatively easier than hacking into a security system. Moreover, phishing campaigns
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Table 4.6 Number of active feature maps for individual users 

User 
ID 

Number of filters in the 
first glial driver layer 
necessary for the operation 
of the neural network 

Number of filters in the 
second glial driver layer 
necessary for the operation of 
the neural network 

Number of filters in the 
third glial driver layer 
necessary for the operation 
of the neural network 

1 163 119 62 

2 143 131 91 

3 145 140 59 

4 136 121 111 

5 156 148 98 

6 198 124 76 

7 148 120 62 

8 145 98 86 

9 121 111 63 

10 186 120 111 

11 133 131 84 

12 164 142 125 

13 123 101 92 

14 127 122 101 

15 196 151 89 

16 97 88 74 

17 125 102 91 

18 210 189 94 

19 124 91 102 

20 197 127 125 

21 167 144 103 

22 147 131 122 

23 136 98 78 

24 122 101 99 

25 187 175 117 

26 124 112 97 

27 125 98 85 

28 111 99 85 

29 115 91 57 

30 119 93 75 

31 126 119 85 

32 184 176 103 

33 126 101 77 

34 155 91 84 

35 126 121 122

(continued)
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Table 4.6 (continued)

User
ID

Number of filters in the
first glial driver layer
necessary for the operation
of the neural network

Number of filters in the
second glial driver layer
necessary for the operation of
the neural network

Number of filters in the
third glial driver layer
necessary for the operation
of the neural network

36 245 165 123 

37 126 101 91 

38 213 122 99 

39 124 97 82 

40 125 95 89 

41 184 117 100 

42 184 141 96 

43 211 188 177 

44 206 142 129 

45 184 174 142 

46 104 99 101 

47 186 123 92 

48 164 122 89 

49 193 188 106 

50 154 122 92 

51 196 151 121 

52 185 181 99 

53 136 122 97 

54 111 98 78 

55 197 192 127 

56 137 92 97 

57 196 155 126 

58 185 124 97 

59 215 166 133 

60 218 129 151 

61 187 92 88 

62 108 91 70 

63 127 89 79 

64 173 122 89 

65 129 82 92 

66 219 142 127 

67 216 198 188 

68 188 176 155
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can be conducted relatively cheaply from anywhere in the world, taking advantage of 
the openness and anonymity of the Internet. Fake websites always contain logotypes 
and texts that are very similar to the original ones, which is intended to mislead 
users. According to the Phishing Activity Trends Report 2021 prepared by the Anti-
Phishing Working Group (APWG), the number of reported cases of phishing attacks 
in 2020 reached a record high, exceeding 241,000. According to the report “The State 
of Phishing 2021” of the organisation Cofense, in 2020 an average of 57% of surveyed 
companies experienced at least one phishing attack, and 12% of companies were 
attacked every day. Also interesting is the “2021 Verizon Data Breach Investigations 
Report”, which states that phishing was a major trigger of data breach incidents 
in 2020, and attacks of this type accounted for 36% of all data breach incidents. 
According to the “Phishing and Fraud Report” published by RSA Security, in the first 
quarter of 2021 there was a 23% increase in the number of phishing attacks compared 
to the previous quarter. These statistics show that such attacks are still widespread and 
pose a significant threat to users and businesses. Criminals are constantly improving 
their methods. Therefore it is important to be aware and careful when dealing with 
unfamiliar e-mails and suspicious-looking websites. It is worth noting that most 
ransomware [55] is delivered by phishing methods. Very often even experienced 
users are not able to check the URLs they visit carefully. These types of attacks 
mainly affect websites that present significant value to criminals. The main target 
of attacks are websites which process data for bank transfers. Therefore, financial 
institutions are particularly interested in blocking phishing attempts. Many users 
believe that the HTTPS protocol guarantees safety. One of the recent Phishlabs reports 
[56] shows that in the third quarter of 2018 as many as 49% of phishing websites 
used SSL certificates. The most common method of attack is the registration of 
domains with a slightly changed structure (typosquatting) [57]. It includes omitting 
or adding a single character in the address, registering a domain without a dot after 
www (wwwdomainname) or adding a hyphen (www-domainname, domainname-
anyname). Phishing attacks include bitsquatting [58], which consists in changing 
one bit in the address string. When the address is clicked by the user, it is copied 
several times, among others: 

• By the TCP/IP stack from kernel to user module, 
• By the browser while HTML parsing, 
• While creating a representation of the DOM tree, 
• When creating an http request, 
• By the API during DNS resolution. 

The attacker expects that an error of writing a string of bits in memory will be 
encountered at any point while copying. If the error causes one bit to be reversed, 
the user is directed to an unwanted website. In this case, the only way to avoid the 
attack is an additional system that checks whether the string definitely belongs to 
the expected website. Another method is a homographic attack [59]. It transforms 
characters into ones with a similar appearance, for example, large “i” and small “l” (I 
l), zero and O, etc. The user does not notice the difference in the link containing this 
type of conversion. Persons who have a visual impairment are particularly vulnerable
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to this type of attack. In this technique, attackers can also change one character to two 
(‘m’ to ‘rn’, ‘ci’ to ‘G’, ‘cl’ to ‘d’ and the other way round). Another method is the 
representation described in [60]. It consists in representing Unicode characters with 
a set of characters allowed in the name, i.e. letters, numbers, and ASCII hyphens. 

Anti-phishing systems use a variety of methods to detect and prevent attacks. We 
can mention solutions based on content analysis, checking whether the address is 
included in the “black list”, heuristics and others. Content analysis in anti-phishing 
systems involves checking e-mails, websites, and other communications to iden-
tify suspicious elements, such as URLs, improperly formatted messages, or false 
logotypes. The most common methods using “black lists” make use of databases 
containing known and potentially harmful URLs, domains, e-mail addresses and 
other identifiers. They compare received messages and visited websites with the 
black list to detect potential threats. However, websites that extort information are 
active for a very short time, so a black list is usually useless. Systems based on a 
black list are not able to detect new and so-called zero-day attacks and therefore 
require frequent updates. As already mentioned, the number of phishing attacks is 
constantly growing, so it is also not possible to build a permanent (unchanging) black 
list. It should also be borne in mind that comparing URL strings requires significant 
computing resources of the system. Therefore machine learning methods are better 
at this task than a simple black list. There are also anti-phishing systems that use 
heuristic algorithms to analyze and evaluate suspicious activity. They may include 
checking for suspicious patterns in the content of messages, identifying unknown or 
modified elements, and assessing risk based on a variety of factors. An important 
element in improving security is user education and training on how to recognize and 
avoid phishing attacks. Educated users are able to display warnings and tips directly, 
which helps them make informed decisions and avoid traps. These methods are often 
implemented together in complex anti-phishing systems to provide the highest level 
of protection against phishing attacks. A huge advantage of anti-phishing methods 
using AI algorithms is the range of data on which the developed systems must operate. 
This book focuses only on the analysis of the URL content, omitting the content of the 
entire website. The tests were conducted using phishing addresses downloaded from 
the PhishTank portal and addresses not used in attacks, made available by the Crawl 
Foundation portals [61], the Moz Top 500 [62] and Alexa [63]. On the day of the 
creation of the training and testing string, the PhishTank database contained approxi-
mately 11,000 addresses. This set was completed with the same number of randomly 
selected addresses from other databases. To save as much space for encoding char-
acters as possible, each URL was stripped of the protocol symbol: http:// or https://. 
Table 4.7 shows examples of portal addresses used in experiments.

The identification of phishing addresses was performed using a convolutional 
network, which is a popular tool in the field of analysis and classification of text 
data. The process of converting input data was based on previous research aimed at 
analyzing text data in the context of identifying phishing addresses. Within this study, 
phishing addresses were encoded using 70 different characters. However, unlike in 
previous experiments, the input was encoded with 512 characters. At the time of 
the study, only 14 addresses were longer. In practical applications of convolutional
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Table 4.7 Examples of phishing addresses 

1 http://www.yourbank-login.com 

2 http://www.paypal-support.net 

3 http://www.apple-verification-login.com 

4 http://www.netflix-update-account.xyz 

5 http://www.microsoft-security-alerts.info 

6 http://www.amazon-rewards-claim.com 

7 http://www.icloud-login-security.net 

8 http://www.google-account-update-login.org

Fig. 4.12 Diagram of the network used to identify phishing websites

networks, it may happen that the address is longer than the available network input 
space, which should be taken into account when analyzing and classifying data. The 
best results in identifying phishing addresses are achieved using a specific network 
structure, which is shown in Fig. 4.11. This network structure was optimal in terms 
of performance and efficiency in the classification of phishing addresses, taking into 
account various aspects of textual data analysis (Fig. 4.12). 

http://www.yourbank-login.com
http://www.paypal-support.net
http://www.apple-verification-login.com
http://www.netflix-update-account.xyz
http://www.microsoft-security-alerts.info
http://www.amazon-rewards-claim.com
http://www.icloud-login-security.net
http://www.google-account-update-login.org
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Table 4.8 The structure of CNN used to solve phishing problem 

Layer No. Layer description 

1 Input with a size of: 70 × 256 
2 1D convolution with ReLU activation, 24 feature maps, 1D filter, width 4, step 2 

4 Maxpooling 1D filter, width 3, step 3 

5 1D convolution with ReLU activation, 64 feature maps, 1D filter, width 3, step 2 

6 Maxpooling 1D filter, width 2, step 2 

7 1D convolution with ReLU activation, 128 feature maps, 1D filter, width 3, step 3 

8 Maxpooling 1D filter, width 3, step 3 

9 Dense layer 512 with ReLU activation 

10 Output 1 of 2 

A diagram of the applied convolutional network is presented in Table 4.8. The  
structure consists of three convolutional layers connected with maxpooling layers. 
The last two layers are dense layers which perform the final classification. 

The above structure allowed for a correct classification of 98.8% of addresses. 
The above structure was modified by adding a glial structure. The idea of this study 
was to find the optimal dimensions of convolutional layers. The network diagram is 
shown in Fig. 4.13.

The convolutional layers were extended by 128 feature maps each. Table 4.9 
shows how the dimensions changed during the training of the network with a glial 
driver. The optimal dimension of the structure was achieved after 5 iterations. The 
training procedure was conducted in a manner similar to the one in the previous 
section. During the 6th and 7th iteration a significant decrease in the correctness of 
the classification performed by the network could be observed.

Table 4.10 presents a comparison of its operation with the operation of other 
structures which are most commonly described in the literature, which make use of 
the PhishTank database.

The presented solution using convolutional networks reached the highest effec-
tiveness. Obviously, a network should be additionally trained and updated based 
on new addresses used in attacks, so that the desired effectiveness can be main-
tained. However, the experiments presented in this section prove almost infallible 
effectiveness in identifying phishing addresses.
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Table 4.9 Course of a network training process 

Number 
of 
iteration 
of the 
training 
process 

Size 
of 
layer 
1 

Size 
of 
layer 
2 

Size 
of 
layer 
3 

Efficiency 
[%] 

Training 
time 
glia [s] 

Training 
time 
CNN [s] 

Switched 
off FM, 
layer 1 

Switched 
off FM, 
layer 2 

Switched 
off FM, 
layer 3 

1 128 128 128 95.17 89 92 11 8 9 

2 117 120 119 97.43 88 91 27 31 28 

3 90 89 91 98.15 73 78 28 16 12 

4 62 73 79 99.43 71 67 22 25 18 

5 40 48 61 99.86 69 64 0 16 12 

6 40 32 49 98.31 70 68 0 7 1 

7 40 25 48 86.8 68 63 0 0 1

Table 4.10 Comparison of other solutions used to identify phishing addresses 

Method of classification Correctly classified addresses in the test set (%) 

Random Forest [64] 93.40 

Recurrent networks LSTM [64] 98.70 

SVM [65] 95.80 

CANTINA+ [66] 92.00 

SVM [67] 99.00 

Td-idf [68] 99.62 

The convolutional network presented in this 
book 

99.86



Chapter 5 
Anomaly Detection Using Sequence 
Patterns 

Analysis of system logs plays an important role in improving the security of IT 
systems. System logs are records of events and activities that take place in the 
system, such as logging in, running applications, accessing files, network connec-
tions, etc. Analysis of system logs can provide valuable information about user activi-
ties and behaviors, detect suspicious or unauthorised activities, and identify potential 
threats to system security. Analysis of system logs allows system administrators to 
identify incorrect or unauthorised activities that may indicate attacks or security 
breaches. By monitoring and analyzing logs, we can quickly detect unwanted activi-
ties, such as hacking attempts, suspicious logins, or DDoS attacks [69, 70]. Analysis 
of system logs allows us to detect irregularities or unusual patterns of behavior. It can 
include unexpected changes in user activity, unusual file transfers, suspicious network 
connections, etc. Detecting such anomalies can help identify potential threats or secu-
rity incidents related to the behavior of the systems. Another important aspect is the 
reconstruction of events. By carefully checking the event log entries, it is possible 
to reconstruct the sequence of events when an incident or security breach occurs. 
By analyzing logs, we can reconstruct the path of the attack, identify sources and 
methods of the attack, and determine the scale and extent of the incident. It is impor-
tant for tracking adverse activities and taking appropriate corrective actions. It is also 
possible to monitor compliance in the context of safety regulations and policies. By 
analyzing logs, we can verify if systems and users operate in accordance with specific 
requirements and regulations. This may include monitoring access to sensitive data, 
adherence to password policies, network security, etc. It is important to configure 
appropriate tools for collecting, storing and analyzing system logs. Automation of 
log analysis and the use of tools and technologies such as SIEM (security information 
and event management) [71] can facilitate the process of monitoring and detecting 
security incidents. 

Security of IT systems is associated not only with protection against deliberate 
attacks by hostile users, but also against errors in the implementation or installation 
of systems. Administrators use system event logs to detect problems. Based on them,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
M. Korytkowski, Advanced Techniques of Artificial Intelligence in IT Security Systems, 
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they can determine the cycles of events that preceded a failure, or build event profiles 
that describe a correct operation of the system. The problem here is the analysis of 
large amounts of data. Often the complexity of the problem is so great that analyzing 
it becomes impossible even for a proficient administrator. Searching for event cycles 
or building profiles of properly functioning systems cannot always be done with the 
help of well-known sequential data mining algorithms, e.g., GSP or Apriori [72, 73], 
since events which build them rarely occur in the same sequence. Very often, several 
occur in an alternating way or do not occur at all, which does not mean an error of 
the system operation. So the goal is to find an “approximate” sequences of events. 

System logs are an example of sequential data. Sequential data is data in which 
items are ordered in a specific sequence or order. It means that each data element has 
its place and occurs after the previous element, and before the next one. Examples 
of sequential data can be texts, sounds, time signals, genetic sequences, time logs, 
financial transactions and others. In the case of sequential data, order is relevant 
for their analysis and understanding. For example, in text analysis, word order is 
important for understanding the context and meaning of the text. In sound analysis, 
the order of sound samples is necessary to reproduce the sound in an appropriate 
sequence. 

Processing of sequential data requires special techniques and models that take 
into account its sequential nature. Examples of such techniques are sequential 
models such, for instance Recurrent Neural Networks (RNN), convolutional neural 
networks (CNN) with sequential layers, Markov modelling and hidden Markov 
models (HMM). The solution presented in this book is based on the market basket 
analysis. Market basket analysis, also known as association analysis, is a data anal-
ysis technique the purpose of which is to discover the relationships between elements 
in a set of transactional or sequential data. It is based on identifying frequent sets of 
elements, that is groups of elements that often occur together in these data. Market 
basket analysis is designed to understand consumer behavior patterns, product pref-
erences, and other relationships between different elements. The basic element of 
the market basket analysis is the concept of a “basket”, which represents a collec-
tion of items, such as products in a store, items in an online order, or activities in 
a time sequence. Transactional data is collected in the form of baskets, with each 
basket containing a set of elements. Market basket analysis focuses on identifying 
frequently occurring sets of elements, that is, such combinations whose frequency of 
occurrence is higher than a certain established threshold. For example, in the context 
of a retail store, a market basket analysis can help identify sets of products that are 
often bought together. This can lead to the discovery of associative rules, such as 
“When a customer buys bread, they usually also buy butter”, which can be used 
for marketing purposes, product recommendations or personalization of offers for 
customers. 

Association analysis is based on various algorithms, such as Apriori, FP-Growth, 
ECLAT and others, which identify frequent sets of elements and generate associative 
rules based on this data. Association analysis can provide valuable insights into 
customer preferences, sales strategies, product improvements, and other business 
aspects. The insights from the association analysis can be used to make business
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decisions, such as product placement in the store, customisation of offers, creating 
product packages, pricing, and more. Market basket analysis is widely used in areas 
such as retail, e-commerce, marketing, product recommendations, customer behavior 
analysis and many others where understanding the connections between the elements 
is crucial. It is worth noting that there are many other algorithms and techniques 
available in the field of market basket analysis and discovering of association rules. 
The choice of an appropriate algorithm depends on the specific case and research 
requirements. In the following sections, we will discuss each of the algorithms in 
detail, presenting their mechanism, as well as strengths and weaknesses. 

Market basket analysis and discovering of association rules are extremely useful 
in areas such as marketing, e-commerce, product recommendations, content person-
alisation, and others. With these techniques we can discover important patterns and 
dependencies in our data, which enables us to make better decisions and improve 
our business strategies. 

The Apriori algorithms are popular market basket analysis algorithms that are 
used to identify frequent sets of items in sequential data, such as transactions or 
shopping carts. The operation of these algorithms is based on the concept of support 
and confidence. 

1. Support: Support specifies the frequency at which a set of elements occurs 
throughout the data set. In the Apriori algorithms a minimum support is estab-
lished, i.e. a minimum percentage or number of occurrences for a set to be 
considered frequent. It is defined by (2.45) where support X refers to T as part 
of the transaction t in the set containing the element X 

supp(X ) =
∣
∣
{

t ∈ T ; XCt
}∣
∣

|T | (5.1) 

2. Confidence: Confidence measures how often another set of items appear with the 
given set in transactions. It expresses the probability that if a customer buys one 
set of products, they will also buy another set. Confidence is calculated based on 
the number of transactions that contain both sets of elements. 

The operation of the Apriori algorithm can be described in the following steps: 

1. Data preparation: Data is represented as a collection of baskets, where each basket 
contains a set of products. 

2. Generating frequent single-element sets: The algorithm starts by identifying 
frequent single-element sets (products that are often found in the baskets). 
Support is calculated for each product. Then products that do not meet the 
minimum support criterion are removed. 

3. Generating candidates for larger sets: Based on the frequent single-element sets, 
candidates for larger sets are generated, adding one element to existing sets. 
Then support for product sets is calculated and product sets that do not meet the 
minimum support criterion are removed.
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4. Generating association rules: Based on the frequent sets, associative rules for 
the relationships between sets of products are generated. The rules are evaluated 
based on the confidence value and the minimum confidence established before. 

The Apriori algorithms allow for identification of frequent sets of products 
and generation of associative rules that can provide information about customer 
preferences, product recommendations or marketing strategies. 

5.1 Neural Networks in Sequence Pattern Detection 

Neural networks are successfully used to detect sequential patterns in data. In 
particular, Recurrent Neural Networks (RNN) are specially designed for processing 
sequential data and have the ability to recognize and model the relationships between 
elements in a sequence. In the case of sequential data such as time sequences, texts, 
sounds or gestures, neural networks can be used to identify hidden patterns, predict 
sequential elements, generate new sequences, translate languages, analyze emotions 
and perform many other tasks related to sequential processing. Recurrent neural 
networks, such as long short-term memory (LSTM) and gated recurrent unit (GRU), 
have memory mechanisms that allow them to store information about earlier elements 
of a sequence and use it to predict subsequent elements. As a result, they are able to 
model time dependencies and detect sequential patterns in the data. For example, 
when analyzing sentiment in text, neural networks can learn to recognize word 
sequences or sentence structures that indicate a positive or negative attitude. In the 
case of speech recognition, neural networks can detect sound patterns that corre-
spond to individual words or phonemes. In general, neural networks have the ability 
to detect and model sequential patterns in data, which makes them a powerful tool in 
sequential data analysis and many other fields, such as natural language processing, 
speech recognition, sound processing, time sequences prediction, and many more. 

However, it should be remembered that the search sequences must be given at the 
training stage. The classical approach to training neural networks does not enable 
a recognition of a sequence that was not included in the training string. Due to 
time and hardware limitations and many potential combinations it is not possible to 
generate all training sequences. Attempts to train traditional convolutional networks 
on sequential data, unfortunately, have not yielded positive results. 

5.2 Generating Sequences 

The generation of sequential patterns can be performed in various ways, depending 
on the specifics of the data and the needs. In the experiments random generation and 
supervised training were applied. In the case of standard sequential data exploration, 
in the process of simulation studies, it is assumed that the effectiveness of the applied
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Fig. 5.1 Examples of sequences created by the generator for the purpose of verifying the operation 
of neural networks in the problem of finding sequence patterns 

methods is equal to 100%. Thus, only the complexity of the algorithms and, indi-
rectly, the time of information processing are assessed. In the case of soft computing 
methods, which include neural networks, we also analyze their effectiveness. The 
aim of the conducted research was to verify the possibility of using the structures 
of convolutional networks with optimally chosen structures to detect sequences that 
were not included in the training data. In other words, the network needs to capture the 
general idea and find repeatable patterns instead of remembering specific sequences 
occurring in a dataset. Moreover, any type of sequential data can be converted from a 
dictionary into numbers. A generator of synthetic random data sequences was devel-
oped. Each position was a number from 1 to 1000—the maximum value that we 
can encode in a given U-Net network. One training example consisted of smaller 
transactions with a hidden repeated sequence of characters (green colour in Fig. 5.1) 
and other numbers drawn from among numbers which were not used to create the 
sequence. Each transaction was followed by a break of additional random characters 
that were not used to create the sequence. An example sequence is shown in Fig. 5.1. 

The parameters applied for generating sequences are: 

• size of the input convolutional network (dictionary size), 
• maximum space between sequence elements (blue parts in Fig. 5.1), 
• maximum and minimum length of the sequence (numbers in green in Fig. 5.1), 
• maximum distance between sequences (yellow fields in Fig. 5.1). 

Using this type of generator has several key advantages for neural networks. 
During the training we want to find out what sequence the network should return and 
calculate the training error. The data was encoded using a one-hot vector. The input 
signal for the convolutional network (and output network) is a two-dimensional 
matrix. In algorithms such as GSP or SPADE there is no limit to the number of 
elements where a sequence is cancelled. In the case of the proposed method, it must 
be assumed in advance. The proposed method reveals sequential patterns. Standard 
algorithms, such as BIDE, have a user-defined threshold called minimum support (a 
value from the range [0,1]). In the proposed method we cannot set this parameter, 
and the only possibility is to prepare appropriate training data.
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5.3 U-Net Network in Sequence Pattern Recognition 

In the presented issue, an attempt was made to create a universal solution that enables 
finding hidden sequence patterns using convolutional networks. The U-Net [37] 
structure is a special convolutional network architecture used in the previous parts of 
the monograph. It has a specific neural network structure and is used in the field of 
image processing and semantic segmentation. It was proposed by Olaf Ronneberger, 
Philipp Fischer and Thomas Brox in 2015 and has since been used in many tasks 
related to the analysis of medical images. The U-Net network is characterised by a 
symmetrical structure of the encoder and decoder, which allows for effective extrac-
tion of the image features at different resolution levels, and then accurate reproduction 
of the image with appropriate details at higher resolution levels. In the U-Net archi-
tecture, the encoder consists of a series of convolutional layers that are used to extract 
image features. The decoder consists of deconvolutional layers, which are used to 
reproduce the image in the original resolution. Importantly, information from the 
corresponding encoder levels is added to the decoder levels, which allows for effec-
tive communication of context and local details. The U-Net network is often used 
in image segmentation tasks where the goal is to assign labels (e.g. pixel classes) to 
different areas of the image. Thanks to its architecture, U-Net can precisely locate 
and segment objects in medical images, such as organs, tumours, or pathological 
lesions. The U-Net network has gained popularity in the medical field, but it is also 
applied in other areas, such as image recognition, optical text analysis, satellite image 
segmentation, and many other image processing tasks for relatively small training 
datasets. It was this feature that was the main reason for choosing this structure 
(Fig. 5.2).

The 2 × 2 max-pooling operation is used to reduce the map of objects by selecting 
the elements with the highest value. Un-pooling is the reverse of max-pooling [74]. 
There are many ways to perform this operation, for example, creating an additional 
filter in which the layer is calculated by “diluting” the image, or by describing each 
value from the input map function with zeros. You can also duplicate any value from 
size 1 × 1 to size 2  × 2. Maps from the encoder are also copied to the decoding 
part, creating a single 3D matrix on which the convolution and layers are performed 
simultaneously after increasing the pool. 

When designing a U-Net architecture, we need to determine the size of the input 
and output two-dimensional matrices. With this architecture, the input and output 
data have the same size m, which corresponds to the number of encoded characters 
(size of the dictionary) or the number of unique elements that make up the sequence 
base. There is no maximum number of elements in the analyzed data (a window that 
searches for sequences). As with black and white images, only one input channel is 
used. The goal is to get only those numbers that form a repeatable sequence at the 
U-Net output. The network uses zero filling, so that the size of the network remains 
unchanged after the performance of convolutions [109].
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5.4 Network Training for Detecting Hidden Sequences 

The U-Net network was trained using the adaptive moment estimation (Adam) algo-
rithm [75]. U-Net is a specific neural network architecture, mainly used in image 
segmentation tasks. It consists of convolutional layers and pooling layers. 

The Adam algorithm is a popular gradient optimisation method that combines 
the advantages of the momentum and RMSprop algorithms. The main goals of the 
Adam algorithm are effective adjustment of the training factor and tracking of the 
history of gradients. 

The process of training U-Net with the Adam algorithm has the following stages: 

1. Initialisation of weights: U-Net weights are initialised randomly or using specific 
initialisation strategies. 

2. Data preparation: Training data is divided into mini-batches, which allows for 
more efficient gradient calculations and updating of the network weights. 

3. Forward propagation: A mini-batch of data is propagated forward through the 
U-Net. Predictions are calculated at the output of the network. 

4. Calculation of a loss function: The network predictions are compared with real 
labels and a loss function such as cross entropy is calculated. 

5. Calculation of gradients: Gradients of the loss function are calculated using 
backpropagation. These gradients indicate how the network weights should be 
adjusted to minimise the loss function. 

6. Update of weights: The Adam algorithm calculates the updates of weights, taking 
into account the momentum of the gradient and the square mean of the gradient. 
The weights are updated in a direction that minimises the loss function. 

7. Repetition of the process: The above steps are repeated for subsequent mini-
batches of training data until all mini-batches are used in the training process 
(one run through the training set is one epoch). 

Through iterations of the training process, the Adam algorithm adjusts U-Net 
weights to minimise the loss function and increase the network’s ability in order 
to accurately segment images. It is worth noting that the Adam algorithm offers 
adaptive adjustment of the training factor depending on the observed gradients, which 
contributes to the effective training of neural networks such as U-Net. In the training 
process, the momentum value was set to 0.9 [76], and the training factor to 1 × 10–3 
in the first 2 epochs. It was then reduced to 1 × 10–4 throughout the training process. 
The choice of the loss function is an extremely important element in the case of 
U-Net. The Dice coefficient (DSC) [28, 77] defined by (2.46) was used. 

DSC = 2
∑n 

i=1

∑m 
j=1 X i j  Y i j  

1 + ∑n 
i=1

∑m 
j=1 Xi j  + ∑n 

i=1

∑m 
j=1 Y i j  

(5.2) 

It is a measure of similarity or overlapping of two sets. It is often used in image 
segmentation tasks and assessment of quality of segmentation model predictions. 
In the designed network no normalization or transformation (data augmentation)
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of the patterns was applied for training data. Obviously, for the purposes of the 
analyzed problem it is necessary to give examples of the sequence in its original 
form, without any modifications. An vital parameter in the training process is the 
size of the mini-batch. As a result of the simulations, it can be concluded that the best 
results were achieved using the mini-batch value = 1. In consequence, the network 
training process became sequential in nature. 

Analysis of server system logs using sequences 

System logs can be analyzed by searching for sequence patterns, which refers to 
searching for relevant information from logs generated by a server or computer 
system. System logs contain records of events and activities related to system oper-
ation, such as logging errors, network requests, performance information, moni-
toring, etc. Analysis of these logs is essential for monitoring, diagnostics, security, 
and system optimisation. Sequential analysis in the context of system logs is based 
on investigation of the sequence of events or activities in order to identify patterns, 
anomalies, errors, or other relevant information. It may involve detecting abnormal 
behavior, attacks, performance issues, application errors, as well as trend analysis 
and forecasting. Sequential analysis of system logs can provide valuable information 
about system performance, help detect problems, improve security, optimize perfor-
mance, and support decision-making within system management. It is an important 
tool in areas such as systems administration, IT infrastructure Monitoring, security 
event management, and data analysis. Various log analysis techniques can be distin-
guished, such as analysis of time relationships between events to detect anomalies or 
time patterns. The use of statistical models or machine learning to model sequences 
of events and predict future events. Analysis of sequences of events related to specific 
applications or scenarios in order to identify performance issues, bugs, or optimisa-
tion opportunities. The presented sequence detection system was verified in a real-life 
environment—the problem of analyzing entries in the HDFS server log with [78]. In 
this data set, the task was to detect a sequence of events that preceded the occurrence 
of the error. An example log entry is shown in Table 5.1. 

The study included an analysis of groups of events, each of them containing 32 
entries before the information with the label “ERROR”. Log pre-processing with the 
U-Net network is shown in Table 5.2. The data set contained 563 entries labelled

Table 5.1 Selected event log entries 

081110 222826 15661 INFO dfs.DataNode$DataXceiver: Receiving block blk_ 
6270246515882750563 src: /10.251.127.243:44841 dest: /10.251.127.243:50010 

081110 222825 35 INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap 
updated: 10.251.107.196:50010 is added to blk_2055760797155771987 size 67108864 

081110 222827 16033 INFO dfs.DataNode$PacketResponder: PacketResponder 2 for block 
blk_-7146089275359223485 terminating 

081,111 023,107 17,687 ERROR dfs.DataNode$DataXceiver: 
10.251.194.147:50010:DataXceiver: java.io.IOException: Block blk_-7877899410184422264 
is not valid 



82 5 Anomaly Detection Using Sequence Patterns

“ERROR”. As it was mentioned, all data preceding entries with this label were 
divided into groups of 32. Grouped log entries were then converted to 512-element 
input vectors. If a group of 32 events exceeded the size of 512 characters, the events 
were moved to the next input vector. Events were encoded as a matrix consisting 
of single one-hot vectors, with a class number specifying the type of event. Thus, 
the number of events in a single input vector never exceeded 512, which served to 
maintain the relative size of the U-Net network. 

Table 5.2 Sequence of log entries preceding a server error 

10.131.0.1 GET /details.php?id=41 HTTP/1.1,200 

10.131.2.1 GET /js/chart.min.js HTTP/1.1,200 

10.131.2.1, GET / HTTP/1.1,200 

10.131.0.1 GET 
/contestproblem.php?name=RUET%20OJ%20Se 

r HTTP/1.1,200  

10.130.2.1 POST /pcompile.php HTTP/1.1,200 

10.131.2.1 GET /contestsubmit.php?id=42 HTTP/1.1,200 

crash error     

10.131.2.1 POST /pcompile.php HTTP/1.1,200 

10.131.0.1 GET /details.php?id=41 HTTP/1.1,200 

10.131.2.1 POST /contestsubmission.php HTTP/1.1,200 

10.131.2.1 GET /details.php?name=Research%20Items&cod=16 HTTP/1.1,200 

10.128.2.1 GET /contestsubmit.php?id=42 HTTP/1.1,200 

10.131.2.1 POST / pcompile.php HTTP/1.1,200 

10.131.2.1 GET /details.php?name=Research%20Items&cod=16 HTTP/1.1,200 

10.128.2.1 GET /contestsubmit.php?id=42 HTTP/1.1,200 

10.131.2.1 GET / HTTP/1.1,200 

crash error 

10.131.2.1 GET /details.php?name=Research%20Items&cod=16 HTTP/1.1,200 

10.211.2.1.POST /test.php 

10.131.2.1 GET /contestsubmit.php?id=42 HTTP/1.1,200 

10.128.2.1 GET /contestsubmit.php?id=41 HTTP/1.1,200 

10.130.2.1 POST /pcompile.php HTTP/1.1,200 

10.128.2.1 GET /details.php?id=41 HTTP/1.1,200 

10.130.2.1 POST /contestsubmission.php HTTP/1.1,200 

10.130.2.1 GET /details.php HTTP/1.1,200 

10.131.2.1 GET / HTTP/1.1,200 

crash error     
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Table 5.2 shows the sequence sets in which a WWW server error occurred, together 
with the events preceding it. Here we can see what set of events led to the error. In 
this table, the entry marked in orange always occurred before an error was triggered. 
Thanks to that the administrator was able to debug the server in order find the failure. 
The presented method of detecting sequences in computer system logs can replace 
traditional exploration algorithms, such as BIDE. The U-Net architecture demon-
strated high effectiveness and speed of operation. A method based on networks with 
a structure identical to that of U-NET can effectively and quickly analyze large data 
sets and detect sequences. 

Figure 5.3 presents the input data with hidden sequences for the U-NET network. 
The network’s output is shown in Fig. 5.4, where filtered elements that do not fit the 
sequential pattern can be observed. A significant advantage of the proposed solu-
tion is also the fact that the load associated with the calculations can be distributed 
over many GPUs [79]. The proposed technique is less efficient than standard algo-
rithms (e.g. GSP, SPADE) only for very short sequences. It should be noted that the 
presented method concerns finding any sequence that does not belong to the patterns 
from the training data sets (a given sequence may or may not belong to this set). A 
trained neural network finds new sequences, previously unseen in training data. In 
the presented version of the algorithm, it is not possible to determine the minimum 
parameters such as support. 

Fig. 5.3 Encoded data from sequences as an image for the U-NET network input 

Fig. 5.4 Encoded data from sequences as an image for the U-NET network output



Chapter 6 
Concluding Remarks and Challenges 
for Future Research 

This book presents one of the areas of the use of artificial intelligence techniques 
in tasks related to the security of IT systems. Due to the widespread use of Internet 
resources and the information collected there (from extremely sensitive data, such 
as information on human health, to various types of control systems, e.g., drinking 
water intakes, etc., or databases on the functioning of enterprises, banking systems 
available on-line), it is an extremely important and very wide field for the application 
of computational intelligence techniques. One may even be tempted to say that it is 
practically impossible, due to the amount of data necessary to be processed in an 
extremely short time (real time), to operate IT security systems without the use of 
the latest discoveries in the field of AI. This monography focuses mainly on the use 
of convolutional neural networks and decision trees for tasks related to the creation 
of computer network user profiles (Chap. 3) and the detection of phishing threats 
(Sect. 4.6). An extremely important element of this research is the fact that it was 
carried out using data from real firewall devices based on authentic network traffic 
from a wide area WAN. The extraordinary effectiveness of the proposed methods 
should be emphasized. It is also worth noting that the solution to the problem of 
searching for anomalies was carried out with the use of proprietary models of neural 
networks—the so-called glia. This is one of the first known attempts in the literature to 
reproduce the latest information on the structure of the human brain. The monograph 
presents both a proposal for the adaptation of glial cells to convolutional structures 
known and commonly used, as well as techniques for their training. On the basis of 
the conducted experiments, it has been shown that: 

1. The use of these cells contributes to the improvement of the quality of 
convolutional network structures known from the literature 

2. The concept of modified convolutional networks, equipped with glial cells, can be 
used to simplify their structure without sacrificing efficiency, quality of operation 

In order to demonstrate the advantages of glial networks, their effectiveness was 
compared with convolutional networks known in the literature, demonstrating the
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advantage of newly developed models. It seems natural to continue research on the 
possibilities of the proposed glial structures. It should be assumed that the proposed 
model of artificial networks using additional cells is not the final model. It should 
also be recognized that the developed technique of training the presented networks 
does not necessarily close the topic completely. A rather interesting task is also the 
successful attempt to analyze sequence patterns in the logs of information systems, 
presented in chapter number 5. Thanks to the use of the proposed technique, it is 
possible to build a description of the sequence of events that naturally occur in the 
selected IT system. Please note that the analyzed logs are represented by databases 
up to 50 GB in size. A characteristic feature of such log sets is that their content is 
highly variable and dependent on interrelated events in different systems. Therefore, 
it is not possible to analyze them in real time by a human. Here, too, information from 
real systems was used. An example of the application of this technique to the analysis 
of events originating in the HDFS system is presented. It should be emphasized here 
that the extremely wide possibilities of applying the developed proprietary techniques 
presented in this monograph in real conditions. They can be adapted to various fields 
related to the broadly understood security of IT systems: analysis of computer logs, 
database servers, etc. Of course, the use of the proposed algorithms entails the need 
to provide high-performance equipment for calculations (training and operation in 
the recreation mode). Of course, there is a possibility, in the era of virtually unlimited 
bandwidth of computer networks, to use the capabilities of cloud computing for this 
purpose. However, it should be remembered that each sending of requests outside of 
one’s own infrastructure carries the risk of leakage of extremely crucial information 
regarding the configuration of devices, and thus data leakage.
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